JP6141741B2 - Fuel cell electrode catalyst and method for producing the same - Google Patents
Fuel cell electrode catalyst and method for producing the same Download PDFInfo
- Publication number
- JP6141741B2 JP6141741B2 JP2013211859A JP2013211859A JP6141741B2 JP 6141741 B2 JP6141741 B2 JP 6141741B2 JP 2013211859 A JP2013211859 A JP 2013211859A JP 2013211859 A JP2013211859 A JP 2013211859A JP 6141741 B2 JP6141741 B2 JP 6141741B2
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- particle size
- fuel cell
- catalyst
- primary particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 103
- 239000000446 fuel Substances 0.000 title claims description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000011164 primary particle Substances 0.000 claims description 60
- 239000002245 particle Substances 0.000 claims description 41
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- 150000004696 coordination complex Chemical class 0.000 claims description 31
- 239000011148 porous material Substances 0.000 claims description 26
- 229920000554 ionomer Polymers 0.000 claims description 20
- 229910052697 platinum Inorganic materials 0.000 claims description 18
- 239000006185 dispersion Substances 0.000 claims description 17
- 230000003197 catalytic effect Effects 0.000 claims description 14
- 238000001179 sorption measurement Methods 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 claims description 8
- 239000005518 polymer electrolyte Substances 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 6
- 238000009826 distribution Methods 0.000 description 18
- 239000006229 carbon black Substances 0.000 description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910000510 noble metal Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000000790 scattering method Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920003934 Aciplex® Polymers 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000000235 small-angle X-ray scattering Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
Description
本発明は燃料電池用電極触媒及びその製造方法に関する。また、本発明は前記燃料電池用電極触媒を含む燃料電池用電極に関する。更に、本発明は前記燃料電池用電極を含む燃料電池に関する。 The present invention relates to an electrode catalyst for a fuel cell and a method for producing the same. The present invention also relates to a fuel cell electrode comprising the fuel cell electrode catalyst. Furthermore, the present invention relates to a fuel cell including the fuel cell electrode.
燃料電池は、燃料を補充することにより継続的に電力を取り出すことができ、且つ環境への負担が小さい発電装置である。近年の地球環境保護への関心の高まりにより、燃料電池には大きな期待が寄せられている。また、燃料電池は発電効率が高く、システムの小型化が可能であるため、パソコンや携帯電話等の携帯機器、自動車や鉄道等の車両等の様々な分野での利用が期待されている。 A fuel cell is a power generator that can continuously take out electric power by replenishing fuel and has a low environmental burden. Due to the growing interest in protecting the global environment in recent years, great expectations are placed on fuel cells. In addition, since the fuel cell has high power generation efficiency and can be downsized, it is expected to be used in various fields such as portable devices such as personal computers and mobile phones, vehicles such as automobiles and railways.
燃料電池は、一対の電極(カソード及びアノード)及び電解質から構成されており、当該電極には担体、及び当該担体に担持された触媒金属が含まれている。従来の燃料電池における担体としては一般的にカーボンが使用されている(例えば、特許文献1)。また、電極用の触媒としては一般的に、一次粒子径が数十nmの一次粒子が鎖状に連なった構造を有するカーボンに数nmの白金を担持させたものが使用されている。 The fuel cell is composed of a pair of electrodes (cathode and anode) and an electrolyte, and the electrode includes a carrier and a catalytic metal supported on the carrier. Carbon is generally used as a carrier in conventional fuel cells (for example, Patent Document 1). Further, as a catalyst for an electrode, generally, a carbon having a structure in which primary particles having a primary particle diameter of several tens of nm and a structure in which primary particles are connected in a chain is supported by several nm of platinum is used.
燃料電池用の電極触媒は、触媒金属を担体に担持させることによって製造することができる。担体に触媒金属を担持させる方法としては、例えば、触媒金属、担体及び分散媒を含む混合物に対する中和反応を利用した沈降法、前記混合物に対する還元反応を利用した析出法等が知られている。しかしながら、これらの方法では、触媒金属を担体に均一に担持することは困難であった。 An electrode catalyst for a fuel cell can be produced by supporting a catalytic metal on a carrier. As a method for supporting a catalyst metal on a support, for example, a precipitation method using a neutralization reaction for a mixture containing the catalyst metal, the support and a dispersion medium, a precipitation method using a reduction reaction for the mixture, and the like are known. However, in these methods, it is difficult to uniformly support the catalyst metal on the support.
触媒金属が担体に均一に担持されていない電極触媒を使用すると、燃料電池の性能を十分に発揮させることはできない。そのため、本発明は、触媒金属が担体に均一に担持されている燃料電池用電極触媒及びその製造方法を提供することを目的とする。 If an electrode catalyst in which the catalytic metal is not uniformly supported on the carrier is used, the performance of the fuel cell cannot be fully exhibited. Therefore, an object of the present invention is to provide a fuel cell electrode catalyst in which a catalytic metal is uniformly supported on a carrier and a method for producing the same.
本発明者らが鋭意検討した結果、狭い粒子径分布を有する担体を使用すると共に、当該担体の平均細孔径と同等の平均粒子径を有する触媒金属の錯体を使用することにより、触媒金属の錯体を担体に均一に吸着させることが可能であると見出した。そして、その後の処理により、触媒金属を担体に均一に担持させることができる。 As a result of intensive studies by the present inventors, a catalyst metal complex is obtained by using a carrier having a narrow particle size distribution and a catalyst metal complex having an average particle size equivalent to the average pore size of the carrier. Has been found to be able to be adsorbed uniformly on the support. Then, the catalyst metal can be uniformly supported on the carrier by the subsequent treatment.
すなわち、本発明は以下の発明を包含する。
[1]細孔を有する担体と、前記担体に均一に担持された触媒金属とを含む燃料電池用電極触媒であって、
前記担体の少なくとも8割が、前記担体の平均一次粒子径の±75%の範囲内の一次粒子径を有する、前記燃料電池用電極触媒。
[2]前記担体に担持された前記触媒金属の規格化分散度が30%以下である、[1]に記載の燃料電池用電極触媒。
[3]前記担体の少なくとも8割が10〜20nmの一次粒子径を有し、
前記担体に担持された前記触媒金属の規格化分散度が24%以下である、[1]又は[2]に記載の燃料電池用電極触媒。
[4]前記担体がカーボンである、[1]〜[3]のいずれかに記載の燃料電池用電極触媒。
[5]前記触媒金属が白金を含む、[1]〜[4]のいずれかに記載の燃料電池用電極触媒。
[6][1]〜[5]のいずれかに記載の燃料電池用電極触媒と、アイオノマーとを含む燃料電池用電極。
[7]前記アイオノマーによる前記燃料電池用電極触媒の被覆率が85%以上である、[6]に記載の燃料電池用電極。
[8]カソードとしての[6]又は[7]に記載の燃料電池用電極と、アノードと、高分子電解質膜とを含む固体高分子形燃料電池。
[9]細孔を有する担体に触媒金属の錯体を吸着させ、担持させる吸着担持工程を含む、燃料電池用電極触媒の製造方法であって、
前記担体の少なくとも8割が、前記担体の平均一次粒子径の±75%の範囲内の一次粒子径を有し、
前記触媒金属の錯体が、前記担体の平均細孔径の±75%の範囲内の平均粒子径を有する、前記製造方法。
[10]前記担体の少なくとも8割が10〜20nmの一次粒子径を有し、
前記担体の平均細孔径が2〜4nmであり、
前記触媒金属の錯体の平均粒子径が2〜4nmである、[9]に記載の製造方法。
[11]前記担体がカーボンである、[9]又は[10]に記載の製造方法。
[12]前記触媒金属の錯体がジニトロジアンミン白金を含む、[9]〜[11]のいずれかに記載の製造方法。
That is, the present invention includes the following inventions.
[1] A fuel cell electrode catalyst comprising a support having pores and a catalyst metal uniformly supported on the support,
The electrode catalyst for a fuel cell, wherein at least 80% of the carrier has a primary particle size in a range of ± 75% of an average primary particle size of the carrier.
[2] The electrode catalyst for a fuel cell according to [1], wherein the normalized dispersion degree of the catalyst metal supported on the carrier is 30% or less.
[3] At least 80% of the carrier has a primary particle size of 10 to 20 nm,
The electrode catalyst for fuel cells according to [1] or [2], wherein the normalized dispersion degree of the catalyst metal supported on the carrier is 24% or less.
[4] The fuel cell electrode catalyst according to any one of [1] to [3], wherein the carrier is carbon.
[5] The fuel cell electrode catalyst according to any one of [1] to [4], wherein the catalytic metal contains platinum.
[6] A fuel cell electrode comprising the fuel cell electrode catalyst according to any one of [1] to [5] and an ionomer.
[7] The fuel cell electrode according to [6], wherein the coverage of the fuel cell electrode catalyst by the ionomer is 85% or more.
[8] A polymer electrolyte fuel cell comprising the fuel cell electrode according to [6] or [7] as a cathode, an anode, and a polymer electrolyte membrane.
[9] A method for producing an electrode catalyst for a fuel cell, comprising an adsorption supporting step of adsorbing and supporting a catalyst metal complex on a support having pores,
At least 80% of the carrier has a primary particle size in the range of ± 75% of the average primary particle size of the carrier;
The production method, wherein the catalyst metal complex has an average particle diameter in a range of ± 75% of an average pore diameter of the support.
[10] At least 80% of the carrier has a primary particle size of 10 to 20 nm,
The average pore diameter of the carrier is 2 to 4 nm,
[9] The production method according to [9], wherein the catalyst metal complex has an average particle size of 2 to 4 nm.
[11] The production method according to [9] or [10], wherein the carrier is carbon.
[12] The production method according to any of [9] to [11], wherein the catalyst metal complex contains dinitrodiammine platinum.
本発明によれば、触媒金属が担体に均一に担持されている燃料電池用電極触媒及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a fuel cell electrode catalyst in which a catalytic metal is uniformly supported on a carrier and a method for producing the same.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
<燃料電池用電極触媒>
本発明は、細孔を有する担体と、前記担体に均一に担持された触媒金属とを含む燃料電池用電極触媒(以下、単に「電極触媒」ともいう)に関する。
<Electrocatalyst for fuel cell>
The present invention relates to a fuel cell electrode catalyst (hereinafter, also simply referred to as “electrode catalyst”) comprising a support having pores and a catalytic metal uniformly supported on the support.
本発明における担体は狭い粒子径分布(単分散)を有するものである。具体的には、担体の少なくとも8割が、担体の平均一次粒子径の±75%の範囲内の一次粒子径を有するものである。例示として、10個の担体の平均一次粒子径が10nmである場合には、少なくとも8個の担体は2.5〜17.5nmの一次粒子径を有する。 The carrier in the present invention has a narrow particle size distribution (monodisperse). Specifically, at least 80% of the carrier has a primary particle size in the range of ± 75% of the average primary particle size of the carrier. Illustratively, if the average primary particle size of 10 carriers is 10 nm, then at least 8 carriers have a primary particle size of 2.5-17.5 nm.
本明細書における担体の「平均一次粒子径」は、電界放出型走査電子顕微鏡(FE−SEM)による10視野観察において、ランダムに選択した100個の担体の一次粒子径に基づいて決定することができる。具体的には、選択した100個の担体の一次粒子径を測定し、最も大きい一次粒子径の担体10個及び最も小さい一次粒子径の担体10個を除外した80個の担体の一次粒子径の合計を80で割ることにより決定することができる。 The “average primary particle size” of the carrier in this specification can be determined based on the primary particle size of 100 randomly selected carriers in 10 field observations using a field emission scanning electron microscope (FE-SEM). it can. Specifically, the primary particle size of 100 selected carriers is measured, and the primary particle size of 80 carriers excluding 10 carriers with the largest primary particle size and 10 carriers with the smallest primary particle size is measured. It can be determined by dividing the total by 80.
なお、担体の「一次粒子径」は円相当径を意味する。具体的には、個々の担体の面積を測定し、当該面積と同じ面積を有する円の直径を担体の一次粒子径とする。 The “primary particle diameter” of the carrier means an equivalent circle diameter. Specifically, the area of each carrier is measured, and the diameter of a circle having the same area as the area is defined as the primary particle diameter of the carrier.
上記の狭い粒子径分布を有する担体によって、触媒金属が均一に担持された電極触媒を提供することができる。燃料電池用電極を製造する際、電極触媒をアイオノマーによって被覆するが、本発明に係る電極触媒を使用することにより、アイオノマーによる被覆率を上げることができる。その結果、狭い粒子径分布を有する担体と、担体に均一に担持された触媒金属と、高度の被覆されたアイオノマーとの相乗効果によって、燃料電池用電極における酸素拡散抵抗を下げ、燃料電池の性能を向上させることができる。 An electrode catalyst in which a catalytic metal is uniformly supported can be provided by the support having the narrow particle size distribution. When producing an electrode for a fuel cell, the electrode catalyst is coated with an ionomer. By using the electrode catalyst according to the present invention, the coverage with the ionomer can be increased. As a result, the oxygen diffusion resistance in the fuel cell electrode is lowered by the synergistic effect of the carrier having a narrow particle size distribution, the catalytic metal uniformly supported on the carrier, and the highly coated ionomer, and the performance of the fuel cell Can be improved.
担体の粒子径分布に関して、特に限定するものではないが、担体の少なくとも8割が、担体の平均一次粒子径の±60%の範囲内の一次粒子径を有することが好ましく、±50%の範囲内の一次粒子径を有することがより好ましく、±35%の範囲内の一次粒子径を有することが特に好ましい。 The particle size distribution of the carrier is not particularly limited, but at least 80% of the carrier preferably has a primary particle size within a range of ± 60% of the average primary particle size of the carrier, and a range of ± 50%. It is more preferable to have a primary particle size within a range of ± 35%, and it is particularly preferable to have a primary particle size within a range of ± 35%.
具体的には、担体の少なくとも8割が、担体の平均一次粒子径の±10nmの範囲内の一次粒子径を有することが好ましく、±7.5nmの範囲内の一次粒子径を有することがより好ましく、±5nmの範囲内の一次粒子径を有することが特に好ましい。 Specifically, at least 80% of the carrier preferably has a primary particle size within a range of ± 10 nm of the average primary particle size of the carrier, more preferably a primary particle size within a range of ± 7.5 nm. It is particularly preferable to have a primary particle size in the range of ± 5 nm.
より具体的には、担体の少なくとも8割が、5〜25nmの一次粒子径を有することが好ましく、7.5〜22.5nmの一次粒子径を有することがより好ましく、10〜20nmの一次粒子径を有することが特に好ましい。 More specifically, at least 80% of the carrier preferably has a primary particle size of 5 to 25 nm, more preferably a primary particle size of 7.5 to 22.5 nm, and primary particles of 10 to 20 nm. It is particularly preferable to have a diameter.
担体に担持された触媒金属の粒子径分布は、X線小角散乱法(SAXS)により評価した場合、規格化分散度が30%以下であることが好ましく、28%以下であることがより好ましく、26%以下であることが更に好ましく、24%以下であることが特に好ましい。このような規格化分散度を有することにより、燃料電池の性能を更に向上させることができる。規格化分散度の下限は特に限定されるものではないが、例えば、5%、10%、15%等としてもよい。 The particle size distribution of the catalyst metal supported on the carrier is preferably 30% or less, more preferably 28% or less, when evaluated by the X-ray small angle scattering method (SAXS). It is more preferably 26% or less, and particularly preferably 24% or less. By having such normalized dispersion, the performance of the fuel cell can be further improved. The lower limit of the normalized dispersion is not particularly limited, but may be 5%, 10%, 15%, etc., for example.
X線小角散乱法は、X線を物質に照射して散乱したX線のうち、2θ<10°以下の低角領域に現れるものを測定し、物質の構造を評価する分析手法である。X線小角散乱法を使用することにより、触媒金属の平均粒子径及び粒子径分布を測定することができる。 The X-ray small angle scattering method is an analysis method for measuring a substance appearing in a low angle region of 2θ <10 ° or less among X-rays scattered by irradiating the substance with X-rays and evaluating the structure of the substance. By using the X-ray small angle scattering method, the average particle size and particle size distribution of the catalyst metal can be measured.
本明細書における「規格化分散度」とは、X線小角散乱の測定ピークから算出される触媒金属の平均粒子径により、粒子径分布の半価幅(ピークの半分の値)を除した値を百分率で表したものである。例示として、触媒金属の平均粒子径が5nmであり、その半価幅が1.5nmである場合には、平均値から±30%の広がりを持つため、規格化分散度は30%と表される。 The “normalized dispersion degree” in the present specification is a value obtained by dividing the half-value width (half the peak value) of the particle size distribution by the average particle size of the catalytic metal calculated from the measurement peak of X-ray small angle scattering. Is expressed as a percentage. As an example, when the average particle diameter of the catalyst metal is 5 nm and the half width is 1.5 nm, the normalized dispersion degree is expressed as 30% because it has a spread of ± 30% from the average value. The
規格化分散度の算出は解析ソフトを用いて行うことができ、例えば、nano−solver(リガク社製)が使用可能である。規格化分散度については、特開2013−118049号公報も参照されたい。 The standardized dispersion can be calculated using analysis software. For example, nano-solver (manufactured by Rigaku Corporation) can be used. Refer also to Unexamined-Japanese-Patent No. 2013-118049 about the normalized dispersion degree.
触媒金属の担持密度は、特に限定されるものではないが、担体と触媒金属との合計重量を基準として、例えば5〜70重量%、好ましくは30〜50重量%とすることができる。 The support density of the catalyst metal is not particularly limited, but may be, for example, 5 to 70% by weight, preferably 30 to 50% by weight, based on the total weight of the support and the catalyst metal.
担体の種類は、細孔を有するものであれば特に限定されないが、カーボンを使用することが好ましい。より具体的には、カーボンブラック等を挙げることができる。また、担体として金属酸化物、例えばシリカ、チタニア等を使用してもよい。 The type of the carrier is not particularly limited as long as it has pores, but it is preferable to use carbon. More specifically, carbon black etc. can be mentioned. Further, a metal oxide such as silica or titania may be used as the carrier.
触媒金属の種類は、燃料電池の電極触媒としての機能を発揮できるものであれば特に限定されない。触媒金属として、貴金属、例えば、白金、パラジウム等を挙げることができる。また、触媒金属として、遷移金属、例えば、コバルト、マンガン、ニッケル、鉄等を挙げることができる。触媒金属として、貴金属のみを使用してもよいし、貴金属と遷移金属とを組み合わせて使用してもよい。 The type of catalytic metal is not particularly limited as long as it can function as an electrode catalyst for a fuel cell. Examples of the catalyst metal include noble metals such as platinum and palladium. Examples of the catalyst metal include transition metals such as cobalt, manganese, nickel, and iron. As the catalyst metal, only a noble metal may be used, or a combination of a noble metal and a transition metal may be used.
<燃料電池用電極>
本発明は、上記電極触媒とアイオノマーとを含む燃料電池用電極(以下、単に「電極」ともいう)にも関する。
<Electrode for fuel cell>
The present invention also relates to a fuel cell electrode (hereinafter also simply referred to as “electrode”) comprising the above-described electrode catalyst and ionomer.
上述の通り、本発明に係る電極では、アイオノマーによる電極触媒の被覆率を上げることができる。被覆率を上げることにより、酸素拡散抵抗を下げることができる。また、被覆率を上げることにより、電極における亀裂の発生を抑制することができる。 As described above, in the electrode according to the present invention, the coverage of the electrode catalyst by the ionomer can be increased. By increasing the coverage, the oxygen diffusion resistance can be lowered. In addition, the occurrence of cracks in the electrode can be suppressed by increasing the coverage.
アイオノマーによる電極触媒の被覆率は85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが特に好ましい。 The coverage of the electrode catalyst with the ionomer is preferably 85% or more, more preferably 90% or more, and particularly preferably 95% or more.
アイオノマーによる被覆率は、電極触媒(具体的には触媒金属)に対する一酸化炭素(CO)の吸着量で決定することができる。具体的には、[A]アイオノマーで被覆した電極触媒に対するCO吸着量、及び[B]アイオノマーで被覆していない電極触媒に対するCO吸着量、をそれぞれ測定し、以下の式で算出することができる。 The coverage with an ionomer can be determined by the amount of carbon monoxide (CO) adsorbed on an electrode catalyst (specifically, catalytic metal). Specifically, the amount of CO adsorption on the electrode catalyst coated with [A] ionomer and the amount of CO adsorption on the electrode catalyst not coated with [B] ionomer can be measured and calculated by the following equations. .
被覆率(%)=[1−(A/B)]×100 Coverage (%) = [1- (A / B)] × 100
COは触媒金属に吸着するため、電極触媒全体がアイオノマーによって被覆されていれば、COは吸着しない。 Since CO adsorbs on the catalyst metal, CO is not adsorbed if the entire electrode catalyst is covered with an ionomer.
アイオノマーの種類は、特に限定されないが、Du Pont社製のNafion(登録商標)DE2020、DE2021、DE520、DE521、DE1020及びDE1021、並びに旭化成ケミカルズ(株)製のAciplex(登録商標)SS700C/20、SS900/10及びSS1100/5等を挙げることができる。 The type of ionomer is not particularly limited, but Nafion (registered trademark) DE2020, DE2021, DE520, DE521, DE1020, and DE1021 manufactured by Du Pont, and Aciplex (registered trademark) SS700C / 20, SS900 manufactured by Asahi Kasei Chemicals Corporation. / 10 and SS1100 / 5.
<燃料電池>
本発明は、上記電極と電解質とを含む燃料電池にも関する。燃料電池の種類としては、固体高分子形燃料電池(PEFC)、りん酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、固体酸化物形燃料電池(SOFC)、アルカリ電解質形燃料電池(AFC)、直接形燃料電池(DFC)等を挙げることができる。上記電極はカソードとして使用してもよいし、アノードとして使用してもよいし、カソード及びアノードの両方として使用してもよい。
<Fuel cell>
The present invention also relates to a fuel cell including the electrode and an electrolyte. The types of fuel cells include polymer electrolyte fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and alkaline electrolyte fuels. Examples thereof include a battery (AFC) and a direct fuel cell (DFC). The electrode may be used as a cathode, an anode, or both a cathode and an anode.
好ましくは、本発明は、カソードとしての上記電極と、アノードと、高分子電解質膜とを含む固体高分子形燃料電池に関する。 Preferably, the present invention relates to a solid polymer fuel cell including the above electrode as a cathode, an anode, and a polymer electrolyte membrane.
上述の通り、本発明に係る燃料電池では、狭い粒子径分布を有する担体と、担体に均一に担持された触媒金属と、高度の被覆されたアイオノマーとの相乗効果によって、電極における酸素拡散抵抗を下げることができる。その結果、燃料電池の性能を向上させることができる。 As described above, in the fuel cell according to the present invention, the oxygen diffusion resistance in the electrode is reduced by the synergistic effect of the carrier having a narrow particle size distribution, the catalytic metal uniformly supported on the carrier, and the highly coated ionomer. Can be lowered. As a result, the performance of the fuel cell can be improved.
酸素拡散抵抗は、96s/m以下であることが好ましく、93s/m以下であることがより好ましく、90s/m以下であることが更に好ましく、87s/m以下であることが特に好ましい。酸素拡散抵抗の下限は特に限定されるものではないが、例えば、40s/m、50s/m、60s/m、70s/m等としてもよい。 The oxygen diffusion resistance is preferably 96 s / m or less, more preferably 93 s / m or less, still more preferably 90 s / m or less, and particularly preferably 87 s / m or less. Although the minimum of oxygen diffusion resistance is not specifically limited, For example, it is good also as 40 s / m, 50 s / m, 60 s / m, 70 s / m, etc.
酸素拡散抵抗は、80℃に加熱したバブラーを通過させた加湿低酸素模擬ガス(酸素5ccm、窒素1700ccm)をカソードに供給し、80℃に加熱したバブラーを通過させた加湿水素(500ccm)をアノードに供給し、電流負荷機によって限界電流密度(電圧がゼロとなる電流値)を測定することにより算出することができる。 For oxygen diffusion resistance, humidified low oxygen simulated gas (oxygen 5 ccm, nitrogen 1700 ccm) passed through a bubbler heated to 80 ° C. was supplied to the cathode, and humidified hydrogen (500 ccm) passed through a bubbler heated to 80 ° C. was anode And the limit current density (current value at which the voltage becomes zero) is measured by a current load machine.
本発明に係る燃料電池はセパレータを更に含んでいてもよい。一対の電極(カソード及びアノード)と電解質膜とからなる膜電極接合体(MEA)を一対のセパレータで挟持した単位セルを積み重ね、セルスタックを構成することにより、高い電力を得ることができる。 The fuel cell according to the present invention may further include a separator. High power can be obtained by stacking unit cells in which a membrane electrode assembly (MEA) composed of a pair of electrodes (cathode and anode) and an electrolyte membrane is sandwiched between a pair of separators to form a cell stack.
<燃料電池用電極触媒の製造方法>
本発明は、細孔を有する担体に触媒金属の錯体を吸着させ、担持させる吸着担持工程を含む、上記電極触媒の製造方法にも関する。
<Method for producing electrode catalyst for fuel cell>
The present invention also relates to a method for producing the above electrode catalyst, comprising an adsorption supporting step of adsorbing and supporting a catalyst metal complex on a support having pores.
本発明に係る製造方法では、狭い粒子径分布を有する担体を使用する。具体的には、担体の少なくとも8割が、担体の平均一次粒子径の±75%の範囲内の一次粒子径を有する担体を使用する。 In the production method according to the present invention, a carrier having a narrow particle size distribution is used. Specifically, a carrier in which at least 80% of the carrier has a primary particle size in the range of ± 75% of the average primary particle size of the carrier is used.
また、本発明に係る製造方法では、担体の平均細孔径と同等の平均粒子径を有する触媒金属の錯体を使用する。具体的には、担体の平均細孔径の±75%の範囲内の平均粒子径を有する触媒金属の錯体を使用する。 Further, in the production method according to the present invention, a catalyst metal complex having an average particle size equivalent to the average pore size of the support is used. Specifically, a catalyst metal complex having an average particle diameter in the range of ± 75% of the average pore diameter of the support is used.
本明細書における担体の「平均細孔径」は、N2ガス吸着測定により得られる吸着等温線データをBET解析することにより決定することができる。 The “average pore diameter” of the carrier in the present specification can be determined by BET analysis of adsorption isotherm data obtained by N 2 gas adsorption measurement.
本明細書における触媒金属の錯体の「平均粒子径」は、動的光散乱法(DLS)により決定することができる。 The “average particle size” of the catalyst metal complex in the present specification can be determined by a dynamic light scattering method (DLS).
上述の通り、狭い粒子径分布を有する担体を使用すると共に、当該担体の平均細孔径と同等の平均粒子径を有する触媒金属の錯体を使用することにより、触媒金属の錯体を担体に均一に吸着させることができる。また、触媒金属の錯体を均一に吸着させることによって、担体に対する触媒金属の錯体の吸着率を向上させることができる。例えば、70%以上、好ましくは80%以上、より好ましくは85%以上の吸着率で、触媒金属の錯体を担体に吸着させることができる。 As described above, by using a support having a narrow particle size distribution and using a catalyst metal complex having an average particle diameter equivalent to the average pore diameter of the support, the catalyst metal complex is uniformly adsorbed on the support. Can be made. Further, by uniformly adsorbing the catalyst metal complex, the adsorption rate of the catalyst metal complex with respect to the carrier can be improved. For example, the catalyst metal complex can be adsorbed on the support at an adsorption rate of 70% or more, preferably 80% or more, more preferably 85% or more.
担体の粒子径分布に関して、特に限定するものではないが、担体の少なくとも8割が、担体の平均一次粒子径の±60%の範囲内の一次粒子径を有することが好ましく、±50%の範囲内の一次粒子径を有することがより好ましく、±35%の範囲内の一次粒子径を有することが特に好ましい。 The particle size distribution of the carrier is not particularly limited, but at least 80% of the carrier preferably has a primary particle size within a range of ± 60% of the average primary particle size of the carrier, and a range of ± 50%. It is more preferable to have a primary particle size within a range of ± 35%, and it is particularly preferable to have a primary particle size within a range of ± 35%.
具体的には、担体の少なくとも8割が、担体の平均一次粒子径の±10nmの範囲内の一次粒子径を有することが好ましく、±7.5nmの範囲内の一次粒子径を有することがより好ましく、±5nmの範囲内の一次粒子径を有することが特に好ましい。 Specifically, at least 80% of the carrier preferably has a primary particle size within a range of ± 10 nm of the average primary particle size of the carrier, more preferably a primary particle size within a range of ± 7.5 nm. It is particularly preferable to have a primary particle size in the range of ± 5 nm.
より具体的には、担体の少なくとも8割が、5〜25nmの一次粒子径を有することが好ましく、7.5〜22.5nmの一次粒子径を有することがより好ましく、10〜20nmの一次粒子径を有することが特に好ましい。 More specifically, at least 80% of the carrier preferably has a primary particle size of 5 to 25 nm, more preferably a primary particle size of 7.5 to 22.5 nm, and primary particles of 10 to 20 nm. It is particularly preferable to have a diameter.
触媒金属の錯体の平均粒子径に関して、特に限定するものではないが、触媒金属の錯体が、担体の平均細孔径の±60%の範囲内の平均粒子径を有することが好ましく、±50%の範囲内の平均粒子径を有することがより好ましく、±35%の範囲内の平均粒子径を有することが特に好ましい。 The average particle diameter of the catalyst metal complex is not particularly limited, but the catalyst metal complex preferably has an average particle diameter in the range of ± 60% of the average pore diameter of the support, and is ± 50%. It is more preferable to have an average particle size in the range, and it is particularly preferable to have an average particle size in the range of ± 35%.
具体的には、触媒金属の錯体が、担体の平均細孔径の±2nmの範囲内の平均粒子径を有することが好ましく、±1.5nmの範囲内の平均粒子径を有することがより好ましく、±1nmの範囲内の平均粒子径を有することが特に好ましい。 Specifically, the catalyst metal complex preferably has an average particle size in the range of ± 2 nm of the average pore size of the support, more preferably has an average particle size in the range of ± 1.5 nm, It is particularly preferred to have an average particle size in the range of ± 1 nm.
より具体的には、触媒金属の錯体の平均粒子径と担体の平均細孔径とが共に1〜5nmであることが好ましく、1.5〜4.5nmであることがより好ましく、2〜4nmであることが特に好ましい。 More specifically, the average particle size of the catalyst metal complex and the average pore size of the support are both preferably 1 to 5 nm, more preferably 1.5 to 4.5 nm, and 2 to 4 nm. It is particularly preferred.
担体の種類は、細孔を有するものであれば特に限定されないが、カーボンを使用することが好ましい。より具体的には、カーボンブラック等を挙げることができる。また、担体として金属酸化物、例えばシリカ、チタニア等を使用してもよい。 The type of the carrier is not particularly limited as long as it has pores, but it is preferable to use carbon. More specifically, carbon black etc. can be mentioned. Further, a metal oxide such as silica or titania may be used as the carrier.
触媒金属の錯体の種類は、錯体に含まれる触媒金属が燃料電池の電極触媒としての機能を発揮できるものであれば特に限定されない。触媒金属の錯体として、貴金属、例えば、白金、パラジウム等を含む錯体を挙げることができる。また、触媒金属の錯体として、遷移金属、例えば、コバルト、マンガン、ニッケル、鉄等を含む錯体を挙げることができる。触媒金属の錯体としては、貴金属を含む錯体のみを使用してもよいし、貴金属を含む錯体と遷移金属を含む錯体とを組み合わせて使用してもよい。触媒金属の錯体として、例えばジニトロジアンミン白金を挙げることができる。 The type of the catalyst metal complex is not particularly limited as long as the catalyst metal contained in the complex can function as an electrode catalyst for a fuel cell. Examples of the catalyst metal complex include complexes containing noble metals such as platinum and palladium. Examples of the catalyst metal complex include complexes containing transition metals such as cobalt, manganese, nickel, and iron. As the catalyst metal complex, only a complex containing a noble metal may be used, or a complex containing a noble metal and a complex containing a transition metal may be used in combination. Examples of the catalyst metal complex include dinitrodiammine platinum.
触媒金属の錯体は、中心金属及び配位子の種類を変更することにより、その平均粒子径を適宜変更することができる。そのため、担体の平均細孔径に応じて、触媒金属の錯体を選択することができる。 The average particle diameter of the catalyst metal complex can be appropriately changed by changing the type of the central metal and the ligand. Therefore, a catalyst metal complex can be selected according to the average pore diameter of the support.
特に限定するものではないが、担体の少なくとも8割が10〜20nmの一次粒子径を有し、平均細孔径が2〜4nmであるカーボンを担体として使用する場合、ジニトロジアンミン白金を使用することが好ましく、1g/Lの白金濃度で、420nmにおける吸光度が1.5〜3であるジニトロジアンミン白金硝酸溶液を使用することがより好ましい。前記ジニトロジアンミン白金硝酸溶液のアルカリ消費量が0.15〜0.35であると更に好ましい。このようなジニトロジアンミン白金硝酸溶液は、特開2005−306700号公報に記載の方法に従って調製することができる。 Although not particularly limited, when carbon having at least 80% of the support has a primary particle size of 10 to 20 nm and an average pore size of 2 to 4 nm is used as the support, dinitrodiammine platinum may be used. It is preferable to use a dinitrodiammine platinum nitrate solution having a platinum concentration of 1 g / L and an absorbance at 420 nm of 1.5 to 3. More preferably, the alkali consumption of the dinitrodiammine platinum nitrate solution is 0.15 to 0.35. Such a dinitrodiammine platinum nitrate solution can be prepared according to the method described in JP-A-2005-306700.
担体に吸着させた触媒金属の錯体は、還元反応により担体に担持させることができる。還元剤としては、特に限定されないが、エタノール、プロパノール、水素化ホウ素ナトリウム、ヒドラジン、ギ酸等を挙げることができる。 The catalyst metal complex adsorbed on the carrier can be supported on the carrier by a reduction reaction. Although it does not specifically limit as a reducing agent, Ethanol, propanol, sodium borohydride, hydrazine, formic acid, etc. can be mentioned.
還元反応は、例えば、60℃から分散媒の沸点までの温度範囲で行うことができる。分散媒としては、例えば、水と硝酸との混合溶液を挙げることができる。 The reduction reaction can be performed, for example, in a temperature range from 60 ° C. to the boiling point of the dispersion medium. Examples of the dispersion medium include a mixed solution of water and nitric acid.
以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, the technical scope of this invention is not limited to this.
<燃料電池用電極触媒の製造>
[実施例1]
5〜20gの硝酸(濃度:60重量%)と500〜1500gの純水とを混合した水溶液に、14gの狭い粒子径分布を有するカーボンブラック粉末(平均一次粒子径:15nm、平均細孔径:2nm)を分散させた。この分散液に、ジニトロジアンミン白金硝酸溶液(白金量:6g、平均粒子径:2nm)を混合し、カーボンブラックに吸着させた。この混合物に、還元剤としてのエタノール(濃度:99.5%)を混合し、60〜90℃に加熱して1〜8時間保持した。その後、40℃以下になるまで自然放冷し、濾過し、濾過ケーキを濾液のpHが4〜5となるまで、且つ濾液の導電率が50μSとなるまで純水で洗浄した。洗浄した濾過ケーキを90℃で15時間乾燥し、アルゴンガス中、5℃/分の昇温速度で100℃から1000℃まで昇温し、1〜5時間保持して電極触媒を得た。
<Manufacture of fuel cell electrode catalyst>
[Example 1]
Carbon black powder having a narrow particle size distribution of 14 g (average primary particle size: 15 nm, average pore size: 2 nm) in an aqueous solution in which 5 to 20 g of nitric acid (concentration: 60% by weight) and 500 to 1500 g of pure water are mixed. ) Was dispersed. A dinitrodiammine platinum nitric acid solution (platinum amount: 6 g, average particle size: 2 nm) was mixed with this dispersion and adsorbed on carbon black. Ethanol (concentration: 99.5%) as a reducing agent was mixed with this mixture, heated to 60 to 90 ° C. and held for 1 to 8 hours. Then, it naturally left to cool to 40 degrees C or less, it filtered, and the filter cake was wash | cleaned with the pure water until the pH of the filtrate was set to 4-5, and the electrical conductivity of the filtrate was set to 50 microseconds. The washed filter cake was dried at 90 ° C. for 15 hours, heated from 100 ° C. to 1000 ° C. at a heating rate of 5 ° C./min in argon gas, and held for 1 to 5 hours to obtain an electrode catalyst.
なお、実施例1で使用したカーボンブラックは、FE−SEMによる10視野観察において、10〜20nmの一次粒子径を有していた。 The carbon black used in Example 1 had a primary particle diameter of 10 to 20 nm in 10 visual field observation by FE-SEM.
[比較例1]
実施例1における狭い粒子径分布を有するカーボンブラック粉末を、広い粒子径分布を有するカーボンブラック粉末(平均一次粒子径:40nm、平均細孔径:2nm)に変更した以外は、実施例1と同様に電極触媒を得た。
[Comparative Example 1]
Similar to Example 1, except that the carbon black powder having a narrow particle size distribution in Example 1 was changed to a carbon black powder having a wide particle size distribution (average primary particle size: 40 nm, average pore size: 2 nm). An electrode catalyst was obtained.
なお、比較例1で使用したカーボンブラックは、FE−SEMによる10視野観察において、10〜100nmの一次粒子径を有していた。 The carbon black used in Comparative Example 1 had a primary particle size of 10 to 100 nm in 10-field observation with FE-SEM.
[比較例2]
500gの純水に、14gの狭い粒子径分布を有するカーボンブラック粉末(平均一次粒子径:15nm、平均細孔径:2nm)を分散させた。この分散液に、塩化白金酸溶液(白金量:6g、平均粒子径:2nm)を混合した。この混合物に、塩基としてのアンモニア水溶液をpHが9となるまで加え、中和沈降させた。沈降物を濾過し、濾過ケーキを90℃で15時間乾燥し、アルゴンガス中、5℃/分の昇温速度で100℃から1000℃まで昇温し、1〜5時間保持して電極触媒を得た。
[Comparative Example 2]
Carbon black powder (average primary particle size: 15 nm, average pore size: 2 nm) having a narrow particle size distribution of 14 g was dispersed in 500 g of pure water. To this dispersion, a chloroplatinic acid solution (platinum amount: 6 g, average particle size: 2 nm) was mixed. To this mixture, an aqueous ammonia solution as a base was added until the pH reached 9, and neutralized and precipitated. The precipitate was filtered, the filter cake was dried at 90 ° C. for 15 hours, heated from 100 ° C. to 1000 ° C. at a heating rate of 5 ° C./min in argon gas, and held for 1 to 5 hours to hold the electrode catalyst. Obtained.
なお、比較例2で使用したカーボンブラックは、FE−SEMによる10視野観察において、10〜20nmの一次粒子径を有していた。 The carbon black used in Comparative Example 2 had a primary particle diameter of 10 to 20 nm in 10 visual field observation by FE-SEM.
[比較例3]
比較例2における狭い粒子径分布を有するカーボンブラック粉末を、広い粒子径分布を有するカーボンブラック粉末(平均一次粒子径:40nm、平均細孔径:2nm)に変更した以外は、比較例2と同様に電極触媒を得た。
[Comparative Example 3]
Similar to Comparative Example 2, except that the carbon black powder having a narrow particle size distribution in Comparative Example 2 was changed to a carbon black powder having a wide particle size distribution (average primary particle size: 40 nm, average pore size: 2 nm). An electrode catalyst was obtained.
なお、比較例3で使用したカーボンブラックは、FE−SEMによる10視野観察において、10〜100nmの一次粒子径を有していた。 In addition, the carbon black used in Comparative Example 3 had a primary particle size of 10 to 100 nm in 10 visual field observation by FE-SEM.
実施例及び比較例で得られた電極触媒における白金錯体の吸着率、及びカーボンブラックに担持された白金の規格化分散度の結果を表1及び2並びに図1及び2に示す。 Tables 1 and 2 and FIGS. 1 and 2 show the results of the adsorption rate of the platinum complex in the electrode catalysts obtained in Examples and Comparative Examples, and the normalized dispersion degree of platinum supported on carbon black.
白金錯体の吸着率は、濾液中に排出された白金の量を原子吸光分析で測定し、濾液中の白金の量を、仕込んだ白金の量から差し引くことによって決定した。 The adsorption rate of the platinum complex was determined by measuring the amount of platinum discharged into the filtrate by atomic absorption spectrometry, and subtracting the amount of platinum in the filtrate from the amount of platinum charged.
カーボンブラックに担持された白金の規格化分散度の測定方法は上述の通りであり、解析ソフトとしてnano−solver(リガク社製)を使用した。 The method for measuring the normalized dispersion of platinum supported on carbon black is as described above, and nano-solver (manufactured by Rigaku Corporation) was used as analysis software.
<単セルの製造>
有機溶媒に、実施例及び比較例で得られた各電極触媒を分散させ、更にアイオノマーを加えた。この分散液を超音波処理した後、電極1cm2当たりの白金の量が0.2mgとなるように、分散液をテフロンシートに塗布し、電極を製造した。
<Manufacture of single cells>
Each electrode catalyst obtained in Examples and Comparative Examples was dispersed in an organic solvent, and ionomer was further added. After ultrasonically treating this dispersion, the dispersion was applied to a Teflon sheet so that the amount of platinum per 1 cm 2 of electrode was 0.2 mg, and an electrode was manufactured.
一対の電極を高分子電解質膜を介してホットプレスにより貼り合わせ、各電極の外側に拡散層を設置して、単セルを製造した。 A pair of electrodes were bonded together by hot pressing through a polymer electrolyte membrane, and a diffusion layer was installed outside each electrode to manufacture a single cell.
実施例及び比較例で得られた各電極触媒を使用して製造した単セルにおける、アイオノマーによる被覆率、酸素拡散抵抗、及び電池出力の結果を表3及び図3〜5に示す。 Table 3 and FIGS. 3 to 5 show the results of ionomer coverage, oxygen diffusion resistance, and battery output in single cells produced using the electrode catalysts obtained in Examples and Comparative Examples.
アイオノマーによる被覆率は、スパチュラを用いて電極を削り落として得た粉末に対する一酸化炭素の吸着量を測定することにより決定した。具体的な方法は上述の通りである。 The ionomer coverage was determined by measuring the amount of carbon monoxide adsorbed on the powder obtained by scraping off the electrode with a spatula. The specific method is as described above.
酸素拡散抵抗の測定方法は上述の通りであり、電流負荷機によって限界電流密度を測定することにより算出した。 The method for measuring oxygen diffusion resistance was as described above, and the oxygen diffusion resistance was calculated by measuring the limit current density with a current load machine.
電池出力は、80℃に加熱したバブラーを通過させた加湿空気(2000ccm)をカソードに供給し、80℃に加熱したバブラーを通過させた加湿水素(500ccm)をアノードに供給し、電流負荷機によって発電して1.0A/cm2の電圧値を測定することにより決定した。 The battery output is as follows: humidified air (2000 ccm) passed through a bubbler heated to 80 ° C. is supplied to the cathode, humidified hydrogen (500 ccm) passed through a bubbler heated to 80 ° C. is supplied to the anode, and the current load machine It was determined by generating power and measuring a voltage value of 1.0 A / cm 2 .
Claims (12)
前記担体の少なくとも8割が、前記担体の平均一次粒子径の±75%の範囲内の一次粒子径を有する、前記燃料電池用電極触媒。 A fuel cell electrode catalyst comprising a support having pores and a catalyst metal uniformly supported on the support,
The electrode catalyst for a fuel cell, wherein at least 80% of the carrier has a primary particle size in a range of ± 75% of an average primary particle size of the carrier.
前記担体に担持された前記触媒金属の規格化分散度が24%以下である、請求項1又は2に記載の燃料電池用電極触媒。 At least 80% of the carrier has a primary particle size of 10 to 20 nm,
The electrode catalyst for a fuel cell according to claim 1 or 2, wherein the normalized dispersion degree of the catalyst metal supported on the carrier is 24% or less.
前記担体の少なくとも8割が、前記担体の平均一次粒子径の±75%の範囲内の一次粒子径を有し、
前記触媒金属の錯体が、前記担体の平均細孔径の±75%の範囲内の平均粒子径を有する、前記製造方法。 A method for producing an electrode catalyst for a fuel cell, comprising an adsorption supporting step of adsorbing and supporting a catalyst metal complex on a support having pores,
At least 80% of the carrier has a primary particle size in the range of ± 75% of the average primary particle size of the carrier;
The production method, wherein the catalyst metal complex has an average particle diameter in a range of ± 75% of an average pore diameter of the support.
前記担体の平均細孔径が2〜4nmであり、
前記触媒金属の錯体の平均粒子径が2〜4nmである、請求項9に記載の製造方法。 At least 80% of the carrier has a primary particle size of 10 to 20 nm,
The average pore diameter of the carrier is 2 to 4 nm,
The production method according to claim 9, wherein the catalyst metal complex has an average particle size of 2 to 4 nm.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013211859A JP6141741B2 (en) | 2013-10-09 | 2013-10-09 | Fuel cell electrode catalyst and method for producing the same |
US15/027,508 US20160240862A1 (en) | 2013-10-09 | 2014-10-09 | Fuel-cell electrode catalyst, and production method therefor |
CN201480055454.7A CN105612644B (en) | 2013-10-09 | 2014-10-09 | Electrode catalyst for fuel cell and its manufacture method |
BR112016007186A BR112016007186A2 (en) | 2013-10-09 | 2014-10-09 | fuel cell electrode catalyst and method of production thereof |
EP14852600.7A EP3057161B1 (en) | 2013-10-09 | 2014-10-09 | Fuel-cell electrode catalyst, and production method therefor |
PCT/JP2014/077056 WO2015053362A1 (en) | 2013-10-09 | 2014-10-09 | Fuel-cell electrode catalyst, and production method therefor |
US15/879,919 US20180151890A1 (en) | 2013-10-09 | 2018-01-25 | Fuel-cell electrode catalyst, and production method therefor |
US15/879,834 US20180151889A1 (en) | 2013-10-09 | 2018-01-25 | Fuel-cell electrode catalyst, and production method therefor |
US15/879,723 US20180151888A1 (en) | 2013-10-09 | 2018-01-25 | Fuel-cell electrode catalyst, and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013211859A JP6141741B2 (en) | 2013-10-09 | 2013-10-09 | Fuel cell electrode catalyst and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015076277A JP2015076277A (en) | 2015-04-20 |
JP6141741B2 true JP6141741B2 (en) | 2017-06-07 |
Family
ID=52813177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013211859A Active JP6141741B2 (en) | 2013-10-09 | 2013-10-09 | Fuel cell electrode catalyst and method for producing the same |
Country Status (6)
Country | Link |
---|---|
US (4) | US20160240862A1 (en) |
EP (1) | EP3057161B1 (en) |
JP (1) | JP6141741B2 (en) |
CN (1) | CN105612644B (en) |
BR (1) | BR112016007186A2 (en) |
WO (1) | WO2015053362A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6661954B2 (en) * | 2015-10-08 | 2020-03-11 | 日産自動車株式会社 | Method for evaluating structure including catalyst and electrolyte, and method for manufacturing fuel cell using the evaluation method |
JP6536458B2 (en) * | 2016-04-06 | 2019-07-03 | トヨタ自動車株式会社 | Method of manufacturing membrane electrode assembly |
EP3525271B1 (en) * | 2016-10-05 | 2021-07-07 | Mitsui Mining & Smelting Co., Ltd. | Method for producing electrode catalyst, and electrode catalyst |
JP6658633B2 (en) | 2017-03-16 | 2020-03-04 | トヨタ自動車株式会社 | Method for producing catalyst ink and catalyst composite |
JP7026450B2 (en) | 2017-04-24 | 2022-02-28 | ソニーグループ株式会社 | Transmitter, transmitter, receiver and receiver |
CN109725034B (en) * | 2018-12-18 | 2020-11-06 | 上海交通大学 | Method for measuring influence characteristics of ionomer on local mass transfer resistance |
US11234044B2 (en) | 2018-12-28 | 2022-01-25 | Sony Group Corporation | Transmission apparatus, transmission method, encoding apparatus, encoding method, reception apparatus, and reception method |
AU2020206328A1 (en) | 2019-01-07 | 2021-08-05 | Twelve Benefit Corporation | System and method for methane production |
CA3237584A1 (en) * | 2021-11-09 | 2023-05-19 | Ziyang HUO | Cathode catalysts for carbon oxide electrolyzers |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6349252A (en) * | 1986-08-14 | 1988-03-02 | Fuji Electric Co Ltd | Production of noble metal-deposited catalyst |
JPH02210761A (en) * | 1989-02-08 | 1990-08-22 | Fuji Electric Co Ltd | Manufacture of phosphoric acid fuel cell |
JP4315857B2 (en) | 2004-04-26 | 2009-08-19 | 株式会社キャタラー | Platinum solution and method for producing catalyst using the same |
JP2006286580A (en) * | 2005-04-05 | 2006-10-19 | Nissan Motor Co Ltd | Production method of catalyst slurry for fuel cell and membrane electrode assembly |
WO2006110822A2 (en) * | 2005-04-11 | 2006-10-19 | Aerogel Composite, Llc | Carbon aerogel supported metal catalyst and solid electrolyte composite |
JPWO2006118186A1 (en) * | 2005-04-27 | 2008-12-18 | 株式会社エクォス・リサーチ | Fuel cell electrode and membrane electrode assembly |
CA2647507A1 (en) * | 2006-03-31 | 2007-10-25 | Hiroaki Takahashi | Electrode catalyst for fuel cell and production process of the same |
MX2009007665A (en) | 2007-02-06 | 2009-10-12 | Ericsson Telefon Ab L M | Flexible radio link control packet data unit length. |
JP2010061917A (en) * | 2008-09-02 | 2010-03-18 | Toyota Motor Corp | Method for manufacturing catalytic electrode of fuel cell |
KR101231006B1 (en) * | 2010-11-26 | 2013-02-07 | 현대자동차주식회사 | Preparing method of Alloy Catalyst using Conductive polymer coating |
JP5877494B2 (en) * | 2011-08-25 | 2016-03-08 | 日産自動車株式会社 | Fuel cell electrode catalyst layer, fuel cell electrode, fuel cell membrane electrode assembly, and fuel cell |
JP2013109848A (en) | 2011-11-17 | 2013-06-06 | Toyota Motor Corp | Fuel cell |
JP5755124B2 (en) | 2011-12-01 | 2015-07-29 | 株式会社キャタラー | Method for producing cathode catalyst for polymer electrolyte fuel cell |
-
2013
- 2013-10-09 JP JP2013211859A patent/JP6141741B2/en active Active
-
2014
- 2014-10-09 US US15/027,508 patent/US20160240862A1/en not_active Abandoned
- 2014-10-09 WO PCT/JP2014/077056 patent/WO2015053362A1/en active Application Filing
- 2014-10-09 EP EP14852600.7A patent/EP3057161B1/en active Active
- 2014-10-09 BR BR112016007186A patent/BR112016007186A2/en not_active IP Right Cessation
- 2014-10-09 CN CN201480055454.7A patent/CN105612644B/en active Active
-
2018
- 2018-01-25 US US15/879,723 patent/US20180151888A1/en not_active Abandoned
- 2018-01-25 US US15/879,834 patent/US20180151889A1/en not_active Abandoned
- 2018-01-25 US US15/879,919 patent/US20180151890A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20180151888A1 (en) | 2018-05-31 |
WO2015053362A1 (en) | 2015-04-16 |
EP3057161A1 (en) | 2016-08-17 |
CN105612644A (en) | 2016-05-25 |
US20180151890A1 (en) | 2018-05-31 |
BR112016007186A2 (en) | 2017-08-01 |
EP3057161A4 (en) | 2017-05-31 |
JP2015076277A (en) | 2015-04-20 |
EP3057161B1 (en) | 2018-12-05 |
US20160240862A1 (en) | 2016-08-18 |
CN105612644B (en) | 2017-12-19 |
US20180151889A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6141741B2 (en) | Fuel cell electrode catalyst and method for producing the same | |
US10950869B2 (en) | Fuel cell electrode catalyst and method for producing the same | |
EP3147976A1 (en) | Supporting carbon material for solid polymer fuel cell and catalyst metal particle-supporting carbon material | |
Liu et al. | Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell | |
JP2007250274A (en) | Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this | |
Xiao et al. | Durable hybrid electrocatalysts for proton exchange membrane fuel cells | |
JP2014188496A (en) | Catalyst | |
JP6727266B2 (en) | Anode catalyst layer for fuel cell and fuel cell using the same | |
US11217796B2 (en) | Electrode catalyst for fuel cell and method of production of same | |
CN101596453A (en) | A kind of is the Pt Preparation of catalysts method of carrier with the carbon carrier | |
JP6727263B2 (en) | Anode catalyst layer for fuel cell and fuel cell using the same | |
Hasché et al. | Activity and structure of dealloyed PtNi3 nanoparticle electrocatalyst for oxygen reduction reaction in PEMFC | |
JP6040954B2 (en) | Method for producing fuel cell catalyst | |
JP5706595B1 (en) | Oxygen reduction catalyst, its use and production method thereof | |
JP6956851B2 (en) | Electrode catalyst for fuel cells and fuel cells using them | |
JP6727264B2 (en) | Anode catalyst layer for fuel cell and fuel cell using the same | |
JP5326585B2 (en) | Method for producing metal catalyst-supported carbon powder | |
KR20060052555A (en) | Fuel cell, membrane-electrode assembly, and catalyst used for them and the producing method of catalyst | |
JP6727265B2 (en) | Anode catalyst layer for fuel cell and fuel cell using the same | |
JP2022138872A (en) | Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same | |
Liu et al. | Volume production of high loading Pt/C catalyst with high performance via a microwave-assisted organic colloid route | |
JPWO2009051111A1 (en) | Fuel cell supported catalyst and fuel cell | |
JP5235280B2 (en) | Anode catalyst for polymer electrolyte fuel cell | |
Javaheri et al. | Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells | |
JP2006278194A (en) | Fuel cell and membrane electrode assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6141741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |