JP6036756B2 - High strength hot rolled steel sheet and method for producing the same - Google Patents
High strength hot rolled steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP6036756B2 JP6036756B2 JP2014142816A JP2014142816A JP6036756B2 JP 6036756 B2 JP6036756 B2 JP 6036756B2 JP 2014142816 A JP2014142816 A JP 2014142816A JP 2014142816 A JP2014142816 A JP 2014142816A JP 6036756 B2 JP6036756 B2 JP 6036756B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- rolled steel
- hot
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 112
- 239000010959 steel Substances 0.000 title claims description 112
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000005096 rolling process Methods 0.000 claims description 75
- 239000002245 particle Substances 0.000 claims description 52
- 229910001567 cementite Inorganic materials 0.000 claims description 39
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 39
- 239000012071 phase Substances 0.000 claims description 39
- 229910000859 α-Fe Inorganic materials 0.000 claims description 37
- 230000009467 reduction Effects 0.000 claims description 24
- 150000001247 metal acetylides Chemical class 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 23
- 229910052758 niobium Inorganic materials 0.000 claims description 19
- 238000009749 continuous casting Methods 0.000 claims description 18
- 229910052750 molybdenum Inorganic materials 0.000 claims description 17
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- 238000005098 hot rolling Methods 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- 239000007790 solid phase Substances 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 6
- 238000005275 alloying Methods 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 238000005554 pickling Methods 0.000 claims description 4
- 238000004080 punching Methods 0.000 description 31
- 238000005204 segregation Methods 0.000 description 31
- 238000012360 testing method Methods 0.000 description 31
- 238000001556 precipitation Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 238000001816 cooling Methods 0.000 description 13
- 238000005728 strengthening Methods 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005430 electron energy loss spectroscopy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車等の部品として好適な、引張強さ:780MPa以上の高強度熱延鋼板に係り、延性と穴拡げ性及び打抜き性に優れた高強度熱延鋼板およびその製造方法に関する。 The present invention relates to a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more, which is suitable as a component for automobiles, and the like, and relates to a high-strength hot-rolled steel sheet excellent in ductility, hole expansibility and punchability, and a method for producing the same.
従来から、自動車部品の多くは、素材である鋼板にプレス加工、バーリング加工等により、所望の複雑な形状に成形されている。そのため、素材である鋼板には、延性、伸びフランジ性等の加工性に優れることが要求されてきた。 Conventionally, many automobile parts are formed into a desired complex shape by pressing, burring, or the like on a steel plate as a material. Therefore, it has been required that the steel plate as a material is excellent in workability such as ductility and stretch flangeability.
近年、地球環境の保全という観点から、自動車の排出ガス規制が強化され、自動車車体の軽量化が指向され、また、衝突時の乗員の安全性を確保することが強く要求されている。このようなことから、自動車部品の高強度化が進められ、自動車部品用素材として高強度鋼板が使用されている。最近では、引張強さ:780MPa以上の高強度鋼板も使用されるようになり、このような高強度鋼板においても、加工性に優れることが要求されている。 In recent years, from the viewpoint of protecting the global environment, automobile exhaust gas regulations have been strengthened, automobile body weight has been reduced, and passenger safety during a collision has been strongly demanded. For these reasons, the strength of automobile parts has been increased, and high-strength steel sheets are used as materials for automobile parts. Recently, high-strength steel sheets having a tensile strength of 780 MPa or more have been used, and such high-strength steel sheets are also required to have excellent workability.
このような要求に対し、例えば、特許文献1には、低温靭性と穴拡げ性に優れた引張強さ590MPa以上の高強度熱延鋼板が記載されている。特許文献1に記載された技術では、質量%で、C:0.001〜0.05%、Si:0.01〜1.5%、Mn:0.01〜2.0%、Al:0.005〜0.05%、N:0.01%以下、Ti:0.01〜0.20%を含む組成を有する鋳片を1200℃以上に加熱し、最終仕上圧延を960℃以上で行い、仕上圧延終了後1.0s以内に80℃/s以上の冷却速度で冷却を開始し、最終仕上圧延温度より50〜200℃低い温度まで冷却し、450〜600℃で巻き取り、圧延面に平行で、圧延方向に平行な{211}<011>方向のX線ランダム強度比が2.5以下である組織を有する高強度熱延鋼板を得ている。特許文献1に記載された技術によれば、仕上圧延温度を高温化して鋼板の集合組織をランダム化し、さらにその後の冷却を適正化することにより結晶粒の微細化が達成され、穴拡げ性や低温靭性が向上するとしている。
In response to such a demand, for example,
また、特許文献2には、伸びと穴拡げ性のバランスに優れた鋼板が記載されている。特許文献2に記載された技術では、質量%で、C:0.04〜0.1%、Si:0.5〜2.0%、Mn:0.8〜2.0%、Nb:0.04%以下、Ti:0.06〜0.20%を含む組成を有する鋼片を1050〜1300℃に加熱した後、仕上温度を850〜1000℃として熱間圧延を行い、熱間圧延後、600〜750℃の範囲内に冷却し、1〜10sec空冷した後、15℃/s以上の冷却速度で冷却し、400℃以下で巻き取り、熱延鋼板としている。これにより、体積率で90%以上のフェライトと、3%以上10%未満のマルテンサイトとからなる組織を有し、フェライトがNbまたはTiの炭化物で強化され、引張強さが780MPa以上、伸びと穴拡げ性のバランスに優れた熱延鋼板が得られるとしている。 Patent Document 2 describes a steel plate having an excellent balance between elongation and hole expansibility. In the technique described in Patent Document 2, a composition containing C: 0.04 to 0.1%, Si: 0.5 to 2.0%, Mn: 0.8 to 2.0%, Nb: 0.04% or less, Ti: 0.06 to 0.20% by mass%. After heating the steel slab having 1050 to 1300 ° C, hot rolling with a finishing temperature of 850 to 1000 ° C, after hot rolling, cooling to 600 to 750 ° C and air cooling for 1 to 10 seconds The steel sheet is cooled at a cooling rate of 15 ° C / s or more and wound up at 400 ° C or less to form a hot-rolled steel sheet. As a result, it has a structure consisting of ferrite of 90% or more by volume and martensite of 3% or more and less than 10%. Ferrite is reinforced with Nb or Ti carbide, tensile strength is 780 MPa or more, and elongation. It is said that a hot-rolled steel sheet having an excellent balance of hole expandability can be obtained.
また、自動車部品は、素材である鋼板に剪断加工や、打抜き加工を施したのち、種々の加工を施され、所望の形状に成形される場合が多い。打抜き加工で端面に疵や微小割れが生じると、その後の加工で、疵や微小割れに応力が集中し、大きな割れに伸展する場合がある。このため、打抜き加工における、端面の疵や微小割れの発生は、極力少なくすることが望ましいとされている。 In many cases, automobile parts are formed into a desired shape by subjecting a steel plate, which is a material, to a shearing process or a punching process, followed by various processes. If wrinkles or microcracks are generated on the end face by punching, stress may concentrate on the wrinkles or microcracks in the subsequent processing, and may extend into large cracks. For this reason, it is desirable to minimize the occurrence of wrinkles and microcracks on the end face in the punching process.
このような要望に対し、例えば、特許文献3には、打抜き加工性に優れた高強度熱延鋼板が提案されている。特許文献3に記載された技術では、質量%で、C:0.01〜0.07%、Si:0.01〜2%、Mn:0.05〜3%、Al:0.005〜0.5%、N:0.005%以下、Ti:0.03〜0.2%を含む組成を有する鋼片を、1200℃以上に加熱したのち、Ar3変態点以上の温度で熱間仕上圧延を終了し、450〜650℃で巻き取り、熱延鋼板としている。これにより、フェライト又はベイニティックフェライト組織を面積率最大の相とし、硬質第2相及びセメンタイトが面積率で3%以下である組織を有し、引張強さが690MPa以上の高強度を有し、打抜き加工性に優れ、自動車部品向として好適な高強度熱延鋼板が得られるとしている。 In response to such a demand, for example, Patent Document 3 proposes a high-strength hot-rolled steel sheet excellent in punching workability. In the technique described in Patent Document 3, in mass%, C: 0.01 to 0.07%, Si: 0.01 to 2%, Mn: 0.05 to 3%, Al: 0.005 to 0.5%, N: 0.005% or less, Ti: A steel slab having a composition containing 0.03 to 0.2% is heated to 1200 ° C or higher, and then hot finish rolling is finished at a temperature equal to or higher than the Ar 3 transformation point and wound at 450 to 650 ° C to form a hot-rolled steel sheet. . As a result, the ferrite or bainitic ferrite structure is the phase with the largest area ratio, the hard second phase and cementite have a structure with an area ratio of 3% or less, and a high strength with a tensile strength of 690 MPa or more. It is said that a high-strength hot-rolled steel sheet excellent in punching workability and suitable for automobile parts can be obtained.
しかしながら、特許文献1、2に記載された技術によれば、優れた穴拡げ性を確保できるが、しかし特許文献1、2には打抜き性についてなんの言及もなく、厳しい条件での打抜き加工にも耐えられる優れた打抜き性を有しているとは考えにくい。
However, according to the techniques described in
また、特許文献3に記載された技術では、打抜き時のクリアランスが17〜23%程度である場合には、打抜き端面に欠陥の発生は認められず、端面の性状は良好であるといえる。しかし、打抜き時のクリアランスがさらに大きくなると、打抜き端面が荒れて、打抜き性が低下するという問題があった。 Further, in the technique described in Patent Document 3, when the clearance at the time of punching is about 17 to 23%, no defect is observed on the punched end face, and it can be said that the end face has good properties. However, if the clearance at the time of punching is further increased, there is a problem that the punching end surface becomes rough and the punching property is lowered.
また、打抜き時のクリアランスの大きさに係らず、良好な打抜き端面が得られる打抜き性に優れた鋼板であれば、打抜き部位ごとに工具や金型を調整する手間が大幅に減少し、打抜き加工等の生産性向上に繋がるが、特許文献1〜3のいずれにも、このようなことについての言及はない。
In addition, regardless of the clearance at the time of punching, if the steel sheet has excellent punching ability to obtain a good punching end face, the labor for adjusting tools and dies for each punching site is greatly reduced, and punching processing is performed. However, none of
本発明は、かかる従来技術の問題を有利に解決し、引張強さ:780MPa以上の高強度を有し、延性と穴拡げ性に優れ、かつ打抜き性にも優れる高強度熱延鋼板およびその製造方法を提供することを目的とする。 The present invention advantageously solves the problems of the prior art, has a high strength of tensile strength: 780 MPa or more, has excellent ductility and hole expansibility, and has excellent punchability and production thereof It aims to provide a method.
なお、ここでいう「延性に優れる」とは、JIS 5号試験片で引張試験を行った際の全伸びElが20%以上である場合をいうものとする。また、「穴拡げ性に優れる」とは、JFS T 1001−1996の規定に準拠して行った穴拡げ試験で穴拡げ率λが80%以上である場合をいうものとする。また、「打抜き性に優れる」とは、JFS T 1001−1996の規定に準拠して、クリアランスを板厚の25%として、直径10mmφの穴を打抜いた際に、打抜き端面に割れの発生が認められない場合をいうものとする。 The term “excellent in ductility” as used herein refers to the case where the total elongation El when a tensile test is performed with a JIS No. 5 test piece is 20% or more. Further, “excelling in hole expandability” means a case where the hole expansion ratio λ is 80% or more in a hole expansion test performed in accordance with the provisions of JFS T 1001-1996. Also, “Excellent punchability” means that cracking occurs on the punched end face when punching a hole with a diameter of 10mmφ with a clearance of 25% of the plate thickness in accordance with the provisions of JFS T 1001-1996. The case where it is not recognized shall be said.
本発明者らは、上記した目的を達成するために、まず、引張強さ780MPa以上の高強度熱延鋼板における、加工性に及ぼす各種要因について、鋭意研究した。その結果、鋼板組織を面積率95%以上のフェライト相を主とする組織としたうえ、フェライト相中に平均粒径10nm以下の微細Ti炭化物を析出させ、析出強化により所望の高強度を確保すれば、引張強さ780MPa以上の高強度にもかかわらず、延性、穴拡げ性がともに向上することを知見した。 In order to achieve the above-mentioned object, the present inventors have intensively studied various factors affecting workability in a high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more. As a result, the steel sheet structure is mainly composed of a ferrite phase with an area ratio of 95% or more, and fine Ti carbide with an average particle size of 10 nm or less is precipitated in the ferrite phase to ensure the desired high strength by precipitation strengthening. For example, it was found that both ductility and hole expansibility improved despite the high strength of 780 MPa or more.
さらに、本発明者らは、上記した組織を有し、引張強さ780MPa以上の高強度を有する熱延鋼板の打抜き性に及ぼす各種要因について検討した。その結果、フェライト相を主とする組織を有する鋼板では、組織中に硬質な層が存在すると、打抜き性の顕著な低下に繋がることを知見した。硬質な層としては、連続鋳造製鋼板の板厚中央部に中心偏析層が存在する場合がある。中心偏析層があると、打抜き時に端面に、圧延方向に平行に(圧延面に平行に)割れる欠陥が生じることがある。しかし、更なる本発明者の研究により、中心偏析を軽減し、板厚中央位置の硬さ(中心偏析層の硬さ)が、板厚中央位置(中心偏析層)以外の部位の硬さとの差ΔHVで、20HV以下であれば、打抜き端面での上記したような欠陥発生は認められないことを知見した。 Furthermore, the present inventors examined various factors that affect the punchability of a hot-rolled steel sheet having the above-described structure and a high strength having a tensile strength of 780 MPa or more. As a result, it has been found that in a steel sheet having a structure mainly composed of a ferrite phase, if a hard layer is present in the structure, the punchability is significantly reduced. As a hard layer, a center segregation layer may exist in the center part of the thickness of a continuously cast steel plate. When there is a center segregation layer, a defect may be generated on the end face during punching, which cracks in parallel to the rolling direction (parallel to the rolling surface). However, further studies by the present inventors have reduced the center segregation, and the hardness at the center position of the plate thickness (hardness of the center segregation layer) is different from the hardness of the portion other than the center position of the plate thickness (center segregation layer). It was found that when the difference ΔHV is 20 HV or less, the above-described defects are not observed on the punched end face.
しかし、中心偏析層をなくしても、フェライト相を主とする組織を有する鋼板では、打抜き端面に、圧延方向に垂直な方向に延びる亀裂状の微小割れが生じ、まだ十分に打抜き性が向上していない場合があることを見出した。 However, even without the central segregation layer, in the steel sheet having a structure mainly composed of a ferrite phase, a crack-like microcrack extending in a direction perpendicular to the rolling direction is generated on the punched end face, and the punchability is still sufficiently improved. Found that there may not be.
フェライト相を主とする組織を有する鋼板では、フェライト相の変形能が高いため、打抜き時のポンチの動きに伴い、フェライト相が大きく変形する。そのため、応力が一点に集中している場合にはとくに、その箇所から圧延方向に垂直な方向に延びる亀裂状の微小割れが発生する場合があることに思い至った。そこで、本発明者らは、応力が一点に集中することを避け、応力を多数の箇所に分散させれば、圧延方向に垂直な方向に延びる亀裂状の微小割れに進展することを回避でき、打抜き性が向上することに思い至った。なお、その多数の箇所では、マイクロボイドが形成されるが、圧延方向に垂直な方向に延びる亀裂状の微小割れに進展することはないことを確かめている。 In a steel sheet having a structure mainly composed of a ferrite phase, the deformability of the ferrite phase is high, so that the ferrite phase is greatly deformed with the movement of the punch at the time of punching. For this reason, particularly when the stress is concentrated at one point, it has been thought that a crack-like microcrack extending from the location in a direction perpendicular to the rolling direction may occur. Therefore, the present inventors can avoid the stress from concentrating on one point, and if the stress is dispersed in a number of locations, it can be avoided to develop into crack-like microcracks extending in the direction perpendicular to the rolling direction, It came to mind that the punching ability was improved. In addition, although microvoids are formed in many places, it has been confirmed that the microvoids do not develop into crack-like microcracks extending in a direction perpendicular to the rolling direction.
そして、本発明者らは、マイクロボイドの起点として、フェライト相中に分散析出するセメンタイトが有効であることを知見し、セメンタイトの密度(析出密度または分散密度ともいう)を10個/10000μm2以上に調整することが肝要となることを見出した。 The present inventors have found that cementite dispersed and precipitated in the ferrite phase is effective as the starting point of the microvoid, and the density of cementite (also referred to as precipitation density or dispersion density) is 10/10000 μm 2 or more. It was found that it is important to adjust to.
まず、本発明の基礎となった実験結果について説明する。 First, the experimental results on which the present invention is based will be described.
表1に示す組成の連続鋳造片(連鋳片)に、1230℃に加熱し粗圧延と仕上圧延終了温度を890〜910℃とする仕上圧延とからなる熱間圧延を施し板厚3.2mmの熱延鋼帯(熱延鋼板)とし、600〜630℃の温度で巻き取った。 A continuous cast piece (continuous cast piece) having the composition shown in Table 1 is heated to 1230 ° C. and subjected to hot rolling consisting of rough rolling and finish rolling with a finish rolling finishing temperature of 890 to 910 ° C. A hot-rolled steel strip (hot-rolled steel plate) was used and wound at a temperature of 600 to 630 ° C.
得られた熱延鋼帯(熱延鋼板)から、穴拡げ試験用試験片4枚を任意の箇所から採取し、日本鉄鋼連盟規格JFS T 1001−1996の規定に準拠して、クリアランス:25〜30%で、試験片中央部にポンチ穴(10mmφ)を打抜き、打抜き性を評価した。打抜き性は、ポンチ穴端面を目視で観察し、割れの有無を観察することにより行った。 From the obtained hot-rolled steel strip (hot-rolled steel plate), four test specimens for hole expansion test were taken from any location, and in accordance with the provisions of the Japan Iron and Steel Federation Standard JFS T 1001-1996, clearance: 25 ~ At 30%, a punch hole (10 mmφ) was punched in the center of the test piece, and punchability was evaluated. The punchability was performed by visually observing the punch hole end face and observing the presence or absence of cracks.
その結果、板厚方向に直角で圧延方向に平行に(圧延面に平行に)、打抜き端面に割れが生じる場合があった。そこで、打抜き端面で圧延方向に平行に、割れが生じた試験片と、割れが生じなかった試験片について、打抜き端面から5mm離れた位置からさらに硬さ測定用試験片を採取し、打抜き端面から5mm離れた位置の板厚方向断面について、JIS Z 2244 の規定に準拠して、ビッカース硬度計(荷重:25gf(試験力:0.25N))でビッカース硬さHV0.025を測定した。なお、硬さの測定位置は、板厚中央位置と、板厚1/4位置とし、各位置で10点測定し、それぞれの平均値を求めた。 As a result, cracks may occur in the punched end face at right angles to the sheet thickness direction and parallel to the rolling direction (parallel to the rolling surface). Therefore, with respect to the test piece that cracked and parallel to the rolling direction at the punched end face, and for the test piece that did not crack, a further test piece for hardness measurement was taken from a position 5 mm away from the punched end face, and from the punched end face, The Vickers hardness HV 0.025 was measured with a Vickers hardness tester (load: 25 gf (test force: 0.25 N)) in accordance with JIS Z 2244 for the cross section in the thickness direction at a position 5 mm away. The measurement positions of hardness were the center position of the plate thickness and the 1/4 position of the plate thickness, 10 points were measured at each position, and the respective average values were obtained.
得られた結果を表2に示す。 The obtained results are shown in Table 2.
圧延方向に平行に、打抜き端面に割れが生じた試験片では、板厚中央位置の硬さHV1/2tが、板厚1/4位置の硬さHV1/4tに比べて、高い値を示している。すなわち、板厚中央部が局所的に硬くなっており、この局所的な硬さ変動が、打抜き端面で圧延方向に平行に生じた割れの原因であると推定できる。
For specimens with cracks in the punched end face parallel to the rolling direction, the hardness HV 1 / 2t at the center of the plate thickness is higher than the hardness HV 1 / 4t at the
つぎに、EPMAを用いて、試験片の板厚方向に沿って元素の線分析を行った。その結果、割れが生じた試験片では、板厚中央部にC、Mnが濃化していることがわかった。この成分濃化は連続鋳造時の中心偏析に起因すると考えられる。 Next, elemental analysis of the elements was performed along the thickness direction of the test piece using EPMA. As a result, it was found that C and Mn were concentrated in the central part of the plate thickness in the test piece in which cracking occurred. This concentration of components is thought to be due to center segregation during continuous casting.
つぎに、表2に示す、板厚中央位置の硬さHV1/2tと板厚1/4位置の硬さHV1/4tとの差、ΔHV0.025(=HV1/2t−HV1/4t)を、板厚1/4位置の硬さHV1/4tとの関係で図1に示す。図1から、中心偏析に起因すると考えられる硬い部分があっても、ΔHV0.025が、20HV以下であれば、打抜き性に及ぼす影響は小さく、打抜き端面での割れの発生は回避できることがわかる。
Next, the difference between the hardness HV 1 / 2t at the plate thickness center position and the hardness HV 1 / 4t at the
このようなことから、本発明者らは、連続鋳造時に軽圧下を施して、ΔHV0.025(=HV1/2t−HV1/4t)が20HV以下となるように、中心偏析を軽減すれば、上記したような局所的な硬さ変動を抑制でき、打抜き端面で圧延方向に平行に、生じる割れを防止できることを見出した。 For this reason, the inventors reduced the central segregation so that ΔHV 0.025 (= HV 1 / 2t −HV 1 / 4t ) is 20 HV or less by applying light reduction during continuous casting. It has been found that local hardness fluctuations as described above can be suppressed, and cracks generated at the punched end face parallel to the rolling direction can be prevented.
しかし、上記した鋳造時に軽圧下を施して中心偏析の軽減を行っても、圧延方向に平行に生じる割れは防止できるが、打抜き端面に圧延方向に垂直な方向に延びる亀裂状の微小割れが生じる場合があることを知見した。そこで、打抜き端面から5mm離れた位置を観察面とする組織観察用試験片を採取し、板厚方向断面を観察面として研磨、ナイタール腐食して、走査型電子顕微鏡(倍率:1000倍)を用いて組織観察した。その結果、打抜き端面に圧延方向に垂直な方向に延びる亀裂状の微小割れが生じた場合には、フェライト相中のセメンタイトの析出密度が10個/10000μm2未満と少ないことを知見した。 However, cracking that occurs parallel to the rolling direction can be prevented even if light segregation is performed at the time of casting to reduce center segregation, but a crack-like microcrack that extends in a direction perpendicular to the rolling direction occurs on the punched end surface. I found that there was a case. Therefore, a specimen for observing the structure with an observation surface at a position 5 mm away from the punched end face was collected, polished with the cross section in the thickness direction as the observation surface, and subjected to Nital corrosion, using a scanning electron microscope (magnification: 1000 times). And observed the structure. As a result, it was found that when a crack-like microcrack extending in the direction perpendicular to the rolling direction occurred on the punched end face, the cementite precipitation density in the ferrite phase was as low as less than 10 pieces / 10000 μm 2 .
そこでつぎに、表3に示すように組成を種々変化した溶鋼を溶製し、連続鋳造で鋳片とするに際し、連続鋳造途中で軽圧下を施して、鋳片とした。得られた鋳片を1230℃に加熱し、粗圧延と、仕上圧延終了温度:890〜920℃とする仕上圧延からなる熱間圧延を施して、板厚3.0mmの熱延鋼帯とし、600〜650℃で巻き取った。熱間圧延条件を表4に示す。 Then, as shown in Table 3, molten steel having various compositions was melted and cast into a slab by continuous casting, and light slab was applied during continuous casting to obtain a slab. The obtained slab is heated to 1230 ° C. and subjected to hot rolling consisting of rough rolling and finish rolling at a finish rolling finish temperature of 890 to 920 ° C. to obtain a hot rolled steel strip having a thickness of 3.0 mm, 600 Rolled up at ~ 650 ° C. Table 4 shows the hot rolling conditions.
得られた熱延鋼帯から打抜き試験片を採取し、JFS T 1001−1996の規定に準拠し、クリアランス:25〜30%でポンチ穴(10mmφ)を打抜き、打抜き端面を目視で観察し、圧延方向に垂直な方向に延びる亀裂状の微小割れの有無を調査した。 A punched specimen is collected from the obtained hot-rolled steel strip, punched into a punch hole (10mmφ) with a clearance of 25-30% according to the regulations of JFS T 1001-1996, the punched end face is visually observed, and rolled. The presence or absence of crack-like microcracks extending in the direction perpendicular to the direction was investigated.
また、打抜き端面から5mm離れた位置を観察面とする組織観察用試験片を採取し、板厚方向断面を観察面として研磨、ナイタール腐食して、走査型電子顕微鏡(倍率:1000倍)を用いて組織観察し、100μm×100μmの領域内に析出した、セメンタイト粒の個数を、視野数:3箇所で測定し、その平均値を求め、セメンタイト粒の析出密度(個/10000μm2)を算出した。得られたセメンタイト粒の析出密度と打抜き端面での割れの発生結果は、次式
C*(%)=C−(12/48)×Ti+(12/14)×N+(12/32)×S−(12/51)×V−(12/93)×Nb−(12/96)×Mo
(ここで、C、Ti、N、S、V、Nb、Mo:各元素の含有量(質量%))
で定義されるC*で、よく整理できることを見出した。なお、上記したC*を算出する際に、式中に示された元素のうち、含有されていない元素は零として計算するものとする。得られた結果を、C*との関係で図2に示す。
In addition, a specimen for observing the structure with an observation surface at a position 5 mm away from the punched end surface was collected, polished with the cross section in the thickness direction as the observation surface, and subjected to Nital corrosion, using a scanning electron microscope (magnification: 1000 times) The number of cementite grains deposited in a 100 μm × 100 μm region was measured at three fields of view, the average value was obtained, and the precipitation density of cementite grains (pieces / 10000 μm 2 ) was calculated. . The precipitation density of the obtained cementite grains and the cracking results at the punched end face are given by the following formula: C * (%) = C− (12/48) × Ti + (12/14) × N + (12/32) × S − (12/51) × V− (12/93) × Nb− (12/96) × Mo
(Here, C, Ti, N, S, V, Nb, Mo: content of each element (mass%))
I found that I can organize well with C * defined in. When calculating the above-mentioned C *, it is assumed that elements that are not contained among the elements shown in the formula are calculated as zero. The obtained results are shown in FIG. 2 in relation to C *.
図2から、C*が0.010%以上であれば、セメンタイト粒の析出密度を10(個/10000μm2)以上とすることができ、打抜き端面における、圧延方向に垂直な方向に延びる亀裂状の微小割れの発生が回避できることがわかる。 From FIG. 2, when C * is 0.010% or more, the precipitation density of cementite grains can be made 10 (pieces / 10000 μm 2 ) or more, and the crack-like minute length extending in the direction perpendicular to the rolling direction on the punched end face. It can be seen that cracking can be avoided.
さらに、打抜き端面を含む端面近傍の断面組織を走査型電子顕微鏡で観察すると、打抜き端面における、圧延方向に垂直な方向に延びる亀裂状の微小割れの発生が回避できた試験片では、端面近傍でセメンタイト粒周辺にマイクロボイドが形成されていた。一方、打抜き端面で上記した亀裂状の微小割れが発生した試験片では、端面近傍でフェライト相(母相)が大きく変形し、TiN等の介在物から亀裂が広がっているのが観察された。これらの知見から、セメンタイト粒が適正量分散析出した場合には、打抜き時にセメンタイト粒を起点としてマイクロボイドが多数形成され、それにより介在物等への応力集中が緩和され、介在物等からの亀裂の発生が抑制されたものと考えられる。 Furthermore, when the cross-sectional structure in the vicinity of the end surface including the punched end surface is observed with a scanning electron microscope, in the test piece in which the occurrence of cracked microcracks extending in the direction perpendicular to the rolling direction on the punched end surface can be avoided, Microvoids were formed around the cementite grains. On the other hand, in the test piece in which the crack-like microcracks described above occurred on the punched end face, it was observed that the ferrite phase (matrix phase) was greatly deformed near the end face and the cracks spread from inclusions such as TiN. From these findings, when a proper amount of cementite grains are dispersed and precipitated, a large number of microvoids are formed starting from the cementite grains at the time of punching. It is considered that the occurrence of the occurrence was suppressed.
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)質量%で、C:0.030〜0.090%、Si:0.3%以下、Mn:0.5〜2.0%、P:0.03%以下、S:0.005%以下、N:0.006%以下、Al:0.1%以下、Ti:0.070〜0.220%を含有し、かつ次(1)式
C*≧0.010 ‥‥(1)
(ここで、C*=C−(12/48)×Ti+(12/14)×N+(12/32)×S−(12/51)×V−(12/93)×Nb−(12/96)×Mo
C、Ti、N、S、V、Nb、Mo:各元素の含有量(質量%))
を満足し、残部Feおよび不可避的不純物からなる組成と、面積率で95%以上のフェライト相を有し、該フェライト相中に、微細炭化物が1.0×1022個/m3以上、セメンタイト粒子が10個/10000μm2以上析出し、前記微細炭化物の平均粒径が10nm以下であり、板厚中央位置の硬さHV1/2tと板厚1/4位置の硬さHV1/4tまたは板厚3/4位置の硬さHV3/4tとの差ΔHV0.025が20HV以下である組織を有し、引張強さ:780〜822MPaであることを特徴とする高強度熱延鋼板。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.030 to 0.090%, Si: 0.3% or less, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.005% or less, N: 0.006% or less, Al: 0.1% or less , Ti: 0.070 to 0.220%, and the following formula (1)
C * ≧ 0.010 (1)
(Where C * = C− (12/48) × Ti + (12/14) × N + (12/32) × S− (12/51) × V− (12/93) × Nb− (12 / 96) x Mo
C, Ti, N, S, V, Nb, Mo: Content of each element (% by mass))
And having a composition comprising the balance Fe and inevitable impurities and a ferrite phase of 95% or more in area ratio, 1.0 × 10 22 particles / m 3 or more of fine carbides in the ferrite phase, and
(2)(1)において、前記組成に加えてさらに、質量%で、V:0.010〜0.400%、Nb:0.010〜0.300%、Mo:0.010〜0.300%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板。 (2) In (1), in addition to the above composition, in addition to mass, one or two selected from V: 0.010-0.400%, Nb: 0.010-0.300%, Mo: 0.010-0.300% A high-strength hot-rolled steel sheet containing the above.
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、B:0.0001〜0.0020%を含有することを特徴とする高強度熱延鋼板。 (3) The high-strength hot-rolled steel sheet according to (1) or (2), further containing B: 0.0001 to 0.0020% by mass% in addition to the above composition.
(4)(1)ないし(3)のいずれかにおいて、表面にめっき層を有することを特徴とする高強度熱延鋼板。 (4) The high-strength hot-rolled steel sheet according to any one of (1) to (3), having a plating layer on the surface.
(5)溶鋼を連続鋳造して鋳片としたのち、該鋳片に熱間圧延を施して熱延鋼板とする熱延鋼板の製造方法において、前記連続鋳造を、連続鋳造途中の鋳片に、鋳片の厚み中心部の固相率が0.4の時点から0.8になるまでの圧下速度が0.5〜1.5m/minの範囲の圧下速度で圧下する軽圧下を施す連続鋳造とし、前記鋳片を、質量%で、C:0.030〜0.090%、Si:0.3%以下、Mn:0.5〜2.0%、P:0.03%以下、S:0.005%以下、N:0.006%以下、Al:0.1%以下、Ti:0.070〜0.220%を含有し、かつ次(1)式
C*≧0.010 ‥‥(1)
(ここで、C*=C−(12/48)×Ti+(12/14)×N+(12/32)×S−(12/51)×V−(12/93)×Nb−(12/96)×Mo
C、Ti、N、S、V、Nb、Mo:各元素の含有量(質量%))
を満足し、残部Feおよび不可避的不純物からなる組成の鋳片とし、前記熱間圧延を、前記鋳片を1150〜1300℃に加熱し、粗圧延と仕上圧延とを施す圧延とし、該仕上圧延が850℃以上を仕上圧延終了温度とし、巻取温度:550〜700℃で巻き取る圧延とし、面積率で95%以上のフェライト相を有し、該フェライト相中に、微細炭化物が1.0×10 22 個/m 3 以上、セメンタイト粒子が10個/10000μm 2 以上析出し、前記微細炭化物の平均粒径が10nm以下であり、板厚中央位置の硬さHV 1/2t と板厚1/4位置の硬さHV 1/4t または板厚3/4位置の硬さHV 3/4t との差ΔHV 0.025 が20HV以下である組織を有し、引張強さ:780〜822MPaである熱延鋼板とすること、を特徴とする高強度熱延鋼板の製造方法。
(6)(5)において、前記組成に加えてさらに、質量%で、V:0.010〜0.400%、Nb:0.010〜0.300%、Mo:0.010〜0.300%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、質量%で、B:0.0001〜0.0020%を含有することを特徴とする高強度熱延鋼板の製造方法。
(8)(5)ないし(7)のいずれかにおいて、前記熱間圧延後に、さらに酸洗、めっき処理を施すことを特徴とする高強度熱延鋼板の製造方法。
(9)(8)において、前記めっき処理に引き続き、合金化処理を施すことを特徴とする高強度熱延鋼板の製造方法。
(5) After continuously casting the molten steel into a slab, in the method for producing a hot-rolled steel sheet, the hot-rolled steel sheet is hot-rolled to the slab, and the continuous casting is converted into a slab during the continuous casting. The continuous casting is performed by applying light reduction at a reduction speed in the range of 0.5 to 1.5 m / min until the solid phase ratio at the center of the thickness of the slab is 0.4 to 0.8. , In mass%, C: 0.030 to 0.090%, Si: 0.3% or less, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.005% or less, N: 0.006% or less, Al: 0.1% or less, Ti : Contains 0.070 to 0.220%, and the following formula (1)
C * ≧ 0.010 (1)
(Where C * = C− (12/48) × Ti + (12/14) × N + (12/32) × S− (12/51) × V− (12/93) × Nb− (12 / 96) x Mo
C, Ti, N, S, V, Nb, Mo: Content of each element (% by mass))
And a slab of the composition comprising the balance Fe and unavoidable impurities, the hot rolling, the slab is heated to 1150-1300 ℃, rough rolling and finish rolling, the finish rolling Is a finish rolling finish temperature of 850 ° C. or higher, winding at a winding temperature of 550 to 700 ° C., and has a ferrite phase of 95% or more in area ratio, and the fine carbide is 1.0 × in the ferrite phase. 10 22 particles / m 3 or more,
(6) In (5), in addition to the above composition, in addition to mass, one or two selected from V: 0.010-0.400%, Nb: 0.010-0.300%, Mo: 0.010-0.300% The manufacturing method of the high intensity | strength hot-rolled steel plate characterized by containing the above.
(7) The method for producing a high-strength hot-rolled steel sheet according to (5) or (6), further comprising B: 0.0001 to 0.0020% by mass% in addition to the above composition.
(8) The method for producing a high-strength hot-rolled steel sheet according to any one of (5) to (7), further comprising pickling and plating after the hot rolling.
(9) The method for producing a high-strength hot-rolled steel sheet according to (8), wherein an alloying treatment is performed subsequent to the plating treatment.
本発明によれば、引張強さ:780MPa以上の高強度を有し、延性と穴拡げ性に優れ、かつ打抜き性にも優れた高強度熱延鋼板を、容易に製造でき、産業上格段の効果を奏する。本発明によれば、従来には、適用が困難であった打抜き加工条件でも、打抜き端面における割れの発生を伴うことなく打抜き加工が可能となるという効果もある。 According to the present invention, a high-strength hot-rolled steel sheet having a high tensile strength of 780 MPa or more, excellent ductility and hole expansibility, and excellent punching properties can be easily manufactured, and is outstanding in industry. There is an effect. According to the present invention, there is an effect that it is possible to perform punching without generating cracks in the punching end surface even under punching processing conditions that have heretofore been difficult to apply.
まず、本発明高強度熱延鋼板の組成限定理由について説明する。なお、以下、質量%は単に%で記す。 First, the reasons for limiting the composition of the high-strength hot-rolled steel sheet of the present invention will be described. Hereinafter, the mass% is simply expressed as%.
本発明の高強度熱延鋼板は、C:0.030〜0.090%、Si:0.3%以下、Mn:0.2〜2.0%、P:0.03%以下、S:0.005%以下、N:0.006%以下、Al:0.1%以下、Ti:0.070〜0.220%を含有し、残部Feおよび不可避的不純物からなる組成を有する。 The high-strength hot-rolled steel sheet of the present invention has C: 0.030 to 0.090%, Si: 0.3% or less, Mn: 0.2 to 2.0%, P: 0.03% or less, S: 0.005% or less, N: 0.006% or less, Al: It contains 0.1% or less, Ti: 0.070 to 0.220%, and has a composition composed of the balance Fe and inevitable impurities.
C:0.030〜0.090%
Cは、微細な炭化物を形成し、析出強化(分散強化)により鋼板の強度を増加させる作用を有する元素である。このような効果を得て、所望の高強度を確保するためには、0.030%以上の含有を必要とする。一方、0.090%を超える含有は、粗大な炭化物の析出を招き、所望の高強度、所望の延性、伸びフランジ加工性等の高加工性を確保できなくなる。このため、Cは0.030〜0.090%の範囲に限定した。なお、好ましくは0.035〜0.080%である。
C: 0.030-0.090%
C is an element that has the effect of forming fine carbides and increasing the strength of the steel sheet by precipitation strengthening (dispersion strengthening). In order to obtain such an effect and ensure a desired high strength, the content of 0.030% or more is required. On the other hand, if the content exceeds 0.090%, coarse carbide precipitates, and high workability such as desired high strength, desired ductility, stretch flange workability, etc. cannot be ensured. For this reason, C was limited to the range of 0.030 to 0.090%. In addition, Preferably it is 0.035 to 0.080%.
Si:0.3%以下
Siは、固溶して、鋼板の強度を増加する作用を有する元素であり、高強度鋼板には通常積極的に0.01%以上含有されている。しかし、Siは偏析しやすく、板厚中央部の硬さを局所的に増加させる原因となる。このため、Siは0.3%以下に限定した。なお、好ましくは0.2%以下である。また、過度の低減は、コストの高騰を招くため、実用的には、0.01%程度以上とすることが好ましい。
Si: 0.3% or less
Si is an element that has the effect of increasing the strength of the steel sheet by solid solution, and is usually positively contained in a high-strength steel sheet by 0.01% or more. However, Si is easily segregated and causes a local increase in the hardness at the center of the plate thickness. For this reason, Si was limited to 0.3% or less. In addition, Preferably it is 0.2% or less. Moreover, since excessive reduction leads to an increase in cost, it is preferable to set it to about 0.01% or more practically.
Mn:0.2〜2.0%
Mnは、固溶して鋼板の強度を増加させるとともに、γ→α変態点を低下させ、焼入れ性を向上させる作用を有する元素である。γ→α変態点が低温である場合には、巻き取り前には炭化物の析出が抑制され、巻き取り時に微細炭化物を析出させることができる。このような効果を確保するためには、0.2%以上の含有を必要とする。一方、Mnは偏析傾向が強く、2.0%を超えて多量に含有すると、板厚中心部に中心偏析層を形成する傾向が強くなり、打抜き性が低下する。このため、Mnは0.2〜2.0%の範囲に限定した。なお、好ましくは0.5〜1.4%である。
Mn: 0.2-2.0%
Mn is an element having a function of increasing the strength of the steel sheet by solid solution and reducing the γ → α transformation point and improving the hardenability. When the γ → α transformation point is a low temperature, precipitation of carbides is suppressed before winding, and fine carbides can be precipitated during winding. In order to ensure such an effect, the content of 0.2% or more is required. On the other hand, Mn has a strong segregation tendency, and if it is contained in a large amount exceeding 2.0%, the tendency to form a center segregation layer at the center of the plate thickness becomes strong, and the punchability is lowered. For this reason, Mn was limited to the range of 0.2 to 2.0%. In addition, Preferably it is 0.5 to 1.4%.
P:0.03%以下
Pは、固溶して鋼板強度を増加させる作用を有するが、偏析傾向が強く、0.03%を超える多量の含有は伸びフランジ性、打抜き性の低下を招く。このため、本発明では、Pは0.03%以下に限定した。なお、鋼板特性の観点からは、Pはできるだけ低減することが望ましいが、過度の低減は精錬コストの高騰を招くため、実用的には、0.001%程度以上とすることが好ましい。
P: 0.03% or less
P has the effect of increasing the strength of the steel sheet by solid solution, but has a strong segregation tendency, and a large content exceeding 0.03% causes a reduction in stretch flangeability and punchability. For this reason, in the present invention, P is limited to 0.03% or less. From the viewpoint of steel sheet characteristics, it is desirable to reduce P as much as possible. However, excessive reduction leads to an increase in the refining cost, so practically it is preferably about 0.001% or more.
S:0.005%以下
Sは、Mn、Ti等と結合し鋼中では硫化物として存在し、伸び、穴拡げ性の低下を招く。このため、本発明では、できるだけ低減することが好ましいが、0.005%までは許容できる。このことから、Sは0.005%以下に限定した。なお、過度のSの低減は、精錬コストの高騰を招くため、0.0001%以上とすることが好ましい。
S: 0.005% or less
S combines with Mn, Ti, etc., and exists in the steel as sulfides, leading to a reduction in elongation and hole expansibility. Therefore, in the present invention, it is preferable to reduce as much as possible, but up to 0.005% is acceptable. Therefore, S is limited to 0.005% or less. In addition, since excessive reduction of S causes the refining cost to rise, it is preferable to make it 0.0001% or more.
N:0.006%以下
Nは、炭窒化物形成元素であるTiと結合し、強度向上に有効に寄与するTi炭化物を形成するためのTi量が低減する。このため、本発明では極力低減することが望ましいが、0.006%までは許容できる。また、0.006%を超えて過剰に含有すると、穴拡げ性が低下する。このため、Nは0.006%以下に限定した。
N: 0.006% or less
N combines with Ti, which is a carbonitride-forming element, to reduce the amount of Ti for forming Ti carbide that effectively contributes to strength improvement. For this reason, it is desirable to reduce as much as possible in the present invention, but it is acceptable up to 0.006%. Moreover, when it contains exceeding 0.006% and an excess, hole expansibility will fall. For this reason, N was limited to 0.006% or less.
Al:0.1%以下
Alは、脱酸剤として作用する元素である。このような効果を得るためには0.01%以上含有することが望ましい。一方、0.1%を超えて含有すると、介在物が多量に生成され、清浄度が低下するとともに、伸び、穴拡げ性等の加工性が低下する。このため、Alは0.1%以下に限定した。なお、好ましくは0.06%以下である。
Al: 0.1% or less
Al is an element that acts as a deoxidizer. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, when the content exceeds 0.1%, a large amount of inclusions are generated, the cleanliness is lowered, and workability such as elongation and hole expansibility is lowered. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.06% or less.
Ti:0.070〜0.220%
Tiは、10nm以下の微細な炭化物(Ti炭化物)の形成に寄与し、粒子分散強化(析出強化)により所望の高強度を確保するために、本発明では重要な元素である。このような効果を確保するためには、0.070%以上の含有を必要とする。一方、0.220%を超えて多量に含有すると、炭化物が粗大化し、所望の高強度、所望の穴拡げ性を確保することができなくなる。このため、Tiは0.070〜0.220%の範囲に限定した。なお、好ましくは0.080〜0.180%である。
Ti: 0.070 to 0.220%
Ti contributes to the formation of fine carbides (Ti carbides) of 10 nm or less, and is an important element in the present invention in order to secure a desired high strength by particle dispersion strengthening (precipitation strengthening). In order to ensure such an effect, the content of 0.070% or more is required. On the other hand, if it is contained in a large amount exceeding 0.220%, the carbide is coarsened, and the desired high strength and desired hole expansibility cannot be ensured. For this reason, Ti was limited to the range of 0.070 to 0.220%. In addition, Preferably it is 0.080 to 0.180%.
上記した成分が基本の成分であり、基本の成分に加えてさらに、必要に応じて、V:0.010〜0.400%、Nb:0.010〜0.300%、Mo:0.010〜0.300%のうちから選ばれた1種または2種以上、および/または、B:0.0001〜0.0020%、を含有することができる。 The above-mentioned components are basic components, and in addition to the basic components, one selected from V: 0.010-0.400%, Nb: 0.010-0.300%, Mo: 0.010-0.300% as required. It can contain a seed | species or 2 or more types, and / or B: 0.0001-0.0020%.
V:0.010〜0.400%、Nb:0.010〜0.300%、Mo:0.010〜0.300%のうちから選ばれた1種または2種以上
V、Nb、Moはいずれも、Tiと同様に、ナノサイズの微細な炭化物を形成し、粒子分散強化(析出強化)により鋼板強度の増加に寄与する元素であり、必要に応じて1種または2種以上、選択して含有できる。このような効果を得るためには、V:0.010%以上、Nb:0.010%以上、Mo:0.010%以上、それぞれ含有することが好ましい。一方、V:0.400%、Nb:0.300%、Mo:0.300%を、それぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合は、それぞれ、V:0.010〜0.400%、Nb:0.010〜0.300%、Mo:0.010〜0.300%の範囲に限定することが好ましい。
One or more selected from V: 0.010-0.400%, Nb: 0.010-0.300%, Mo: 0.010-0.300%
V, Nb, and Mo are all elements that form nano-sized fine carbides and contribute to an increase in steel sheet strength by particle dispersion strengthening (precipitation strengthening), just like Ti. Two or more kinds can be selected and contained. In order to obtain such an effect, it is preferable to contain V: 0.010% or more, Nb: 0.010% or more, Mo: 0.010% or more. On the other hand, even if it contains V: 0.400%, Nb: 0.300%, and Mo: 0.300%, the effect is saturated and an effect commensurate with the content cannot be expected. For this reason, when it contains, it is preferable to limit to the range of V: 0.010-0.400%, Nb: 0.010-0.300%, Mo: 0.010-0.300%, respectively.
B:0.0001〜0.0020%
Bは、γ(オーステナイト)→α(フェライト)変態を抑制する作用を有し、本発明では必要に応じて含有できる。Bは、γ→α変態の抑制を介して、炭化物の微細析出による強度増加に寄与する。このような効果を確保するためには、0.0001%以上の含有を必要とする。一方、0.0020%を超える含有は、鋼の焼入れ性の増大を介して、ベイナイト、マルテンサイト等の硬質第二相の生成を促進し、加工性が低下する。このため、含有する場合には、Bは0.0001〜0.0020%の範囲に限定することが好ましい。なお、より好ましくは0.0005〜0.0020%である。
B: 0.0001 to 0.0020%
B has an action of suppressing the transformation of γ (austenite) → α (ferrite), and can be contained as necessary in the present invention. B contributes to an increase in strength due to fine precipitation of carbides through suppression of the γ → α transformation. In order to ensure such an effect, the content of 0.0001% or more is required. On the other hand, the content exceeding 0.0020% promotes the formation of hard second phases such as bainite and martensite through an increase in the hardenability of steel, and the workability decreases. For this reason, when it contains, it is preferable to limit B to 0.0001 to 0.0020% of range. In addition, More preferably, it is 0.0005 to 0.0020%.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。 The balance other than the components described above consists of Fe and inevitable impurities.
本発明では、上記した各成分を上記した範囲内で、かつ次(1)式
C*≧0.010 ‥‥(1)
(ここで、C*=C−(12/48)×Ti+(12/14)×N+(12/32)×S−(12/51)×V−(12/93)×Nb−(12/96)×Mo
C、Ti、N、S、V、Nb、Mo:各元素の含有量(質量%))
を満足するように、調整して含有する。
In the present invention, each of the above-described components is within the above-mentioned range, and the following formula (1)
C * ≧ 0.010 (1)
(Where C * = C− (12/48) × Ti + (12/14) × N + (12/32) × S− (12/51) × V− (12/93) × Nb− (12 / 96) x Mo
C, Ti, N, S, V, Nb, Mo: Content of each element (% by mass))
The content is adjusted so as to satisfy.
本発明熱延鋼板では、10nm以下の微細な炭化物を析出させて、所望の高強度を確保し、さらに適正量のセメンタイトを析出させて、打抜き性を向上させる。セメンタイトを形成させるためには、Ti、V、Nb、Moが微細な炭化物を形成したのちに、鋼中にフリーCを存在させる必要がある。C*は、Ti、V、Nb、Moが炭化物を、Tiが、窒化物、硫化物を形成したのちに、フリーCとして残るC量を表す。Tiは炭化物以外に、窒化物、硫化物を形成する。 In the hot-rolled steel sheet of the present invention, fine carbides of 10 nm or less are precipitated to ensure a desired high strength, and an appropriate amount of cementite is further precipitated to improve punchability. In order to form cementite, it is necessary that Ti, V, Nb, and Mo form fine carbides and then free C exists in the steel. C * represents the amount of C remaining as free C after Ti, V, Nb, and Mo form carbides and Ti forms nitrides and sulfides. Ti forms nitrides and sulfides in addition to carbides.
(1)式を満足しない場合、すなわち、C*が0.010未満では、セメンタイトが形成できるほどの炭素Cが鋼中に存在しないため、適正量のセメンタイトを分散析出させることができない。このため、打抜き時にマイクロボイドを形成する起点がなくなり、圧延方向に垂直な方向に延びる亀裂状の微小割れを生成し、打抜き性が低下する。 When the formula (1) is not satisfied, that is, when C * is less than 0.010, there is not enough carbon C in the steel to form cementite, so that an appropriate amount of cementite cannot be dispersed and precipitated. For this reason, there is no starting point for forming microvoids at the time of punching, and crack-like microcracks extending in a direction perpendicular to the rolling direction are generated, and punchability is lowered.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.03%以下、Cu、Cr、Ni、Ca、Wなどを合計で0.1%以下が許容できる。 The balance other than the components described above consists of Fe and inevitable impurities. As unavoidable impurities, O: 0.03% or less and Cu, Cr, Ni, Ca, W, etc. in total of 0.1% or less are acceptable.
つぎに、本発明熱延鋼板の組織限定について、説明する。 Next, the structure limitation of the hot-rolled steel sheet of the present invention will be described.
本発明熱延鋼板は、面積率で95%以上のフェライト相を有し、該フェライト相中に、微細炭化物が1.0×1022個/m3以上、セメンタイトが10個/10000μm2以上、析出し、該微細炭化物の平均粒径が10nm以下で、板厚中央位置の硬さHV1/2tと板厚1/4位置の硬さHV1/4t(または板厚3/4位置の硬さHV3/4t)との差ΔHV0.025が20HV以下である、中心偏析が低減した組織を有する。 The hot-rolled steel sheet of the present invention has a ferrite phase with an area ratio of 95% or more, and fine carbides of 1.0 × 10 22 pieces / m 3 or more and cementite of 10 pieces / 10000 μm 2 or more are precipitated in the ferrite phase. The average particle size of the fine carbide is 10nm or less, the hardness HV 1 / 2t at the center of the plate thickness and the hardness HV 1 / 4t at the plate thickness 1/4 (or the hardness HV at the plate thickness 3/4) It has a structure with a reduced central segregation, in which the difference ΔHV 0.025 from 3 / 4t ) is 20HV or less.
フェライト相:面積率で95%以上
本発明では、鋼板組織を実質的にフェライト単相とする。ここでいう「実質的に」とは、組織全体に対する面積率で95%以上である場合をいう。これにより、伸び、穴拡げ性等の加工性が向上する。フェライト相が95%未満では、所望の加工性を確保できなくなる。なお、フェライト相以外の第二相としては、パーライト、ベイナイト相、マルテンサイト相が挙げられる。
Ferrite phase: 95% or more in area ratio In the present invention, the steel sheet structure is substantially a ferrite single phase. As used herein, “substantially” refers to a case where the area ratio relative to the entire tissue is 95% or more. Thereby, workability, such as elongation and hole expansibility, improves. If the ferrite phase is less than 95%, desired workability cannot be secured. Examples of the second phase other than the ferrite phase include pearlite, bainite phase, and martensite phase.
微細炭化物:1.0×1022個/m3以上、平均粒径10nm以下
フェライト相中に、微細炭化物を析出分散させることにより、粒子分散強化(析出強化)により鋼板強度が増加する。所望の高強度(引張強さ:780MPa以上)を確保するためには、フェライト相中に析出する微細炭化物の平均粒径が10nm以下で、さらに、1.0×1022個/m3以上分散析出させる必要がある。炭化物の平均粒径が10nmを超えると、あるいは析出密度が1.0×1022個/m3未満では、粒子分散強化(析出強化)作用が低下し、所望の高強度(引張強さ:780MPa以上)を確保することができない。炭化物の析出密度、平均粒径は、熱延鋼板から薄膜用試験片を採取し、研削、機械研磨、電解研磨により薄膜とし、透過型電子顕微鏡(倍率:300000倍)を用いて、組織を観察し、得られた組織写真を用いて、フェライト相(母相)中に析出した炭化物を観察することにより求めた。
Fine carbide: 1.0 × 10 22 particles / m 3 or more, average particle diameter of 10 nm or less Precipitating and dispersing fine carbides in the ferrite phase increases the steel sheet strength by particle dispersion strengthening (precipitation strengthening). In order to ensure the desired high strength (tensile strength: 780 MPa or more), the average particle size of fine carbides precipitated in the ferrite phase is 10 nm or less, and 1.0 × 10 22 particles / m 3 or more is dispersed and precipitated. There is a need. If the average particle size of the carbide exceeds 10 nm, or if the precipitation density is less than 1.0 × 10 22 particles / m 3 , the particle dispersion strengthening (precipitation strengthening) action decreases and the desired high strength (tensile strength: 780 MPa or more) Can not be secured. For carbide precipitation density and average particle size, sample thin film specimens from hot-rolled steel sheets, make thin films by grinding, mechanical polishing, and electrolytic polishing, and observe the structure using a transmission electron microscope (magnification: 300,000 times) Then, it was determined by observing the carbides precipitated in the ferrite phase (parent phase) using the obtained structure photograph.
析出密度は、透過型電子顕微鏡(倍率:300000倍)を用いて、視野中の析出物の個数を視野の体積で除算することにより求めた。視野の体積を求めるのに必要な試料厚さは、例えば、電子エネルギー損失分光(EELS)装置のついた透過型電子顕微鏡を用い、Egerton, R.F.:Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed. Plenum Press, New York, 1986, 304-305.に記載の方法で、視野中の電子の弾性散乱強度と非弾性散乱強度の比から算出できる。なお、ここでいう「平均粒径」とは、透過型電子顕微鏡で観察した析出物像から、任意に選んだ析出物(粒子)100個につき、析出物(粒子)の最も長い部分(最大長さ)を測定し、算術平均して得たものをいうものとする。なお、セメンタイトと炭化物とは、電子顕微鏡内に設置された分析装置により判別した。 The precipitation density was determined by dividing the number of precipitates in the visual field by the volume of the visual field using a transmission electron microscope (magnification: 300,000 times). The sample thickness required to determine the volume of the field of view is, for example, using a transmission electron microscope equipped with an electron energy loss spectroscopy (EELS) device, Egerton, RF: Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed. Plenum Press, New York, 1986, 304-305. It can be calculated from the ratio of the elastic scattering intensity and the inelastic scattering intensity of electrons in the field of view. The “average particle size” as used herein refers to the longest portion (maximum length) of precipitates (particles) per 100 precipitates (particles) arbitrarily selected from the precipitate image observed with a transmission electron microscope. )), And the arithmetic average. Note that cementite and carbide were distinguished from each other by an analyzer installed in an electron microscope.
セメンタイト粒子:10個/10000μm2以上
フェライト相(母相)中に硬質なセメンタイト粒子を多数分散させることにより、打抜き加工時に、セメンタイト粒子近傍で(もしくはセメンタイトを起点として)マイクロボイドが形成され、応力が一点に集中することを防止でき、板厚方向、つまり圧延方向に垂直な方向に延びる亀裂状の微小割れの発生を防止できる。このような効果を得るためには、セメンタイト粒子を10個/10000μm2以上、析出分散させることを必要とする。なお、析出分散量の上限は、上記したC*量により決められるが、伸びフランジ性向上の観点から1000個/10000μm2以下とすることが好ましい。本発明熱延鋼板で、析出するセメンタイト粒子の粒径は、平均で0.05〜2μm程度である。
Cementite particles: 10 particles / 10,000μm 2 or more By dispersing a large number of hard cementite particles in the ferrite phase (matrix), microvoids are formed in the vicinity of the cementite particles (or starting from cementite) during the punching process, and stress Can be prevented from concentrating on one point, and the occurrence of crack-like microcracks extending in the thickness direction, that is, in the direction perpendicular to the rolling direction can be prevented. In order to obtain such an effect, it is necessary to precipitate and disperse 10 cementite particles / 10,000 μm 2 or more. The upper limit of the precipitation dispersion amount is determined by the above-mentioned C * amount, but is preferably 1000/10000 μm 2 or less from the viewpoint of improving stretch flangeability. In the hot-rolled steel sheet of the present invention, the particle size of the cementite particles precipitated is about 0.05 to 2 μm on average.
セメンタイト粒子の析出分散量は、熱延鋼板の任意の位置から組織観察用試験片を採取し、圧延方向に直交する方向(C方向)の板厚方向断面の1/4tまたは3/4t位置を研磨し、ナイタール腐食して、走査型電子顕微鏡(倍率:1000倍)を用いて3視野以上観察し、視野(100μm×100μm)内に観察されたセメンタイト粒子の個数を測定し、平均して当該鋼板のセメンタイト粒子数(平均)とした。 For the precipitation dispersion amount of cementite particles, a specimen for microstructure observation is taken from an arbitrary position of the hot-rolled steel sheet, and the 1 / 4t or 3 / 4t position of the cross section in the thickness direction in the direction (C direction) perpendicular to the rolling direction is taken. Polishing, Nital corrosion, observing 3 or more fields using a scanning electron microscope (magnification: 1000 times), measuring the number of cementite particles observed in the field (100μm × 100μm), and averaging The number of cementite particles in the steel sheet (average).
板厚中央位置の硬さHV1/2tと板厚1/4位置の硬さHV1/4tまたは板厚3/4位置の硬さHV3/4tとの差ΔHV0.025:20HV以下
本発明熱延鋼板では、中心偏析を軽減し、偏析部の硬さ(板厚中央位置の硬さ)を低下させ、板厚中央位置以外の他の周辺位置の硬さ(代表として、板厚1/4位置の硬さまたは板厚3/4位置の硬さを選定)に近づけて、打抜き加工時に発生する割れ(板厚方向に直角で圧延方向に平行な割れ)を防止する。
The difference between the hardness HV 1 / 2t at the center of the plate thickness and the hardness HV 1 / 4t at the
板厚中央位置の硬さHV1/2tと板厚1/4位置の硬さHV1/4tまたは板厚3/4位置の硬さHV3/4tとの差ΔHV0.025を20HV以下となるように、板厚中央位置の硬さHV1/2tを低減すれば、打抜き加工時に発生する割れを防止できる。ΔHV0.025が20HVを超えると、中心偏析の低減が不足し、打抜き加工時に割れ(板厚方向に直角で圧延方向に平行な割れ)が発生し、打抜き性が低下する。板厚中央位置の硬さHV1/2tは、連鋳時の軽圧下により、有効に低下できる。なお、ΔHV0.025の低下は、連鋳時の軽圧下以外の手段で行っても問題ない。
The difference ΔHV 0.025 between the hardness HV 1 / 2t at the center of the plate thickness and the hardness HV 1 / 4t at the
硬さの測定は、JIS Z 2244の規定に準拠して、ビッカース硬度計(荷重:25gf(0.25N))を用いて測定する。偏析の幅は、板厚にも依存するが、荷重:25gf(0.25N)のビッカース硬度計で測定すれば、圧痕の大きさを概ね偏析幅内に収めることができ、偏析部の硬さを反映できると考えられる。測定位置は、板厚中央位置として、板厚中央部に偏析起因の線(中央偏析線)が確認できる場合には、中央偏析線上を、中央偏析線が見えない場合には、板厚中央位置(板厚1/2位置)とすればよい。例えば、測定位置で10点測定し、その算術平均を板厚中央位置の厚さとすればよい。また、板厚1/4位置または板厚3/4位置として、板厚1/4位置、板厚3/4位置で、各々5点測定し、それら10点の算術平均を板厚1/4位置または板厚3/4位置の硬さとすればよい。
The hardness is measured using a Vickers hardness meter (load: 25 gf (0.25 N)) in accordance with the provisions of JIS Z 2244. The width of segregation depends on the plate thickness, but if measured with a Vickers hardness tester with a load of 25 gf (0.25 N), the size of the indentation can be kept within the segregation width, and the hardness of the segregation part can be reduced. It can be reflected. If the segregation-induced line (central segregation line) can be confirmed at the central part of the thickness, the measurement position is the central position of the thickness. If the central segregation line is not visible, the central position of the thickness is shown. (
なお、上記した熱延鋼板の表面に、さらにめっき層を形成してもよい。表面に形成するめっき層の種類はとくに限定することはなく、公知のめっき層がいずれも適用できるが、なかでも、溶融亜鉛めっき層、合金化溶融亜鉛めっき層とすることが好ましい。 In addition, you may form a plating layer further on the surface of an above-mentioned hot-rolled steel plate. The type of the plating layer formed on the surface is not particularly limited, and any known plating layer can be applied. Among them, a hot dip galvanized layer and an alloyed hot dip galvanized layer are preferable.
次に、本発明熱延鋼板の製造方法について説明する。 Next, the manufacturing method of this invention hot rolled sheet steel is demonstrated.
本発明では、上記した組成となるように溶製した溶鋼を、連続鋳造して鋳片とする。溶製方法はとくに限定する必要はなく、転炉等、通常公知の溶製方法がいずれも適用できる。 In the present invention, the molten steel melted to have the above-described composition is continuously cast into a slab. The melting method is not particularly limited, and any generally known melting method such as a converter can be applied.
本発明では、連続鋳造を、連続鋳造途中の鋳片に、最終凝固位置における凝固収縮に見合うように圧下量を調節した軽圧下を行う連続鋳造とする。ここでいう「軽圧下」とは、圧下量が鋳片の凝固収縮量と同等の値になるように、鋳造方向に並んだロールで鋳片を圧下することをいう。「軽圧下」により鋳片の厚み中心部への濃化溶鋼の集積を防止することができる。具体的には、「軽圧下」とは、鋳片の厚み中心部の固相率が0.4以下の時点から0.8以上になる時点まで圧下を行い、鋳片の厚み中心部の固相率が0.4の時点から0.8になる時点までの圧下速度が0.5〜1.5mm/minの範囲の圧下速度で鋳片を圧下する場合をいう。固相率がこの範囲での圧下速度が0.5mm/min未満では、濃化溶鋼の流動を十分に阻止することができない。一方、圧下速度が1.5mm/minを超えると、濃化溶鋼が鋳造方向とは逆方向に絞り出され、鋳片中心部に負偏析が生成される恐れがある。 In the present invention, continuous casting is continuous casting in which slabs in the middle of continuous casting are lightly reduced by adjusting the amount of reduction so as to match the solidification shrinkage at the final solidification position. Here, “light reduction” means that the slab is squeezed with a roll arranged in the casting direction so that the reduction amount is equal to the solidification shrinkage amount of the slab. By “light reduction”, accumulation of the concentrated molten steel at the thickness center of the slab can be prevented. Specifically, “light reduction” is performed by reducing the solid phase ratio at the thickness center of the slab from 0.4 or less to 0.8 or more, and the solid phase ratio at the thickness center of the slab is 0.4. The case where the slab is squeezed at a squeezing speed in the range of 0.5 to 1.5 mm / min from the time point to 0.8. When the reduction rate is less than 0.5 mm / min in this range, the flow of the concentrated molten steel cannot be sufficiently prevented. On the other hand, when the rolling speed exceeds 1.5 mm / min, the concentrated molten steel is squeezed in the direction opposite to the casting direction, and there is a possibility that negative segregation is generated in the center part of the slab.
圧下時の鋳片の固相率が厚み中心部で、0.4未満では、未凝固部が多すぎて、軽圧下では、中心偏析の形成を防止することが難しい。一方、0.8超えでは、固相が多くなり、圧下による未凝固部の排出が、とくに軽圧下では難しくなる。このようなことから、軽圧下を行う時期を、厚み中心部で固相率:0.4〜0.8である鋳片に施すことが好ましい。 When the solid phase ratio of the slab at the time of reduction is less than 0.4 at the thickness center portion, there are too many unsolidified portions, and under light reduction, it is difficult to prevent the formation of center segregation. On the other hand, if it exceeds 0.8, the solid phase increases, and the discharge of the uncoagulated part due to the reduction becomes difficult particularly under the light pressure. For this reason, it is preferable to apply the light reduction time to a slab having a solid phase ratio of 0.4 to 0.8 at the center of thickness.
なお、中心偏析の軽減方法は、上記した軽圧下以外の方法、例えば電磁撹拌を用いて行っても良い。 The method for reducing the center segregation may be performed using a method other than the above-described light pressure, for example, electromagnetic stirring.
本発明では、上記したような連続鋳造法で得られた鋳片に、熱間圧延を施して熱延鋼板とする。熱間圧延は、鋳片を1150〜1300℃に加熱し、粗圧延と仕上圧延とを施す圧延とする。 In the present invention, the slab obtained by the continuous casting method as described above is hot-rolled to obtain a hot-rolled steel sheet. Hot rolling is a rolling in which a slab is heated to 1150 to 1300 ° C. and subjected to rough rolling and finish rolling.
加熱温度:1150〜1300℃
熱間圧延での変形抵抗を低下させ、鋳片中に析出した炭化物等を固溶させるために、1150℃以上の加熱を必要とする。一方、1300℃を超える高温では、加熱炉の負担が増大するとともに、スケールロスによる歩留低下が著しくなる。このため、鋳片の加熱温度は1150〜1300℃の範囲の温度に限定した。なお、好ましくは1180〜1260℃である。なお、鋳造後の鋼素材が、オーステナイト単相域の温度である場合は、加熱することなく、直送圧延してもよい。
Heating temperature: 1150-1300 ℃
Heating at 1150 ° C. or higher is required to reduce deformation resistance in hot rolling and to solidify carbides and the like precipitated in the slab. On the other hand, at a high temperature exceeding 1300 ° C., the burden on the heating furnace increases and the yield decreases due to scale loss. For this reason, the heating temperature of the slab was limited to a temperature in the range of 1150 to 1300 ° C. In addition, Preferably it is 1180-1260 degreeC. In addition, when the steel raw material after casting is the temperature of an austenite single phase area, you may carry out direct rolling without heating.
また、粗圧延は、所定のシートバー形状とすることができればよく、とくにその条件を限定する必要はない。仕上圧延は、Ar3変態点以上であればよく、本発明では850℃以上を仕上圧延終了温度とし、圧延終了後冷却し、巻取温度:550〜700℃で巻き取る圧延とする。 Further, the rough rolling is not particularly limited as long as it can have a predetermined sheet bar shape. The finish rolling may be at or above the Ar 3 transformation point. In the present invention, the finish rolling end temperature is set to 850 ° C. or higher, and the rolling is cooled after the end of rolling, and the winding temperature is 550 to 700 ° C.
仕上圧延終了温度:850℃以上
仕上圧延終了温度が850℃未満となると、フェライトが生成しそれに伴い、微細な炭化物が析出し、強度が増加するため変形抵抗が増大し、圧延機の通板性が低下する。また、生成したフェライトが加工され延伸してバンド状組織を形成し、延性の低下を招く。このため、仕上圧延終了温度はAr3変態点以上である850℃以上に限定した。なお、好ましくは880℃以上である。
Finishing rolling finish temperature: 850 ° C or more When the finish rolling finish temperature is less than 850 ° C, ferrite is generated, and fine carbides are precipitated, and the strength is increased, so that the deformation resistance is increased, and the sheeting property of the rolling mill is increased. Decreases. In addition, the generated ferrite is processed and stretched to form a band-like structure, resulting in a decrease in ductility. For this reason, the finish rolling finish temperature was limited to 850 ° C. or higher, which is higher than the Ar 3 transformation point. In addition, Preferably it is 880 degreeC or more.
仕上圧延後の冷却は、とくに限定しない。空冷、あるいは、550〜700℃で巻き取れるように、衝風冷却、水冷却等とすることが好ましい。圧延後の冷却は、仕上圧延終了温度から巻取温度までの平均で10℃/s以上の冷却速度とすることが好ましい。より好ましくは30℃/s以上である。 The cooling after finish rolling is not particularly limited. Air cooling or blast cooling, water cooling or the like is preferable so that the film can be wound at 550 to 700 ° C. The cooling after rolling is preferably performed at a cooling rate of 10 ° C./s or more on average from the finish rolling finish temperature to the coiling temperature. More preferably, it is 30 ° C./s or more.
巻取温度:550〜700℃
炭化物の析出形態を、強度増加に寄与する適正な形態とするために、巻取温度を550〜700℃の範囲の温度に調整する。巻き取られたのち、まず、Ti炭化物等の微細な炭化物が析出し、その後、残った炭素でセメンタイトが形成される。巻取温度が550℃未満では、セメンタイトの析出が優先し、大きさ10nm以下の微細な炭化物の析出量が少なくなり、所望の高強度を確保できなくなる。一方、700℃を超える温度では、炭化物が粗大化し、所望の高強度を確保できなくなる。
Winding temperature: 550 ~ 700 ℃
The coiling temperature is adjusted to a temperature in the range of 550 to 700 ° C. in order to make the carbide precipitation form an appropriate form contributing to an increase in strength. After being wound, first, fine carbides such as Ti carbide are precipitated, and then cementite is formed with the remaining carbon. When the coiling temperature is less than 550 ° C., the precipitation of cementite takes precedence, the amount of fine carbides having a size of 10 nm or less is reduced, and the desired high strength cannot be secured. On the other hand, when the temperature exceeds 700 ° C., the carbide is coarsened and a desired high strength cannot be ensured.
なお、本発明では、熱間圧延後に、さらに酸洗、めっき処理、あるいはさらに合金化処理を施し、鋼板表面にめっき層、あるいは合金化めっき層を形成してもよい。また、めっき層の付着量は、用途に応じて、適宜決定すればよく、とくに限定する必要はない。酸洗、めっき処理、合理化処理は、常用の方法がいずれも適用できる。 In the present invention, after hot rolling, pickling, plating, or alloying may be further performed to form a plating layer or alloying plating layer on the surface of the steel sheet. Moreover, the adhesion amount of a plating layer should just be determined suitably according to a use, and does not need to specifically limit it. Conventional methods can be applied to pickling, plating, and rationalization.
以下、実施例に基づき、さらに本発明について説明する。 Hereinafter, based on an Example, this invention is demonstrated further.
転炉で表5に示す組成の溶鋼を溶製し、連続鋳造法で鋳片(スラブ)(肉厚:250mm)とした。なお、連続鋳造途中の鋳片に、表6に示す条件で圧下を施した。ついで、得られたスラブ(鋳片)を、表6に示す加熱温度に加熱し、粗圧延と表6に示す仕上圧延終了温度の仕上圧延からなる熱間圧延を施し、表6に示す冷却速度で冷却し、表6に示す巻取温度でコイル状に巻き取り、熱延鋼帯(熱延鋼板:板厚3.2mm)とした。なお、一部の熱延鋼板には、熱間圧延後、酸洗を施し、さらに480℃の溶融亜鉛めっき浴(0.1%Al−Zn浴)中に浸漬して、鋼板表面に溶融亜鉛めっき層を形成した。なお、付着量は、片面当たりの付着量で45g/m2とした。鋼板表面に溶融亜鉛めっき層を形成した鋼板の一部では、さらに520℃でめっき層の合金化処理を施し、合金化溶融亜鉛めっき層とした。 Molten steel having the composition shown in Table 5 was melted in a converter and made into a slab (thickness: 250 mm) by a continuous casting method. Note that the slab in the middle of continuous casting was subjected to reduction under the conditions shown in Table 6. Next, the obtained slab (slab) is heated to the heating temperature shown in Table 6, subjected to hot rolling consisting of rough rolling and finish rolling at the finish rolling finishing temperature shown in Table 6, and the cooling rate shown in Table 6 Then, it was wound in a coil shape at the winding temperature shown in Table 6 to obtain a hot-rolled steel strip (hot-rolled steel plate: plate thickness 3.2 mm). Some hot-rolled steel sheets are hot-rolled, pickled, and then dipped in a hot-dip galvanizing bath (0.1% Al-Zn bath) at 480 ° C. Formed. The amount of adhesion was 45 g / m 2 as the amount of adhesion per one side. A part of the steel sheet in which the hot dip galvanized layer was formed on the surface of the steel sheet was further subjected to alloying treatment of the plated layer at 520 ° C. to obtain an alloyed hot dip galvanized layer.
得られた熱延鋼板から、試験片を採取し、組織観察、引張試験、硬さ試験、穴拡げ試験、打抜き試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向に平行な断面(L断面)を研磨し、ナイタール腐食して、組織を現出し、走査型電子顕微鏡(倍率:1000倍)を用いて組織を観察し撮像し、得られた組織写真を用いて、組織の種類、組織分率(面積率)を求めた。さらに、圧延方向に直交する方向(C方向)の板厚方向断面の板厚1/4位置を研磨、ナイタール腐食して、走査型電子顕微鏡(倍率:1000倍)を用いて3視野以上観察し、各視野(100μm×100μm)内に観察されたセメンタイト粒子の個数を測定し、その算術平均を求め、当該鋼板のセメンタイト粒子の析出密度(個/10000μm2)とした。また、それぞれの視野において観察されたセメンタイト粒子につき、粒子の最も長い部分(最大長さ)を測定し、各粒子の最大長さの算術平均を当該鋼板のセメンタイト粒子の平均粒径とした。なお、すべての鋼板のセメンタイト粒子の平均粒径は、0.05〜2μmの範囲にあった。
Test specimens were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, hardness test, hole expansion test, and punching test. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation is taken from the obtained hot-rolled steel sheet, a cross section (L cross section) parallel to the rolling direction is polished, it is subjected to nital corrosion, and the structure is revealed, and a scanning electron microscope ( (Magnification: 1000 times) was used to observe and image the tissue, and the obtained tissue photograph was used to determine the type of tissue and the tissue fraction (area ratio). Furthermore, the
また、得られた熱延鋼板から薄膜用試験片を採取し、研削、機械研磨、電解研磨により薄膜とし、透過型電子顕微鏡(倍率:300000倍)を用いて、組織を観察し、少なくとも5視野を撮像した。得られた組織写真を用いて、フェライト相(母相)中に析出した炭化物の平均粒径、析出密度(個/m3)を求めた。炭化物の平均粒径は、任意に選んだ100個の炭化物について、その最大長さを測定し、算術平均して、当該熱延鋼板の炭化物の平均粒径とした。また、炭化物の析出密度は、透過型電子顕微鏡に付属のEELSを用い、電子の弾性散乱と非弾性散乱の強度比から視野の試料厚さを求め、視野中の炭化物の個数を視野の面積×試料厚さで除算することにより求めた。
なお、セメンタイトと炭化物とは、電子顕微鏡内に設置された分析装置により判別した。
In addition, a thin film specimen is taken from the obtained hot-rolled steel sheet, made into a thin film by grinding, mechanical polishing, and electrolytic polishing, and the structure is observed using a transmission electron microscope (magnification: 300,000 times), and at least 5 fields of view are observed. Was imaged. Using the obtained structure photograph, the average particle diameter and precipitation density (pieces / m 3 ) of the carbide precipitated in the ferrite phase (parent phase) were determined. The average particle size of the carbide was determined by measuring the maximum length of 100 arbitrarily selected carbides, and calculating the average of the average particle size of the carbide of the hot-rolled steel sheet. The carbide precipitation density was determined by using the EELS attached to the transmission electron microscope, obtaining the sample thickness of the field of view from the intensity ratio of electron elastic scattering and inelastic scattering, and calculating the number of carbides in the field by the area of the field x It was determined by dividing by the sample thickness.
Note that cementite and carbide were distinguished from each other by an analyzer installed in an electron microscope.
(2)引張試験
得られた熱延鋼板から、圧延方向に直角な方向(C方向)が引張方向となるように、JIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、引張特性(引張強さTS、伸びEl)を求めた。
(3)硬さ試験
得られた熱延鋼板から硬さ測定用試験片を採取し、圧延方向と平行な断面(L断面)を研磨し、ナイタール腐食し組織を現出したのち、ビッカース硬度計(荷重:25gf(試験力:0.25N)を用いて、ビッカース硬さHV0.025を測定した。測定位置は、板厚中央位置と、板厚1/4位置および板厚3/4位置とした。なお、板厚中央部に偏析起因の線(中央偏析線)が確認できる場合には、中央偏析線上を、中央偏析線が見えない場合には、板厚中央位置(板厚1/2位置)とした。各測定位置で、各10点測定し、その算術平均を当該板厚位置の硬さとした。なお、板厚1/4位置、板厚3/4位置では、測定点は各5点とし、それら10点の算術平均を当該板厚1/4位置の硬さとした。得られた値をもちい、板厚中央位置の硬さHV1/2tと、板厚1/4位置の硬さHV1/4tの差、ΔHV0.025(=HV1/2t−HV1/4t)を算出した。
(4)穴拡げ試験
得られた熱延鋼板から試験片(大きさ:130×130mm)を採取し、JFS T 1001−1996の規定に準拠し、試験片に打抜き加工(クリアランス:試験片板厚の12.5%)で、初期穴(直径10mmφ:d0)を形成した。該初期穴に、ポンチ側から頂角:60°の円錐ポンチを挿入し、該初期穴を押し広げ、亀裂が板厚を貫通したときの穴径dを測定し、次式
λ(%)={(d−d0)/d0}×100%
で、穴拡げ率λを算出した。
(5)打抜き試験
穴拡げ試験と同様に、得られた熱延鋼板から試験片(大きさ:130×130mm)を採取し、JFS T 1001−1996の規定に準拠し、試験片に打抜き加工(クリアランス:試験片板厚の25%)で、穴(直径10mmφ)を打抜いた。打抜いた穴の端面を目視で、観察し、圧延方向に平行な割れ、および圧延方向に垂直な方向に延びる亀裂状の微小割れの有無を調べ、打抜き性を調査した。なお、クリアランスを試験片板厚の12.5%として、同様に、試験片に打抜き加工で、穴(直径10mmφ)を打抜き、打抜いた穴の端面を目視で、観察し、圧延方向に平行な割れ、および圧延方向に垂直な方向に延びる亀裂状の微小割れの有無を調べた。クリアランスが試験片板厚の12.5%および25%で、ともに割れなしの場合を「○」、クリアランスが試験片板厚の12.5%でのみ割れなしの場合を「△」、両方とも割れありの場合を「×」として評価した。
(2) Tensile test JIS No. 5 tensile test specimen was taken from the obtained hot-rolled steel sheet so that the direction perpendicular to the rolling direction (C direction) was the tensile direction, and in accordance with the provisions of JIS Z 2241 A tensile test was carried out to determine tensile properties (tensile strength TS, elongation El).
(3) Hardness test A test piece for hardness measurement was taken from the obtained hot-rolled steel sheet, the cross-section (L cross-section) parallel to the rolling direction was polished, Nital corrosion occurred, and the structure was revealed. (Load: 25 gf (test force: 0.25 N) was used to measure the Vickers hardness HV 0.025 . The measurement positions were the plate thickness center position, the
(4) Hole expansion test A test piece (size: 130 x 130 mm) is taken from the obtained hot-rolled steel sheet and punched into the test piece in accordance with the provisions of JFS T 1001-1996 (clearance: thickness of the test piece) 12.5%), an initial hole (diameter: 10 mmφ: d 0 ) was formed. A conical punch with an apex angle of 60 ° is inserted into the initial hole from the punch side, the initial hole is expanded, the hole diameter d when a crack penetrates the plate thickness is measured, and the following formula λ (%) = {(D−d 0 ) / d 0 } × 100%
Then, the hole expansion rate λ was calculated.
(5) Punching test As with the hole expansion test, a test piece (size: 130 x 130 mm) is taken from the obtained hot-rolled steel sheet and punched into the test piece in accordance with the provisions of JFS T 1001-1996 ( Clearance: 25% of the test piece plate thickness), holes (diameter 10mmφ) were punched out. The end face of the punched hole was visually observed, and the presence or absence of cracks parallel to the rolling direction and crack-like microcracks extending in the direction perpendicular to the rolling direction was examined to investigate punchability. Similarly, the clearance is set to 12.5% of the test piece thickness. Similarly, the hole (diameter 10mmφ) is punched into the test piece, the end surface of the punched hole is visually observed, and the crack is parallel to the rolling direction. The presence or absence of crack-like microcracks extending in the direction perpendicular to the rolling direction was examined. When the clearance is 12.5% and 25% of the specimen thickness and both are not cracked, “○”, when the clearance is 12.5% of the specimen thickness, only when there is no crack, “△”, both are cracked Was evaluated as “×”.
得られた結果を表7に示す。 The results obtained are shown in Table 7.
本発明例はいずれも、引張強さ:780MPa以上の高強度と、全伸びElが20%以上の高延性と、穴拡げ率λが80%以上の高穴拡げ性とを有し加工性に優れ、さらに、クリアランスが板厚の12.5%の場合はもちろん、クリアランスを板厚の25%としても、打抜き端面に、圧延方向に平行な割れや、圧延方向に垂直な方向に延びる亀裂状の微小割れの発生が認められず、打抜き性評価が「○」であり、打抜き性にも優れた熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、強度が不足しているか、穴拡げ性が不足しているか、打抜き性評価が「△」、「×」であり、打抜き性が低下している。本発明の範囲を外れる比較例では、クリアランスが板厚の12.5%の場合には良好な打抜き端面を呈する場合でも、クリアランスを板厚の25.0%とすると、割れが発生している。 Each of the inventive examples has high tensile strength: 780 MPa or more, high ductility with total elongation El of 20% or more, and high hole expansibility with a hole expansion ratio λ of 80% or more. Excellent, and even if the clearance is 12.5% of the plate thickness, and even if the clearance is 25% of the plate thickness, cracks parallel to the rolling direction or crack-like micro-extensions extending in the direction perpendicular to the rolling direction can be achieved on the punched end face. No cracking was observed, the punchability evaluation was “◯”, and the hot rolled steel sheet was excellent in punchability. On the other hand, in comparative examples that are out of the scope of the present invention, the strength is insufficient, the hole expandability is insufficient, or the punchability evaluation is “Δ” or “×”, and the punchability is reduced. In a comparative example that is outside the scope of the present invention, cracks occur when the clearance is 25.0% of the plate thickness even when the clearance is 12.5% of the plate thickness, even when a good punched end surface is exhibited.
Claims (9)
C :0.030〜0.090%、 Si:0.3%以下、
Mn:0.5〜2.0%、 P :0.03%以下、
S :0.005%以下、 N :0.006%以下、
Al:0.1%以下、 Ti:0.070〜0.220%
を含有し、かつ下記(1)式を満足し、残部Feおよび不可避的不純物からなる組成と、
面積率で95%以上のフェライト相を有し、該フェライト相中に、微細炭化物が1.0×1022個/m3以上、セメンタイト粒子が10個/10000μm2以上析出し、前記微細炭化物の平均粒径が10nm以下であり、
板厚中央位置の硬さHV1/2tと板厚1/4位置の硬さHV1/4tまたは板厚3/4位置の硬さHV3/4tとの差ΔHV0.025が20HV以下である組織を有し、引張強さ:780〜822MPaである
ことを特徴とする高強度熱延鋼板。
記
C*≧0.010 ‥‥(1)
ここで、C*=C−(12/48)×Ti+(12/14)×N+(12/32)×S−(12/51)×V−(12/93)×Nb−(12/96)×Mo
C、Ti、N、S、V、Nb、Mo:各元素の含有量(質量%) % By mass
C: 0.030 to 0.090%, Si: 0.3% or less,
Mn: 0.5 to 2.0%, P: 0.03% or less,
S: 0.005% or less, N: 0.006% or less,
Al: 0.1% or less, Ti: 0.070 to 0.220%
And satisfying the following formula (1), the composition comprising the balance Fe and inevitable impurities,
The ferrite phase has an area ratio of 95% or more. In the ferrite phase, 1.0 × 10 22 particles / m 3 or more of fine carbides and 10 particles / 10000 μm 2 or more of cementite particles are precipitated. The diameter is 10 nm or less,
Structure where the difference ΔHV 0.025 between the hardness HV 1 / 2t at the center of the thickness and the hardness HV 1 / 4t at the 1/4 thickness or the hardness HV 3 / 4t at the thickness 3/4 is 20HV or less. have a tensile strength: high-strength hot-rolled steel sheet according to claim <br/> be 780~822MPa.
Record
C * ≧ 0.010 (1)
Here, C * = C− (12/48) × Ti + (12/14) × N + (12/32) × S− (12/51) × V− (12/93) × Nb− (12/96 ) X Mo
C, Ti, N, S, V, Nb, Mo: Content of each element (% by mass)
前記連続鋳造を、連続鋳造途中で、鋳片に、鋳片の厚み中心部の固相率が0.4の時点から0.8になるまでの圧下速度が0.5〜1.5m/minの範囲の圧下速度で圧下する軽圧下を施す連続鋳造とし、
前記鋳片を、質量%で、
C :0.030〜0.090%、 Si:0.3%以下、
Mn:0.5〜2.0%、 P :0.03%以下、
S :0.005%以下、 N :0.006%以下、
Al:0.1%以下、 Ti:0.070〜0.220%
を含有し、かつ下記(1)式を満足し、残部Feおよび不可避的不純物からなる組成の鋳片とし、
前記熱間圧延を、前記鋳片を1150〜1300℃に加熱し、粗圧延と仕上圧延とを施す圧延とし、該仕上圧延が850℃以上を仕上圧延終了温度とし、巻取温度:550〜700℃で巻き取る圧延とし、面積率で95%以上のフェライト相を有し、該フェライト相中に、微細炭化物が1.0×10 22 個/m 3 以上、セメンタイト粒子が10個/10000μm 2 以上析出し、前記微細炭化物の平均粒径が10nm以下であり、
板厚中央位置の硬さHV 1/2t と板厚1/4位置の硬さHV 1/4t または板厚3/4位置の硬さHV 3/4t との差ΔHV 0.025 が20HV以下である組織を有し、引張強さ:780〜822MPaである熱延鋼板とすること、
を特徴とする高強度熱延鋼板の製造方法。
記
C*≧0.010 ‥‥(1)
ここで、C*=C−(12/48)×Ti+(12/14)×N+(12/32)×S−(12/51)×V−(12/93)×Nb−(12/96)×Mo
C、Ti、N、S、V、Nb、Mo:各元素の含有量(質量%) After continuously casting the molten steel into a slab, in the method for producing a hot-rolled steel sheet, the hot-rolled steel sheet is subjected to hot rolling on the slab,
During the continuous casting, the continuous casting is reduced to a slab at a reduction speed in the range of 0.5 to 1.5 m / min from the time when the solid phase rate of the center part of the slab becomes 0.4 to 0.8. a continuous casting subjected to a soft reduction that,
The slab is in mass%,
C: 0.030 to 0.090%, Si: 0.3% or less,
Mn: 0.5 to 2.0%, P: 0.03% or less,
S: 0.005% or less, N: 0.006% or less,
Al: 0.1% or less, Ti: 0.070 to 0.220%
And satisfying the following formula (1), a slab of the composition consisting of the balance Fe and inevitable impurities,
The hot rolling is a rolling in which the slab is heated to 1150 to 1300 ° C. and subjected to rough rolling and finish rolling, and the finish rolling has a finish rolling finish temperature of 850 ° C. or more, and a winding temperature: 550 to 700 Rolled up at ℃, and has a ferrite phase of 95% or more in area ratio. Fine ferrite is 1.0 × 10 22 particles / m 3 or more and cementite particles are precipitated 10 particles / 10000 μm 2 or more in the ferrite phase. The average particle size of the fine carbide is 10 nm or less,
Structure where the difference ΔHV 0.025 between the hardness HV 1 / 2t at the center of the thickness and the hardness HV 1 / 4t at the 1/4 thickness or the hardness HV 3 / 4t at the thickness 3/4 is 20HV or less. Having a tensile strength: 780 to 822 MPa ,
A method for producing a high-strength hot-rolled steel sheet.
Record
C * ≧ 0.010 (1)
Here, C * = C− (12/48) × Ti + (12/14) × N + (12/32) × S− (12/51) × V− (12/93) × Nb− (12/96 ) X Mo
C, Ti, N, S, V, Nb, Mo: Content of each element (% by mass)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014142816A JP6036756B2 (en) | 2013-08-30 | 2014-07-11 | High strength hot rolled steel sheet and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013179051 | 2013-08-30 | ||
JP2013179051 | 2013-08-30 | ||
JP2014142816A JP6036756B2 (en) | 2013-08-30 | 2014-07-11 | High strength hot rolled steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015063748A JP2015063748A (en) | 2015-04-09 |
JP6036756B2 true JP6036756B2 (en) | 2016-11-30 |
Family
ID=52831871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014142816A Active JP6036756B2 (en) | 2013-08-30 | 2014-07-11 | High strength hot rolled steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6036756B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105154769B (en) * | 2015-09-18 | 2017-06-23 | 宝山钢铁股份有限公司 | A kind of 780MPa grades of hot-rolled high-strength reaming steel high and its manufacture method |
JP6424908B2 (en) | 2017-02-06 | 2018-11-21 | Jfeスチール株式会社 | Hot-dip galvanized steel sheet and method of manufacturing the same |
MX2021002282A (en) * | 2018-08-28 | 2021-05-27 | Jfe Steel Corp | Hot-rolled steel sheet and production method therefor, cold-rolled steel sheet and production method therefor, production method for cold-rolled annealed steel sheet, and production method for hot-dip galvanized steel sheet. |
CN112126851B (en) * | 2020-08-30 | 2021-11-02 | 五矿营口中板有限责任公司 | high-Ti-content micro-Al easy-welding low-alloy structural steel in ultra-fast cooling mode and manufacturing method thereof |
CN114682746A (en) * | 2022-04-07 | 2022-07-01 | 首钢京唐钢铁联合有限责任公司 | Production method of super-thick steel plate |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH101723A (en) * | 1996-06-10 | 1998-01-06 | Nkk Corp | Manufacture of hot rolled steel plate having high workability and high strength |
JP5136182B2 (en) * | 2008-04-22 | 2013-02-06 | 新日鐵住金株式会社 | High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same |
JP5978614B2 (en) * | 2011-12-15 | 2016-08-24 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof |
JP5884472B2 (en) * | 2011-12-26 | 2016-03-15 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof |
JP5838796B2 (en) * | 2011-12-27 | 2016-01-06 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof |
JP5884476B2 (en) * | 2011-12-27 | 2016-03-15 | Jfeスチール株式会社 | High-tensile hot-rolled steel sheet excellent in bending workability and manufacturing method thereof |
JP2013139591A (en) * | 2011-12-28 | 2013-07-18 | Jfe Steel Corp | High-strength hot-rolled steel sheet with excellent workability and method for producing the same |
-
2014
- 2014-07-11 JP JP2014142816A patent/JP6036756B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015063748A (en) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109154044B (en) | Hot-dip galvanized steel sheet | |
EP3214197B1 (en) | High-strength steel sheet and method for manufacturing same | |
EP3214193B1 (en) | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same | |
EP3214199B1 (en) | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same | |
TWI412609B (en) | High strength steel sheet and method for manufacturing the same | |
JP6409917B2 (en) | Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet | |
EP2816132B1 (en) | Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet | |
JP5359296B2 (en) | High strength steel plate and manufacturing method thereof | |
KR101485237B1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
KR20190089024A (en) | High strength galvanized steel sheet and manufacturing method thereof | |
JP5446885B2 (en) | Cold rolled steel sheet manufacturing method | |
JP6274360B2 (en) | High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet | |
KR20160105402A (en) | Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same | |
JP6315160B1 (en) | High strength steel plate and manufacturing method thereof | |
WO2013005618A1 (en) | Cold-rolled steel sheet | |
KR20120023129A (en) | High-strength steel sheet and manufacturing method therefor | |
JP6669319B1 (en) | High strength hot rolled steel sheet and method for producing the same | |
EP3705592A1 (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor | |
JP6036756B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP6409916B2 (en) | Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet | |
JP5482513B2 (en) | Cold rolled steel sheet and method for producing the same | |
KR20230012028A (en) | Steel plate and its manufacturing method | |
JPWO2018163871A1 (en) | High strength hot rolled galvanized steel sheet | |
KR20240023431A (en) | Cold rolled steel sheet and manufacturing method thereof | |
JP5056556B2 (en) | Thin steel plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6036756 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |