[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6033690B2 - Profile measuring device for blast furnace interior - Google Patents

Profile measuring device for blast furnace interior Download PDF

Info

Publication number
JP6033690B2
JP6033690B2 JP2013002392A JP2013002392A JP6033690B2 JP 6033690 B2 JP6033690 B2 JP 6033690B2 JP 2013002392 A JP2013002392 A JP 2013002392A JP 2013002392 A JP2013002392 A JP 2013002392A JP 6033690 B2 JP6033690 B2 JP 6033690B2
Authority
JP
Japan
Prior art keywords
pressure
blast furnace
furnace
resistant
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013002392A
Other languages
Japanese (ja)
Other versions
JP2014133922A (en
Inventor
遠山 治幸
治幸 遠山
就昭 緒方
就昭 緒方
哲哉 秋元
哲哉 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Texeng Co Ltd filed Critical Nippon Steel Corp
Priority to JP2013002392A priority Critical patent/JP6033690B2/en
Publication of JP2014133922A publication Critical patent/JP2014133922A/en
Application granted granted Critical
Publication of JP6033690B2 publication Critical patent/JP6033690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、高炉内装入物の表面の形状(プロフィル)の測定装置に関するものである。   The present invention relates to an apparatus for measuring the shape (profile) of the surface of a blast furnace interior.

一般に、銑鉄の製造における高炉には、炉頂から装入物として、粉鉄鉱石を焼き固めた焼結鉱や塊状鉄鉱石等(以下では単に鉄鉱石または鉱石と記す)及びコークスが交互に装入されて堆積し、炉内に鉱石層およびコークス層が形成される。そして、高炉下方にある羽口から吹き込まれる熱風とコークスとの反応によって生じるCOガスにより、鉄鉱石は加熱、還元され(間接還元)、一部はコークスにより直接的に還元されて、軟化融着帯を形成した後、溶滴となる。溶滴、すなわち溶銑は、コークス層の間を通過して炉底部に溜まる。炉内に形成された鉱石層およびコークス層は、炉内を徐々に降下する。   In general, blast furnaces in the production of pig iron are alternately charged with sintered ore or lump iron ore (hereinafter simply referred to as iron ore or ore) and coke as powdered iron ore. As a result, the ore layer and the coke layer are formed in the furnace. The iron ore is heated and reduced (indirect reduction) by the CO gas generated by the reaction between hot air blown from the tuyere below the blast furnace and coke, and part of it is reduced directly by coke and softened and fused. After forming the band, it becomes a droplet. The droplets, that is, the molten iron, pass between the coke layers and accumulate at the bottom of the furnace. The ore layer and coke layer formed in the furnace gradually descend in the furnace.

以上の工程において、高炉に装入された鉄鉱石及びコークスによって形成される炉頂部の装入物分布を調整し、適正なガス分布を得ることは非常に重要である。高炉内炉頂部における装入物のプロフィル(表面形状)は、ベル式装入装置ではムーバブルアーマを、また、ベルレス式装入装置では分配シュートを介する装入物の落下軌跡により決定される。通常、炉頂部の装入物のプロフィルは、高炉の中心鉛直方向(軸心)を軸として中央部が低い略逆円錘形状をなしている。高炉内装入物のプロフィルは、高炉の操業にとって重要な情報であり、従来から炉内に装入され堆積した装入物のプロフィルを測定する装置が開発され、実用化されてきた。   In the above process, it is very important to adjust the charge distribution at the top of the furnace formed by the iron ore and coke charged in the blast furnace to obtain an appropriate gas distribution. The profile (surface shape) of the charge at the top of the furnace in the blast furnace is determined by the moving armor in the bell-type charging device and the fall trajectory of the charge through the distribution chute in the bell-less charging device. Usually, the profile of the charge at the top of the furnace has a substantially inverted conical shape with a low center part around the center vertical direction (axial center) of the blast furnace. The profile of the blast furnace interior is important information for the operation of the blast furnace, and conventionally, an apparatus for measuring the profile of the charge charged and deposited in the furnace has been developed and put into practical use.

例えば特許文献1には、マイクロ波発信器と、アンテナと、これらを連結する導波管と、マイクロ波を反射する反射板と、反射板駆動装置と、これらを連結する駆動軸と、を有し、アンテナ、導波管のアンテナ側の端部、反射板、駆動軸の反射板側の端部が、高炉の炉内に向けた開口部を有する耐圧容器内に収納されているプロフィル測定装置が開示されている。   For example, Patent Document 1 includes a microwave transmitter, an antenna, a waveguide connecting them, a reflecting plate that reflects microwaves, a reflecting plate driving device, and a drive shaft that connects them. The antenna, the end of the waveguide on the antenna side, the reflecting plate, and the end of the driving shaft on the reflecting plate side are housed in a pressure vessel having an opening toward the furnace of the blast furnace. Is disclosed.

このようなプロフィル測定装置において、従来、アンテナや反射板を高炉内の粉塵等から保護するため、耐圧容器の開口部(図2の炉内側開口部21参照)に、マイクロ波を透過させる耐圧耐熱ガラスがはめ込まれている。   In such a profile measuring device, conventionally, in order to protect the antenna and the reflector from dusts in the blast furnace, the pressure resistance and heat resistance that allows microwaves to pass through the opening of the pressure vessel (see the furnace inner opening 21 in FIG. 2). Glass is fitted.

特開2011−145237号公報JP 2011-145237 A

しかしながら、プロフィル測定時には、反射板の向きを変え、それに応じてマイクロ波の反射方向を変えて測定を行う。そのため、耐圧容器の開口部に耐圧耐熱ガラスをはめ込む場合、反射方向の全ての範囲にわたって耐圧耐熱ガラスを設ける必要があり、面積の大きいガラスが必要となる。さらに、耐圧耐熱ガラスとしての性能を保つために、面積に伴って厚みも必要になる。また、設置後の耐圧耐熱ガラスのメンテナンスが極めて困難であるという問題点がある。   However, during the profile measurement, the direction of the reflector is changed, and the microwave reflection direction is changed accordingly. For this reason, when the pressure-resistant and heat-resistant glass is fitted into the opening of the pressure-resistant container, it is necessary to provide the pressure-resistant and heat-resistant glass over the entire range in the reflection direction, and a glass having a large area is required. Furthermore, in order to maintain the performance as a pressure-resistant and heat-resistant glass, the thickness is also required with the area. In addition, there is a problem that maintenance of the pressure and heat resistant glass after installation is extremely difficult.

本発明の目的は、高濃度粉塵下の高炉内の影響を受けることがなく、高精度に高炉内装入物のプロフィルが測定できるプロフィル測定装置において、耐圧耐熱ガラスの面積を縮小し厚みを少なくするとともにメンテナンスが容易に行えるようにすることにある。   An object of the present invention is to reduce the area and reduce the thickness of pressure-resistant and heat-resistant glass in a profile measuring apparatus that can measure the profile of blast furnace interior with high accuracy without being affected by the inside of the blast furnace under high concentration dust. At the same time, it is to make maintenance easy.

上記問題を解決するため、本発明は、高炉の炉頂部に設置され、高炉内装入物のプロフィルを測定するプロフィル測定装置であって、マイクロ波の発信および受信が可能なマイクロ波送受信器と、前記マイクロ波送受信器から発信されたマイクロ波を放射するアンテナと、前記マイクロ波送受信器と前記アンテナとを連結する導波管と、前記アンテナから放射されたマイクロ波を前記高炉の炉内に向けて反射する反射板と、前記反射板を駆動する反射板駆動装置と、前記反射板と前記反射板駆動装置とを連結する駆動軸と、前記反射板で反射されたマイクロ波を透過する耐圧耐熱ガラスと、からなり、前記アンテナ、前記反射板、および前記耐圧耐熱ガラスが、前記高炉の炉内に向けた炉内側開口部を有する耐圧容器内に収容され、前記耐圧耐熱ガラスは、前記反射板の炉内に向けた反射方向に固定され、前記反射板とともに前記駆動軸を中心に回転することを特徴とする、高炉内装入物のプロフィル測定装置を提供する。   In order to solve the above problems, the present invention is a profile measuring device that is installed at the top of a blast furnace and measures the profile of the blast furnace interior, and is a microwave transceiver capable of transmitting and receiving microwaves, An antenna that radiates a microwave transmitted from the microwave transceiver, a waveguide that connects the microwave transceiver and the antenna, and a microwave radiated from the antenna toward the furnace of the blast furnace Reflecting plate, reflecting plate driving device for driving the reflecting plate, driving shaft for connecting the reflecting plate and the reflecting plate driving device, and pressure resistance and heat resistance for transmitting the microwave reflected by the reflecting plate Glass, and the antenna, the reflector, and the pressure-resistant and heat-resistant glass are accommodated in a pressure-resistant container having a furnace inner opening facing the furnace of the blast furnace, Thermal glass is fixed to the reflecting direction toward the furnace of the reflector, characterized in that it rotates about the drive shaft together with the reflector, to provide a profile measuring device of the blast furnace interior container.

前記高炉内装入物のプロフィル測定装置において、前記耐圧耐熱ガラスおよび前記反射板が、前記駆動軸を中心に回転する回転容器に収容されていてもよい。また、前記耐圧容器の、前記耐圧耐熱ガラスが配置されている位置の頂面に、上部開口部および前記上部開口部を開閉可能な蓋が設けられてもよい。   In the blast furnace interior entry profile measuring apparatus, the pressure-resistant and heat-resistant glass and the reflecting plate may be accommodated in a rotating container that rotates about the drive shaft. An upper opening and a lid capable of opening and closing the upper opening may be provided on the top surface of the pressure vessel where the pressure and heat resistant glass is disposed.

前記耐圧耐熱ガラスの周囲に、前記高炉の外側から、前記高炉内の炉圧よりも高い圧力で窒素ガスが吹き込まれることが好ましい。また、前記炉内側開口部を開閉自在な弁が設けられてもよい。   It is preferable that nitrogen gas is blown into the periphery of the pressure-resistant and heat-resistant glass from the outside of the blast furnace at a pressure higher than the furnace pressure in the blast furnace. Further, a valve capable of opening and closing the furnace inner opening may be provided.

本発明によれば、反射板とともに耐圧耐熱ガラスも回転し、マイクロ波の反射方向に常にガラスが配置されるので、ガラスの面積および厚みを最小限に縮小できる。また、耐圧耐熱ガラスを上部まで回転させることにより、メンテナンスが容易に行える。   According to the present invention, the pressure-resistant and heat-resistant glass rotates together with the reflecting plate, and the glass is always arranged in the direction of microwave reflection, so that the area and thickness of the glass can be reduced to the minimum. Moreover, maintenance can be easily performed by rotating the pressure-resistant and heat-resistant glass to the upper part.

本発明の測定装置を備えた高炉炉頂部の実施の形態の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of embodiment of the blast furnace top part provided with the measuring apparatus of this invention. 本発明の実施の形態にかかる測定装置の概略を示す正面図である。It is a front view which shows the outline of the measuring apparatus concerning embodiment of this invention. 図2のA−A線から見た測定装置の縦断面図である。It is a longitudinal cross-sectional view of the measuring apparatus seen from the AA line of FIG. 図3のB−B線から見た測定装置の平面図である。It is a top view of the measuring device seen from the BB line of FIG. 回転容器の例を示す斜視図である。It is a perspective view which shows the example of a rotation container. 非測定時の状態の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the state at the time of non-measurement. 本発明にかかる測定装置を用いた測定方法例の説明図であり、(a)は炉内の状態を示す説明図、(b)は補正量を示すグラフである。It is explanatory drawing of the example of the measuring method using the measuring apparatus concerning this invention, (a) is explanatory drawing which shows the state in a furnace, (b) is a graph which shows correction amount.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明にかかるプロフィル測定装置1を高炉2に設置した例を示す。高炉2の炉口部にはベルレス式装入装置5が設けられ、鉄鉱石やコークス等の装入物4が、分配シュート6を通って炉内に装入される。本実施形態では、プロフィル測定装置1は、炉頂部付近の、炉体3よりも外側に、炉体3の中心軸に対して対称位置に二個所設置されている。なお、プロフィル測定装置1は、高炉2炉頂部の外側に一個所のみ設置してもよい。   FIG. 1 shows an example in which a profile measuring device 1 according to the present invention is installed in a blast furnace 2. A bell-less charging device 5 is provided at the furnace port portion of the blast furnace 2, and a charge 4 such as iron ore or coke is charged into the furnace through a distribution chute 6. In the present embodiment, the profile measuring device 1 is installed at two positions symmetrical to the central axis of the furnace body 3 outside the furnace body 3 near the top of the furnace. In addition, you may install the profile measuring apparatus 1 only in one place outside the blast furnace 2 furnace top part.

図2は、図1のプロフィル測定装置1部分を拡大した図であり、図3は、プロフィル測定装置1の縦断面図であり、図4は、プロフィル測定装置1の平面図である。プロフィル測定装置1は、図3、図4に示すように、アンテナ11および反射板12と、アンテナ11および反射板12をそれぞれ支持、駆動、制御する導波管13、マイクロ波送受信器14、駆動軸15、反射板駆動装置16、および、マイクロ波が透過可能な耐圧耐熱ガラス17を有する。そして、このプロフィル測定装置1は、反射板駆動装置16を除いた部分が、耐圧容器20に収容されている。耐圧容器20は、底面に、炉内に向けた炉内側開口部21を有し、図1に示すように高炉2の炉頂部付近に設置される。   2 is an enlarged view of the profile measuring device 1 portion of FIG. 1, FIG. 3 is a longitudinal sectional view of the profile measuring device 1, and FIG. 4 is a plan view of the profile measuring device 1. As shown in FIGS. 3 and 4, the profile measuring apparatus 1 includes an antenna 11 and a reflecting plate 12, a waveguide 13 that supports, drives, and controls the antenna 11 and the reflecting plate 12, a microwave transceiver 14, and a drive. It has a shaft 15, a reflector driving device 16, and a pressure and heat resistant glass 17 that can transmit microwaves. In the profile measuring device 1, a portion excluding the reflector driving device 16 is accommodated in the pressure resistant container 20. The pressure vessel 20 has, on the bottom surface, a furnace inner opening 21 directed into the furnace, and is installed near the top of the blast furnace 2 as shown in FIG.

アンテナ11は、例えばφ250〜φ360mm程度のパラボラアンテナであり、導波管13を介して、マイクロ波送受信器14に連結されている。マイクロ波送受信器14は、周波数が一定範囲で連続的に時間変化するマイクロ波を発生し、当該マイクロ波の発信および受信が可能なものである。マイクロ波送受信器14には、データ処理部18が信号線19で接続されている。   The antenna 11 is a parabolic antenna having a diameter of about φ250 to φ360 mm, for example, and is connected to the microwave transceiver 14 via the waveguide 13. The microwave transmitter / receiver 14 generates a microwave whose frequency continuously changes in a certain range and can transmit and receive the microwave. A data processor 18 is connected to the microwave transceiver 14 by a signal line 19.

マイクロ波送受信器14で発生した、周波数が連続的に変化するマイクロ波は、アンテナ11から放射されて反射板12で反射され、耐圧耐熱ガラス17を透過して、高炉2内の測定対象である装入物4の表面に照射される。照射されたマイクロ波は装入物4の表面で反射し、この反射波をマイクロ波送受信器14で受信して検出する。データ処理部18では、アンテナ11でのマイクロ波の放射から受信までの間の周波数の変化分ΔFから、アンテナ11から測定対象(装入物4の表面)までのマイクロ波の往復時間ΔTが求められ、アンテナ11から測定対象までの距離が算出される。この測定は、マイクロ波を発射する電気信号と、装入物表面からの反射波を受信して得られる電気信号とをミキシングして測定するFMCW(Frequency Modulated Continuous Wave)方式(周波数変調連続波方式)と呼ばれる。当該方式のマイクロ波距離計は、市販の装置を用いてもよい。なお、マイクロ波による当該距離測定方式は、実施形態として使用可能な一例である。   A microwave generated in the microwave transmitter / receiver 14 and continuously changing in frequency is radiated from the antenna 11, reflected by the reflector 12, transmitted through the pressure-resistant and heat-resistant glass 17, and is a measurement object in the blast furnace 2. The surface of the charge 4 is irradiated. The irradiated microwave is reflected by the surface of the charge 4, and this reflected wave is received and detected by the microwave transceiver 14. In the data processing unit 18, the round-trip time ΔT of the microwave from the antenna 11 to the measurement target (the surface of the charge 4) is obtained from the change in frequency ΔF from the emission to reception of the microwave at the antenna 11. The distance from the antenna 11 to the measurement target is calculated. This measurement is based on the FMCW (Frequency Modulated Continuous Wave) method (Frequency Modulated Continuous Wave method) that mixes and measures the electrical signal that emits the microwave and the electrical signal that is obtained by receiving the reflected wave from the charged surface. ). A commercially available apparatus may be used for the microwave distance meter of this type. The distance measurement method using microwaves is an example that can be used as an embodiment.

測定に用いるマイクロ波の発信周波数帯域は、10GHz以上、好ましくは24GHz程度とし、周波数を高くするほど、アンテナ11を小型化できる。マイクロ波を用いることにより、温度や粉塵等の環境の影響を受けにくく、高炉2内のプロフィルを正確に測定できる。また、パラボラアンテナは指向性が高いため、所望する位置に向けて高精度にマイクロ波を放射できる。さらに、放射時のマイクロ波の広がりが抑制されるために、炉内に向けた開口部21を小さくすることができる。   The transmission frequency band of the microwave used for measurement is 10 GHz or more, preferably about 24 GHz. The higher the frequency, the smaller the antenna 11 can be made. By using the microwave, the profile in the blast furnace 2 can be accurately measured without being affected by the environment such as temperature and dust. Moreover, since the parabolic antenna has high directivity, microwaves can be radiated with high accuracy toward a desired position. Furthermore, since the spread of the microwave at the time of radiation | emission is suppressed, the opening part 21 toward the inside of a furnace can be made small.

図3、4に示すように、アンテナ11のマイクロ波の送受信方向(中心軸線方向)の延長上に、反射板12と反射板駆動装置16とを連結する駆動軸15が設けられている。すなわち、駆動軸15の中心軸線が、アンテナ11の中心軸線と一致するように、駆動軸15が設けられている。図3に示すように、反射板12は、アンテナ11の中心軸線に対して略45°の角度で駆動軸15に固定されている。反射板12は、例えばステンレスの板材からなり、アンテナ11の正面側から見た面積が、アンテナ11よりも少し大きいものとする。形状は限定しないが、操作性の上では円形が好ましい。反射板駆動装置16により駆動軸15をその中心軸の周りに回転させることで、アンテナ11からその中心軸方向に放射されたマイクロ波を、反射板12で、例えば図2に示すように、高炉2の炉内側へ向けて反射し、高炉2の直径方向に走査する。プロフィル測定装置1は、マイクロ波が炉の中心軸を通るように配置することが望ましい。   As shown in FIGS. 3 and 4, a drive shaft 15 that connects the reflector 12 and the reflector driving device 16 is provided on the extension of the microwave transmission / reception direction (center axis direction) of the antenna 11. That is, the drive shaft 15 is provided so that the center axis of the drive shaft 15 coincides with the center axis of the antenna 11. As shown in FIG. 3, the reflector 12 is fixed to the drive shaft 15 at an angle of approximately 45 ° with respect to the central axis of the antenna 11. The reflector 12 is made of, for example, a stainless steel plate, and the area viewed from the front side of the antenna 11 is slightly larger than the antenna 11. Although the shape is not limited, a circular shape is preferable in terms of operability. By rotating the drive shaft 15 around its central axis by the reflector driving device 16, the microwave radiated from the antenna 11 in the direction of the central axis is reflected by the reflector 12, for example, as shown in FIG. Reflected toward the inside of the furnace 2 and scanned in the diameter direction of the blast furnace 2. The profile measuring device 1 is preferably arranged so that the microwave passes through the central axis of the furnace.

耐圧耐熱ガラス17は、反射板12の反射方向の投影面全体を覆う大きさおよび形状とし、マイクロ波を透過させるものとする。また、高炉2内の圧力に対して十分な耐圧性能が必要であり、例えば耐圧設計0.3MPa程度、耐熱温度200℃程度、厚さ40mm程度の強化ガラスや、耐熱温度1000℃程度、厚さ25mm程度の石英ガラスなどが用いられる。   The pressure-resistant and heat-resistant glass 17 has a size and a shape that covers the entire projection surface in the reflection direction of the reflecting plate 12, and transmits microwaves. In addition, sufficient pressure resistance is required for the pressure in the blast furnace 2, for example, a pressure resistance design of about 0.3 MPa, a heat resistant temperature of about 200 ° C., a tempered glass of about 40 mm thickness, a heat resistant temperature of about 1000 ° C. Quartz glass of about 25 mm is used.

本実施形態において、反射板12および耐圧耐熱ガラス17は、互いの位置関係を固定した状態で、円筒状の回転容器22内に収容されている。回転容器22は、例えば図5に示すように、円筒状の本体22aの外周にレール22bを有し、耐圧容器20内に固定されたレール受け23(図3、4)に沿って、駆動軸15を中心として回転する。したがって、回転容器22内で反射板12が回転した際に、耐圧耐熱ガラス17も反射板12の反射方向に配置された状態で回転するため、耐圧耐熱ガラス17は、最小限の面積および厚みで、常に反射板12で反射したマイクロ波を透過させることができる。   In the present embodiment, the reflecting plate 12 and the pressure-resistant and heat-resistant glass 17 are accommodated in a cylindrical rotating container 22 in a state where the positional relationship is fixed. For example, as shown in FIG. 5, the rotary container 22 has a rail 22 b on the outer periphery of a cylindrical main body 22 a, and a drive shaft along a rail receiver 23 (FIGS. 3 and 4) fixed in the pressure resistant container 20. Rotate around 15. Therefore, when the reflecting plate 12 rotates in the rotating container 22, the pressure-resistant and heat-resistant glass 17 also rotates in a state of being arranged in the reflecting direction of the reflecting plate 12, so that the pressure-resistant and heat-resistant glass 17 has a minimum area and thickness. The microwave reflected by the reflecting plate 12 can always be transmitted.

以上のように、耐圧耐熱ガラス17が、常に反射板12の反射方向の投影面に配置された状態で反射板12とともに回転することにより、耐圧耐熱ガラス17の面積および厚みを最小限に縮小することができるので、コストを抑えることができる。一例として、本発明の構成では300φで25mm厚の石英ガラスが適用される装置の場合、従来の構成ではおよそ400mm×1200mmの大きさで40mm厚のガラスが必要であった。   As described above, the area and thickness of the pressure-resistant and heat-resistant glass 17 are reduced to the minimum by rotating together with the reflective plate 12 in a state where the pressure-resistant and heat-resistant glass 17 is always arranged on the projection surface in the reflection direction of the reflective plate 12. Can reduce costs. As an example, in the configuration of the present invention, in the case of a device to which quartz glass having a diameter of 300 mm and a thickness of 25 mm is applied, the conventional configuration requires a glass having a size of about 400 mm × 1200 mm and a thickness of 40 mm.

耐圧容器20の炉内側開口部21は、高炉2の炉内に連通している。炉内側開口部21は、反射板12で反射したマイクロ波が、炉内の所定範囲に照射されるように形成される。また、図3に示すように、炉内側開口部21を開閉可能な例えばスイング式の弁24が設けられる。弁24は、プロフィル測定時以外には、高炉2から耐圧容器20側に粉塵等が入り込むのを防ぐために、図3の二点鎖線で示す位置に配置させて炉内側開口部21を塞ぐ。プロフィル測定時には、図3の実線で示すように下方に向けて退避させ、炉内側開口部21を開放する。プロフィル測定を行わないときには、図6に示すように、弁24を閉じるとともに、耐圧耐熱ガラス17が上側に配置されるように回転容器22を回転させることにより、耐圧耐熱ガラス17を高炉2の熱等から保護することができる。なお、弁24は仕切式のものでもよい。   The furnace inner opening 21 of the pressure vessel 20 communicates with the furnace of the blast furnace 2. The furnace inner opening 21 is formed so that the microwave reflected by the reflecting plate 12 is irradiated to a predetermined range in the furnace. As shown in FIG. 3, for example, a swing type valve 24 capable of opening and closing the furnace inner opening 21 is provided. The valve 24 is arranged at a position indicated by a two-dot chain line in FIG. 3 to block the furnace inner opening 21 in order to prevent dust and the like from entering the pressure vessel 20 side from the blast furnace 2 except during profile measurement. At the time of profile measurement, as shown by a solid line in FIG. 3, the furnace inner opening 21 is opened by retreating downward. When the profile measurement is not performed, as shown in FIG. 6, the valve 24 is closed and the rotating container 22 is rotated so that the pressure-resistant and heat-resistant glass 17 is arranged on the upper side. Can be protected from etc. The valve 24 may be a partition type.

さらに、耐圧容器20は、反射板12および耐圧耐熱ガラス17が配置されている位置の頂面に上部開口部25を有し、上部開口部25を閉じる蓋26が設けられている。図6に示すように耐圧耐熱ガラス17が上側に配置されるまで回転容器22を回転させた後、蓋26を開けることにより、耐圧耐熱ガラス17の点検や清掃、あるいは交換等を容易に行うことができる。   Furthermore, the pressure vessel 20 has an upper opening 25 on the top surface where the reflector 12 and the pressure and heat resistant glass 17 are disposed, and a lid 26 for closing the upper opening 25 is provided. As shown in FIG. 6, after the rotating container 22 is rotated until the pressure-resistant and heat-resistant glass 17 is disposed on the upper side, the lid 26 is opened to facilitate inspection, cleaning, or replacement of the pressure-resistant and heat-resistant glass 17. Can do.

尚、耐圧容器20および回転容器22の内面は、炉内側開口部21、上部開口部25、および反射板12の反射面側を除いて、発信周波数帯域に対応した電波吸収体27で覆われている。電波吸収体27を設けることにより、耐圧容器20内でのマイクロ波の乱反射や多重反射に起因する測定ノイズが抑制される。   The inner surfaces of the pressure vessel 20 and the rotary vessel 22 are covered with a radio wave absorber 27 corresponding to the transmission frequency band except for the furnace inner opening 21, the upper opening 25, and the reflecting surface side of the reflector 12. Yes. By providing the radio wave absorber 27, measurement noise due to diffused reflection and multiple reflection of microwaves in the pressure resistant vessel 20 is suppressed.

また、プロフィル測定時には、高炉2内部のガスや粉塵等が耐圧容器20内に侵入するのを防ぎ、さらに耐圧容器20を介して外部へ高炉2内のガス等が漏洩するのを防止する目的で、耐圧容器20内に、例えば炉内圧の1.1倍程度の圧力になるように、窒素ガスで加圧を行う。図3に示すように、窒素ガスは、耐圧耐熱ガラス17の表面に沿って吹き込むことで、耐圧耐熱ガラス17の表面に炉内の粉塵等が付着することが防止でき、粉塵等の付着によるマイクロ波の減衰を防止することができる。さらに、プロフィル測定時には、耐圧容器20の炉内側開口部21の位置に水平方向に、高炉2の外側から、炉内圧よりも少し高い圧力、例えば炉内圧+0.4MPa程度の圧力で窒素ガスを吹き込む。これにより、高炉2の吹き上げ等が起きたときでも、炉内側に圧力が作用するため、炉内の粉塵等が入り込むことがなく、プロフィル測定装置1を保護することができる。尚、耐圧容器20内に吹き込むガスは、窒素以外の不活性ガスでもよい。   Further, at the time of measuring the profile, for the purpose of preventing the gas or dust inside the blast furnace 2 from entering the pressure vessel 20 and further preventing the gas inside the blast furnace 2 from leaking to the outside through the pressure vessel 20. The pressure vessel 20 is pressurized with nitrogen gas so that the pressure is, for example, about 1.1 times the furnace pressure. As shown in FIG. 3, nitrogen gas can be blown along the surface of the pressure and heat resistant glass 17 to prevent dust and the like in the furnace from adhering to the surface of the pressure and heat resistant glass 17. Wave attenuation can be prevented. Furthermore, at the time of profile measurement, nitrogen gas is blown from the outside of the blast furnace 2 to the position of the furnace inner opening 21 of the pressure vessel 20 at a pressure slightly higher than the furnace pressure, for example, a furnace pressure +0.4 MPa. . Thereby, even when blowing up of the blast furnace 2 occurs, pressure acts on the inside of the furnace, so that dust or the like in the furnace does not enter and the profile measuring device 1 can be protected. Note that the gas blown into the pressure vessel 20 may be an inert gas other than nitrogen.

さらに、耐圧容器20の炉内側開口部21や、耐圧容器20内のマイクロ波送受信器14の周囲等に、高炉2の外側から冷却水を流し、プロフィル測定装置1を炉内の熱から保護するようにしてもよい。尚、窒素ガスの吹き込みによっても、耐熱容器20内の冷却効果が発揮される。   Further, cooling water is allowed to flow from the outside of the blast furnace 2 to the furnace inner opening 21 of the pressure vessel 20, around the microwave transmitter / receiver 14 in the pressure vessel 20, and the profile measuring device 1 is protected from the heat in the furnace. You may do it. In addition, the cooling effect in the heat-resistant container 20 is exhibited also by blowing nitrogen gas.

以下、本発明のプロフィル測定装置1を用いて高炉内装入物のプロフィルを測定する手順の例を説明する。なお、以下に説明する測定方法は一例であり、本発明は、この測定方法に限って使用されるものではない。   Hereinafter, the example of the procedure which measures the profile of a blast furnace interior entrance using the profile measuring apparatus 1 of this invention is demonstrated. The measurement method described below is an example, and the present invention is not limited to this measurement method.

先ず、プロフィル測定装置1の反射板12の向きを初期位置に向けて、マイクロ波送受信器14からマイクロ波を発信する。マイクロ波は、導波管13、アンテナ11を介して、反射板12により反射され、耐圧耐熱ガラス17を透過して高炉内装入物4に照射され、装入物4までの距離Dを測定する。そして、反射板12を、例えば直下のプロフィルを測定する初期位置から、予め設定した所定位置、例えば炉の内径方向反対側を測定する位置までの間、反射板駆動装置16により回転させる。所望の空間分解能に応じて予め設定した角度ごとに、装入物4までの距離を測定してその距離データが、また、反射板駆動装置16はそのときの走査角度データが、データ処理部18へ送られる。その後、反射板12を初期位置側へ戻し、例えば1分など所定の時間間隔Tで、再度同様の測定を行う。データ処理部18は、入力された走査角度データおよびそのときの距離データに基づいて、高炉内の各位置の装入物プロフィルを演算する。このとき、例えばマイクロ波を直下に向けた位置などの任意の位置において、予め設定した同一走査角度時の1回目の距離データD1と2回目の距離データD2から、高炉内装入物4の降下速度Vを演算する。降下速度Vは、以下の式で求められる。
V=(D2−D1)/T=ΔD/T
First, the microwave is transmitted from the microwave transmitter / receiver 14 with the direction of the reflector 12 of the profile measuring device 1 directed to the initial position. The microwave is reflected by the reflecting plate 12 through the waveguide 13 and the antenna 11, passes through the pressure-resistant and heat-resistant glass 17 and is irradiated on the blast furnace interior entrance 4, and the distance D to the charge 4 is measured. . Then, the reflector 12 is rotated by the reflector driving device 16 from, for example, an initial position at which the profile directly underneath is measured to a predetermined position, for example, a position at which the opposite side in the inner diameter direction of the furnace is measured. For each angle preset according to the desired spatial resolution, the distance to the charge 4 is measured, the distance data is obtained, and the reflection plate driving device 16 has the scanning angle data at that time as the data processing unit 18. Sent to. Thereafter, the reflecting plate 12 is returned to the initial position side, and the same measurement is performed again at a predetermined time interval T such as 1 minute. The data processing unit 18 calculates a charge profile at each position in the blast furnace based on the input scanning angle data and the distance data at that time. At this time, for example, at an arbitrary position such as a position where the microwave is directed directly below, the descent speed of the blast furnace interior 4 from the first distance data D1 and the second distance data D2 at the same preset scanning angle. V is calculated. The descending speed V is obtained by the following equation.
V = (D2-D1) / T = ΔD / T

次に、測定した距離データの補正量を求める。本実施形態においては、炉の内径方向の水平距離に応じて、測定時の時間差による降下量の補正を行う。すなわち、図7(a)に示すように、初期位置を測定した測定開始時から測定終了時までには装入物4が降下するため、降下補正量rは、図7(b)に示すように、初期位置から炉内径Lの水平方向の距離xが増すにつれて減少し、初期位置の反対側では0となる。測定位置による測定時間差を考慮し、その時間tで降下する量rを、炉の内径方向の距離に応じて補正する。つまり、初期位置の反対側を測定した時刻における装入物4の高さ位置を、補正により求める。尚、降下補正量rは、以下の式で求められる。
r=V×t
Next, a correction amount of the measured distance data is obtained. In the present embodiment, the amount of descent due to the time difference during measurement is corrected according to the horizontal distance in the inner diameter direction of the furnace. That is, as shown in FIG. 7 (a), since the charge 4 descends from the time when the initial position is measured until the end of the measurement, the descent correction amount r is as shown in FIG. 7 (b). Furthermore, it decreases as the horizontal distance x of the furnace inner diameter L increases from the initial position, and becomes zero on the opposite side of the initial position. In consideration of the measurement time difference depending on the measurement position, the amount r that descends at the time t is corrected according to the distance in the inner diameter direction of the furnace. That is, the height position of the charge 4 at the time when the opposite side of the initial position is measured is obtained by correction. The descent correction amount r can be obtained by the following equation.
r = V × t

このように、プロフィル測定値を降下補正量rで補正することにより、測定中の装入物4の降下の影響を排除した高炉内装入物4のプロフィルが求められる。なお、降下速度Vを、炉内位置によらず一定とすることで、簡易的なプロフィルを求めることもできる。   In this way, by correcting the profile measurement value with the descent correction amount r, a profile of the blast furnace interior 4 that eliminates the influence of the descent of the charge 4 being measured is obtained. In addition, a simple profile can also be calculated | required by making descent speed V constant irrespective of the position in a furnace.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明は、高温で粉塵等が発生する炉内の表面形状の測定装置に適用できる。   The present invention can be applied to an apparatus for measuring a surface shape in a furnace in which dust or the like is generated at a high temperature.

1 プロフィル測定装置
2 高炉
3 炉体
4 装入物
5 ベルレス式装入装置
6 分配シュート
11 アンテナ
12 反射板
13 導波管
14 マイクロ波送受信器
15 駆動軸
16 反射板駆動装置
17 耐圧耐熱ガラス
18 データ処理部
20 耐圧容器
21 炉内側開口部
22 回転容器
24 弁
25 上部開口部
26 蓋
27 電波吸収体
DESCRIPTION OF SYMBOLS 1 Profile measuring apparatus 2 Blast furnace 3 Furnace body 4 Charge 5 Bell-less type charging apparatus 6 Distribution chute 11 Antenna 12 Reflector 13 Waveguide 14 Microwave transmitter / receiver 15 Drive shaft 16 Reflector drive 17 Pressure-resistant heat-resistant glass 18 Data Processing unit 20 Pressure vessel 21 Opening inside furnace 22 Rotating vessel 24 Valve 25 Upper opening 26 Lid 27 Radio wave absorber

Claims (5)

高炉の炉頂部に設置され、高炉内装入物のプロフィルを測定するプロフィル測定装置であって、
マイクロ波の発信および受信が可能なマイクロ波送受信器と、
前記マイクロ波送受信器から発信されたマイクロ波を放射するアンテナと、
前記マイクロ波送受信器と前記アンテナとを連結する導波管と、
前記アンテナから放射されたマイクロ波を前記高炉の炉内に向けて反射する反射板と、
前記反射板を駆動する反射板駆動装置と、
前記反射板と前記反射板駆動装置とを連結する駆動軸と、
前記反射板で反射されたマイクロ波を透過する耐圧耐熱ガラスと、からなり、
前記アンテナ、前記反射板、および前記耐圧耐熱ガラスが、前記高炉の炉内に向けた炉内側開口部を有する耐圧容器内に収容され、
前記耐圧耐熱ガラスは、前記反射板の炉内に向けた反射方向に固定され、前記反射板とともに前記駆動軸を中心に回転することを特徴とする、高炉内装入物のプロフィル測定装置。
A profile measuring device that is installed at the top of the blast furnace and measures the profile of the blast furnace interior,
A microwave transceiver capable of transmitting and receiving microwaves;
An antenna that radiates microwaves transmitted from the microwave transceiver;
A waveguide connecting the microwave transceiver and the antenna;
A reflector that reflects the microwave radiated from the antenna toward the furnace of the blast furnace;
A reflector driving device for driving the reflector;
A drive shaft connecting the reflector and the reflector driving device;
A pressure-resistant and heat-resistant glass that transmits the microwave reflected by the reflector, and
The antenna, the reflector, and the pressure-resistant and heat-resistant glass are accommodated in a pressure-resistant container having a furnace inner opening directed into the furnace of the blast furnace,
The apparatus for measuring a profile of a blast furnace interior, wherein the pressure-resistant and heat-resistant glass is fixed in a reflecting direction toward the furnace of the reflector and rotates around the drive shaft together with the reflector.
前記耐圧耐熱ガラスおよび前記反射板が、前記駆動軸を中心に回転する回転容器に収容されていることを特徴とする、請求項1に記載の高炉内装入物のプロフィル測定装置。   The apparatus for measuring a profile of a blast furnace interior according to claim 1, wherein the pressure-resistant and heat-resistant glass and the reflecting plate are accommodated in a rotating container that rotates about the drive shaft. 前記耐圧容器の、前記耐圧耐熱ガラスが配置されている位置の頂面に、上部開口部および前記上部開口部を開閉可能な蓋が設けられていることを特徴とする、請求項1または2に記載の高炉内装入物のプロフィル測定装置。   The top opening of the position where the said pressure-resistant heat-resistant glass is arrange | positioned of the said pressure vessel is provided with the lid | cover which can open and close an upper opening part and the said upper opening part, It is characterized by the above-mentioned. The blast furnace interior entrance profile measurement device described. 前記耐圧耐熱ガラスの周囲に、前記高炉の外側から、前記高炉内の炉圧よりも高い圧力で窒素ガスが吹き込まれることを特徴とする、請求項1〜3のいずれかに記載の高炉内装入物のプロフィル測定装置。   The blast furnace interior entrance according to any one of claims 1 to 3, wherein nitrogen gas is blown into the periphery of the pressure and heat resistant glass from the outside of the blast furnace at a pressure higher than the furnace pressure in the blast furnace. Equipment profile measuring device. 前記炉内側開口部を開閉自在な弁が設けられていることを特徴とする、請求項1〜4のいずれかに記載の高炉内装入物のプロフィル測定装置。   The blast furnace interior entrance profile measuring apparatus according to any one of claims 1 to 4, wherein a valve capable of opening and closing the furnace inner opening is provided.
JP2013002392A 2013-01-10 2013-01-10 Profile measuring device for blast furnace interior Active JP6033690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002392A JP6033690B2 (en) 2013-01-10 2013-01-10 Profile measuring device for blast furnace interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002392A JP6033690B2 (en) 2013-01-10 2013-01-10 Profile measuring device for blast furnace interior

Publications (2)

Publication Number Publication Date
JP2014133922A JP2014133922A (en) 2014-07-24
JP6033690B2 true JP6033690B2 (en) 2016-11-30

Family

ID=51412417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002392A Active JP6033690B2 (en) 2013-01-10 2013-01-10 Profile measuring device for blast furnace interior

Country Status (1)

Country Link
JP (1) JP6033690B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722265B (en) * 2016-03-03 2019-03-01 南京航空航天大学 The method and device of microwave directed radiation heating composite material
JP6573323B2 (en) * 2016-03-25 2019-09-11 株式会社Wadeco Surface detection apparatus and detection method for blast furnace charge
JP6770738B2 (en) * 2016-09-23 2020-10-21 株式会社Wadeco Surface detector for blast furnace
CN113801971B (en) * 2021-08-20 2022-08-19 河北金波嘉源测控技术有限公司 Blast furnace instrument protection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391458B2 (en) * 2009-07-09 2014-01-15 株式会社ワイヤーデバイス Method and apparatus for measuring charge profile in blast furnace
JP5441730B2 (en) * 2010-01-18 2014-03-12 新日鐵住金株式会社 Profile measuring device for blast furnace interior
JP5787607B2 (en) * 2011-05-10 2015-09-30 新日鐵住金株式会社 Profile measuring device for blast furnace interior

Also Published As

Publication number Publication date
JP2014133922A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5787607B2 (en) Profile measuring device for blast furnace interior
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP6033690B2 (en) Profile measuring device for blast furnace interior
JP5441730B2 (en) Profile measuring device for blast furnace interior
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
WO2017164358A1 (en) Blast furnace charge-material surface detection device and detection method
JP5674542B2 (en) Profile measurement method for blast furnace interior
JP7176561B2 (en) Blast furnace operation method
JP7176560B2 (en) Blast furnace operation method
WO2015133005A1 (en) Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
JPH0611328A (en) Method and instrument for measuring profile of charge in shaft furnace
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
JP6147602B2 (en) Profile measurement method for blast furnace interior
JP2016060943A (en) Profile measurement device for material charged in blast furnace
JP6327383B1 (en) Charge distribution control method in blast furnace
JP2017095761A (en) Method of controlling distribution of charging material in blast furnace
JP2015219129A (en) Surface detection device for blast furnace charging material
JP4504090B2 (en) Microwave distance measuring device
JP2024067221A (en) Surface profile measuring method, profile measuring method for material charged in blast furnace, and method for manufacturing pig iron
JP7315213B2 (en) object detector
JP7448990B1 (en) Surface profile detection device for blast furnace contents
JPH09263809A (en) Method for measuring distance to charged material surface in blast furnace and instrument therefor
JP2024064040A (en) Antenna cover and microwave level meter using the same
JP2013253883A (en) Apparatus and method for measuring profile of surface of charging material
KR20150062705A (en) Device and method for measuring surface profile of charging meterials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350