JP6029015B2 - Cavity check and lifting pressure removal device and installation method - Google Patents
Cavity check and lifting pressure removal device and installation method Download PDFInfo
- Publication number
- JP6029015B2 JP6029015B2 JP2013170767A JP2013170767A JP6029015B2 JP 6029015 B2 JP6029015 B2 JP 6029015B2 JP 2013170767 A JP2013170767 A JP 2013170767A JP 2013170767 A JP2013170767 A JP 2013170767A JP 6029015 B2 JP6029015 B2 JP 6029015B2
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- concrete
- levee
- pressure
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Revetment (AREA)
Description
本発明は、土木分野における堤体を構築する海岸、河川堤防本体に設けられている天端被覆コンクリート下面に発生する空洞化現象を早期発見し、グラウト充填注入等で空洞部分を補強し、水位の上昇に伴い堤体基盤に作用する揚圧力を天端被覆コンクリート上部に放散させることで、堤防の崩壊を未然に防止する装置及びその設置工法に関するものである。 The present invention detects the cavitation phenomenon that occurs at the bottom of the top-coated concrete provided on the coast of the embankment in the field of civil engineering and the river levee body, reinforces the cavity part by grout filling, etc. It is related with the apparatus which prevents collapse of a dike, and its installation construction method by dissipating the lifting pressure which acts on a dam body base to the top end covering concrete upper part with the rise of tsunami.
堤防は土で作ることが原則とされているが、堤防崩壊の要因は、水の浸透、越水、浸食、基盤漏水であった。これらの要因から堤防を守るために、堤防本体表面を、現場打ちコンクリート又はコンクリート二次製品ブロックで被覆していたが、被覆部下面に空洞が発生するような部分的な崩壊に対しては逐次復旧工事とそれに係る費用を要していた。また、近年は地球温暖化の一つの現象とも言われる集中豪雨が多発し、海面が上昇し、とくに日本海北陸沿岸地域では、寄り回り波による防波堤、防潮堤の崩壊事例が多数報告されており、復旧費用も甚大なものなっている。このように、従来からコンクリート土木構造物における底版下部の地盤沈下や空洞対策には苦慮し、構造物に変状や被災現象が発生してから、その都度多額の補修費を費やしていた。つまり、構造物の地盤にどの程度の沈下や空洞が発生し進行しているかを事前に検測することが困難であり、その対応が後手に回っていた。 In principle, the embankment is made of soil, but the causes of the embankment collapse were water infiltration, water overflow, erosion, and base water leakage. In order to protect the dike from these factors, the surface of the dike body was covered with cast-in-place concrete or concrete secondary product blocks. Restoration work and related costs were required. In recent years, there has been a lot of torrential rain, which is said to be one phenomenon of global warming, and the sea level has risen. The recovery costs are also huge. As described above, in the past, it has been difficult to deal with ground subsidence and cavitation countermeasures in the bottom of a concrete civil engineering structure, and after repairs and damages have occurred in the structure, large repair costs have been spent each time. In other words, it was difficult to preliminarily measure how much subsidence and cavities were generated and proceeding in the ground of the structure, and the response was delayed.
現在、堤防天端被覆コンクリートの点検に際しては、目視で把握できる変状確認には限界があるため、空胴監視孔による点検、地中レーダー探査、ボーリング、打線、深浅測量等を行なっているが、そのためには、新たに空洞監視孔を設ける必要があった。しかしながら、この方法は、準備・実施期間・費用等が嵩み、また、結果が集約されるまでに相当の時間を要しているのが実情であった。 At present, when checking the embankment-covered concrete, there is a limit to the deformation confirmation that can be grasped visually. Therefore, inspections using a cavity monitoring hole, underground radar exploration, boring, batting, depth surveying, etc. are performed. Therefore, it was necessary to newly provide a cavity monitoring hole. However, this method has a large amount of preparation, implementation period, cost, and the fact that it takes a considerable amount of time to collect the results.
例えば、大型土木構造物(コンクリート及び鋼とコンクリート複合構造物)における底版下の地盤沈下量の観測にあたっては、構造物側近の地盤を掘削し、伸縮自在な計測管を挿入し、計測管内に地上から吊り下ろす沈下計ゾンデにより沈下素子の位置を検出し、その深さを測定テープで測定する地盤沈下量測定装置(特許文献1参照。)。構造物の外側付近に立杭を掘削し、この中に金属管を挿入して構造物底版下まで推進到達させ、この金属管内に超小型カメラを挿入しその映像をモニターで目視して地盤沈下・空洞化量の有無を判別する調査方法(特許文献2参照。)。軟弱地盤の沈下にしたがって適宜屈曲する可撓性を備えた非磁性体からなる長尺部材を挿入し、この長尺部材に通電することにより励起する電気マーカーを所定の間隔で配置し、長尺部材に近接して非磁性体よりなる測定管を平行に挿入し、この測定管内に磁気検知器を吊り下げ、磁気マーカーの磁界を測定して地盤沈下量を測定する方法(特許文献3参照。)。外筒とそれに内接する内筒との隙間に伸縮性筒状体を張設して外筒と内筒を連結することにより、内筒の移動が自由になり地盤沈下測定を容易かつ迅速に行うことができ、地盤沈下の状況を把握すると共にグラウト注入孔を兼用した装置(特許文献4参照。)。樋門、樋管、暗渠等のコンクリート二次製品及び現場打コンクリート構造物に地盤沈下、空洞、地下水位を測定する検測機器が装填可能な検査孔をグラウト孔とは別に独立して設けた地盤沈下測定方法(特許文献5参照。)なども提案されている。とくに特許文献4には、外筒とそれに内設する内筒との隙間に伸縮性の筒状体を張設して、外筒と内筒を連結することにより、内筒の移動が自由になり、地盤沈下の測定を容易かつ迅速に行い、地盤沈下の状況の把握を適切に行い、グラウト注入作業を迅速的確に行なう地盤沈下の測定兼グラウト注入装置が提案されている。 For example, when observing the amount of ground subsidence under the bottom slab in large civil engineering structures (concrete and steel-concrete composite structures), excavate the ground near the structure, insert a telescopic measurement tube, and place the ground in the measurement tube. A ground subsidence measuring device that detects the position of a subsidence element with a subsidence meter that hangs from a ground and measures the depth with a measuring tape (see Patent Document 1). Drilling a vertical pile near the outside of the structure, inserting a metal tube into it and propelling it to the bottom of the structure bottom plate, inserting a micro camera into this metal tube and visually observing the image on the monitor,・ Investigation method for determining presence or absence of hollowing amount (see Patent Document 2). Insert a long member made of a non-magnetic material with flexibility to bend appropriately according to the settlement of the soft ground, and arrange electrical markers that are excited by energizing this long member at predetermined intervals. A method of measuring the amount of ground subsidence by inserting a measurement tube made of a non-magnetic material in parallel near a member, suspending a magnetic detector in the measurement tube, and measuring the magnetic field of the magnetic marker (see Patent Document 3). ). A stretchable tubular body is stretched in the gap between the outer cylinder and the inner cylinder that inscribes the outer cylinder to connect the outer cylinder and the inner cylinder, so that the movement of the inner cylinder becomes free and the land settlement measurement can be performed easily and quickly. A device that can grasp the ground subsidence and also serves as a grout injection hole (see Patent Document 4). In addition to grout holes, inspection holes that can be loaded with measuring instruments to measure ground subsidence, cavities, and groundwater levels are provided in concrete secondary products such as Xiamen, anchor pipes, underdrains, and on-site concrete structures. A ground settlement measurement method (see Patent Document 5) and the like have also been proposed. In particular, in Patent Document 4, a stretchable cylindrical body is stretched in a gap between an outer cylinder and an inner cylinder installed therein, and the outer cylinder and the inner cylinder are connected to freely move the inner cylinder. Therefore, a ground subsidence measuring and grout injection apparatus has been proposed that performs easy and quick ground subsidence measurement, appropriately grasps the ground subsidence status, and performs grouting operations quickly and accurately.
しかしながら、前記先行技術は、いずれもコンクリート構造物(例えば、樋門・樋管・水門等)を設置対象としたものであり、地盤沈下空洞量測定又はグラウト注入孔を兼用する点までは考察されているものの、海岸・河川堤防又は傾斜堤体本体は、水位の上昇に伴い堤防基盤面に揚圧力が発生し、曳いては堤防崩壊に繋がるおそれがあり、これを解消するものとはなっていない。
本発明は、前記従来の課題に基づき、堤防の天端被覆コンクリート下面の地盤沈下による空洞量を測定し、当該空洞量に応じたグラウト充填注入を行ない、補強はもとより堤防基盤面にかかる揚圧力の除去性能を備えた測定装置を提供することを目的とする。However, all of the above prior arts are intended for installation of concrete structures (for example, lock gates, lock pipes, sluices, etc.) and have been considered to the point that they also serve as ground subsidence measurement or grout injection holes. However, the coastal / river levee body or sloped levee body is subject to lifting pressure on the levee basement surface as the water level rises, which may eventually lead to the levee collapse, which should be eliminated. Absent.
The present invention is based on the above-mentioned conventional problems, and measures the amount of cavities due to ground subsidence on the bottom surface of the embankment covered concrete of the levee, performs grout filling injection according to the amount of the cavities, and raises the pressure applied to the levee foundation surface as well as reinforcing It is an object of the present invention to provide a measuring apparatus having a removal performance.
このため本発明空洞量点検兼用圧力除去装置は、堤防又は傾斜堤の天端被覆コンクリート内に設置される筒体と、通常は当該筒体の上端開口を密閉する蓋体と、その筒体内に堤体土の沈下に伴い沈下する沈下板と、その一部に定規が挿入可能な開口とこの開口を開放する取手を設けた逆止弁とを備え、前記蓋体が、水位の上昇によって堤体が受ける揚圧力により、前記筒体内部に生じる圧縮空気により吹き飛ばされて離脱可能とされていることを第1の特徴とする。また、その設置工法を、堤本体土の中に装置本体の下部と検知棒を取り付けた円形沈下板を埋め込み、裏込め材を敷き均した後に、天端被覆コンクリートを打設することを第2特徴とする。さらに、割栗石を敷き均した後に、その表面から所定深さ下げたところに、吸出し防止シートを敷き、その上に筒形枠を設置し、同型枠中央に装置本体を設置して、型枠内部に砂を充填した後に、天端被覆コンクリートを打設することを第3の特徴とする。さらに、空洞量点検兼揚圧力除去装置を堤体に所定の間隔をもって複数ヵ所設置したことを第4の特徴とする。For this reason, the pressure relief device for cavity volume inspection / invention of the present invention includes a cylinder installed in the top-end covering concrete of a levee or an inclined levee, a lid that normally seals the upper end opening of the cylinder, and the cylinder. A subsidence plate that sinks as the subsidence of the levee body subsides, a check valve provided with an opening through which a ruler can be inserted and a handle that opens the opening, and the lid body is The first characteristic is that the body is blown off by the compressed air generated inside the cylindrical body by the lifting pressure received by the body and can be detached. In addition, the installation method is to embed a ceiling plate covering concrete after embedding a circular settlement board with a lower part of the main body of the device and a detection rod in the levee body soil, and leveling the backfill material. Features. Furthermore, after laying and leveling the cracked stone, place a suction prevention sheet on the place where it has been lowered from the surface by a predetermined depth, install a cylindrical frame on it, install the main unit in the center of the same mold, A third feature is that the top end covering concrete is placed after the inside is filled with sand. Further, the fourth feature is that a plurality of cavity amount checking / lifting pressure removing devices are installed on the bank body at predetermined intervals.
本発明によれば、以下の優れた効果がある。
(1)海岸・河川堤防、又は傾斜堤の天端被覆コンクリートに本発明装置を取り付けて観察することにより、空洞化現象の早期発見、対策が可能になる。尚且つ、水位の上昇に伴い堤防基盤面に発生する揚圧力を放散することで、堤防本体の崩壊を未然に防ぐことができる。
(2)いつでも必要に応じて、堤防天端被覆コンクリート下面の沈下による空洞状況を容易に観測できる。
(3)定点観測はもとより、風水害、地震、津波、高潮等の発生時には、事態の終息後直ちに変動測定することができ、被災状況に応じた復旧を迅速且つ的確に行なうことができる。
(4)筒体を介してグラウト充填作業を行なうことができる。The present invention has the following excellent effects.
(1) By attaching and observing the apparatus of the present invention on the top-end concrete of a coastal / river embankment or a sloped embankment, early detection and countermeasures against the cavitation phenomenon are possible. Moreover, by dissipating the lifting pressure generated on the levee basement surface as the water level rises, collapse of the levee body can be prevented in advance.
(2) It is possible to easily observe the cavities due to the settlement of the bottom surface of the embankment-top covered concrete whenever necessary.
(3) In addition to fixed-point observation, in the event of storms and floods, earthquakes, tsunamis, storm surges, etc., fluctuations can be measured immediately after the situation ends, and restoration according to the disaster situation can be performed quickly and accurately.
(4) The grout filling operation can be performed through the cylinder.
以下、図面に基づいて本発明に係る空洞量点検兼用揚力除去装置を、堤防(防潮堤・高潮堤)1、傾斜堤2に設置した実施形態を説明するが、便宜上、同様の構成要素には同一の参照符号を付して説明する。
空洞量点検兼用揚圧力除去装置15、16、17は、常時においては、筒体18、19、20の装置上端部に蓋29、30を取付けて、堤防管理車両・人の通行を円滑にし、空洞量点検及びクラウド充填注入時には蓋29、30を取り外して作業をし、また、揚圧力発生時には堤体内部の圧力が上昇し、装置上端に取り付けた蓋29、30を飛ばし、内部圧力を放散するようにされている。In the following, an embodiment in which the apparatus for removing lift for combined use of cavities according to the present invention is installed on a levee (sea tide embankment / high tide embankment) 1 and an
The lift
図1は、本発明に係る空洞量点検兼用揚力除去装置(以下、単に同装置という)15、16、17を堤防1及び傾斜堤2に設置した状態を示す断面図で、堤防1については、天端被覆コンクリート3の下層は、堤体土7上層に裏込め材4が敷き均された構成とされている。堤体土7の中に同装置15の下部を埋め込み設置する。尚、15は同装置に検知体26付円形沈下板24を取り付けた装置。16、17は同装置に角型沈下板25を取り付けた装置である。 FIG. 1 is a cross-sectional view showing a state in which cavities inspection and lift removal devices (hereinafter simply referred to as the same device) 15, 16, and 17 according to the present invention are installed on the
傾斜堤2については、図1(B)及び図1(C)に示すように、天端被覆コンクリート3下層の構成が、捨てコンクリート6が打設されている場合と、捨てコンクリート6が打設されていない場合がある。図中一点鎖線で表示した中心線Lから左側半分は、割栗石5と裏込め材4を敷設した場合であり、右側半分は捨てコンクリート6と裏込め材4を敷設した場合を示す。装置15下端の円形沈下板24は、堤体土7中に埋め込み、同装置16、17下端の角形沈下板25は割栗石5の中に埋め込み、裏込め材4の表面に載置する。尚、同装置本体の主材料は、ステンレス、スチール、硬質塩化ビニール製で、スチール部分は亜鉛メッキを施し、防錆効果を高めている。 As for the
図2は、同装置15、16、17が設置された拡大断面図であり、設置手段として、図2(a)に示すように、同装置15は、堤本体土7の中に同装置15本体の下部と検知棒26を取り付けた円形沈下板24を埋め込み、裏込め材4を敷き均した後に、天端被覆コンクリート3を打設する。図2(b−1)及び図2(c−1)に示すように、同装置16、17では、左側は割栗石5を敷き均した後に、その表面から所定の深さ(数センチ)下げたところに、吸出し防止シート9を敷き、その上に円筒形枠10を設置し、同型枠中央に同装置16、17を設置して、型枠内部に砂11を充填後に、天端被覆コンクリート3を打設する。
図2(b−2)及び図2(c−2)においては、裏込め材4を敷き均した後に、その表面に吸出し防止シート9を敷く。その上に円筒形枠10を設置、同型枠中央に同装置16、17を設置してから型枠内部に砂11を充填後に天端被覆コンクリート3を打設する。FIG. 2 is an enlarged cross-sectional view in which the
In FIG. 2 (b-2) and FIG. 2 (c-2), after the backfilling material 4 is spread and leveled, the suction prevention sheet 9 is spread on the surface thereof. The
図2の手順で設置された装置15、16、17は、図3に示すような動きを示すもので、同装置15は沈下12に対し、堤体土7が沈下12現象を起こすと共に、円形沈下板24が反応を示して降下し始める。また、図1のように、水位8が上昇して、堤体に揚圧力13が発生する。発生した揚圧力13は上昇して円形沈下板24に取り付けられた、沈下検測装置内筒管21の内部を通り抜け、圧縮空気14となり、逆止弁装置27を押し上げて、その勢いで蓋体29を噴き飛ばす。噴き飛ばされた蓋体29は、紛失しないように、連結鎖31で結ばれている。同装置16、17については、同装置15同様に地盤沈下に追随して下降動作が起こり、揚圧力現象が発生した場合も同様の作動をする。 The
図4に示すように、同装置15は装置外筒管18内に沈下検測用内筒管21及びその下端に検知棒26を取付けた円形沈下板24を装着している。空洞量測定に当っては、装置外筒管18上端の蓋体29を取り外し、装置外筒管18内部に取り付けた逆止弁装置27の解放取手32を開き、定規等を挿入し、沈下装置測定内筒管21上端に到達させて、空洞量を同装置15上端で計測する。 As shown in FIG. 4, the
揚圧力13は、沈下装置検測内筒管21内部を抜けて、圧縮空気14が逆止弁装置27を押し上げ、その勢いで蓋体29が飛ばされて圧力が放散される。飛ばされた蓋体29は、紛失しないように、連結鎖31で結ばれている。また、天端被覆コンクリート3の上面を堤防管理車両が通過し、同蓋29に輪荷重が負荷されるおそれがあるので、耐荷重性能構造としている。 The
空洞部へのグラウト充填注入作業は、蓋体29を取り外し充填注入作業が可能である。同装置外筒管18、19の上部には、固定金具33を取付けており、装置設置時完了後に移動しないように、他の支持金具に緊結する。同装置15が設置完了後に装置外筒管21下端と円形孔沈下板26の接触面から浸水しないように、円形ゴム製パッキン34を取付けている。 The grout filling / injecting operation into the cavity can be performed by removing the
同装置16は、15と同様の構造であり、角形沈下板25を取付け、検知棒26を装着していない。揚圧力13は、沈下検測装置内管22内部を抜け、天端被覆コンクリート3上面に放散される。同装置17は15と同様の構造であるが、角形沈下板25を取付け、検知棒26を装着していない。装置外筒管20内部に沈下検測用棒23を取付けて、角形沈下板25に固定している。角形沈下板25には、揚圧力抜き孔37を数箇所設けて、揚圧力13が同装置外筒管20内に滞留し易くしており、装置外筒管20と角形沈下板25の接触面には、浸水防止の角形ゴム製パッキング35を取付けている。 The
図5は、同装置の蓋体29、逆止弁装置27の構造図である。連結鎖31で吹き飛ばされた蓋体29が紛失されないように、同装置15、16に結んでいる。蓋体29上を車両が通過するおそれがあるので、耐荷重構造とし、雨水浸水防止及び輪荷重が上載された時の緩衝ゴムパッキング40を装着している。逆止弁装置27は圧縮空気14が容易に除去されるように、弾性ゴム板38を固定板39にビス41で止めて、変形・移動しない構造としている。図6は、同装置17の蓋体30、逆止弁装置28の構造図であり、連結鎖31で吹き飛ばされて紛失しないように、同装置17に結んでいる。蓋体30上を車両が通過するおそれがあるので、耐荷重構造としている。 FIG. 5 is a structural diagram of the
1 堤防(防潮提・高潮堤)
2 傾斜堤
3 天端被覆コンクリート
4 裏込材
5 割栗石
6 捨コンクリート
7 堤体土
8 水位
9 吸出し防止シート
10 円筒型枠
11 砂
12 沈下
13 揚圧力
14 圧縮空気
15 ステンレス製検知棒付空洞量点検兼用圧力除去装置
16 スチール製空洞量点検兼用圧力除去装置
17 硬質塩化ビニール製空洞量点検兼用圧力除去装置
18 装置外筒管(ステンレス製)
19 装置外筒管(スチール亜鉛メッキ製)
20 装置外筒管(硬質塩化ビニール製)
21 沈下装置検測内筒管(ステンレス製)
22 沈下装置検測内筒管(スチール亜鉛メッキ製)
23 沈下装置検測棒(スチール亜鉛メッキ製)
24 円形沈下板
25 角形沈下板
26 検知棒
27 逆止弁装置
28 硬質塩化ビニール製装置用逆止弁装置
29 蓋体
30 硬質塩化ビニール製装置用蓋体
31 連結鎖
32 解放取手
33 装置本体固定金具
34 円形ゴム製パッキング
35 角形ゴム製パッキング
36 水抜き孔
37 揚圧力抜き孔
38 弾性ゴム板
39 固定板
40 緩衝ゴムパッキング
41 ビス1 dike
2
19 Equipment outer tube (steel galvanized)
20 Device outer tube (made of hard vinyl chloride)
21 Sinking device inspection inner tube (made of stainless steel)
22 Subsidence device inspection inner tube (steel galvanized)
23 Subsidence device inspection rod (steel galvanized)
24
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013170767A JP6029015B2 (en) | 2013-08-03 | 2013-08-03 | Cavity check and lifting pressure removal device and installation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013170767A JP6029015B2 (en) | 2013-08-03 | 2013-08-03 | Cavity check and lifting pressure removal device and installation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015031148A JP2015031148A (en) | 2015-02-16 |
JP6029015B2 true JP6029015B2 (en) | 2016-11-24 |
Family
ID=52516700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013170767A Expired - Fee Related JP6029015B2 (en) | 2013-08-03 | 2013-08-03 | Cavity check and lifting pressure removal device and installation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6029015B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105674955B (en) * | 2016-01-08 | 2018-08-10 | 天津大学 | Manual inflation's method controls the field testing procedure and device of surface subsidence |
CN107620328A (en) * | 2017-08-14 | 2018-01-23 | 贵州乌江水电开发有限责任公司索风营发电厂 | Dam dam base drainage well reconstruction structure and method |
PL3736382T3 (en) | 2018-02-09 | 2023-02-13 | Sumitomo Corporation | Erosion prevention unit and erosion prevention method |
CN108333109B (en) * | 2018-02-27 | 2020-09-25 | 华北水利水电大学 | Concrete structure internal crack monitoring device and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01229907A (en) * | 1988-03-10 | 1989-09-13 | Kokusai Kogyo Kk | Sinkage meter |
JP5043759B2 (en) * | 2008-06-16 | 2012-10-10 | 東京ファブリック工業株式会社 | Investigation hole and solidifying material injection device and method of ground investigation and solidification material injection to a structure in which the inspection hole and solidification material injection device is installed |
JP4877558B2 (en) * | 2008-10-10 | 2012-02-15 | 日新興業株式会社 | Concrete civil engineering structure |
-
2013
- 2013-08-03 JP JP2013170767A patent/JP6029015B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015031148A (en) | 2015-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tan et al. | Deep excavation of the Gate of the Orient in Suzhou stiff clay: Composite earth-retaining systems and dewatering plans | |
JP6029015B2 (en) | Cavity check and lifting pressure removal device and installation method | |
CN103711151B (en) | Wave pressure sensor pre-embedded device and method for embedding thereof | |
JP4877558B2 (en) | Concrete civil engineering structure | |
CN113884364B (en) | Sample preparation method for rock-soil body in-situ penetration test | |
Korff et al. | Ground displacements related to deep excavation in Amsterdam | |
TWI535914B (en) | Buried Method of Dynamic Monitoring Device for River Depth | |
Nielsen et al. | Dynamic behaviour of mono bucket foundations subjected to combined transient loading | |
Bo et al. | Geotechnical Instrumentation and Applications | |
Hamada et al. | Soil liquefaction and countermeasures | |
JP3226685U (en) | Cavity amount inspection hole lid structure | |
JP2012167421A (en) | Device for measuring amount of settlement of ground for concrete civil engineering structure and construction method for the same | |
Choobbasti et al. | Modeling of the uplift response of buried pipelines | |
Tan et al. | Challenges in design and construction of deep excavation for KVMRT in Kuala Lumpur limestone formation | |
JP5669192B2 (en) | Quay structure or revetment structure | |
Bjerrum et al. | Measuring instruments for strutted excavations | |
Teparaksa et al. | Displacement of diaphragm wall for very deep basement excavation in soft Bangkok clay | |
Srivastava et al. | Stability analyses of 18 m deep excavation using micro piles | |
Roth et al. | Analyzing the seismic performance of wharves, part 2: SSI analysis with non-linear, effective-stress soil models | |
Ng et al. | Physical modelling in geotechnics | |
Teparaksa | Performance of contiguous pile wall for deep excavation on chao phraya river bank | |
POPA et al. | Back analysis of an embedded retaining wall for a deep excavation in Bucharest | |
Hoffman et al. | Ground movements caused by caisson installation at the Lurie Excavation project | |
Wang et al. | Performance of an asymmetric pit-in-pit excavation supported by diaphragm wall and multi uplift piles system in coastal areas | |
Jacob | Optimization of Design and Monitoring of Immersed Tunnels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6029015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |