JP6020963B2 - Manufacturing method of high-speed tool steel material with excellent hot workability - Google Patents
Manufacturing method of high-speed tool steel material with excellent hot workability Download PDFInfo
- Publication number
- JP6020963B2 JP6020963B2 JP2012248284A JP2012248284A JP6020963B2 JP 6020963 B2 JP6020963 B2 JP 6020963B2 JP 2012248284 A JP2012248284 A JP 2012248284A JP 2012248284 A JP2012248284 A JP 2012248284A JP 6020963 B2 JP6020963 B2 JP 6020963B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- speed tool
- tool steel
- less
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001315 Tool steel Inorganic materials 0.000 title claims description 57
- 239000000463 material Substances 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 229910000831 Steel Inorganic materials 0.000 claims description 93
- 239000010959 steel Substances 0.000 claims description 93
- 239000002893 slag Substances 0.000 claims description 36
- 238000007670 refining Methods 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 26
- 238000005266 casting Methods 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 229910004709 CaSi Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 30
- 230000000694 effects Effects 0.000 description 11
- 238000006477 desulfuration reaction Methods 0.000 description 7
- 230000023556 desulfurization Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003009 desulfurizing effect Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/36—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、各種の切削工具、切断工具や、金型等に用いられる、熱間加工性に優れた高速度工具鋼素材の製造方法に関するものである。 The present invention relates to a method for producing a high-speed tool steel material excellent in hot workability and used for various cutting tools, cutting tools, dies, and the like.
従来、高速度工具鋼に添加したCaは、組織中のMC型炭化物の絶対量を増やし、かつ、それを微細にする効果を有することが知られている。そして、Caが添加された高速度工具鋼に対して、Sを低減し、更にはNを低減した高速度工具鋼は、上記のCaによる効果が高まることから、その結果、製品としたときのチッピングや欠けの抑制に優れ、寿命の向上に有効である(特許文献1)。そして、高速度工具鋼に添加されたCaは、凝固組織を微細化する元素としても作用し、熱間加工性を向上する(特許文献2)。 Conventionally, it is known that Ca added to high-speed tool steel has an effect of increasing the absolute amount of MC type carbide in the structure and making it finer. And the high-speed tool steel which reduced S with respect to the high-speed tool steel with which Ca was added, and also reduced N increases the effect by said Ca, As a result, when it was set as a product It is excellent in suppressing chipping and chipping and is effective in improving the life (Patent Document 1). And Ca added to high-speed tool steel acts also as an element which refines | miniaturizes a solidification structure | tissue, and improves hot workability (patent document 2).
通常、高速度工具鋼でなる上記の製品は、所定の成分組成に調整された溶鋼を鋳造して鋼塊や鋼片等の素材とし、あるいは該溶鋼を鋳造して得た粉末を焼結して素材とし、これに熱間加工を行って、その後、種々の加工と熱処理を経て、最終の形状および特性に仕上げられる。上述のCaが添加された高速度工具鋼素材の場合、その鋳造前の溶鋼の成分組成は、真空誘導炉で調整されていた(特許文献1、2)。または、S量を低減するためには、取鍋によるスラグ精錬が適用されていた(特許文献3)。 Usually, the above products made of high-speed tool steel are obtained by casting molten steel adjusted to a predetermined composition to form a material such as a steel ingot or slab, or by sintering powder obtained by casting the molten steel. The material is subjected to hot working, and then subjected to various processing and heat treatments to finish the final shape and characteristics. In the case of the high-speed tool steel material to which Ca is added, the component composition of the molten steel before casting has been adjusted in a vacuum induction furnace (Patent Documents 1 and 2). Or in order to reduce S amount, the slag refining by a ladle was applied (patent document 3).
特許文献1〜3の高速度工具鋼の成分組成を、真空溶解によって調整することは、可能である。しかし、素材のS量を極微量に低減する場合は、もとよりS量の低い高級原料を準備する必要があり、製造コストの増大を招く。また、Caは、比較的沸点が低い(蒸気圧が高い)元素である。よって、溶鋼量の多い実操業で真空溶解を用いて成分調整を行うとなれば、ボイリング作用のある真空下でのCa添加が必要となり、溶鋼中に添加したCa量が安定しないといった課題がある。また、脱硫を目的としたスラグ精錬で、脱硫と同時にCaを添加しようとすると、溶鋼中に添加したCaがSと結合して硫化物を形成することから、結果として、鋳造後の素材が所定量のCaを含有したとしても、Ca単体で発現する上記の効果が薄れる。 It is possible to adjust the component composition of the high-speed tool steels of Patent Documents 1 to 3 by vacuum melting. However, when the amount of S in the material is reduced to a very small amount, it is necessary to prepare a high-grade raw material with a low amount of S as a matter of course, leading to an increase in manufacturing cost. Ca is an element having a relatively low boiling point (high vapor pressure). Therefore, if component adjustment is performed using vacuum melting in an actual operation with a large amount of molten steel, it is necessary to add Ca under a vacuum with a boiling action, and there is a problem that the amount of Ca added in the molten steel is not stable. . In addition, when Ca is added simultaneously with desulfurization in slag refining for desulfurization, Ca added to the molten steel combines with S to form sulfides. Even if a fixed amount of Ca is contained, the above-described effect expressed by Ca alone is weakened.
本発明の課題は、例えば特許文献1〜3等の成分組成を有する高速度工具鋼素材の製造方法において、該素材中のSやNを低い含有量にまで低減でき、狙い量のCaを添加できることで、優れた熱間加工性を安定して維持できる高速度工具鋼素材の製造方法を提供することである。 The problem of the present invention is that, for example, in a method for producing a high-speed tool steel material having a component composition such as Patent Documents 1 to 3, S and N in the material can be reduced to a low content, and a target amount of Ca is added. By being able to do it, it is providing the manufacturing method of the high-speed tool steel raw material which can maintain the outstanding hot workability stably.
本発明者は、特許文献1〜3等の成分組成を有した高速度工具鋼素材の製造方法について、溶解工程における脱硫や脱窒素とCa添加のタイミングの最適化を検討した。その結果、例えば真空精錬等の後工程に、溶鋼中のSを効率的に除去できるスラグ精錬を適用して、SやNを十分に低減してから、溶鋼にCaを添加する順序とすることで、1回の溶解量が多い実操業においても狙い量のCaを添加でき、かつ、鋳造後の素材はCaの硫化物の形成が抑制された高速度工具鋼素材を製造できることを見いだし、本発明に到達した。 This inventor examined the optimization of the timing of desulfurization, denitrification, and Ca addition in a melt | dissolution process about the manufacturing method of the high speed tool steel raw material which has component composition of patent documents 1-3. As a result, for example, slag refining that can efficiently remove S in the molten steel is applied to subsequent processes such as vacuum refining, and S and N are sufficiently reduced before Ca is added to the molten steel. In actual operation with a large amount of dissolution at one time, it was found that a target amount of Ca can be added, and the material after casting can produce a high-speed tool steel material in which the formation of Ca sulfide is suppressed. The invention has been reached.
すなわち、本発明は、
高速度工具鋼の成分組成を有する溶鋼を準備する第1工程と、
前記の準備した溶鋼をスラグ精錬して、溶鋼中のSを0.004質量%以下に低減する第2工程と、
前記のスラグ精錬した溶鋼にCaを添加して、溶鋼中のCaを0.005〜0.015質量%に調整する第3工程と、
前記のCaを添加した溶鋼を鋳造する第4工程と、
からなることを特徴とする熱間加工性に優れた高速度工具鋼素材の製造方法である。
That is, the present invention
A first step of preparing molten steel having a component composition of high-speed tool steel;
A second step of refining the prepared molten steel with slag to reduce S in the molten steel to 0.004% by mass or less;
A third step of adding Ca to the slag refined molten steel to adjust Ca in the molten steel to 0.005 to 0.015 mass%;
A fourth step of casting the molten steel to which the Ca is added;
It is a manufacturing method of the high-speed tool steel raw material excellent in hot workability characterized by consisting of.
第1工程で準備する溶鋼は、質量%で、
C:0.5〜2.2%、
Cr:3.0〜7.0%、
WおよびMoの1種または2種による(W+2Mo):5.0〜30.0%、
V:0.6〜5.0%、
を含む高速度工具鋼の成分組成であることが好ましい。
The molten steel prepared in the first step is mass%,
C: 0.5-2.2%
Cr: 3.0-7.0%,
According to one or two of W and Mo (W + 2Mo): 5.0 to 30.0%,
V: 0.6-5.0%
It is preferable that it is a component composition of the high-speed tool steel containing.
また、第1工程で準備する溶鋼は、真空精錬したものであることが好ましい。あるいはさらに、第3工程での溶鋼へのCaの添加は、スラグ精錬を終えた後の溶鋼の上面を覆っているスラグを貫通して、溶鋼の深部にCa源を投入して行うことが好ましい。この場合、投入するCa源は、CaSi合金であることが好ましい。第4工程で鋳造する前の溶鋼は、Nが0.01質量%以下に低減されていることが好ましい。 Moreover, it is preferable that the molten steel prepared at a 1st process is what was vacuum refined. Alternatively, the addition of Ca to the molten steel in the third step is preferably performed by penetrating the slag covering the upper surface of the molten steel after finishing the slag refining and introducing a Ca source into the deep part of the molten steel. . In this case, the input Ca source is preferably a CaSi alloy. In the molten steel before casting in the fourth step, N is preferably reduced to 0.01% by mass or less.
そして得られた高速度工具鋼素材は、質量%で、
C:0.5〜2.2%、
Si:0.1〜1.0%、
Mn:0.1〜1.0%、
S:0.004%以下、
Cr:3.0〜7.0%、
WおよびMoの1種または2種による(W+2Mo):5.0〜30.0%、
V:0.6〜5.0%、
Al:0.3%以下(0%を含む)、
Ca:0.005〜0.015%、
N:0.01%以下、
O:0.004%以下、
残部Feおよび不可避的不純物でなることが好ましい。この高速度工具鋼素材は、さらに、Co:10.0%以下を含んでもよい。
And the obtained high speed tool steel material is mass%,
C: 0.5-2.2%
Si: 0.1 to 1.0%,
Mn: 0.1 to 1.0%,
S: 0.004% or less,
Cr: 3.0-7.0%,
According to one or two of W and Mo (W + 2Mo): 5.0 to 30.0%,
V: 0.6-5.0%
Al: 0.3% or less (including 0%),
Ca: 0.005 to 0.015%,
N: 0.01% or less,
O: 0.004% or less,
The balance is preferably composed of Fe and inevitable impurities. The high-speed tool steel material may further include Co: 10.0% or less.
本発明によれば、熱間加工性に優れる特許文献1〜3等の成分組成を有する高速度工具鋼素材を、効率的に、かつ、再現性よく製造できる。これによって、該素材から作製される最終製品の長寿命化に有用な技術となる。 According to the present invention, a high-speed tool steel material having a component composition such as Patent Documents 1 to 3 having excellent hot workability can be manufactured efficiently and with good reproducibility. This is a technique useful for extending the life of the final product made from the material.
本発明の特徴は、特許文献1〜3等で提案される熱間加工性に優れた高速度工具鋼素材の製造方法を見直したことで、鋼中のSやNは低いレベルにまで除去でき、Caは狙い量を添加できる工程を明確にし、これによって該素材の有する熱間加工性を安定して維持できたところにある。以下に、本発明の各構成要件について説明する。 The feature of the present invention is that the S and N in the steel can be removed to a low level by reviewing the manufacturing method of the high-speed tool steel material excellent in hot workability proposed in Patent Documents 1 to 3 and the like. , Ca clarifies the process in which the target amount can be added, and thereby the hot workability of the material can be stably maintained. Below, each component of this invention is demonstrated.
[高速度工具鋼素材の成分組成について]
最初に、優れた熱間加工性を達成するのに好ましい高速度工具鋼素材の成分組成(質量%)を説明しておく。そして、後述する本発明の製造方法は、このような成分組成の高速度工具鋼素材を製造するときに、最適である。
[Composition composition of high-speed tool steel material]
First, the component composition (mass%) of a high-speed tool steel material that is preferable for achieving excellent hot workability will be described. And the manufacturing method of this invention mentioned later is optimal when manufacturing the high-speed tool steel raw material of such a component composition.
・C:0.5〜2.2%
Cは、Cr,W、Mo、Vと結合して炭化物を形成し、焼入れ焼戻し硬さを与え、耐摩耗性を向上する元素である。しかし、多すぎると、靭性が低下する。よって、後述するCr,W、Mo、V量とバランスさせた上で、0.5〜2.2%とすることが好ましい。より好ましくは、1.0%以上および/または1.5%以下である。さらに好ましくは、1.3%以下である。
・ C: 0.5-2.2%
C is an element that combines with Cr, W, Mo, and V to form carbides, imparts quenching and tempering hardness, and improves wear resistance. However, when too much, toughness falls. Therefore, it is preferably 0.5 to 2.2% after balancing with the Cr, W, Mo, and V amounts described later. More preferably, it is 1.0% or more and / or 1.5% or less. More preferably, it is 1.3% or less.
・Si:0.1〜1.0%
Siは、通常、溶解工程における脱酸剤として使用される。しかし、多すぎると、靭性が低下するので、0.1〜1.0%が好ましい。より好ましくは、0.6%以下である。
・ Si: 0.1-1.0%
Si is usually used as a deoxidizer in the dissolution process. However, if the amount is too large, the toughness decreases, so 0.1 to 1.0% is preferable. More preferably, it is 0.6% or less.
・Mn:0.1〜1.0%
Mnは、Siと同様、脱酸剤として使用される。しかし、多すぎると、焼入れ焼戻し後の組織中に残留オーステナイトが多くなり、靭性を低下させるので、0.1〜1.0%が好ましい。より好ましくは、0.2%以上および/または0.5%以下である。
Mn: 0.1 to 1.0%
Mn is used as a deoxidizer in the same manner as Si. However, if the amount is too large, the retained austenite increases in the structure after quenching and tempering, and the toughness is reduced, so 0.1 to 1.0% is preferable. More preferably, it is 0.2% or more and / or 0.5% or less.
・S:0.004%以下
Sは、多すぎると、それ自体が熱間加工性を阻害するのに加えて、本発明が添加する後述のCaと結合することで、Ca単体が発揮する熱間加工性等の向上効果も阻害する。よって、Sは低減すべき元素であり、0.004%以下に規制することが好ましい。より好ましくは、0.002%以下、さらに好ましくは0.001%以下である。
-S: 0.004% or less When S is too much, in addition to inhibiting hot workability itself, it combines with Ca described later added by the present invention, whereby the heat exerted by Ca alone is exhibited. The improvement effect such as inter-workability is also hindered. Therefore, S is an element to be reduced and is preferably regulated to 0.004% or less. More preferably, it is 0.002% or less, and still more preferably 0.001% or less.
・Cr:3.0〜7.0%
Crは、焼入性、耐摩耗性、耐酸化性等を付与するのに有効な元素である。しかし、多すぎると、靭性、高温強度、焼戻し軟化特性を低下させる。よって、3.0〜7.0%が好ましい。より好ましくは、3.5%以上および/または5.0%以下である。
・ Cr: 3.0-7.0%
Cr is an element effective for imparting hardenability, wear resistance, oxidation resistance, and the like. However, if the amount is too large, the toughness, high-temperature strength, and temper softening properties are reduced. Therefore, 3.0 to 7.0% is preferable. More preferably, it is 3.5% or more and / or 5.0% or less.
・WおよびMoの1種または2種による(W+2Mo):5.0〜30.0%
WおよびMoは、Cと結合して特殊な炭化物を形成して、耐摩耗性や耐焼付き性を付与する。また、焼戻し時の2次硬化作用が大きく、高温強度も向上する。しかし、多すぎると、熱間加工性を阻害する。よって、(W+2Mo)の関係式において、これらの1種または2種を5.0〜30.0%とすることが好ましい。より好ましくは、10.0%以上および/または25.0%以下である。さらに好ましくは、15.0%以上および/または22.0%以下である。
-By 1 or 2 types of W and Mo (W + 2Mo): 5.0 to 30.0%
W and Mo combine with C to form a special carbide and impart wear resistance and seizure resistance. Moreover, the secondary hardening action at the time of tempering is large, and the high-temperature strength is also improved. However, when too much, hot workability will be inhibited. Therefore, in the relational expression of (W + 2Mo), it is preferable that one or two of these be 5.0 to 30.0%. More preferably, it is 10.0% or more and / or 25.0% or less. More preferably, it is 15.0% or more and / or 22.0% or less.
・V:0.6〜5.0%
Vは、Cと結合して硬質の炭化物を形成し、耐摩耗性の向上に寄与する。しかし、多すぎると、靭性が低下する。よって、0.6〜5.0%とすることが好ましい。より好ましくは、1.0%以上および/または4.0%以下である。3.5%以下が、さらに好ましい。
・ V: 0.6-5.0%
V combines with C to form a hard carbide, which contributes to improved wear resistance. However, when too much, toughness falls. Therefore, it is preferable to set it as 0.6 to 5.0%. More preferably, it is 1.0% or more and / or 4.0% or less. 3.5% or less is more preferable.
・Ca:0.005〜0.015%
Caは、鋳造時における凝固過程でデンドライト晶を発達させ、鋳造組織を均一微細にするので、素材の熱間加工性を向上する効果を有する。また、MC型炭化物の絶対量を増やし、かつ、それを微細にするので、製品としたときのチッピングや欠けを抑制する。しかし、多すぎると、Caの酸化物が介在物となって素材中に残留し、高速度工具鋼素材の清浄度を低める。よって、添加するCaは、0.005〜0.015%とすることが好ましい。より好ましくは、0.006%以上および/または0.01%以下である。
・ Ca: 0.005 to 0.015%
Ca develops dendrite crystals in the solidification process during casting and makes the cast structure uniform and fine, and thus has the effect of improving the hot workability of the material. Moreover, since the absolute amount of MC type carbide is increased and it is made finer, chipping and chipping in a product are suppressed. However, if it is too much, Ca oxide becomes inclusions and remains in the material, and the cleanliness of the high-speed tool steel material is lowered. Therefore, Ca to be added is preferably 0.005 to 0.015%. More preferably, it is 0.006% or more and / or 0.01% or less.
・N:0.01%以下
Nは、素材中に不可避的に存在する。そして、多すぎると、素材中のMC型炭化物が粗大化して、上記のCa添加による効果を大きく阻害する。よって、素材中のNは、0.01%以下に規制することが好ましい。より好ましくは0.005%以下、さらに好ましくは0.002%以下にまで規制することが重要である。
N: 0.01% or less N is unavoidably present in the material. And when too much, MC type carbide in a raw material will coarsen and the effect by said Ca addition will be inhibited greatly. Therefore, N in the material is preferably regulated to 0.01% or less. More preferably, it is important to regulate the amount to 0.005% or less, and further preferably to 0.002% or less.
鋼中のNの固溶度は、Crの含有量が高くなるにつれて増加する。そして、本発明に係るCr量の高速度工具鋼の場合、溶鋼量が多い実操業だと、鋳造後の素材中のN量は、添加の意図がなくても容易に数百ppmを越えてしまう。したがって、本発明の高速度工具鋼素材の製造方法にとって、そのN量を上記の規制値内に極低減するための溶解方法は重要である。そして、この極低減されたN量は、後述する本発明の製造方法によって、安定的かつ効率的に達成することができる。 The solid solubility of N in steel increases as the Cr content increases. And, in the case of the high speed tool steel of Cr amount according to the present invention, if it is an actual operation with a large amount of molten steel, the amount of N in the raw material after casting easily exceeds several hundred ppm even without intention of addition. End up. Therefore, for the method for producing a high-speed tool steel material of the present invention, a melting method for extremely reducing the N amount within the above-mentioned regulation value is important. And this extremely reduced amount of N can be achieved stably and efficiently by the production method of the present invention described later.
・O:0.004%以下
Oは、鋼中に不可避的に存在して、酸化物を形成する元素である。多すぎると、素材中に形成された酸化物が製品の品位を下げる。また、Caを添加した本発明に係る高速度工具鋼においては、Caと結合することで、Caの上記効果も阻害する。よって、素材中のOは、上限を0.004%に規制することが好ましい。より好ましくは、0.002%以下である。そして、この素材中の極低減されたO量は、後述する本発明の製造方法によって、安定的かつ効率的に達成することができる。
O: 0.004% or less O is an element that inevitably exists in steel and forms an oxide. If too much, the oxides formed in the material will reduce the quality of the product. Moreover, in the high-speed tool steel according to the present invention to which Ca is added, by combining with Ca, the above effect of Ca is also inhibited. Therefore, the upper limit of O in the material is preferably regulated to 0.004%. More preferably, it is 0.002% or less. The extremely reduced amount of O in the material can be achieved stably and efficiently by the production method of the present invention described later.
その他、本発明の製造方法によって製造される高速度工具鋼素材は、10.0%以下のCoや、0.3%以下のAlを含んでもよい。Coは、基地中に固溶して、製品の強度や耐熱性を向上させる。Alは、上述のCaと同様、鋳造組織を均一微細にし、また、MC型炭化物を微細にするので、素材の熱間加工性や製品の寿命を向上する。この効果を得るのに好ましいAl含有量は、0.02%以上である。より好ましくは0.06%以上および/または0.25%以下である。 In addition, the high-speed tool steel material manufactured by the manufacturing method of the present invention may include 10.0% or less Co and 0.3% or less Al. Co is dissolved in the base to improve the strength and heat resistance of the product. Al, like Ca described above, makes the cast structure uniform and fine, and makes the MC type carbide fine, thereby improving the hot workability of the material and the life of the product. A preferable Al content for obtaining this effect is 0.02% or more. More preferably, it is 0.06% or more and / or 0.25% or less.
[高速度工具鋼素材の製造方法について]
上述した0.005〜0.015%のCaを含有し、かつ、Sが0.004%以下、好ましくはNが0.01%以下に規制された高速度工具鋼素材の成分組成は、優れた熱間加工性を達成するのに好ましいものである。そして、本発明の製造方法は、このような成分組成の高速度工具鋼素材を製造するためのものである。以下、本発明の製造方法を構成する第1〜第4工程について説明する。
[About manufacturing method of high-speed tool steel material]
The component composition of the high-speed tool steel material containing 0.005 to 0.015% Ca and having S controlled to 0.004% or less, preferably N to 0.01% or less, is excellent. It is preferable for achieving high hot workability. And the manufacturing method of this invention is for manufacturing the high-speed tool steel raw material of such a component composition. Hereinafter, the 1st-4th process which comprises the manufacturing method of this invention is demonstrated.
・<第1工程> 高速度工具鋼の成分組成を有する溶鋼を準備する工程である。
本発明において、高速度工具鋼を構成する少なくとも主要元素の含有量の調整は、後述する脱硫のための第2工程(スラグ精錬)およびCaを添加する第3工程の前に実施しておく。このときの主要元素とは、例えばC、Cr、W、Mo、Vなどである。そして、これらの含有量は、質量%で、以下とすることが好ましい。
C:0.5〜2.2%、
Cr:3.0〜7.0%、
WおよびMoの1種または2種による(W+2Mo):5.0〜30.0%、
V:0.6〜5.0%、
-<1st process> It is the process of preparing the molten steel which has a component composition of high-speed tool steel.
In the present invention, the content of at least main elements constituting the high-speed tool steel is adjusted before the second step (slag refining) for desulfurization and the third step of adding Ca, which will be described later. The main elements at this time are, for example, C, Cr, W, Mo, V, and the like. And these content is the mass%, and it is preferable to set it as the following.
C: 0.5-2.2%
Cr: 3.0-7.0%,
According to one or two of W and Mo (W + 2Mo): 5.0 to 30.0%,
V: 0.6-5.0%
また、第1工程で準備する溶鋼は、真空精錬したものであることが好ましい。本発明にとって、高速度工具鋼素材中のNやOを低減することが好ましいことは、上述の通りである。特に、Nは、本発明のCa添加による効果を大きく阻害することから、鋳造前の溶鋼の時点で0.01%以下に低減しておくことが好ましい。そして、高速度工具鋼の成分組成は、溶解前の鉄源に原料を調合したり、溶解した溶鋼中に原料を投入したりして、調整されるところ、これらの鉄源や原料が少なからず不純物を含んでいるのであれば、これは素材中のNやOを増やす一要因となる。そこで、第2工程の前の溶鋼には、溶鋼中のCとOとの反応や、この反応に伴うボイリングによって、脱酸素および脱窒素が進行する脱ガス効果に優れた真空精錬を実施しておくことが好ましい。 Moreover, it is preferable that the molten steel prepared at a 1st process is what was vacuum refined. As described above, it is preferable for the present invention to reduce N and O in the high-speed tool steel material. In particular, N greatly reduces the effect of the addition of Ca of the present invention, and therefore it is preferable to reduce it to 0.01% or less at the time of the molten steel before casting. And the component composition of high-speed tool steel is adjusted by preparing raw materials in the iron source before melting, or by introducing the raw materials into the molten molten steel. If it contains impurities, this is one factor that increases N and O in the material. Therefore, the molten steel before the second step is subjected to vacuum refining with excellent degassing effect in which deoxygenation and denitrification proceed by reaction between C and O in the molten steel and boiling accompanying this reaction. It is preferable to keep it.
・<第2工程> 第1工程で準備した溶鋼をスラグ精錬して、溶鋼中のSを0.004%以下に低減する。
第1工程で準備した溶鋼が、たとえNやOの低減されたものであっても、Sが高いものであると、これにCaを添加したところで、Caの多くはSと結合して、硫化物を形成する。その結果、鋳造後の素材が本発明の狙い量である0.005〜0.015%のCaを含有していたとしても、それが上記の硫化物を形成して存在すると、Ca単体で発現する本発明の効果は十分に発揮されない。そこで、鋳造後の素材中に含まれるCaが上記の硫化物を形成しないためには、溶解工程において、Ca量を最終調整する前に、S量を積極的かつ十分に低減しておくことが有効である。そして、本発明は、第1工程で準備した溶鋼に対して、さらにスラグ精錬である第2工程を適用することで、溶鋼中のSを0.004%以下にまで低減してから、Ca量を最終調整するものである。
-<2nd process> The molten steel prepared at the 1st process is slag refined, and S in molten steel is reduced to 0.004% or less.
Even if the molten steel prepared in the first step is reduced in N and O, if S is high, when Ca is added to this, most of Ca is combined with S and sulfided. Form things. As a result, even if the material after casting contains 0.005 to 0.015% of Ca which is the target amount of the present invention, if it is present by forming the above sulfides, it is expressed by Ca alone. The effect of the present invention is not sufficiently exhibited. Therefore, in order for the Ca contained in the raw material after casting not to form the sulfide, it is necessary to positively and sufficiently reduce the S amount before final adjustment of the Ca amount in the melting step. It is valid. And this invention reduces S in a molten steel to 0.004% or less by applying the 2nd process which is slag refining further with respect to the molten steel prepared at the 1st process. Is the final adjustment.
スラグ精錬による脱硫は、溶鋼中のSを脱硫剤と結合させて硫化物とし、これをスラグ中に取り込んで除去するものである。そして、脱硫剤には、従来知られたCaやMg、希土類元素等を用いることができる。脱硫剤にCaを使用したときには、最終調整量のCaを添加する後述の第3工程では、上記の脱硫反応で結果的に余ったCa量に対して、残りのCa量を補完すればよい。スラグは、従来知られた製鋼用スラグから選択して、用いることができる。スラグの構成には、上記の脱硫剤として機能するCaやMgを、CaOやMgOの形態で含むことができる。 In the desulfurization by slag refining, S in molten steel is combined with a desulfurizing agent to form a sulfide, which is taken into the slag and removed. As the desulfurizing agent, conventionally known Ca, Mg, rare earth elements and the like can be used. When Ca is used as the desulfurization agent, the remaining Ca amount may be supplemented with respect to the Ca amount remaining as a result of the desulfurization reaction in the third step to be described later in which the final adjustment amount of Ca is added. The slag can be selected from conventionally known steelmaking slags. The structure of the slag can contain Ca and Mg that function as the desulfurizing agent in the form of CaO and MgO.
・<第3工程> 第2工程でスラグ精錬してSを0.004質量%以下に低減した溶鋼にCaを添加して、溶鋼中のCaを0.005〜0.015質量%に調整する。
第2工程で溶鋼中のSを0.004%以下に低減しておけば、これにCaを添加しても、その多くが硫化物を形成することを抑制できる。そして、この工程順を経て、0.005〜0.015%のCaを添加した溶鋼を鋳造すれば、鋳造後の素材は優れた熱間加工性が達成される。
-<3rd process> Ca is added to the molten steel which refined slag in the 2nd process, and reduced S to 0.004 mass% or less, and adjusts Ca in molten steel to 0.005-0.015 mass%. .
If S in the molten steel is reduced to 0.004% or less in the second step, even if Ca is added thereto, most of them can be prevented from forming sulfides. And if this process order is followed and the molten steel which added 0.005-0.015% Ca is cast, the outstanding hot workability will be achieved for the raw material after casting.
そして、第3工程での溶鋼へのCaの添加は、スラグ精錬を終えた後の溶鋼の上面を覆っているスラグを貫通して、溶鋼の深部にCa源を投入して行うことが好ましい。スラグ精錬は、通常、取鍋中の溶鋼に対して大気圧下で実施される。よって、S量を低減するためのスラグ精錬が終了したときには、引き続いて、そのスラグを貫通して溶鋼の深部にCa源を投入すれば、存在したままのスラグが溶鋼の上面を覆ってCaの蒸発を抑えることができるので、Caの添加歩留が向上する。また、このときのCa源は、CaSi合金などの化合物形態で溶鋼に投入すれば、投入直後の蒸発をさらに抑制でき、Caの添加歩留がさらに向上する。そして、第2工程で用いたスラグ精錬装置を使用でき、かつ、それにある撹拌装置を活用できるので、特別な投入設備を要せずに、Caの添加歩留を向上させることができる。 And it is preferable to add Ca to the molten steel in the third step by penetrating the slag covering the upper surface of the molten steel after finishing the slag refining and introducing a Ca source into the deep part of the molten steel. Slag refining is usually performed under atmospheric pressure on the molten steel in the ladle. Therefore, when the slag refining for reducing the amount of S is completed, if the Ca source is continuously introduced through the slag and the deep portion of the molten steel, the existing slag covers the upper surface of the molten steel and the Ca Since evaporation can be suppressed, the Ca addition yield is improved. Further, if the Ca source at this time is introduced into the molten steel in the form of a compound such as a CaSi alloy, evaporation immediately after the addition can be further suppressed, and the Ca addition yield is further improved. And since the slag refining apparatus used at the 2nd process can be used and the stirring apparatus in it can be utilized, it can improve the addition yield of Ca, without requiring special input equipment.
・<第4工程> 第3工程でCaを添加した溶鋼を鋳造する。
以上によって成分組成の調整された溶鋼を鋳造して、高速度工具鋼素材を得る。鋳造の手法は、インゴットケースを使用した普通造塊法の他に、連続鋳造法や、一旦鋳造後の鋼塊に実施する再溶解法等、その手法を問わない。アトマイズ法で得られた粉末を、焼結等によって固化してもよい。そして、鋳造後の素材には、通常、鍛造や圧延等の熱間加工が施されるところ、本発明で得られた素材であれば、この際の割れ等を抑制できる。熱間加工を終えた素材は、必要に応じて、さらなる熱間加工や、冷間加工、機械加工、そして熱処理が実施されて、様々な製品に仕上げられる。
-<4th process> The molten steel which added Ca at the 3rd process is cast.
By casting the molten steel with the component composition adjusted as described above, a high-speed tool steel material is obtained. The casting method may be any method other than the ordinary ingot method using an ingot case, such as a continuous casting method or a remelting method performed once on a steel ingot after casting. The powder obtained by the atomizing method may be solidified by sintering or the like. Then, the material after casting is usually subjected to hot working such as forging and rolling. However, if the material is obtained by the present invention, cracks and the like at this time can be suppressed. The material after the hot working is subjected to further hot working, cold working, machining, and heat treatment as necessary to finish various products.
[本発明例1、2]
所定の成分組成に調整した25tの溶鋼に真空精錬を実施して、溶鋼Aを準備した(第1工程)。本発明例1の溶鋼Aは無添加のCoを0.23%含む成分組成であった。本発明例2の溶鋼AはCoを添加して4.97%含む成分組成に調整した。次に、これらの溶鋼Aに、CaO−CaF2系スラグを用いたスラグ精錬を実施して、溶鋼Bを得た(第2工程)。次に、スラグ精錬を終えた溶鋼Bの深部に、スラグを貫通してフィーダを挿入し、そこから溶鋼中にCaSi合金を投入して、Caを添加した溶鋼Cを得た(第3工程)。CaSi合金の投入量は、Ca成分の歩留を10%としたときに溶鋼中のCa含有量が計算上100ppmとなる量(以下、単に「計算量」という。)である。そして、溶鋼Cを鋳造して、高速度工具鋼素材を製造した(第4工程)。本発明例1および2について、溶鋼A、Bおよび溶鋼C(鋳造後の素材)の成分組成を、それぞれ表1に示す。
[比較例3]
本発明の製造方法に対して、真空精錬を実施した溶鋼Aに、スラグ精錬を実施せずに、Caを添加した溶鋼を鋳造して、高速度工具鋼素材を製造した。Caの添加は、CaSi合金の投入で行い、所定の真空精錬が終了した後の真空環境下にある溶鋼に投入した。CaSi合金の投入量は、溶鋼中のCa含有量が100ppmとなる計算量である。鋳造後の高速度工具鋼素材の成分組成を、表1に示す。
[比較例4]
本発明の製造方法に対して、真空精錬を実施した溶鋼Aに、Caを添加してから、スラグ精錬を実施し、鋳造して、高速度工具鋼素材を製造した。Caの添加は、CaSi合金の投入で行い、所定の真空精錬が終了した後の真空環境下にある溶鋼に投入した。CaSi合金の投入量は、溶鋼中のCa含有量が100ppmとなる計算量である。スラグ精錬には、CaO−CaF2系スラグを用いた。鋳造後の素材の成分組成を、表1に示す。
[Invention Examples 1 and 2]
Vacuum refining was performed on 25 t of molten steel adjusted to a predetermined component composition to prepare molten steel A (first step). Molten steel A of Invention Example 1 had a component composition containing 0.23% Co with no additive. Molten steel A of Invention Example 2 was adjusted to a component composition containing 4.97% by adding Co. Then, these molten steel A, to implement the slag refining using CaO-CaF 2 slag, to obtain molten steel B (second step). Next, a feeder is inserted through the slag into the deep part of the molten steel B that has been subjected to slag refining, and then a CaSi alloy is introduced into the molten steel to obtain a molten steel C to which Ca is added (third step). . The input amount of the CaSi alloy is an amount (hereinafter simply referred to as “calculated amount”) in which the Ca content in the molten steel is 100 ppm in calculation when the Ca component yield is 10%. And the molten steel C was cast and the high-speed tool steel raw material was manufactured (4th process). Table 1 shows the component compositions of molten steels A and B and molten steel C (raw material after casting) for inventive examples 1 and 2.
[Comparative Example 3]
With respect to the manufacturing method of the present invention, high-speed tool steel material was manufactured by casting molten steel added with Ca to molten steel A subjected to vacuum refining without performing slag refining. Ca was added by adding a CaSi alloy, and was added to molten steel in a vacuum environment after predetermined vacuum refining was completed. The input amount of the CaSi alloy is a calculated amount at which the Ca content in the molten steel becomes 100 ppm. Table 1 shows the component composition of the high-speed tool steel material after casting.
[Comparative Example 4]
In the manufacturing method of the present invention, Ca was added to molten steel A subjected to vacuum refining, and then slag refining was performed and cast to manufacture a high-speed tool steel material. Ca was added by adding a CaSi alloy, and was added to molten steel in a vacuum environment after predetermined vacuum refining was completed. The input amount of the CaSi alloy is a calculated amount at which the Ca content in the molten steel becomes 100 ppm. CaO—CaF 2 slag was used for slag refining. Table 1 shows the component composition of the raw material after casting.
表1の結果より、本発明の製造方法で得られたNo.1、2の高速度工具鋼素材は、100ppmの狙いCa量に対して、実際のCa量が87ないし99ppmとなっており、Caが歩留よく添加されていた。そして、S量が2ppm、N量が50ppmのレベルにまで低減されていた。これらに対して、スラグ精錬を省略したNo.3の高速度工具鋼素材では、Ca量は僅か2ppmと歩留が悪く、かつ、S量が45ppmの高いレベルであった。また、スラグ精錬の前にCaを添加したNo.4の高速度工具鋼素材においても、S量が5ppmの低いレベルであったが、Ca量も14ppmの低い含有量であった。 From the results in Table 1, No. obtained by the production method of the present invention. The high-speed tool steel materials 1 and 2 had an actual Ca content of 87 to 99 ppm with respect to the target Ca content of 100 ppm, and Ca was added with a good yield. And the amount of S was reduced to the level of 2 ppm and the amount of N was reduced to 50 ppm. On the other hand, no. In the high-speed tool steel material of No. 3, the Ca content was only 2 ppm, the yield was poor, and the S content was a high level of 45 ppm. In addition, No. in which Ca was added before slag refining. Also in the high-speed tool steel material of No. 4, the S content was a low level of 5 ppm, but the Ca content was a low content of 14 ppm.
実施例1で得られた高速度工具鋼素材を1160℃に加熱して、断面寸法が135×135mm角の鋼片にまで塑性加工する熱間加工を実施した。そして、熱間加工後の鋼片の表面を目視にて観察した。その結果、本発明の製造方法によったNo.1、2の高速度工具鋼素材を熱間加工した鋼片の表面は滑らかであり、著しい割れは確認されなかった(No.1の鋼片の外観を示す図面代用写真を図1に示す)。これに対し、No.3の鋼片には、研削しても除去できないほどの、著しい割れが確認された(外観を示す図面代用写真を図2に示す)。No.4の鋼片には、No.3の鋼片ほどではないが、No.1、2の鋼片に比べて、顕著な割れが確認された。 The high-speed tool steel material obtained in Example 1 was heated to 1160 ° C., and hot working was performed to plastically process to a steel piece having a cross-sectional dimension of 135 × 135 mm square. And the surface of the steel piece after hot processing was observed visually. As a result, no. The surface of the steel slab obtained by hot-working the high-speed tool steel materials 1 and 2 was smooth, and no significant cracks were observed (a drawing substitute photo showing the appearance of the No. 1 steel slab is shown in FIG. 1). . In contrast, no. 3 was confirmed to have a remarkable crack that could not be removed by grinding (a photo substituted for a drawing showing the appearance is shown in FIG. 2). No. No. 4 steel slab has no. No. 3 steel slab, but no. Compared with the steel pieces of 1 and 2, the remarkable crack was confirmed.
Claims (7)
前記の準備した溶鋼をスラグ精錬して、溶鋼中のSを0.004質量%以下に低減する第2工程と、
前記のスラグ精錬した溶鋼にCaを添加して、溶鋼中のCaを0.005〜0.015質量%に調整する第3工程と、
前記のCaを添加した溶鋼を鋳造する第4工程と、
からなり、前記第4工程で鋳造する前の溶鋼は、Nが0.01質量%以下に低減されていることを特徴とする熱間加工性に優れた高速度工具鋼素材の製造方法。 A first step of preparing molten steel having a component composition of high-speed tool steel;
A second step of refining the prepared molten steel with slag to reduce S in the molten steel to 0.004% by mass or less;
A third step of adding Ca to the slag refined molten steel to adjust Ca in the molten steel to 0.005 to 0.015 mass%;
A fourth step of casting the molten steel to which the Ca is added;
Tona is, the molten steel prior to casting in the fourth step, N is hot method for producing superior high-speed tool steel material in workability characterized that you have been reduced to less than 0.01 wt%.
C:0.5〜2.2%、
Cr:3.0〜7.0%、
WおよびMoの1種または2種による(W+2Mo):5.0〜30.0%、
V:0.6〜5.0%、
を含む高速度工具鋼の成分組成であることを特徴とする請求項1に記載の熱間加工性に優れた高速度工具鋼素材の製造方法。 The molten steel prepared in the first step is mass%,
C: 0.5-2.2%
Cr: 3.0-7.0%,
According to one or two of W and Mo (W + 2Mo): 5.0 to 30.0%,
V: 0.6-5.0%
The method for producing a high-speed tool steel material excellent in hot workability according to claim 1, wherein the composition is a component composition of high-speed tool steel including
C:0.5〜2.2%、
Si:0.1〜1.0%、
Mn:0.1〜1.0%、
S:0.004%以下、
Cr:3.0〜7.0%、
WおよびMoの1種または2種による(W+2Mo):5.0〜30.0%、
V:0.6〜5.0%、
Al:0.3%以下(0%を含む)、
Ca:0.005〜0.015%、
N:0.01%以下、
O:0.004%以下、
残部Feおよび不可避的不純物でなることを特徴とする請求項1ないし5のいずれかに記載の熱間加工性に優れた高速度工具鋼素材の製造方法。 The obtained high-speed tool steel material is mass%,
C: 0.5-2.2%
Si: 0.1 to 1.0%,
Mn: 0.1 to 1.0%,
S: 0.004% or less,
Cr: 3.0-7.0%,
According to one or two of W and Mo (W + 2Mo): 5.0 to 30.0%,
V: 0.6-5.0%
Al: 0.3% or less (including 0%),
Ca: 0.005 to 0.015%,
N: 0.01% or less,
O: 0.004% or less,
The method for producing a high-speed tool steel material excellent in hot workability according to any one of claims 1 to 5 , wherein the balance Fe and unavoidable impurities are included.
Co:10.0%以下、
を含むことを特徴とする請求項6に記載の熱間加工性に優れた高速度工具鋼素材の製造方法。 The obtained high-speed tool steel material is mass%,
Co: 10.0% or less,
The manufacturing method of the high-speed tool steel raw material excellent in hot workability of Claim 6 characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012248284A JP6020963B2 (en) | 2012-03-08 | 2012-11-12 | Manufacturing method of high-speed tool steel material with excellent hot workability |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012051200 | 2012-03-08 | ||
JP2012051200 | 2012-03-08 | ||
JP2012248284A JP6020963B2 (en) | 2012-03-08 | 2012-11-12 | Manufacturing method of high-speed tool steel material with excellent hot workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013213277A JP2013213277A (en) | 2013-10-17 |
JP6020963B2 true JP6020963B2 (en) | 2016-11-02 |
Family
ID=49131374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012248284A Active JP6020963B2 (en) | 2012-03-08 | 2012-11-12 | Manufacturing method of high-speed tool steel material with excellent hot workability |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6020963B2 (en) |
CN (1) | CN103305658B (en) |
BR (1) | BR102013004204B8 (en) |
TW (1) | TWI465575B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6238114B2 (en) * | 2012-09-20 | 2017-11-29 | 日立金属株式会社 | High speed tool steel, cutting edge material and cutting tool, and manufacturing method of cutting edge material |
EP3050986B1 (en) * | 2013-09-27 | 2019-07-31 | Hitachi Metals, Ltd. | High-speed-tool steel and method for producing same |
CN104131226B (en) * | 2014-07-09 | 2017-01-18 | 河冶科技股份有限公司 | 3V high-speed steel dedicated for tap and preparation technology thereof |
CN114086063A (en) * | 2015-06-22 | 2022-02-25 | 日立金属株式会社 | Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product |
CN110273105B (en) * | 2019-07-30 | 2020-10-02 | 攀钢集团江油长城特殊钢有限公司 | High-speed tool steel and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63128112A (en) * | 1986-11-18 | 1988-05-31 | Nippon Steel Corp | Method for preventing development of mns in steel ingot |
JPS6439356A (en) * | 1987-08-06 | 1989-02-09 | Hitachi Metals Ltd | High-speed tool steel |
JP3717745B2 (en) * | 2000-04-13 | 2005-11-16 | 住友金属工業株式会社 | Mandrel bar and its manufacturing method |
JP2003268500A (en) * | 2002-03-15 | 2003-09-25 | Daido Steel Co Ltd | Tool steel for hot working excellent in machinability and its production method |
CN100343411C (en) * | 2003-08-28 | 2007-10-17 | 河南中原特殊钢厂 | Steel for processing movement limiting core stick of continuous tube grimper and its producing process |
CN101328555B (en) * | 2007-06-22 | 2010-06-30 | 湖北新冶钢有限公司 | Mixing method of high quality low phosphor and sulfur high-alloy steel |
JP5138991B2 (en) * | 2007-06-28 | 2013-02-06 | 株式会社神戸製鋼所 | Machine structural steel with excellent machinability |
CN101798661A (en) * | 2010-04-23 | 2010-08-11 | 庄龙兴 | Hot working die steel and preparation method thereof |
CN102268599B (en) * | 2011-08-01 | 2013-01-02 | 南京钢铁股份有限公司 | Production technology of non-modulated plastic die steel thick plate |
CN102277532A (en) * | 2011-08-19 | 2011-12-14 | 广东金型重工有限公司 | Cold working mold steel Cr8 and production method thereof |
-
2012
- 2012-11-12 JP JP2012248284A patent/JP6020963B2/en active Active
-
2013
- 2013-02-22 BR BR102013004204A patent/BR102013004204B8/en active IP Right Grant
- 2013-02-23 TW TW102106411A patent/TWI465575B/en active
- 2013-02-26 CN CN201310060677.XA patent/CN103305658B/en active Active
Also Published As
Publication number | Publication date |
---|---|
BR102013004204B1 (en) | 2020-05-05 |
BR102013004204B8 (en) | 2020-06-23 |
CN103305658B (en) | 2016-04-06 |
TW201341537A (en) | 2013-10-16 |
JP2013213277A (en) | 2013-10-17 |
BR102013004204A2 (en) | 2015-08-25 |
CN103305658A (en) | 2013-09-18 |
TWI465575B (en) | 2014-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6474348B2 (en) | High speed tool steel and manufacturing method thereof | |
JP6366326B2 (en) | High toughness hot work tool steel and manufacturing method thereof | |
JP6432807B2 (en) | Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product | |
CN102605260A (en) | Low-deformation gear steel and manufacturing method thereof | |
JP2018523012A (en) | Ultra-high strength ultra-high toughness casing steel, oil casing and method for producing the same | |
JP6160611B2 (en) | Manufacturing method of steel for mold, steel material for mold, manufacturing method of pre-hardened material for mold, and pre-hardened material for mold | |
JP6020963B2 (en) | Manufacturing method of high-speed tool steel material with excellent hot workability | |
KR20220097991A (en) | Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and manufacturing method therefor | |
WO2012118053A1 (en) | Hot work tool steel having excellent toughness, and process of producing same | |
JP2007211314A (en) | Method for hot-forging non-heat-treated parts | |
KR101828228B1 (en) | Cold tool material and method for manufacturing cold tool | |
KR101852316B1 (en) | Method for manufacturing cold tool material and cold tool | |
CN115627427A (en) | Steel for excavator forging bucket teeth and preparation method thereof | |
JP6650104B2 (en) | Cold tool material and cold tool manufacturing method | |
KR101657850B1 (en) | Medium carbon free cutting steel having excellent hardenability and method for manufacturing the same | |
JP5907416B2 (en) | Method for producing hot work tool steel with excellent toughness | |
CN110804714B (en) | High-performance rare earth tool steel and preparation method thereof | |
WO2024062933A1 (en) | Method for producing hot work tool steel, and hot work tool steel | |
RU2620233C1 (en) | Tool steel with intermetally hardening | |
KR20240101159A (en) | Steel for high strength shaft and method of manufacturing the same | |
JP2015160957A (en) | Powder high speed tool steel excellent in abrasion resistance and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160909 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160922 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6020963 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |