JP6147735B2 - 磁気記録媒体基板用ガラスおよびその利用 - Google Patents
磁気記録媒体基板用ガラスおよびその利用 Download PDFInfo
- Publication number
- JP6147735B2 JP6147735B2 JP2014515588A JP2014515588A JP6147735B2 JP 6147735 B2 JP6147735 B2 JP 6147735B2 JP 2014515588 A JP2014515588 A JP 2014515588A JP 2014515588 A JP2014515588 A JP 2014515588A JP 6147735 B2 JP6147735 B2 JP 6147735B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- magnetic recording
- recording medium
- cao
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims description 497
- 239000000758 substrate Substances 0.000 title claims description 351
- 238000000034 method Methods 0.000 claims description 96
- 238000003426 chemical strengthening reaction Methods 0.000 claims description 90
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 73
- 239000011734 sodium Substances 0.000 claims description 71
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 53
- 230000009477 glass transition Effects 0.000 claims description 44
- 239000000696 magnetic material Substances 0.000 claims description 43
- 150000003839 salts Chemical class 0.000 claims description 43
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 38
- 229910052708 sodium Inorganic materials 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 239000005345 chemically strengthened glass Substances 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 14
- 238000005728 strengthening Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 8
- 159000000000 sodium salts Chemical class 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 claims 2
- 239000010410 layer Substances 0.000 description 108
- 238000005342 ion exchange Methods 0.000 description 37
- 239000000463 material Substances 0.000 description 36
- 239000006060 molten glass Substances 0.000 description 32
- 239000000203 mixture Substances 0.000 description 28
- 230000007423 decrease Effects 0.000 description 27
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 26
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 24
- 230000005484 gravity Effects 0.000 description 24
- 239000000126 substance Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 238000005498 polishing Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 14
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 13
- 238000007373 indentation Methods 0.000 description 13
- 229910001413 alkali metal ion Inorganic materials 0.000 description 12
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- 230000003746 surface roughness Effects 0.000 description 11
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 10
- 229910010413 TiO 2 Inorganic materials 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 10
- 239000003513 alkali Substances 0.000 description 10
- 230000003111 delayed effect Effects 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 10
- 229910020707 Co—Pt Inorganic materials 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 230000003595 spectral effect Effects 0.000 description 7
- 230000005415 magnetization Effects 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 238000006124 Pilkington process Methods 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000004323 potassium nitrate Substances 0.000 description 5
- 235000010333 potassium nitrate Nutrition 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000005357 flat glass Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000007500 overflow downdraw method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000004317 sodium nitrate Substances 0.000 description 4
- 235000010344 sodium nitrate Nutrition 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910018979 CoPt Inorganic materials 0.000 description 3
- 229910005335 FePt Inorganic materials 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000003280 down draw process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 239000006249 magnetic particle Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000075 oxide glass Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000005341 toughened glass Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 150000001447 alkali salts Chemical class 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 230000005457 Black-body radiation Effects 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000005347 annealed glass Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011494 foam glass Substances 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/06—Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B13/00—Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
- G11B13/04—Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for magnetically or by magnetisation and optically or by radiation, for changing or sensing optical properties
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/739—Magnetic recording media substrates
- G11B5/73911—Inorganic substrates
- G11B5/73921—Glass or ceramic substrates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/8404—Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B2005/0002—Special dispositions or recording techniques
- G11B2005/0005—Arrangements, methods or circuits
- G11B2005/0021—Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Magnetic Record Carriers (AREA)
- Glass Compositions (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Recording Or Reproducing By Magnetic Means (AREA)
Description
文献2:特開2007−51064号公報
文献3:特開2001−294441号公報
文献4:特開2001−134925号公報
文献5:特開2001−348246号公報
文献6:特開2001−58843号公報
文献7:特開2006−327935号公報
文献8:特開2005−272212号公報
文献9:特開2004−43295号公報
文献10:特開2005−314159号公報
文献11:特開2004−362746号公報
磁気記録媒体を組み込んだHDD(ハードディスクドライブ)は、中央部分をスピンドルモーターのスピンドル及びクランプで押さえて磁気記録媒体そのものを回転させる構造となっている。そのため、磁気記録媒体基板とスピンドル部分を構成するスピンドル材料の各々の熱膨張係数に大きな差があると、使用時に周囲の温度変化に対してスピンドルの熱膨張・熱収縮と磁気記録媒体基板の熱膨張・熱収縮にずれが生じてしまい、結果として磁気記録媒体が変形してしまう現象が起きる。このような現象が生じると書き込んだ情報をヘッドが読み出せなくなってしまい、記録再生の信頼性を損なう原因となる。したがって磁気記録媒体の信頼性を高めるには、ガラス基板には、スピンドル材料(例えばステンレスなど)と同程度の高い熱膨張係数を有することが求められる。
この背景として、第一に、磁気ヘッドの浮上量(磁気ヘッドと磁気記録媒体表面との間隙)の大幅な低下(低浮上量化)が挙げられる。こうすることで、磁気ヘッドと媒体の磁性層との距離が近づくため、より小さい磁性粒子の信号も拾うことができるようになるため、高記録密度化を達成することができる。近年、従来以上の低浮上量化を実現するために、DFH(Dynamic Flying Height)という機能が磁気ヘッドに搭載されている。これは、磁気ヘッドの記録再生素子部の近傍に極小のヒーター等の加熱部を設けて、素子部周辺のみを媒体表面方向に向けて突き出す機能である。今後、この機能によって、磁気ヘッドの素子部と媒体表面との間隙は、2nm未満と極めて小さくなると見られている。このため、僅かな衝撃によっても、磁気ヘッドが媒体表面に衝突しやすくなる。
第二に、媒体の高速回転化が挙げられる。これにより、まず、磁気ヘッドとの衝突の際の衝撃が大きくなる。なお、外周部においては基板のたわみが大きくなるため、僅かな衝撃によっても磁気ヘッドと衝突しやすくなる。また内周部においては、スピンドル及びクランプによる媒体の締め付け(固定)の影響によって、HDD自体に外的衝撃が加わった場合に基板が割れる可能性が高くなる。
必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上、
ヤング率が80GPa以上、
ガラス転移温度が620℃以上、
である磁気記録媒体基板用ガラス、
に関する。
必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、
ヤング率が80GPa以上、
ガラス転移温度が620℃以上、
である磁気記録媒体基板用ガラス、
に関する。
必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上、
100〜300℃における平均線膨張係数が70×10-7/℃以上、
ガラス転移温度が620℃以上、
である磁気記録媒体基板用ガラス、
に関する。
必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、
100〜300℃における平均線膨張係数が70×10-7/℃以上、
ガラス転移温度が620℃以上、
である磁気記録媒体基板用ガラス、
に関する。
上述の磁気記録媒体基板用ガラスからなる磁気記録媒体基板、
に関する。
上述の磁気記録媒体基板用ガラスを化学強化してなる磁気記録媒体基板、
に関する。
Tav/Tmax≧0.5
を満たす化学強化ガラスからなる。
上述の磁気記録媒体基板用ガラスからなる磁気記録媒体基板ブランク、
に関する。
上述の磁気記録媒体基板ブランクを加工することを含む磁気記録媒体基板の製造方法、
に関する。
Tav/Tmax≧0.5
を満たす化学強化ガラスとなるように上述の化学強化を行う。
上述の磁気記録媒体基板上に磁気記録層を有する磁気記録媒体、
に関する。
上述の磁気記録媒体基板の主表面に、Feおよび/またはCoと、Ptとの合金を主成分とする磁性材料を成膜した後、アニール処理を行うことにより磁気記録層を形成することを含む磁気記録媒体の製造方法、
に関する。
少なくとも磁気記録媒体の主表面を加熱するための熱源と、記録素子部と、再生素子部とを有する熱アシスト磁気記録ヘッド、および、上述の磁気記録媒体を有するエネルギーアシスト磁気記録方式の磁気記録装置、
に関する。
本発明の他の一態様にかかる磁気記録媒体基板用ガラス(以下、「ガラス2」という。)は、必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、ヤング率が80GPa以上、ガラス転移温度が620℃以上、である磁気記録媒体基板用ガラスである。
本発明の他の一態様にかかる磁気記録媒体基板用ガラス(以下、「ガラス4」という。)は、必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、100〜300℃における平均線膨張係数が70×10-7/℃以上、ガラス転移温度が620℃以上、である磁気記録媒体基板用ガラスである。
上記ガラスからなる磁気記録媒体基板;および、
上記ガラスを化学強化してなる磁気記録媒体基板
に関する。
前述のとおり、高Ku磁性材料の導入などによって磁気記録媒体の高記録密度化を図る場合、磁性材料の高温処理などにおいて、磁気記録媒体用ガラス基板は高温下に晒されることになる。その際、基板の極めて高い平坦性が損なわれないようにするため、磁気記録媒体用ガラス基板には優れた耐熱性を有することが求められる。耐熱性の指標としてはガラス転移温度が用いられ、本発明のガラスは、620℃以上のガラス転移温度を有することで、高温処理後にも優れた平坦性を維持することができる。したがって、本発明の一態様にかかるガラスは、高Ku磁性材料を備えた磁気記録媒体用基板の作製に好適である。ガラス転移温度の好ましい範囲は630℃以上である。ガラス転移温度の上限は、例えば750℃程度であるがガラス転移温度は高いほど好ましく特に限定されるものではない。なお、ガラス転移温度は化学強化の前後でほぼ一定の値となる。
前述のとおり、磁気記録媒体用ガラス基板を構成するガラスとHDDのスピンドル材料(例えば、ステンレスなど)の熱膨張係数の差が大きいと、HDDの動作時における温度変化によって磁気記録媒体が変形し、記録再生トラブルが起こるなど信頼性が低下することになってしまう。特に、高Ku磁性材料からなる磁気記録層を有する磁気記録媒体は、記録密度が極めて高いため、磁気記録媒体の僅かな変形によっても前記トラブルが起こりやすくなる。一般にHDDのスピンドル材料は、100〜300℃の温度範囲において70×10-7/℃以上の平均線膨張係数(熱膨張係数)を有するものであるところ、ガラス3およびガラス4は、100〜300℃の温度範囲における平均線膨張係数が70×10-7/℃以上であるため、上記信頼性を向上することができ、高Ku磁性材料からなる磁気記録層を有する磁気記録媒体に好適な基板を提供することができる。同様の理由から、ガラス1およびガラス2も100〜300℃の温度範囲における平均線膨張係数が70×10-7/℃以上であることが好ましい。
前記平均線膨張係数の好ましい範囲は71×10-7/℃以上、より好ましい範囲は72×10-7/℃以上、さらに好ましい範囲は73×10-7/℃以上、一層好ましい範囲は74×10-7/℃以上、より一層好ましい範囲は75×10-7/℃以上である。前記平均線膨張係数の上限は、スピンドル材料の熱膨張特性を考慮すると、例えば120×10-7/℃程度であることが好ましく、100×10-7/℃であることがより好ましく、88×10-7/℃であることがさらに好ましい。なお、熱膨張係数は、化学強化の前後でほぼ一定の値となる。
また、一態様では、500〜600℃の温度範囲における平均線膨張係数が60×10-7/℃以上であることが好ましい。さらに好ましい範囲は70×10-7/℃以上である。前記平均線膨張係数の上限は、例えば100×10-7/℃以下であることが好ましく、90×10-7/℃であることがより好ましい。500〜600℃の温度範囲における平均線膨張係数が上述の範囲のガラスを用いて基板を作製することにより、高Ku磁性材料等の多層膜を成膜後、アニール処理中や処理後に多層膜がガラス基板から剥離することや、アニール処理中に基板が保持部材から落下することを、確実に防止することができる。
磁気記録媒体の変形としては、HDDの温度変化による変形の他、高速回転による変形がある。高速回転時の変形を抑制する上から、上記のように磁気記録媒体基板のヤング率を高めることが求められる。ガラス1およびガラス2は、80GPa以上のヤング率を有するため、高速回転時の基板変形を抑制し、高Ku磁性材料を備えた高記録密度化された磁気記録媒体においても、データの読み取り、書き込みを正確に行うことができる。同様の理由から、ガラス3およびガラス4も、80GPa以上のヤング率を有することが好ましい。
ヤング率の好ましい範囲は81GPa以上であり、より好ましくは82GPa以上であり、更に好ましくは83GPa以上であり、一層好ましくは84GPa以上であり、より一層好ましくは85GPa以上であり、更に一層好ましくは86GPa以上である。ヤング率の上限は、特に限定されるものではないが、他の特性を好ましい範囲にする上から、例えば95GPaを上限の目安と考えることができる。なおヤング率も、化学強化処理の前後で、ほぼ一定の値となる。
磁気記録媒体を高速回転させたときの変形(基板のたわみ)を抑制する上から、基板材料として高い比弾性率を有するガラスが好ましい。比弾性率も化学強化の前後でほぼ一定の値となるが、本発明のガラスにおける比弾性率の好ましい範囲は、30.0MNm/kg以上である。比弾性率は30.0MNm/kg超であることがより好ましく、30.5MNm/kg以上であることが更に好ましい。その上限は、例えば40.0MNm/kg程度であるが特に限定されるものではない。比弾性率はガラスのヤング率を密度で除したものである。ここで密度とはガラスの比重に、g/cm3という単位を付けた量と考えればよい。ガラスの低比重化によって、比弾性率を大きくすることができることに加え、基板を軽量化することができる。基板の軽量化により、磁気記録媒体の軽量化がなされ、磁気記録媒体の回転に要する電力を減少させ、HDDの消費電力を抑えることができる。本発明のガラスの比重の好ましい範囲は2.90以下、より好ましい範囲は2.80以下、さらに好ましい範囲は2.70未満である。
破壊靭性値は、以下の方法で測定される。
AKASHI社製の装置MVK−Eを用い、板状に加工した試料に押し込み荷重P[N]でビッカース圧子を押し込み、試料に圧痕およびクラックを導入する。試料のヤング率をE[GPa]、圧痕対角線長さをd[m]、表面クラックの半長をa[m]とすると破壊靭性値K1c[Pa・m1/2]は下式で表される。
K1c=[0.026(EP/π)1/2(d/2)(a)-2]/[(πa)-1/2]
本発明の一態様にかかる基板を構成するガラスの破壊靭性値(荷重P=9.81N(1000gf))は0.9MPa・m1/2以上であることが好ましい。破壊靭性は耐熱性とトレードオフの関係にあり、磁気記録媒体の記録密度を高くするために基板の耐熱性を高めると破壊靭性値が低下し、耐衝撃性が低下してしまう。これに対し本発明の一態様によれば、破壊靱性値を高めつつ耐熱性、剛性、熱膨張特性をバランスさせた高記録密度対応の磁気記録媒体に好適なガラス基板を提供することができる。破壊靭性値の好ましい範囲は1.0MPa・m1/2以上、より好ましい範囲は1.1MPa・m1/2以上、更に好ましい範囲は1.2MPa・m1/2以上である。破壊靭性値が0.9MPa・m1/2以上であることにより、耐衝撃性が優れ、信頼性の高い高記録密度対応の磁気記録媒体を提供することができる。なお、特記しない限り、本発明において破壊靭性値とは、荷重Pを9.81N(1000gf)として測定される破壊靭性値を意味する。破壊靱性値の測定は、圧痕対角線長さd、表面クラックの半長aを正確に測定する上から、ガラスの平滑面、例えば研磨された面において行うことが好ましい。また本発明において、化学強化されたガラスからなる基板についての破壊靭性値は化学強化されたガラスの値とする。上記破壊靱性値は、ガラス組成によっても変化し、また化学強化条件によっても変化するため、化学強化されたガラスからなる本発明の一態様にかかる磁気記録媒体基板を得るためには、組成調整および化学強化処理条件によって、上記破壊靱性値を所望の範囲とすることができる。
磁気記録媒体用ガラス基板を生産する際には、ガラスをディスク形状に加工し、主表面を極めて平坦かつ平滑に加工する。そして、前記加工工程の後、通常、ガラス基板を酸洗浄して表面に付着した汚れである有機物を除去する。ここでガラス基板が耐酸性に劣るものであると、上記酸洗浄時に面荒れを起こし、平坦性、平滑性が損なわれ磁気記録媒体用ガラス基板として使用することが困難となる。特にガラス基板表面の高い平坦性、平滑性が求められる高Ku磁性材料からなる磁気記録層を有する、高記録密度化された磁気記録媒体用ガラス基板は、優れた耐酸性を有することが望ましい。
また、酸洗浄に続いて、アルカリ洗浄して表面に付着した研磨剤などの異物を除去して一層清浄な状態の基板を得ることができる。アルカリ洗浄時にも面荒れによる基板表面の平坦性、平滑性の低下を防ぐ上からガラス基板は耐アルカリ性に優れたものであることが好ましい。優れた耐酸性および耐アルカリ性を有し基板表面の平坦性、平滑性が高いことは、前述の低浮上量化の観点からも有利である。本発明の一態様では、前記したガラス組成の調整、特に化学的耐久性に有利な組成調整を行うことにより、優れた耐酸性および耐アルカリ性を実現することができる。
ガラスを熔融し、得られた熔融ガラスを成形する際、成形温度が液相温度を下回るとガラスが結晶化し、均質なガラスが生産できない。そのためガラス成形温度は液相温度以上にする必要があるが、成形温度が1300℃を超えると、例えば熔融ガラスをプレス成形する際に用いるプレス成形型が高温のガラスと反応して、ダメージを受けやすくなる。熔融ガラスを鋳型に鋳込んで成形する場合も同様に鋳型がダメージを受けやすくなる。こうした点に配慮し、本発明の一態様にかかるガラスの液相温度は1300℃以下であることが好ましい。液相温度のより好ましい範囲は1280℃以下、さらに好ましい範囲は1250℃以下である。本発明の一態様では、前記したガラス組成調整を行うことにより、上記好ましい範囲の液相温度を実現することができる。下限は特に限定されないが、800℃以上を目安に考えればよい。
磁気記録媒体は、ガラス基板上に磁気記録層を含む多層膜を成膜する工程を経て生産される。現在、主流になっている枚葉式の成膜方式で基板上に多層膜を形成する際、例えばまずガラス基板を成膜装置の基板加熱領域に導入しスパッタリングリングなどによる成膜が可能な温度にまでガラス基板を加熱昇温する。ガラス基板の温度が十分昇温した後、ガラス基板を第1の成膜領域に移送し、ガラス基板上に多層膜の最下層に相当する膜を成膜する。次にガラス基板を第2の成膜領域に移送し、最下層の上に成膜を行う。このようにガラス基板を後段の成膜領域に順次移送して成膜することにより、多層膜を形成する。上記加熱と成膜は真空ポンプにより排気された低圧下で行うため、ガラス基板の加熱は非接触方式を取らざるを得ない。そのため、ガラス基板の加熱には輻射による加熱が適している。この成膜はガラス基板が成膜に好適な温度を下回らないうちに行う必要がある。各層の成膜に要する時間が長すぎると加熱したガラス基板の温度が低下し、後段の成膜領域では十分なガラス基板温度を得ることができないという問題が生じる。ガラス基板を長時間にわたって成膜可能な温度を保つためには、ガラス基板をより高温に加熱することが考えられるが、ガラス基板の加熱速度が小さいと加熱時間をより長くしなければならず、加熱領域にガラス基板が滞在する時間も長くしなければならない。そのため各成膜領域におけるガラス基板の滞在時間も長くなり、後段の成膜領域では十分なガラス基板温度を保てなくなってしまう。さらにスループットを向上することも困難となる。特に高Ku磁性材料からなる磁気記録層を備えた磁気記録媒体を生産する場合、所定時間内にガラス基板を高温に加熱するために、ガラス基板の輻射による加熱効率を一層高めるべきである。
SiO2、Al2O3を含むガラスには、波長2750〜3700nmを含む領域に吸収ピークが存在する。また、後述する赤外線吸収剤を添加するか、ガラス成分として導入することにより、さらに短波長の輻射の吸収を高めることができ、波長700nm〜3700nmの波長領域に吸収を持たせることができる。ガラス基板を輻射、すなわち、赤外線照射により効率よく加熱するには、上記波長域にスペクトルの極大が存在する赤外線を用いることが望まれる。加熱速度を上げるには、赤外線のスペクトル極大波長と基板の吸収ピーク波長をマッチさせるとともに赤外線パワーを増やすことが考えられる。赤外線源として高温状態のカーボンヒータを例にとると、赤外線のパワーを増加するにはカーボンヒータの入力を増加すればよい。しかし、カーボンヒータからの輻射を黒体輻射と考えると、入力増加によってヒータ温度が上昇するため、赤外線のスペクトルの極大波長が短波長側にシフトし、ガラスの上記吸収波長域から外れてしまう。そのため、基板の加熱速度を上げるためにはヒータの消費電力を過大にしなければならず、ヒータの寿命が短くなってしまうなどの問題が発生する。
このような点に鑑み、上記波長領域(波長700〜3700nm)におけるガラスの吸収をより大きくすることにより、赤外線のスペクトル極大波長と基板の吸収ピーク波長を近づけた状態で赤外線の照射を行い、ヒータ入力を過剰にしないことが望ましい。そこで赤外線照射過熱効率を高めるため、ガラス基板としては、700〜3700nmの波長域に、厚さ2mmに換算した分光透過率が50%以下となる領域が存在するか、または、前記波長域にわたり、厚さ2mmに換算した分光透過率が70%以下となる透過率特性を備えるものが好ましい。例えば、鉄、銅、コバルト、イッテルビウム、マンガン、ネオジム、プラセオジム、ニオブ、セリウム、バナジウム、クロム、ニッケル、モリブデン、ホルミウムおよびエルビウムの中から選ばれる少なくとも1種の金属の酸化物は、赤外線吸収剤として作用し得る。また、水分または水分に含まれるOH基は、3μm帯に強い吸収を有するため、水分も赤外線吸収剤として作用し得る。ガラス組成に上記赤外線吸収剤として作用し得る成分を適量導入することにより、ガラス基板に上記好ましい吸収特性を付与することができる。上記赤外線吸収剤として作用し得る酸化物の添加量は、酸化物として質量基準で500ppm〜5%であることが好ましく、2000ppm〜5%であることがより好ましく、2000ppm〜2%であることがさらに好ましく、4000ppm〜2%の範囲がより一層好ましい。また、水分については、H2O換算の重量基準で200ppm超含まれることが好ましく、220ppm以上含まれることがより好ましい。
なお、Yb2O3、Nb2O5をガラス成分として導入する場合や清澄剤としてCe酸化物を添加する場合は、これら成分による赤外線吸収を基板加熱効率の向上に利用することができる。
また本発明において、「主表面」とは、ガラス基板またはガラスの表面のうち、最も面積の広い面を意味する。ディスク状ガラス基板の場合、ディスクの円形状の表裏対向する一対の表面(中心穴がある場合は中心穴を除く。)が主表面に相当する。
ガラス2およびガラス4は、必須成分として、SiO2、Li2O、Na2O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下である。
以下、本発明の一態様にかかる磁気記録媒体基板用ガラスのガラス組成について、更に詳細に説明する。
本発明の一態様にかかる磁気記録媒体基板用ガラスは、ガラス転移温度が620℃以上と高く、優れた耐熱性を有し、高Ku磁性材料からなる磁気記録層を形成するための磁気記録媒体用基板材料として好適である。磁性材料の高温処理などにおいて、ガラス基板は高温下に晒されることになるが、上記のようにガラス転移温度が高いガラス材料を使用すれば、基板の平坦性が損なわれることがない。
ガラス中におけるアルカリ金属イオンの拡散速度はイオン半径が小さいイオンほど大きいため、熔融塩中のNa+イオンはガラス表面からより深層にまで達して深い圧縮応力層を形成し、熔融塩中のK+イオンはNa+イオンほど深層には達せず、圧縮応力層は表面から浅い部分に形成される。混合塩により化学強化されたガラスの深さ方向の応力分布は、Na+とLi+のイオン交換により形成される応力分布とK+とNa+のイオン交換により形成される応力分布を合成したものになる。そのため、深さ方向の応力分布は緩やかに変化し、図1に模式図を示すように、バビネ法により測定される2つの主表面に垂直な仮想断面における応力プロファイルにおいて、引張応力分布が凸形状となる。この凸形状には、後述の図2に示すような圧縮応力側へ凹む凹み部は含まれない。また、比較的深い圧縮応力層が形成される。なお図1中、中央のL線よりも左側が圧縮応力の領域であり、右側が引張応力の領域である。
仮にガラス表面のクラックが成長して引張応力層に達しても、上記応力分布を有する化学強化ガラスでは、即、ガラスが破壊することはない。
一方、Na2Oを含み、Li2Oを含まないガラスを化学強化する場合は、ガラスをカリウム熔融塩に浸漬し、ガラス中のNa+イオンと熔融塩中のKイオンとの交換により、ガラス表面近傍に圧縮応力層を形成する。K+イオンはNa+やLi+と比較し拡散速度が小さいため、ガラス深層まで達せず、圧縮応力層は浅く、深さ方向の応力分布は急峻に変化し、図2に模式図を示すように、バビネ法により測定される2つの主表面に垂直な仮想断面における応力プロファイルにおいて、主表面間の中央部からそれぞれ主表面側に寄った箇所で極大となる。つまり、引張応力が極大となる位置は2箇所になる。このような極大は、アップヒルと呼ばれる。このようなガラスでは、仮にガラス表面のクラックが成長して引張応力層に達すると、クラックの先端が引張応力の極大領域に達するので、引張応力によって破壊の進行が助長され、所謂、遅れ破壊を引き起こす。
本発明の一態様にかかる磁気記録媒体基板用ガラスは、ガラス成分としてLi2OおよびNa2Oを含むため、Na+、K+の混合塩で化学強化することにより、遅れ破壊を防止することができる。遅れ破壊の発生をより一層効果的に防止する観点からは、Li2O含有量は0.1モル%以上であることが好ましい。
本発明者らは、この点について検討した結果、次のような知見を得た。
アルカリ金属イオンLi+、Na+、K+、アルカリ土類金属イオンMg2+、Ca2+、Sr2+、Ba2+のポーリングによるイオン半径は表1に示すとおりである。
CaOを含むガラスをナトリウム塩とカリウム塩の混合熔融塩を用いて高温で化学強化する場合、Na+(ガラス)⇔K+(熔融塩)の反応と並行してCa2+(ガラス)⇔Na+(熔融塩)が起こり、アルカリ金属イオン同士の交換が阻害されると考えられる。
ガラス中のMg2+は、リチウム熔融塩を用いなければMg2+(ガラス)⇔Li+(熔融塩)というイオン交換は起こらず、ガラス中のSr2+は、イオン半径が大きく拡散速度が遅いため、熔融塩中のK+と交換しにくい。
そこで、ガラス1およびガラス3では、高耐熱性ガラスの化学強化に特有のイオン交換効率の低下によって引き起こされると考えられる機械的強度の低下を解決するために、アルカリ土類金属酸化物の中で、イオン交換効率を低下させることなくヤング率を高めるために有効な成分であるMgOの割合を高めることで、即ち、MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))を0.80以上とすることにより、上記の機械的強度の低下を解決することができる。イオン交換効率の維持、機械的強度の維持という観点から、モル比(MgO/(MgO+CaO+SrO+BaO))の好ましい範囲は、0.85〜1.00、より好ましい範囲は0.90〜1.00、更に好ましい範囲は0.95〜1.00である。ところで、本発明者らは、ガラス成分として複数種のアルカリ土類金属酸化物を共存させるとガラス転移温度が低下傾向を示すとの新たな知見を得た。この知見によれば、耐熱性を維持する上から、アルカリ土類金属酸化物はできるだけ一種に集中して導入することが好ましい。すなわち、モル比(MgO/(MgO+CaO+SrO+BaO))を上記範囲にすることは耐熱性を維持する上からも好ましい。
一方、ガラス2およびガラス4では、高耐熱性ガラスの化学強化に特有のイオン交換効率の低下によって引き起こされると考えられる機械的強度の低下を解決するために、アルカリ土類金属酸化物の中で、イオン交換効率を低下させるCaOの割合を抑えることで、即ち、MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))を0.20以下とすることにより、上記の機械的強度の低下を解決することができる。イオン交換効率の維持、機械的強度の維持という観点から、モル比(CaO/(MgO+CaO+SrO+BaO))の好ましい範囲は、0〜0.18、より好ましい範囲は0〜0.16、更に好ましい範囲は0〜0.15、一層好ましい範囲は0〜0.10である。
SiO2を56〜75モル%、
Al2O3を1〜20モル%、
Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物を合計で6〜15モル%、
MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物を合計で10〜30モル%、
ZrO2、TiO2、Y2O3、La2O3、Gd2O3、Nb2O5およびTa2O5からなる群から選ばれる酸化物を合計で0モル%超かつ10モル%以下、
含むものであって、ガラス転移温度が620℃以上、100〜300℃における平均線膨張係数が70×10-7/℃以上、ヤング率が81GPa以上、比弾性率が30MNm/kg以上、破壊靭性値が0.9MPa・m1/2以上になるように組成調整されたガラスが望ましい。組成調整については、例えば前記ガラスにおけるK2O含有量の好ましい範囲は上記のとおりである。またアルカリ土類金属酸化物の一種であるBaOは破壊靭性を低下させる働きがあるため、その含有量の上限を破壊靭性値が0.9MPa・m1/2以上となるように制限することが望ましい。破壊靭性値の好ましい範囲は前述のとおりである。荷重4.9N(500gf)で測定して得られる破壊靭性値を用いる場合は、破壊靭性値(荷重4.9N(500gf))が0.9MPa・m1/2超となるようにBaO含有量の上限を制限すればよい。破壊靭性値(荷重4.9N(500gf))の好ましい範囲は前述のとおりである。前記したように、BaOは含有させなくてもよい。なお本発明の基板が化学強化ガラス基板である場合には、当該基板において上記のアルカリ金属酸化物を構成するアルカリ金属原子の少なくとも一部がイオン交換されている。本発明において、特記しない限り、化学強化されたガラス基板に関するガラス組成については同様とする。
SiO2を56〜75%、
Al2O3を1〜20%、
Li2Oを0%超かつ4%以下、
Na2Oを1%以上かつ15%未満、
K2Oを0%以上3%未満、
含み、かつBaOを実質的に含まず、
Li2O、Na2OおよびK2Oからなる群から選ばれるアルカリ金属酸化物の合計含有量が6〜15%の範囲であり、
Na2O含有量に対するLi2O含有量のモル比(Li2O/Na2O)が0.50未満であり、
上記アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}が0.13以下であり、
MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物の合計含有量が10〜30%の範囲であり、
MgOおよびCaOの合計含有量が10〜30%の範囲であり、
上記アルカリ土類金属酸化物の合計含有量に対するMgOおよびCaOの合計含有量のモル比{(MgO+CaO)/(MgO+CaO+SrO)}が0.86以上であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量が20〜40%の範囲であり、
上記アルカリ金属酸化物およびアルカリ土類金属酸化物の合計含有量に対するMgO、CaOおよびLi2Oの合計含有量のモル比{(MgO+CaO+Li2O)/(Li2O+Na2O+K2O+MgO+CaO+SrO)が0.50以上であり、
ZrO2、TiO2、Y2O3、La2O3、Gd2O3、Nb2O5およびTa2O5からなる群から選ばれる酸化物の合計含有量が0%超かつ10%以下のガラス(以下、ガラスAという);
ガラスAであって、かつAl2O3含有量に対する上記酸化物の合計含有量のモル比{(ZrO2+TiO2+Y2O3+La2O3+Gd2O3+Nb2O5+Ta2O5)/Al2O3}が0.40以上のガラス(以下、ガラスA−1という)、
を例示することができる。
記録密度を高めるためには磁気ヘッドと磁気記録媒体表面との距離を近づけ、書き込み・読み込み分解能を挙げる必要がある。そのため近年、ヘッドの低浮上量化(磁気ヘッドと磁気記録媒体表面との間のスペーシングの低減)が進められており、これに伴い磁気記録媒体表面にはわずかな突起の存在も許容されなくなってきている。低浮上量化された記録再生システムでは、微小突起であってもヘッドと衝突しヘッド素子の損傷等の原因となるからである。一方、BaOは大気中の炭酸ガスとの反応によりガラス基板表面の付着物となるBaCO3を生成する。したがって付着物低減の観点からBaOを含有させない。加えてBaOはガラス表面の変質(ヤケと呼ばれる)の発生原因となり、基板表面に微小突起を形成するおそれのある成分であるため、ガラス表面のヤケの防止のためにもBaOを排除する。なお、Baフリー化は環境への負担を軽減するうえからも好ましい。
記録密度を高めるほどビットサイズは小さくなり、例えば1テラバイト/inch2を超える高密度記録を実現するためのビットサイズの目標値は数十nm径とされている。このような微小ビットサイズで記録する場合、熱アシスト記録では加熱領域をビットサイズと同程度に小さくする必要がある。また、微小ビットサイズで高速記録するためには、1つのビットの記録に費やすことのできる時間は極短時間となるため、熱アシストによる加熱と冷却を瞬間的に完了する必要がある。即ち、熱アシスト記録用磁気記録媒体では、加熱と冷却は可能な限り速やかに、かつ局所的に行われることが求められる。
そこで熱アシスト記録用磁気記録媒体の基板と磁気記録層との間に、高い熱伝導率を有する材料からなるヒートシンク層(例えばCu膜)を設けることが提案されている(例えば特開2008−52869号公報参照)。ヒートシンク層は、面内方向への熱の広がりを抑え、かつ垂直方向(深さ方向)への熱の流れを加速することで、記録層に与えられた熱を面内方向ではなく垂直方向(厚さ方向)に逃がす役割を果たす層である。ヒートシンク層を厚くするほど、加熱と冷却を短時間かつ局所的に行うことができるが、ヒートシンク層を厚くするためには、成膜時間を長くする必要があるため、生産性が低下してしまう。また、ヒートシンク層の厚みが増すことにより、層成膜時の熱の蓄積も多くなることから、結果的にその上層に形成される磁性層の結晶性や結晶配向性が乱れ、記録密度の改善が困難になる場合がある。更に、ヒートシンク層が厚くなるほど、ヒートシンク層にコロージョンが発生し、膜全体が隆起して凸欠陥が発生する可能性が高くなり、低浮上量化の妨げとなる。特にヒートシンク層に鉄材料が用いられている場合、上記現象を発生する可能性が高い。
以上説明したように、厚膜のヒートシンク層を設けることは、加熱と冷却を短時間かつ局所的に行ううえでは有利であるが、生産性、記録密度の改善、低浮上量化の観点からは望ましくない。この対策として、ヒートシンク層が担う役割を補うべくガラス基板の熱伝導率を高めることが考えられる。
ここでガラスAは、SiO2、Al2O3、アルカリ金属酸化物、アルカリ土類金属酸化物などを構成成分とする。この中で、アルカリ金属酸化物、アルカリ土類金属酸化物は修飾成分としてガラスの熔融性を改善したり、熱膨張係数を増加させる働きを有する。したがって、一定量をガラスに導入する必要があるが、この中で最も原子番号が大きいBaはガラスの熱伝導率を低下させる働きが大きい。ここではBaOを含まないためBaOによる熱伝導率低下がなく、したがってヒートシンク層の薄膜化を進めたとしても、加熱と冷却を短時間かつ局所的に行うことを可能とするものである。
また、アルカリ金属酸化物の中ではK2Oが原子番号が大きく熱伝導率を低下させる働きが大きいこと、化学強化性能の点では不利であることから、K2Oの含有量はアルカリ金属酸化物の総量に対して制限される。アルカリ金属酸化物の合計含有量に対するK2O含有量のモル比{K2O/(Li2O+Na2O+K2O)}を0.13以下とする。化学強化性能および熱伝導率の観点から、上記モル比は好ましくは0.10以下、より好ましくは0.08以下、更に好ましくは0.06以下、より一層好ましくは0.05以下、なお一層好ましくは0.03、更に一層好ましくは0.02以下、特に好ましくは0.01以下、最も好ましくは実質的にゼロ、即ちK2Oを導入しないことが最も好ましい。
MgOはヤング率向上と低比重化、更にはこれによる比弾性率向上の観点から、一態様では、好ましい含有量は0〜14%、より好ましくは0〜10%、更に好ましくは0〜8%、より一層好ましくは0〜6%、更に一層好ましくは1〜6%の範囲である。他の一態様では、好ましい含有量は8〜30%、より好ましくは8〜25%、更に好ましくは8〜22%、より一層好ましくは10〜22%、更に一層好ましくは12〜20%の範囲である。なお比弾性率については後述する。
CaOは熱膨張特性およびヤング率の向上、ならびに低比重化の観点から、一態様では、好ましい導入量は3〜20%、より好ましくは4〜20%、更に好ましくは10〜20%の範囲である。他の一態様では、好ましい導入量は0〜9%、より好ましくは0〜5%、更に好ましくは0〜2%、一層好ましくは0〜1%、より一層好ましくは0〜0.8%の範囲である。
SrOは熱膨張特性を向上する成分であるがMgO、CaOと比べて比重を高める成分であるため、その導入量は4%以下とすることが好ましく、3%以下とすることが好ましく、2.5%以下とすることがより好ましく、2%以下とすることが好ましく、1%以下とすることがより好ましく、実質的に導入しなくてもよい。
また、高いガラス転移温度を得るために、混合アルカリ土類効果の観点からアルカリ土類金属酸化物は、複数種添加するのではなく、アルカリ土類酸化物のうち単一成分のみを添加することが好ましく、複数種添加する場合には、最も多いアルカリ土類酸化物の割合がアルカリ土類金属酸化物全量の70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上となるように選択することができる。
本発明の一態様にかかる磁気記録媒体基板用ガラスは、例えば、上記組成のガラスが得られるように酸化物、炭酸塩、硝酸塩、水酸化物などの原料を秤量し、混合して調合原料とし、この調合原料を熔融容器に投入して1400〜1600℃の範囲で加熱、熔融し、清澄、攪拌して泡、未熔解物を含まない均質な熔融ガラスを作製し、この熔融ガラスを成形して得ることができる。熔融ガラスの成形には、プレス成形法、キャスト法、フロート法、オーバーフローダウンドロー法などを使用することができる。プレス成形法では、熔融ガラスをプレスしてディスク形状に成形することができ、磁気記録媒体基板用のブランクを成形する方法として好適である。
プレス成形法の中でも、基板ブランク1個分に相当する熔融ガラスを落下させ、空中にある熔融ガラスをプレス成形する方法が好ましい。前記方法では、一対のプレス成形型で空中の熔融ガラスを挟んでプレスするので、各プレス成形型と接する面からガラスを均等に冷却することができ、平坦性のよい基板ブランクを製造することができる。
本発明の一態様にかかる磁気記録媒体基板用ガラスは、化学強化用ガラスとして好適である。
前述の組成調整により良好な化学強化性能を付与されているため、化学強化処理によってガラス表面にイオン交換層を容易に形成することができ、表面の一部または全部にイオン交換層を形成可能である。イオン交換層は、高温下、基板表面にアルカリ塩を接触させ、該アルカリ塩中のアルカリ金属イオンと基板中のアルカリ金属イオンを交換させることにより形成することができる。
応力プロファイルの好ましい態様としては、両主表面近傍において圧縮応力値が極大となり、深さxが増加するにつれて圧縮応力値は減少し、圧縮応力と引張応力とが釣合う深さx0よりもさらに深くなるにつれて圧縮応力が引張応力に転じ、引張応力値が緩やかに増加して2つの主表面間の中央部または中央部近傍で極大値を取る態様を挙げることができる。当該極大値は、図1に示すように、深さ方向の一定領域で維持されている場合もある。このような応力プロファイルを取るガラス基板であれば、基板表面で発生したクラックの深さがx0より深くなっても引張応力によってクラックが急激に成長して破壊に至る遅れ破壊を防止することができる。
Tav/Tmax≧0.5
を満たす化学強化ガラスからなるガラス基板であることもできる。以下、図3および図4に基づき式(1)について説明する。
引張応力の最大値Tmaxとは、上記引張応力値の極大値である。図3中、引張応力の平均値Tvは、引張応力と圧縮応力との中心線であるL線は、面積S1、S2、S3が、S1+S2=S3となるように決定される。S2側の主表面と平行な仮想直線と、2つの主表面に垂直でTmaxを通過する仮想直線との交点からS2側の主表面までの距離をDOLとすると、Tav=S3/(tsub−2×DOL)として、引張応力の平均値Tavが算出される。
Tav/Tmax≧0.5であり、Tav/Tmax≧0.7であることが好ましく、Tav/Tmax≧0.8であることがより好ましい。Tav/Tmaxの上限値については、例えば、Tav/Tmax<1.0である。
式(1)で規定するTav/Tmaxは、先に図2を示し説明したアップヒルが存在しないことを示す指標として用いることができ、アップヒルが存在するガラス基板は、Tmaxが大きいため、Tav/Tmax<0.5となる。
これに対し、上記式(1)を満たすガラスは、アップヒルが存在しないため、遅れ破壊の発生が抑制されている。
なお図2に示すようにアップヒルが存在するガラス基板については、図4に示すように、L線は面積S4、S5、S6、S7、S8が、S4+S5+S6、=S7+S8となるように決定される。さらにTavは、Tav=(S7+S8−S6)/(tsub−2×DOL)として算出される。図2において、引張応力層はS6によって2つの層S7とS8とに分かれているが、図1に示すように引張応力層が一層からなる場合は、上記の通り、Tav=S3/(tsub−2×DOL)によりTavを算出すればよい。
本発明の一態様にかかる磁気記録媒体基板用ガラスからなる磁気記録媒体基板ブランク;および
上記磁気記録媒体基板ブランクを加工することを含む磁気記録媒体の製造方法、
に関する。
ここで磁気記録媒体基板ブランク(以下、基板ブランクという)とは、加工して磁気記録媒体用ガラス基板に仕上げる前の基板用ガラス母材を意味する。基板ブランクを構成するガラスの組成、特性、ならびに組成および特性の好ましい範囲については、先に説明したとおりである。
本発明の一態様にかかる基板ブランクは磁気記録媒体用ガラス基板がディスク形状をしていることから、ディスク形状であることが好ましい。
プレス成形法では、流出する熔融ガラスを切断し、所要の熔融ガラス塊を得て、これをプレス成形型でプレス成形して薄肉円盤状の基板ブランクを作製する。
以下、本発明の一態様にかかる磁気記録媒体について、更に詳細に説明する。
例えばガラス基板を真空引きを行った成膜装置内に導入し、DCマグネトロンスパッタリング法にてAr雰囲気中で、ガラス基板主表面上に付着層から磁性層まで順次成膜する。付着層としては例えばCrTi、下地層としては例えばCrRuを用いることができる。上記成膜後、例えばCVD法によりC2H4を用いて保護層を成膜し、同一チャンバ内で、表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、例えばPFPE(ポリフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。
また、下地層と磁性層との間には、軟磁性層、シード層、中間層などを、スパッタ法(DCマグネトロンスパッタ法、RFマグネトロンスパッタ法などを含む)、真空蒸着法などの公知の成膜方法を用いて形成してもよい。
上記各層の詳細については、例えば特開2009−110626号公報の段落[0027]〜[0032]を参照できる。また、ガラス基板と軟磁性層との間には、熱伝導性の高い材料からなるヒートシンク層を形成することもできるが、その詳細は後述する。
まず、所定のガラス組成が得られるように酸化物、炭酸塩、硝酸塩、硫酸塩、水酸化物などのガラス原料を秤量、調合し、十分混合して、熔融容器内で、例えば1400〜1600℃の範囲で加熱、熔融し、清澄、攪拌して十分泡切れがなされた均質化した熔融ガラスを作製する。なお、必要に応じてガラス原料に清澄剤を外割で添加してもよい。清澄剤としては、Sn酸化物およびCe酸化物を使用することが好ましい。これは以下の理由による。
Sn酸化物は、ガラス熔融時、高温で酸素ガスを放出し、ガラス中に含まれる微小な泡を取り込んで大きな泡にすることで浮上しやすくすることにより清澄を促す働きに優れている。一方、Ce酸化物は、低温でガラス中にガスとして存在する酸素をガラス成分として取り込むことにより泡を消す働きに優れている。泡の大きさ(固化したガラス中に残留する泡(空洞)の大きさ)が0.3mm以下の範囲で、Sn酸化物は比較的大きな泡も極小の泡も除く働きが強い。Sn酸化物とともにCe酸化物を添加すると、50μm〜0.3mm程度の大きな泡の密度が数十分の一程度にまで激減する。このように、Sn酸化物とCe酸化物を共存させることにより、高温域から低温域にわたり広い温度範囲でガラスの清澄効果を高めることができるため、Sn酸化物およびCe酸化物を添加することが好ましい。
Sn酸化物およびCe酸化物の外割り添加量の合計が0.02質量%以上であれば、十分な清澄効果を期待することができる。微小かつ少量であっても未熔解物を含むガラスを用いて基板を作製すると、研磨によってガラス基板表面に未熔解物が現れると、ガラス基板表面に突起が生じたり、未熔解物が欠落した部分が窪みとなって、ガラス基板表面の平滑性が損なわれ、磁気記録媒体用の基板としては使用できなくなる。これに対しSn酸化物およびCe酸化物の外割り添加量の合計が3.5質量%以下であれば、ガラス中に十分に熔解し得るため未熔解物の混入を防ぐことができる。
また、SnやCeは結晶化ガラスを作る場合には結晶核を生成する働きをする。本発明のガラス基板は非晶質性ガラスからなるので、加熱によって結晶を析出しないことが望ましい。Sn、Ceの量が過剰になると、こうした結晶の析出がおこりやすくなる。そのため、Sn酸化物、Ce酸化物とも過剰の添加は避けるべきである。
以上の観点から、Sn酸化物およびCe酸化物の外割り添加量の合計を0.02〜3.5質量%とすることが好ましい。Sn酸化物とCe酸化物の外割り添加量の合計の好ましい範囲は0.1〜2.5質量%、より好ましい範囲は0.1〜1.5質量%、さらに好ましい範囲は0.5〜1.5質量%である。
Sn酸化物としては、SnO2を用いることがガラス熔融中、高温で酸素ガスを効果的に放出する上から好ましい。
ダウンドロー法では、樋状の成形体を用いて熔融ガラスを導き、成形体の両側へと熔融ガラスをオーバーフローさせ、成形体の下方で成形体に沿って流下する2つの熔融ガラス流を合流させてから、下方に引っ張ってシート状に成形する。この方法はフュージョン法とも呼ばれ、成形体表面に接触したガラスの面を互いに張り合わせことにより、接触痕のないシートガラスを得ることができる。その後、得られたシート材から薄肉円盤状の基板ブランクがくり抜かれる。
フロート法では、溶融錫などを蓄えたフロートバス上に熔融ガラスを流し出し、引っ張りながらシート状ガラスに成形する。その後、得られたシート材から薄肉円盤状の基板ブランクがくり抜かれる。
このようにして得た基板ブランクに中心孔を設けたり、内外周加工、両主表面にラッピング、ポリッシングを施す。次いで、酸洗浄およびアルカリ洗浄を含む洗浄工程を経てディスク状の基板を得ることができる。
研磨などの機械加工では、破壊靭性が小さいガラスのほうが加工は容易である。そこで、本発明の一態様にかかる磁気記録媒体基板の製造方法では、破壊靭性値K1cが1.3 MPa・m1/2より小さいガラス素材を機械加工した後、化学強化して破壊靭性を高めることにより、破壊靭性値が高く耐衝撃性の優れたガラス基板を容易に製造することができる。破壊靭性値は、主に化学強化条件によって所望の値に制御することができる。例えば化学強化条件を強化する(例えば処理時間を延ばす)ほど、破壊靭性値を高めることができる。
磁気記録層が形成される主表面は、下記(1)〜(3)の表面性を有することが好ましい。
(1)原子間力顕微鏡を用いて1μm×1μmの範囲で512×256ピクセルの解像度で測定される表面粗さの算術平均Raが0.15nm以下;
(2)5μm×5μmの範囲で測定される表面粗さの算術平均Raが0.12nm以下;
(3)波長100μm〜950μmにおける表面うねりの算術平均Waが0.5nm以下。
基板上に成膜する磁気記録層のグレインサイズは、例えば垂直記録方式では、10nm未満となっている。高記録密度化のため、ビットサイズが微細化されても、基板表面の表面粗さが大きいと、磁気特性の向上は見込めない。これに対し上記(1)、(2)の2種の表面粗さの算術平均Raが上記範囲の基板であれば、高記録密度化のためにビットサイズが微細化されても磁気特性の改善が可能である。また、上記(3)の表面うねりの算術平均Waを上記範囲にすることにより、HDDにおける磁気ヘッドの浮上安定性を向上させることができる。上記(1)〜(3)の表面性を兼ね備えた基板を実現する上で、ガラスの耐酸性、耐アルカリ性を高めることは有効である。
本発明の一態様にかかる磁気記録装置は、少なくとも磁気記録媒体の主表面を加熱するための熱源と、記録素子部と、再生素子部とを有する熱アシスト磁気記録ヘッド、および、上記本発明の磁気記録媒体を有するエネルギーアシスト磁気記録方式の磁気記録装置である。
本発明の一態様によれば、上記本発明の一態様にかかる磁気記録媒体を搭載していることで、高記録密度かつ高い信頼性を有する磁気記録装置を提供することができる。
また、上記磁気記録装置は、高強度の基板を備えるため、回転数が5000rpm以上、好ましくは7200rpm以上、より好ましくは10000rpm以上の高速回転においても十分な信頼性を有する。
さらに、上記磁気記録装置はDFH(Dynamic Flying Height)ヘッドを搭載したものであることが、高記録密度化の観点から好ましい。
上記磁気記録装置として、デスクトップパソコン、サーバ用コンピュータ、ノート型パソコン、モバイル型パソコンなどの各種コンピュータの内部記憶装置(固定ディスクなど)、画像および/または音声を記録再生する携帯記録再生装置の内部記憶装置、車載オーディオの記録再生装置を例示することができる。
表2〜表5に示すNo.1〜No.18(実施例)、および表6に示すNo.19(比較例)の各組成のガラスが得られるように酸化物、炭酸塩、硝酸塩、水酸化物などの原料を秤量し、混合して調合原料とした。この原料を熔融容器に投入して1400〜1600℃の範囲で3〜6時間、加熱、熔融し、清澄、攪拌して泡、未熔解物を含まない均質な熔融ガラスを作製した。得られたNo.1〜No.18のガラス中には泡や未熔解物、結晶の析出、熔融容器を構成する耐火物の混入物は認められなかった。
次に、下記方法AまたはBにより、円盤状の基板ブランクを作製した。
(方法A)
清澄、均質化した上記熔融ガラスをパイプから一定流量で流出するとともにプレス成形用の下型で受け、下型上に所定量の熔融ガラス塊が得られるよう流出した熔融ガラスを切断刃で切断した。そして熔融ガラス塊を載せた下型をパイプ下方から直ちに搬出し、下型と対向する上型および胴型を用いて、直径66mm、厚さ2mmの薄肉円盤状にプレス成形した。プレス成形品を変形しない温度にまで冷却した後、型から取り出してアニールし、基板ブランクを得た。なお、上記成形では複数の下型を用いて流出する熔融ガラスを次々に円盤形状の基板ブランクに成形した。
(方法B)
清澄、均質化した上記熔融ガラスを円筒状の貫通孔が設けられた耐熱性鋳型の貫通孔に上部から連続的に鋳込み、円柱状に成形して貫通孔の下側から取り出した。取り出したガラスをアニールした後、マルチワイヤーソーを用いて円柱軸に垂直な方向に一定間隔でガラスをスライス加工し、円盤状の基板ブランクを作製した。
なお、本実施例では上記方法A、Bを採用したが、円盤状の基板ブランクの製造方法としては、下記方法C、Dも好適である。
(方法C)
上記熔融ガラスをフロートバス上に流し出し、シート状のガラスに成形(フロート法による成形)し、次いでアニールした後にシートガラスから円盤状のガラスをくり貫いて基板ブランクを得ることもできる。
(方法D)
上記熔融ガラスをオーバーフローダウンドロー法(フュージョン法)によりシート状のガラスに成形、アニールし、次いでシートガラスから円盤状のガラスをくり貫いて基板ブランクを得ることもできる。
上記各方法で得られた基板ブランクの中心に貫通孔をあけて、外周、内周の研削加工を行い、円盤の主表面をラッピング、ポリッシング(鏡面研磨加工)して直径65mm、厚さ0.8mmの磁気ディスク用ガラス基板に仕上げた。得られたガラス基板は、1.7質量%の珪弗酸(H2SiF)水溶液次いで、1質量%の水酸化カリウム水溶液を用いて洗浄し、次いで純水ですすいだ後に乾燥させた。実施例のガラスから作製した基板の表面を拡大観察したところ、表面荒れなどは認められず、平滑な表面であった。
次に上記ディスク状のガラス基板を硝酸ナトリウムと硝酸カリウムの混合熔融塩に浸漬し、イオン交換(化学強化)によって表面にイオン交換層を有するガラス基板を得た。化学強化条件を表2〜表5に示す。このようにイオン交換処理(化学強化処理)を施すことは、ガラス基板の耐衝撃性を高めるために有効である。イオン交換処理を施した複数枚のガラス基板から、サンプリングしたガラス基板の断面(イオン交換層を切る面)をバビネ法により観察し、イオン交換層が形成されていることを確認した。
イオン交換層はガラス基板表面の全域に形成してもよいし、外周面のみに形成してもよいし、外周面と内周面のみに形成してもよい。
また、イオン交換処理後、イオン交換層を残すように鏡面研磨処理してもよい。この場合、研磨処理による取代は好ましくは10μm以下、より好ましくは5μm以下とすると、イオン交換層を十分残すことができ、K1cが低下しすぎることがなく好ましい。
以下の方法により、実施例のガラスから得られたガラス基板の主表面上に、付着層、下地層、磁性層、保護層、潤滑層をこの順に形成し、磁気ディスクを得た。
以上の製造工程により、磁気ディスクを得た。
(1)ガラス転移温度Tg、熱膨張係数
表2〜表5に示すガラスについては、板状に加工し表2〜表5に記載の条件で化学強化処理を施した試料のガラス転移温度Tgおよび100〜300℃における平均線膨張係数α、および500〜600℃における平均線膨張係数を、リガク社製の熱機械分析装置(Thermo plus TMA8310)を用いて測定した。なお上記特性は、いずれも化学強化処理前後において殆んど変化しないことから、化学強化処理前のガラスも、上記測定によって得られたガラス転移温度Tgおよび100〜300℃における平均線膨張係数α、500〜600℃における平均線膨張係数を有するものとみなす。
表6に示すガラスについては、化学強化なしの試料について、上記同様に各特性の測定を行った。
(2)ヤング率
表2〜表5に示すガラスについては、板状に加工し表2〜5に記載の条件で化学強化処理を施した試料のヤング率を超音波法にて測定した。なおヤング率は、化学強化処理前後において殆んど変化しないことから、化学強化処理前のガラスも、上記測定によって得られたヤング率を有するものとみなす。
表6に示すガラスについては、化学強化なしの試料について、上記同様にヤング率の測定を行った。
(3)比重
表2〜表5に示すガラスについては、板状に加工し表2〜表5に記載の条件で化学強化処理を施した試料の比重をアルキメデス法にて測定した。なお比重は、化学強化処理前後において殆んど変化しないことから、化学強化処理前のガラス基板も、上記測定によって得られた比重を有するものとみなす。
表6に示すガラスについては、化学強化なしの試料について、上記同様に比重の測定を行った。
(4)比弾性率
上記(2)で得られたヤング率および(3)で得られた比重から、比弾性率を算出した。
(5)破壊靭性
表2〜表5に示すガラスについて、AKASHI社製の装置MVK−Eを用い、板状に加工し表2〜表5に記載の条件で化学強化処理を施した試料に押し込み荷重9.81Nでビッカース圧子を押し込み、試料に圧痕およびクラックを導入した。
また、No.1、No.2のガラスについては、表2に記載の条件で化学強化処理を施した試料に押し込み荷重4.9Nでビッカース圧子を押し込み、試料に圧痕およびクラックを導入した。
更に、No.1、No.2のガラスについては、化学強化なしの未強化品に対して、上記と同様に荷重9.81Nまたは荷重4.9Nを掛けて試料に圧痕およびクラックを導入した。
試料のヤング率をE[GPa]、圧痕対角線長さ、表面クラックの半長を測定し、荷重、試料のヤング率から破壊靭性K1cを算出した。
(6)Tav/Tmax
表2〜表5に示すガラスについて、板状に加工し表2〜表5に記載の条件で化学強化処理を施した試料について、板厚方向の断面をバビネ法で観察し、前述の方法でTmaxとTavを算出し、算出した値からTav/Tmaxを求めた。
表2〜表5に示すガラスについて、化学強化処理前後の各基板の主表面(磁気記録層等を積層する面)の5μm×5μmの矩形領域を256×256ピクセルの解像度で原子間力顕微鏡(AFM)により観察し、1μm×1μmの範囲で512×256ピクセルの解像度で測定される表面粗さの算術平均Ra、5μm×5μmの範囲で測定される表面粗さの算術平均Raを測定した。
化学強化処理前後の各基板の主表面(磁気記録層等を積層する面)の波長100μm〜950μmにおける表面うねりの算術平均Waを、光学式表面形状測定装置を用いて測定した。
1μm×1μmの範囲で測定される表面粗さの算術平均Raが0.05〜0.15nmの範囲、5μm×5μmの範囲で測定される表面粗さの算術平均Raが0.03〜0.12nmの範囲、波長100μm〜950μmにおける表面うねりの算術平均Waが0.2〜0.5nmであり、高記録密度の磁気記録媒体に用いられる基板として問題のない範囲であった。
以上の結果から、本発明の一態様によれば、磁気記録媒体基板に求められる特性を兼ね備えたガラスが得られることが確認された。
図5は、表3、表4に示すNo.3〜No.9、No.11、No.12のガラスについて、化学強化処理後の破壊靭性値を、モル比(MgO/(MgO+CaO+SrO+BaO))に対してプロットしたグラフである。図6は、表3、表4に示すNo.3〜No.9、No.11、No.12のガラスについて、化学強化処理後の破壊靭性値を、モル比(CaO/(MgO+CaO+SrO+BaO))に対してプロットしたグラフである。
これらグラフから、モル比(MgO/(MgO+CaO+SrO+BaO))を上げるほど、またはモル比(CaO/(MgO+CaO+SrO+BaO))を下げるほど、破壊靭性値、即ち機械的強度が向上することが確認できる。
一方、表6に示すモル比(MgO/(MgO+CaO+SrO+BaO))が0.706、モル比(CaO/(MgO+CaO+SrO+BaO))が0.294のガラス(No.19)を用いて熔融塩の温度が500℃の温度で化学強化を行った場合、破壊靭性値は0.74MPa・m1/2であった。さらに、複数枚のガラスを同時に500℃の熔融塩に浸漬し、化学強化したところ、急激に熔融塩が劣化し、強化後の破壊靭性値は0.74MPa・m1/2に達しなかった。同様に複数枚のガラスを順次、500℃の熔融塩に浸漬し、化学強化しても、2回目以降に化学強化したガラスの破壊靭性値は急激に低下した。これは、前述のとおり、ガラス組成中に含まれるCa2+イオンが熔融塩中に溶け出し、アルカリ金属イオン同士のイオン効果を阻害したためと推察される。なお、同様の結果が、モル比(MgO/(MgO+CaO+SrO+BaO))が0.8より小さい場合、モル比(CaO/(MgO+CaO+SrO+BaO))が0.2より小さい場合にも見られた。
これに対し、表2〜5に示すNo.1〜18の各ガラスでは、同時に複数枚のガラスを熔融塩に浸漬して化学強化しても、0.90MPa・m1/2に以上の破壊靭性値を維持することができた。また、No.1〜18の各ガラスでは、複数枚のガラスを順次、熔融塩に浸漬して化学強化しても、0.90MPa・m1/2に以上の破壊靭性値を維持することができた。
このように、モル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上のガラス、または、モル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下のガラスでは、化学強化による熔融塩の劣化が生じにくく、高い破壊靭性値を有する化学強化ガラスを安定して生産することができる。これに対し、モル比(MgO/(MgO+CaO+SrO+BaO))が0.80未満、モル比(CaO/(MgO+CaO+SrO+BaO))が0.20超になると、化学強化によって熔融塩が劣化し、高い破壊靭性値を維持することが困難になる。
なお化学強化後のNo.1〜No.9のガラスには、表面に深さ30〜120μmの圧縮応力層が形成されており、圧縮応力の大きさは2.0kgf/mm2以上の値(19.6MPa以上の値)となっている。また、化学強化後のNo.10〜No.18のガラスには、表面に深さ20〜120μmの圧縮応力層が形成されており、圧縮応力の大きさは2.0kgf/mm2以上の値(19.6MPa以上の値)となっている。
以上の結果から、本発明の一態様によれば、磁気記録媒体用基板に求められる特性を兼ね備えたガラスが得られることが確認された。
また、イオン交換処理後に取代を0.5〜5μmの範囲内から適宜選択して鏡面研磨を実施したこと以外は上記と同様にしてガラス基板を作製した。得られた複数枚のガラス基板の断面をバビネ法により観察したところ、イオン交換層が形成されており、機械的強度の劣化は見られなかった。その他特性については上記と同様であった。
上記の応力プロファイルを示す化学強化ガラス基板が遅れ破壊を示さないことを実証するため、以下の試験を行った。
実施例において破壊靭性値を測定した化学強化処理後の試料には、押し込み荷重9.81Nでビッカース圧子を押し込んでできた圧痕が存在する。この圧痕のある試料を環境試験機に入れて温度80℃、相対湿度80%の環境下に7日間放置した後、取り出し、圧痕を観察した。試料は、各実施例ともに100枚ずつ用意し、上記試験を行った結果、いずれの試料においても圧痕からのクラックの伸長は認められなかった。
これに対し、Na2O、K2Oを含みLi2Oを含まないガラス、例えば、No.3のガラス組成において、Li2Oの全量をNa2Oに置換した組成を有するガラス、を硝酸カリウムの熔融塩に浸漬して化学強化した試料は、バビネ法による応力プロファイルにおいて、図2に示すようにアップヒルが観察され、Tav/Tmax<0.5であった。当該試料について、上記試験を行ったところ、100枚のうち8枚について、圧痕からのクラックの伸長が認められ、3枚についてはクラックの伸長が著しく、破損していた。
以上の遅れ破壊の加速試験の結果から、実施例の化学強化ガラス基板において遅れ破壊防止効果が得られていることを確認した。
(1)平坦性
一般に、平坦度が5μm以下であれば信頼性の高い記録再生を行うことができる。上記方法で実施例のガラス基板を用いて形成した各磁気ディスク表面の平坦度(ディスク表面の最も高い部分と、最も低い部分との上下方向(表面に垂直な方向)の距離(高低差))を、平坦度測定装置で測定したところ、いずれの磁気ディスクも平坦度は5μm以下であった。この結果から、実施例のガラス基板は、FePt層またはCoPt層形成時の高温処理においても大きな変形を起こさなかったことが確認できる。
上記方法で実施例のガラス基板を用いて形成した各磁気ディスクを、回転数10000rpmの高速で回転する2.5インチ型ハードディスクドライブに搭載し、ロードアンロード(Load Unload、以下、LUL)試験を行った。上記ハードディスクドライブにおいて、スピンドルモーターのスピンドルはステンレス製であった。いずれの磁気ディスクもLULの耐久回数は60万回を超えた。また、LUL試験中にスピンドル材料との熱膨張係数の違いによる変形や高速回転によるたわみが生じると試験中にクラッシュ障害やサーマルアスペリティ障害が生じるが、いずれの磁気ディスクも試験中にこれら障害は発生しなかった。
磁気ディスク用ガラス基板(2.5インチサイズ、板厚0.8mm)を作製し、ランスモント社製MODEL−15Dを用いて衝撃試験を行った。この衝撃試験は、磁気ディスク用ガラス基板を、HDDのスピンドル及びクランプ部に似せて作製された専用の衝撃試験用治具に組み付け、1msecで1500Gの正弦半波パルスの衝撃を主表面に対する垂直方向に与え、この磁気ディスク用ガラス基板の破損状況を見ることによって行った。
その結果、実施例のガラス基板においては破損が観察されなかった。一方、比較例のガラス基板については破損が観察された。この破損発生部について詳細に調査した結果、多くがディスク内径部に位置していることがわかった。
これとは別に、作製した磁気ディスクをマイクロ波によりアシストする記録方式(マイクロ波アシスト記録方式)のハードディスクドライブに搭載し、マイクロ波アシスト記録方式の情報記録装置を作製した。このように高Ku磁性材料とエネルギーアシスト記録の組み合わせた情報記録装置によれば、先に説明したように高密度記録を実現することができる。
Claims (34)
- 100〜300℃における平均線膨張係数が70×10 −7 /℃以上、
ガラス転移温度が620℃以上、
であり、下記(1)または(2)を満たす磁気記録媒体基板用ガラス。
(1)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上、
である。
(2)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、
である。 - ヤング率が80GPa以上である請求項1に記載の磁気記録媒体基板用ガラス。
- Li2Oの含有量が0モル%超4モル%以下、Na2Oの含有量が1モル%以上15モル%未満である請求項1または2に記載の磁気記録媒体基板用ガラス。
- K2Oの含有量が0モル%以上3モル%未満である請求項1〜3のいずれか1項に記載の磁気記録媒体基板用ガラス。
- 比弾性率が30MNm/kg以上である請求項1〜4のいずれか1項に記載の磁気記録媒体基板用ガラス。
- 化学強化用ガラスである請求項1〜5のいずれか1項に記載の磁気記録媒体基板用ガラス。
- ヤング率が80GPa以上、
ガラス転移温度が620℃以上、
であり、下記(3)または(4)を満たす磁気記録媒体基板用ガラス。
(3)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上、
Li 2 Oの含有量が0モル%超4モル%以下、Na 2 Oの含有量が1モル%以上15モル%未満、
である。
(4)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、
Li 2 Oの含有量が0モル%超4モル%以下、Na 2 Oの含有量が1モル%以上15モル%未満、
である。 - ヤング率が80GPa以上、
ガラス転移温度が620℃以上、
であり、下記(5)または(6)を満たす磁気記録媒体基板用ガラス。
(5)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
K 2 Oの含有量が0モル%以上3モル%未満であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上、
である。
(6)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
K 2 Oの含有量が0モル%以上3モル%未満であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、
である。 - ヤング率が80GPa以上、
ガラス転移温度が620℃以上、
比弾性率が30MNm/kg以上、
であり、下記(7)または(8)を満たす磁気記録媒体基板用ガラス。
(7)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上、
である。
(8)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、
である。 - ヤング率が80GPa以上、
ガラス転移温度が620℃以上、
であり、化学強化用ガラスであって、かつ下記(9)または(10)を満たす磁気記録媒体基板用ガラス。
(9)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するMgOの含有量のモル比(MgO/(MgO+CaO+SrO+BaO))が0.80以上、
である。
(10)必須成分として、SiO 2 、Li 2 O、Na 2 O、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、
MgOの含有量が8〜30モル%、
CaOの含有量が0〜5モル%であり、
MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下、
である。 - 請求項1〜10のいずれか1項に記載の磁気記録媒体基板用ガラスからなる磁気記録媒体基板。
- 請求項1〜10のいずれか1項に記載の磁気記録媒体基板用ガラスを化学強化してなる磁気記録媒体基板。
- 破壊靭性値が0.9MPa・m1/2以上のガラスからなる請求項11または12に記載の磁気記録媒体基板。
- バビネ法により求められる2つの主表面に垂直な仮想断面における応力プロファイルにおいて、引張応力分布が凸形状であり、ただし該凸形状は圧縮応力側へ凹む凹み部を含まない化学強化ガラスからなる請求項12に記載の磁気記録媒体基板。
- バビネ法により求められる引張応力の平均値Tavと引張応力の最大値Tmaxとが、下記式(1):
Tav/Tmax≧0.5
を満たす化学強化ガラスからなる請求項12に記載の磁気記録媒体基板。 - ナトリウム塩およびカリウム塩を含む熔融塩に浸漬して化学強化されたガラスである請求項11〜15のいずれか1項に記載の磁気記録媒体基板。
- Li2Oを0.1モル%以上含むガラスを前記熔融塩に浸漬して化学強化されたガラスである請求項16に記載の磁気記録媒体基板。
- 原子間力顕微鏡を用いて1μm角で512×256ピクセルの解像度で測定した主表面の算術平均粗さ(Ra)が0.15nm以下である請求項11〜17のいずれか1項に記載の磁気記録媒体基板。
- 回転数が5000rpm以上の磁気記録装置に用いられる磁気記録媒体用の基板である請求項11〜18のいずれか1項に記載の磁気記録媒体基板。
- DFH(Dynamic Flying Height)ヘッドを搭載した磁気記録装置に用いられる磁気記録媒体用の基板である請求項11〜19のいずれか1項に記載の磁気記録媒体基板。
- エネルギーアシスト磁気記録用磁気記録媒体に用いられる請求項11〜20のいずれか1項に記載の磁気記録媒体基板。
- 請求項1〜10のいずれか1項に記載の磁気記録媒体基板用ガラスからなる磁気記録媒体基板ブランク。
- ディスク形状である請求項22に記載の磁気記録媒体基板ブランク。
- 請求項22または23に記載の磁気記録媒体基板ブランクを加工することを含む磁気記録媒体基板の製造方法。
- ナトリウム塩およびカリウム塩を含む熔融塩にガラスを浸漬して化学強化する工程を含む請求項24に記載の磁気記録媒体基板の製造方法。
- Li2Oを0.1モル%以上含むガラスを前記熔融塩に浸漬して化学強化する請求項25に記載の磁気記録媒体基板の製造方法。
- バビネ法により求められる引張応力の平均値Tavと引張応力の最大値Tmaxとが、下記式(1):
Tav/Tmax≧0.5
を満たす化学強化ガラスとなるように前記化学強化を行う請求項25または26に記載の磁気記録媒体基板の製造方法。 - バビネ法により求められる2つの主表面に垂直な仮想断面における応力プロファイルにおいて、引張応力分布が凸形状であり、ただし該凸形状は圧縮応力側へ凹む凹み部を含まない化学強化ガラスとなるように前記化学強化を行う請求項25または26に記載の磁気記録媒体基板の製造方法。
- 請求項11〜21のいずれか1項に記載の磁気記録媒体基板上に磁気記録層を有する磁気記録媒体。
- 前記磁気記録層はFeおよび/またはCoと、Ptとの合金を主成分とする磁性材料を含む磁気記録層であり、前記磁気記録媒体はエネルギーアシスト磁気記録用磁気記録媒体である請求項29に記載の磁気記録媒体。
- 請求項11〜21のいずれか1項に記載の磁気記録媒体基板の主表面に、Feおよび/またはCoと、Ptとの合金を主成分とする磁性材料を成膜した後、アニール処理を行うことにより磁気記録層を形成することを含む磁気記録媒体の製造方法。
- 少なくとも磁気記録媒体の主表面を加熱するための熱源と、記録素子部と、再生素子部とを有する熱アシスト磁気記録ヘッド、および、請求項29または30に記載の磁気記録媒体を有するエネルギーアシスト磁気記録方式の磁気記録装置。
- 磁気記録媒体の回転数が5000rpm以上である請求項32に記載の磁気記録装置。
- DFH(Dynamic Flying Height)ヘッドを搭載した請求項32または33に記載の磁気記録装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261647644P | 2012-05-16 | 2012-05-16 | |
US61/647,644 | 2012-05-16 | ||
PCT/JP2013/063046 WO2013172247A1 (ja) | 2012-05-16 | 2013-05-09 | 磁気記録媒体基板用ガラスおよびその利用 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013172247A1 JPWO2013172247A1 (ja) | 2016-01-12 |
JP6147735B2 true JP6147735B2 (ja) | 2017-06-14 |
Family
ID=49583653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014515588A Active JP6147735B2 (ja) | 2012-05-16 | 2013-05-09 | 磁気記録媒体基板用ガラスおよびその利用 |
Country Status (6)
Country | Link |
---|---|
US (2) | US8824248B2 (ja) |
JP (1) | JP6147735B2 (ja) |
CN (1) | CN104303231A (ja) |
MY (1) | MY166878A (ja) |
SG (2) | SG10201605515PA (ja) |
WO (1) | WO2013172247A1 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5724779B2 (ja) * | 2011-09-13 | 2015-05-27 | 旭硝子株式会社 | 化学強化ガラスの強度測定方法、化学強化ガラスの割れ再現方法及び化学強化ガラスの製造方法 |
WO2013108790A1 (ja) * | 2012-01-20 | 2013-07-25 | 旭硝子株式会社 | Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池 |
US9359251B2 (en) | 2012-02-29 | 2016-06-07 | Corning Incorporated | Ion exchanged glasses via non-error function compressive stress profiles |
US11079309B2 (en) | 2013-07-26 | 2021-08-03 | Corning Incorporated | Strengthened glass articles having improved survivability |
JP6131154B2 (ja) * | 2013-09-11 | 2017-05-17 | Hoya株式会社 | 磁気記録媒体基板用ガラスおよび磁気記録媒体基板 |
US10118858B2 (en) | 2014-02-24 | 2018-11-06 | Corning Incorporated | Strengthened glass with deep depth of compression |
DE102014203567B4 (de) * | 2014-02-27 | 2018-04-26 | Schott Ag | Floatverfahren zur Herstellung einer Floatglasscheibe |
TWI729925B (zh) | 2014-06-19 | 2021-06-01 | 美商康寧公司 | 無易碎應力分布曲線的玻璃 |
DE202015009996U1 (de) | 2014-10-08 | 2022-10-19 | Corning Incorporated | Gläser und Glaskeramiken mit einem Metalloxidkonzentrationsgradienten |
US10150698B2 (en) | 2014-10-31 | 2018-12-11 | Corning Incorporated | Strengthened glass with ultra deep depth of compression |
JP6839077B2 (ja) | 2014-11-04 | 2021-03-03 | コーニング インコーポレイテッド | 深部非脆弱性応力プロファイル及びその作成方法 |
US11613103B2 (en) | 2015-07-21 | 2023-03-28 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
US10579106B2 (en) | 2015-07-21 | 2020-03-03 | Corning Incorporated | Glass articles exhibiting improved fracture performance |
PL3386930T3 (pl) | 2015-12-11 | 2021-10-25 | Corning Incorporated | Formowalne przez stopienie wyroby na bazie szkła z gradientem stężeń tlenku metalu |
EP3397597B1 (en) | 2016-04-08 | 2023-11-08 | Corning Incorporated | Glass-based articles including a stress profile comprising two regions, and methods of making |
TWI750807B (zh) | 2016-04-08 | 2021-12-21 | 美商康寧公司 | 包含金屬氧化物濃度梯度之玻璃基底物件 |
JP6574740B2 (ja) | 2016-07-08 | 2019-09-11 | 昭和電工株式会社 | 磁気記録媒体用基板およびハードディスクドライブ |
CN109923083B (zh) * | 2016-11-14 | 2022-07-26 | Hoya株式会社 | 磁记录介质基板用玻璃、磁记录介质基板、磁记录介质和磁记录再生装置用玻璃间隔物 |
JP6832179B2 (ja) | 2017-02-03 | 2021-02-24 | 昭和電工株式会社 | 磁気記録媒体用基板およびハードディスクドライブ |
EP3684738A1 (en) * | 2017-09-21 | 2020-07-29 | Corning Incorporated | Transparent ion-exchangeable silicate glasses with high fracture toughness |
US11319243B2 (en) | 2018-01-17 | 2022-05-03 | Corning Incorporated | High refractive index optical borate glass |
SG11202100827XA (en) | 2018-08-07 | 2021-03-30 | Hoya Corp | Substrate for magnetic disk and magnetic disk |
US11688424B2 (en) * | 2019-07-22 | 2023-06-27 | Hoya Corporation | Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording and reproducing apparatus, and magnetic recording and reproducing apparatus |
JP7383050B2 (ja) * | 2019-12-13 | 2023-11-17 | Hoya株式会社 | 磁気記録媒体基板用または磁気記録再生装置用ガラススペーサ用のガラス、磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置 |
US11951713B2 (en) | 2020-12-10 | 2024-04-09 | Corning Incorporated | Glass with unique fracture behavior for vehicle windshield |
US12122714B2 (en) | 2020-12-10 | 2024-10-22 | Corning Incorporated | Glass with unique fracture behavior for vehicle windshield |
US11270724B1 (en) * | 2021-03-04 | 2022-03-08 | Western Digital Technologies, Inc. | Glass substrates for heat assisted magnetic recording (HAMR) and methods and apparatus for use with the glass substrates |
JP7488416B2 (ja) * | 2021-03-05 | 2024-05-21 | Hoya株式会社 | 磁気記録媒体基板用または磁気記録再生装置用ガラススペーサ用のガラス、磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置 |
CN113402165B (zh) * | 2021-07-28 | 2022-07-29 | 成都光明光电股份有限公司 | 玻璃组合物、化学强化玻璃及其制造方法 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2727399B1 (fr) | 1994-10-13 | 1997-01-31 | Saint Gobain Vitrage | Compositions de verre silico-sodo-calciques et leurs applications |
AU3656495A (en) | 1994-10-13 | 1996-05-06 | Saint-Gobain Vitrage S.A. | Reinforced glass substrates |
JP2007051064A (ja) | 1995-04-20 | 2007-03-01 | Asahi Glass Co Ltd | 磁気ディスク基板用ガラス、磁気ディスク用ガラス基板および磁気ディスク |
GB2299991B (en) | 1995-04-20 | 1998-09-09 | Ag Technology Corp | Glass substrate for magnetic disk |
US5972460A (en) * | 1996-12-26 | 1999-10-26 | Hoya Corporation | Information recording medium |
JP3412804B2 (ja) * | 1996-12-26 | 2003-06-03 | Hoya株式会社 | 情報記録媒体用基板 |
US5997977A (en) * | 1997-06-05 | 1999-12-07 | Hoya Corporation | Information recording substrate and information recording medium prepared from the substrate |
JPH11232636A (ja) * | 1997-11-14 | 1999-08-27 | Hoya Corp | 情報記録媒体用基板及びその製造方法 |
JP4635297B2 (ja) | 1999-06-08 | 2011-02-23 | 旭硝子株式会社 | 基板用ガラスおよびガラス基板 |
JP2001134925A (ja) | 1999-08-25 | 2001-05-18 | Asahi Glass Co Ltd | 情報記録媒体基板用ガラスおよび情報記録媒体用ガラス基板 |
JP4518291B2 (ja) * | 1999-10-19 | 2010-08-04 | Hoya株式会社 | ガラス組成物ならびにそれを用いた情報記録媒体用基板、情報記録媒体および情報記録装置 |
JP2001294441A (ja) | 2000-04-11 | 2001-10-23 | Asahi Glass Co Ltd | 基板用ガラス |
JP2001348246A (ja) | 2000-06-01 | 2001-12-18 | Asahi Glass Co Ltd | 基板用ガラスおよびガラス基板 |
US6949485B2 (en) | 2000-06-01 | 2005-09-27 | Asabi Glass Company, Limited | Glass for substrate and glass substrate |
US7309671B2 (en) | 2002-05-24 | 2007-12-18 | Nippon Sheet Glass Co., Ltd. | Glass composition, glass article, glass substrate for magnetic recording media, and method for producing the same |
JP4446683B2 (ja) | 2002-05-24 | 2010-04-07 | Hoya株式会社 | 磁気記録媒体用ガラス基板 |
JP4213076B2 (ja) | 2003-05-14 | 2009-01-21 | 富士通株式会社 | 磁気記録媒体の製造方法 |
JP4726400B2 (ja) * | 2003-05-29 | 2011-07-20 | コニカミノルタオプト株式会社 | ガラス基板の製造方法 |
US7273668B2 (en) * | 2003-06-06 | 2007-09-25 | Hoya Corporation | Glass composition including zirconium, chemically strengthened glass article, glass substrate for magnetic recording media, and method of producing glass sheet |
JP4656863B2 (ja) | 2003-06-06 | 2011-03-23 | Hoya株式会社 | ジルコニウムを含むガラス組成物、化学強化ガラス物品、磁気記録媒体用ガラス基板、およびガラス板の製造方法 |
JP4039381B2 (ja) | 2004-03-25 | 2008-01-30 | コニカミノルタオプト株式会社 | ガラス組成物を用いた情報記録媒体用ガラス基板及びこれを用いた情報記録媒体 |
JP4213077B2 (ja) * | 2004-04-28 | 2009-01-21 | Hoya株式会社 | 情報記録媒体用ガラス基板およびその製造方法並びに情報記録媒体およびその製造方法 |
JP2006327935A (ja) | 2006-08-25 | 2006-12-07 | Konica Minolta Opto Inc | ガラス基板 |
WO2008062847A1 (fr) | 2006-11-22 | 2008-05-29 | Asahi Glass Company, Limited | Verre pour substrat support d'enregistrement d'informations |
US20080130171A1 (en) * | 2006-11-30 | 2008-06-05 | Francis Martin Behan | Calcium aluminosilicate glasses for use as information recording medium substrates |
JP4641524B2 (ja) * | 2006-12-25 | 2011-03-02 | キヤノン株式会社 | 磁気記録媒体及びその製造方法 |
JP5004018B2 (ja) | 2007-10-31 | 2012-08-22 | 富士電機株式会社 | 熱アシスト記録用磁気記録媒体 |
SG10201408031RA (en) * | 2008-03-19 | 2015-01-29 | Hoya Corp | Glass for magnetic recording media substrates, magnetic recording media substrates, magnetic recording media and method for preparation thereof |
US8916487B2 (en) * | 2010-06-30 | 2014-12-23 | Hoya Corporation | Glass substrate for information recording medium |
US8394516B2 (en) | 2010-10-29 | 2013-03-12 | Hoya Corporation | Glass substrate for magnetic recording medium and magnetic recording medium |
MY169221A (en) * | 2012-03-29 | 2019-03-19 | Hoya Corp | Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium, and their use |
-
2013
- 2013-05-09 CN CN201380025244.9A patent/CN104303231A/zh active Pending
- 2013-05-09 SG SG10201605515PA patent/SG10201605515PA/en unknown
- 2013-05-09 US US13/890,866 patent/US8824248B2/en active Active
- 2013-05-09 SG SG11201407592YA patent/SG11201407592YA/en unknown
- 2013-05-09 MY MYPI2014703395A patent/MY166878A/en unknown
- 2013-05-09 WO PCT/JP2013/063046 patent/WO2013172247A1/ja active Application Filing
- 2013-05-09 JP JP2014515588A patent/JP6147735B2/ja active Active
-
2014
- 2014-07-25 US US14/341,142 patent/US9007878B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104303231A (zh) | 2015-01-21 |
US20140334276A1 (en) | 2014-11-13 |
US9007878B2 (en) | 2015-04-14 |
MY166878A (en) | 2018-07-24 |
SG11201407592YA (en) | 2015-01-29 |
WO2013172247A1 (ja) | 2013-11-21 |
US8824248B2 (en) | 2014-09-02 |
JPWO2013172247A1 (ja) | 2016-01-12 |
SG10201605515PA (en) | 2016-09-29 |
US20140036644A1 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6147735B2 (ja) | 磁気記録媒体基板用ガラスおよびその利用 | |
JP6131154B2 (ja) | 磁気記録媒体基板用ガラスおよび磁気記録媒体基板 | |
JP5964921B2 (ja) | 磁気記録媒体基板用ガラス、磁気記録媒体基板およびその製造方法、ならびに磁気記録媒体 | |
JP5542953B2 (ja) | 磁気記録媒体用ガラス基板、磁気記録媒体、および磁気記録媒体用ガラス基板ブランク | |
JP5993306B2 (ja) | 磁気記録媒体用ガラス基板およびその利用 | |
JP7135024B2 (ja) | 磁気記録媒体基板用ガラス、磁気記録媒体基板、磁気記録媒体および磁気記録再生装置用ガラススペーサ | |
US8885447B2 (en) | Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium, and their use | |
US20240286946A1 (en) | Glass for magnetic recording medium substrate or for glass spacer to be used in magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, and magnetic recording/reproducing apparatus | |
JP6042875B2 (ja) | 磁気記録媒体基板用ガラス、磁気記録媒体用ガラス基板およびその利用 | |
JP7165655B2 (ja) | 情報記録媒体基板用ガラス、情報記録媒体基板、情報記録媒体および記録再生装置用ガラススペーサ | |
JP2024102290A (ja) | 磁気記録媒体基板用または磁気記録再生装置用ガラススペーサ用のガラス、磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置 | |
JP6793119B2 (ja) | 磁気記録媒体基板用ガラス、磁気記録媒体基板および磁気記録媒体 | |
WO2024053740A1 (ja) | 磁気記録媒体基板用または磁気記録再生装置用ガラススペーサ用のガラス、磁気記録媒体基板、磁気記録媒体、磁気記録再生装置用ガラススペーサおよび磁気記録再生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160330 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6147735 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |