[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6020757B1 - Oxygen scavenger and method for producing the same - Google Patents

Oxygen scavenger and method for producing the same Download PDF

Info

Publication number
JP6020757B1
JP6020757B1 JP2016115422A JP2016115422A JP6020757B1 JP 6020757 B1 JP6020757 B1 JP 6020757B1 JP 2016115422 A JP2016115422 A JP 2016115422A JP 2016115422 A JP2016115422 A JP 2016115422A JP 6020757 B1 JP6020757 B1 JP 6020757B1
Authority
JP
Japan
Prior art keywords
oxygen
fine particles
inorganic fine
oxygen scavenger
hydrophilic inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016115422A
Other languages
Japanese (ja)
Other versions
JP2017104845A (en
Inventor
絵美子 村井
絵美子 村井
萌 石井
萌 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Application granted granted Critical
Publication of JP6020757B1 publication Critical patent/JP6020757B1/en
Publication of JP2017104845A publication Critical patent/JP2017104845A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Packages (AREA)

Abstract

【課題】粒状の脱酸素剤に関して、酸素吸収能力の更なる向上を図ること。【解決手段】多孔質の担持体、及び担持体に担持された酸素吸収組成物を含む、造粒物と、造粒物の表面に付着している親水性無機微粒子と、を備える複数の複合粒子を含む粉体である脱酸素剤が開示される。酸素吸収組成物は、酸素吸収物質を含む液剤、アルカリ性化合物、及び遷移金属化合物を含有する。【選択図】なしTo improve the oxygen absorption capacity of a granular oxygen scavenger. A plurality of composites comprising a porous support and a granulated product comprising an oxygen absorbing composition supported on the support and hydrophilic inorganic fine particles attached to the surface of the granulated product. An oxygen scavenger that is a powder containing particles is disclosed. The oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance, an alkaline compound, and a transition metal compound. [Selection figure] None

Description

本発明は、脱酸素剤及びその製造方法に関する。本発明はまた、脱酸素剤を含む脱酸素剤包装体及び食品包装体に関する。   The present invention relates to an oxygen scavenger and a method for producing the same. The present invention also relates to an oxygen scavenger package and a food package containing an oxygen scavenger.

食品の長期保存のために、食品包装容器内に脱酸素剤が封入されることがある。従来の一般的な脱酸素剤は、液状の酸素吸収物質が担持体とともに造粒された粒状物である(例えば、特許文献1〜3)。   An oxygen scavenger may be enclosed in a food packaging container for long-term storage of food. A conventional general oxygen scavenger is a granular material obtained by granulating a liquid oxygen absorbing material together with a carrier (for example, Patent Documents 1 to 3).

特許第4821692号公報Japanese Patent No. 4821692 特開2003−144112号公報JP 2003-144112 A 特許第3541859号公報Japanese Patent No. 3541859

本発明の主な目的は、粒状の脱酸素剤に関して、酸素吸収能力の更なる向上を図ることにある。   The main object of the present invention is to further improve the oxygen absorption capacity of the granular oxygen scavenger.

本発明の一側面は、多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物と、造粒物の表面に付着している親水性無機微粒子と、を備える複数の複合粒子を含む粉体である脱酸素剤を提供する。   One aspect of the present invention is a granulated product comprising a porous carrier and an oxygen absorbing composition supported on the carrier, and hydrophilic inorganic fine particles attached to the surface of the granulated product. An oxygen scavenger that is a powder including a plurality of composite particles is provided.

本発明の別の側面は、多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む複数の造粒物からなる造粒物粉体と親水性無機微粒子とを混ぜ合わせることにより、前記造粒物の表面に前記親水性無機微粒子を付着させて、前記造粒物及び前記親水性無機微粒子を含む粉体である脱酸素剤を得る工程を備える、脱酸素剤を製造する方法に関する。   Another aspect of the present invention is to mix a porous support and a granulated powder composed of a plurality of granules containing an oxygen-absorbing composition supported on the support and hydrophilic inorganic fine particles. To produce an oxygen scavenger comprising the step of attaching the hydrophilic inorganic fine particles to the surface of the granulated material to obtain an oxygen scavenger that is a powder containing the granulated material and the hydrophilic inorganic fine particles. Regarding the method.

酸素吸収組成物が、酸素吸収物質を含む液剤、アルカリ性化合物、及び遷移金属化合物を含有する。   The oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance, an alkaline compound, and a transition metal compound.

酸素吸収組成物を含む造粒物の表面に親水性無機微粒子を付着させることにより、酸素吸収物質が本来有する酸素吸収性が発揮されて、改善された酸素吸収能力を有する脱酸素剤が得られる。   By attaching hydrophilic inorganic fine particles to the surface of the granulated product containing the oxygen-absorbing composition, the oxygen-absorbing property inherent in the oxygen-absorbing substance is exhibited, and an oxygen scavenger having an improved oxygen-absorbing ability is obtained. .

本発明はまた、上記脱酸素剤と、該脱酸素剤を収容した通気性包材と、を備える、脱酸素剤包装体を提供する。本発明さらに、この脱酸素剤包装体と、脱酸素剤包装体が封入された食品包装容器と、を備える、食品包装体を提供する。   The present invention also provides an oxygen scavenger package comprising the oxygen scavenger and a breathable packaging material containing the oxygen scavenger. The present invention further provides a food package comprising the oxygen absorber package and a food packaging container in which the oxygen absorber package is enclosed.

本発明は、改善された酸素吸収能力を有する粉体状の脱酸素剤を提供することができる。   The present invention can provide a powdery oxygen scavenger having an improved oxygen absorption capacity.

以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

一実施形態に係る脱酸素剤は、多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物と、造粒物の表面に付着している親水性無機微粒子とから主として構成される複数の複合粒子を含む粉体である。ここで「粉体」は多数の微粒子から構成され、全体として流動性を維持している集合体を意味する。全体として微粒子同士が互いに固着して単一の固形錠剤を形成したもの自体は粉体に含まれない。本実施形態に係る脱酸素剤に含まれる複合粒子の数は、例えば、脱酸素剤1g当たり、10個以上10000個以下であってもよい。   An oxygen scavenger according to one embodiment includes a porous carrier and an oxygen-absorbing composition carried on the carrier, and a granulated product and hydrophilic inorganic fine particles attached to the surface of the granulated product. A powder containing a plurality of composite particles mainly composed of Here, the “powder” means an aggregate composed of a large number of fine particles and maintaining fluidity as a whole. As a whole, the fine particles fixed to each other to form a single solid tablet are not included in the powder. The number of composite particles contained in the oxygen scavenger according to the present embodiment may be, for example, 10 or more and 10,000 or less per 1 g of oxygen scavenger.

脱酸素剤の粉体を構成する個々の複合粒子の質量は、複合粒子1個当たり0.3mg以上、又は0.5mg以上であってもよく、10.0mg以下、又は7.0mg以下であってもよい。複合粒子がこのように微小であると、より高い酸素吸収能力が得られる傾向がある。   The mass of the individual composite particles constituting the oxygen scavenger powder may be 0.3 mg or more, or 0.5 mg or more per composite particle, and may be 10.0 mg or less, or 7.0 mg or less. May be. When the composite particles are so small, higher oxygen absorption ability tends to be obtained.

担持体は、酸素吸収組成物を担持できる多孔質粒子であればよい。通常、担持体に酸素吸収組成物が含浸することで、酸素吸収物質が担持体に担持される。担持体は、例えば、活性炭、ゼオライト粒子、ベントナイト粒子、活性アルミナ粒子、活性白土、ケイ酸カルシウム粒子、及び珪藻土から選ばれる。   The carrier may be any porous particle that can carry the oxygen-absorbing composition. Usually, the oxygen absorbing material is supported on the support by impregnating the support with the oxygen absorbing composition. The carrier is selected from, for example, activated carbon, zeolite particles, bentonite particles, activated alumina particles, activated clay, calcium silicate particles, and diatomaceous earth.

酸素吸収組成物は、酸素吸収物質を含む液剤、アルカリ性化合物、及び遷移金属化合物を含有する。   The oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance, an alkaline compound, and a transition metal compound.

酸素吸収物質を含む液剤は、常温(例えば5〜35℃)で液状の酸素吸収物質であってもよいし、液状又は固体の酸素吸収物質を含む溶液であってもよい。酸素吸収物質は、酸素吸収組成物の主剤であり、酸素を吸収する物質である。酸素吸収物質は、例えば、それ自身が酸化することによって酸素を消費し、酸素を吸収する化合物であってもよい。本実施形態では、常温で液状、又は溶媒へ溶解した状態の酸素吸収物質を用いることができる。このような酸素吸収物質は、例えば、グリセリン、1,2−グリコール、及び糖アルコールからなる群から選ばれる1種以上の化合物である。1,2−グリコールの具体例としては、エチレングリコール、及びプロピレングリコールが挙げられる。糖アルコールの具体例としては、エリスリトール、アラビトール、キシリトール、アドニトール、マンニトール、及びソルビトールが挙げられる。液剤が酸素吸収物質の溶液であるとき、酸素吸収物質が溶解する溶媒としては、例えば、水;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、第2級ブタノール、第3級ブタノール及び第3級アミルアルコール等の低級脂肪族アルコール;エチレングリコール、プロピレングリコール及びトリメチレングリコール等のグリコール;並びにフェノールが挙げられる。酸素吸収物質はこれらを単独でも、複数組み合わせても用いることができる。   The liquid agent containing the oxygen-absorbing substance may be an oxygen-absorbing substance that is liquid at normal temperature (for example, 5 to 35 ° C.), or may be a solution containing a liquid or solid oxygen-absorbing substance. The oxygen-absorbing substance is a main component of the oxygen-absorbing composition and is a substance that absorbs oxygen. The oxygen absorbing material may be, for example, a compound that consumes oxygen by oxidizing itself and absorbs oxygen. In this embodiment, an oxygen-absorbing substance that is liquid at room temperature or dissolved in a solvent can be used. Such an oxygen-absorbing substance is, for example, one or more compounds selected from the group consisting of glycerin, 1,2-glycol, and sugar alcohol. Specific examples of 1,2-glycol include ethylene glycol and propylene glycol. Specific examples of sugar alcohols include erythritol, arabitol, xylitol, adonitol, mannitol, and sorbitol. When the liquid agent is a solution of oxygen-absorbing substance, examples of the solvent in which the oxygen-absorbing substance dissolves include water; methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, secondary butanol, Lower aliphatic alcohols such as tertiary butanol and tertiary amyl alcohol; glycols such as ethylene glycol, propylene glycol and trimethylene glycol; and phenol. These oxygen-absorbing substances can be used alone or in combination.

酸素吸収物質の量は、担持体の質量100質量部に対して、通常80〜200質量部であり、100〜180質量部であってもよい。酸素吸収物質の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。   The amount of the oxygen-absorbing substance is usually 80 to 200 parts by mass with respect to 100 parts by mass of the support, and may be 100 to 180 parts by mass. When the amount of the oxygen-absorbing substance is within these ranges, an oxygen scavenger having an appropriate oxygen-absorbing ability tends to be obtained.

酸素吸収物質は、酸素を吸収する反応に水を必要とする場合がある。このため、酸素吸収物質自身が常温で液体であっても、必要に応じて水を液剤に添加することができる。必要に応じて添加される水の量は、酸素吸収物質100質量部に対して、通常0〜80質量部であり、20〜60質量部であってもよい。水の量は、担持体100質量部に対して、通常0〜90質量部であり、20〜70質量部であってもよい。   Oxygen absorbing materials may require water for reactions that absorb oxygen. For this reason, even if the oxygen absorbing substance itself is liquid at room temperature, water can be added to the liquid as necessary. The amount of water added as necessary is usually 0 to 80 parts by mass and may be 20 to 60 parts by mass with respect to 100 parts by mass of the oxygen-absorbing substance. The amount of water is usually 0 to 90 parts by mass and may be 20 to 70 parts by mass with respect to 100 parts by mass of the carrier.

アルカリ性化合物は、水に溶解したときにアルカリ性の水溶液を形成する化合物である。酸素吸収物質が水酸基を持つ場合、水酸基をアルカリ性化合物がイオン化させることで、酸素吸収反応が活性化される。酸素吸収組成物の状態では、アルカリ性化合物の一部が酸素吸収物質を含む液剤に溶解していることが多い。アルカリ性化合物は、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、第三リン酸塩、又は第二リン酸塩であってもよい。アルカリ性化合物は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化ラジウム、炭酸リチウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、第三リン酸ナトリウム、第三リン酸カリウム、第二リン酸ナトリウム、及び第二リン酸カリウムからなる群より選ばれる1種以上の化合物であってもよい。   An alkaline compound is a compound that forms an alkaline aqueous solution when dissolved in water. When the oxygen absorbing substance has a hydroxyl group, the oxygen absorption reaction is activated by ionizing the hydroxyl group with an alkaline compound. In the state of the oxygen-absorbing composition, a part of the alkaline compound is often dissolved in the liquid agent containing the oxygen-absorbing substance. The alkaline compound may be an alkali metal or alkaline earth metal hydroxide, carbonate, bicarbonate, tertiary phosphate, or secondary phosphate. Alkaline compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, radium hydroxide, lithium carbonate, sodium carbonate, Selected from the group consisting of calcium carbonate, magnesium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate, lithium bicarbonate, tribasic sodium phosphate, tribasic potassium phosphate, dibasic sodium phosphate, and dibasic potassium phosphate One or more compounds may be used.

アルカリ性化合物の量は、担持体の質量100質量部に対して、通常100〜300質量部であり、150〜250質量部であってもよい。酸素吸収物質の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。   The amount of the alkaline compound is usually 100 to 300 parts by mass and may be 150 to 250 parts by mass with respect to 100 parts by mass of the support. When the amount of the oxygen-absorbing substance is within these ranges, an oxygen scavenger having an appropriate oxygen-absorbing ability tends to be obtained.

遷移金属化合物は、遷移金属元素を含む化合物であり、酸素吸収物質の酸素吸収反応を促進するために添加される。遷移金属化合物は、酸素吸収組成物の状態では、酸素吸収物質を含む液剤に溶解していることが多い。遷移金属元素の具体例としては、鉄、コバルト、ニッケル、銅、亜鉛、及びマンガンが挙げられる。遷移金属化合物は、例えば、遷移金属のハロゲン化物、硫酸塩、硝酸塩、リン酸塩、炭酸塩、有機酸塩、酸化物、水酸化物、又はキレート化合物であってもよい。遷移金属化合物は、遷移金属元素を含む複塩であってもよい。遷移金属化合物は、塩化銅(I)、塩化銅(II)、硫酸銅(II)、水酸化銅(II)、酸化銅(I)、酸化銅(II)、塩化マンガン、硝酸マンガン、炭酸マンガン、及び塩化ニッケルからなる群より選ばれる1種以上の化合物であってもよい。   The transition metal compound is a compound containing a transition metal element, and is added to promote the oxygen absorption reaction of the oxygen absorbing material. The transition metal compound is often dissolved in a liquid agent containing an oxygen-absorbing substance in the state of the oxygen-absorbing composition. Specific examples of the transition metal element include iron, cobalt, nickel, copper, zinc, and manganese. The transition metal compound may be, for example, a transition metal halide, sulfate, nitrate, phosphate, carbonate, organic acid salt, oxide, hydroxide, or chelate compound. The transition metal compound may be a double salt containing a transition metal element. Transition metal compounds are copper chloride (I), copper chloride (II), copper sulfate (II), copper hydroxide (II), copper oxide (I), copper oxide (II), manganese chloride, manganese nitrate, manganese carbonate And one or more compounds selected from the group consisting of nickel chloride.

遷移金属化合物の量は、担持体の質量100質量部に対して、通常10〜70質量部であり、30〜50質量部であってもよい。遷移金属化合物の量がこれらの範囲内にあると、適切な酸素吸収能力を有する脱酸素剤が得られ易い傾向がある。   The amount of the transition metal compound is usually 10 to 70 parts by mass and may be 30 to 50 parts by mass with respect to 100 parts by mass of the support. When the amount of the transition metal compound is within these ranges, an oxygen scavenger having an appropriate oxygen absorption capacity tends to be obtained.

酸素吸収組成物は、造粒物が容易に形成できるように、バインダーを更に含有していてもよい。バインダーの具体例としては、アラビアゴム、ポリビニルアルコール、アルギン酸ナトリウム、ゼラチン及びセルロースが挙げられる。バインダーの量は、担持体の質量100質量部に対して、通常0〜30質量部であり、10〜20質量部であってもよい。   The oxygen absorbing composition may further contain a binder so that a granulated product can be easily formed. Specific examples of the binder include gum arabic, polyvinyl alcohol, sodium alginate, gelatin and cellulose. The amount of the binder is usually 0 to 30 parts by mass and may be 10 to 20 parts by mass with respect to 100 parts by mass of the support.

酸素吸収組成物は、必要によりその他の物質を更に含有していてもよい。その他の物質としては、例えば、カテコール系化合物が挙げられる。その他の物質の量は、担持体の質量100質量部に対して、通常、30質量部以下程度である。   The oxygen-absorbing composition may further contain other substances as necessary. Examples of other substances include catechol compounds. The amount of the other substance is usually about 30 parts by mass or less with respect to 100 parts by mass of the support.

無機微粒子が付着する前の造粒物の粒径(最大幅)は、特に制限されないが、例えば0.3〜8.0mm、又は0.3mm以上5mm未満であってもよい。   The particle size (maximum width) of the granulated product before the inorganic fine particles adhere is not particularly limited, but may be, for example, 0.3 to 8.0 mm, or 0.3 mm or more and less than 5 mm.

担持体及び酸素吸収組成物から構成される造粒物は、担持体と、酸素吸収組成物を構成する成分とを含む混合物を造粒することにより、得ることができる。酸素吸収組成物を構成する各成分は、一括して混合してもよいし、別々に混合してもよい。混合するための混合機は、特に限定されるものではなく、例えば、円筒型、V型等の容器回転型混合機であってもよいし、リボン型、水平スクリュー型、バドル型、遊星運動型等の容器固定型混合機であってもよい。造粒は、例えば所定の開孔を有するスクリーンを用いた押出し造粒法によって行うことができる。   The granulated product composed of the carrier and the oxygen absorbing composition can be obtained by granulating a mixture containing the carrier and the components constituting the oxygen absorbing composition. Each component which comprises an oxygen absorption composition may be mixed collectively, and may be mixed separately. The mixing machine for mixing is not particularly limited, and may be, for example, a cylindrical type, a V type container rotating type mixer, a ribbon type, a horizontal screw type, a paddle type, a planetary motion type, or the like. A container-fixing type mixer such as the above may be used. Granulation can be performed, for example, by an extrusion granulation method using a screen having a predetermined opening.

親水性無機微粒子は、親水性の無機物質を主成分として含む非水溶性の粒子である。親水性無機微粒子は、その全体質量を基準として、通常、50質量%以上の親水性の無機物質を含む。親水性の無機物質としては、例えば、親水性二酸化ケイ素、ケイ酸カルシウム水和物、酸化マグネシウム、及びケイ酸アルミニウムが挙げられる。   The hydrophilic inorganic fine particles are water-insoluble particles containing a hydrophilic inorganic substance as a main component. The hydrophilic inorganic fine particles usually contain 50% by mass or more of a hydrophilic inorganic substance based on the total mass thereof. Examples of the hydrophilic inorganic substance include hydrophilic silicon dioxide, calcium silicate hydrate, magnesium oxide, and aluminum silicate.

親水性無機微粒子の平均粒径が、150μm以下であってもよい。親水性無機微粒子の平均粒径が150μm以下であることにより、脱酸素剤の酸素吸収能力を改善することができる。造粒物の表面には、通常、微細な凹凸が形成されており、小さい粒径の無機微粒子は、造粒物表面の凹部に入り込み易い。このことが結果的に造粒物の表面積を大幅に増加させることになり、酸素吸収能力向上に寄与すると考えられる。同様の観点から、親水性無機微粒子の平均粒径は、100μm以下、又は50μm以下であってもよい。平均粒径の下限は、特に制限されないが、ナノサイズの微粒子では価格が上がることと、皮膚表面から人体へ取り込まれてしまうために取扱が難しくなることから、例えば、0.1μm以上であってもよい。ここでの平均粒径は、レーザー回析法により測定される2次粒子径の値である。   The average particle diameter of the hydrophilic inorganic fine particles may be 150 μm or less. When the average particle size of the hydrophilic inorganic fine particles is 150 μm or less, the oxygen absorbing ability of the oxygen scavenger can be improved. Usually, fine irregularities are formed on the surface of the granulated product, and the inorganic fine particles having a small particle diameter tend to enter the recesses on the surface of the granulated product. As a result, the surface area of the granulated product is greatly increased, which is considered to contribute to an improvement in oxygen absorption capacity. From the same viewpoint, the average particle size of the hydrophilic inorganic fine particles may be 100 μm or less, or 50 μm or less. The lower limit of the average particle diameter is not particularly limited, but for nano-sized microparticles, for example, it is 0.1 μm or more because the price increases and handling becomes difficult because it is taken into the human body from the skin surface. Also good. Here, the average particle diameter is a value of secondary particle diameter measured by a laser diffraction method.

親水性無機微粒子の細孔容積が、0.5mL/g以上であってもよい。親水性無機微粒子の細孔容積が0.5mL/gであることにより、脱酸素剤の酸素吸収能力を改善することができる。大きな細孔容積を有する親水性無機微粒子は、造粒物表面近傍の酸素吸収組成物を吸収し易いと考えられる。酸素吸収組成物(特に酸素吸収物質)が親水性無機微粒子に吸収されると、酸素吸収物質と環境下の酸素と接触する面積が増え、その結果、酸素吸収能力が向上すると推察される。150μm以下の平均粒径と、0.5mL/g以上の細孔容積の組み合わせが、酸素吸収能力向上のために特に有効である。同様の観点から、親水性無機微粒子の細孔容積は、0.8mL/g以上、又は1.2mL/g以上であってもよい。細孔容積の上限は、特に制限されないが、例えば、10mL/g以下であってもよい。ここでの細孔容積は、窒素吸着法又は水銀圧入法により測定される値である。窒素吸着法又は水銀圧入法のうち少なくともいずれか一方の方法で測定される細孔容積が上記数値範囲内であればよい。   The pore volume of the hydrophilic inorganic fine particles may be 0.5 mL / g or more. When the pore volume of the hydrophilic inorganic fine particles is 0.5 mL / g, the oxygen absorbing ability of the oxygen scavenger can be improved. The hydrophilic inorganic fine particles having a large pore volume are considered to easily absorb the oxygen-absorbing composition in the vicinity of the granulated surface. If the oxygen-absorbing composition (especially oxygen-absorbing substance) is absorbed by the hydrophilic inorganic fine particles, the area where the oxygen-absorbing substance comes into contact with the oxygen in the environment increases, and as a result, it is assumed that the oxygen-absorbing ability is improved. A combination of an average particle diameter of 150 μm or less and a pore volume of 0.5 mL / g or more is particularly effective for improving the oxygen absorption capacity. From the same viewpoint, the pore volume of the hydrophilic inorganic fine particles may be 0.8 mL / g or more, or 1.2 mL / g or more. The upper limit of the pore volume is not particularly limited, but may be, for example, 10 mL / g or less. The pore volume here is a value measured by a nitrogen adsorption method or a mercury intrusion method. The pore volume measured by at least one of the nitrogen adsorption method and the mercury intrusion method may be within the above numerical range.

親水性無機微粒子の比表面積が、50〜1000m/g、又は100〜400m/gであってもよい。親水性無機微粒子の比表面積がこれら数値範囲内にあることにより、脱酸素剤の酸素吸収能力をより一層改善することができる傾向がある。ここでの比表面積は、窒素吸着法又は水源圧入法により測定される値である。窒素吸着法又は水源圧入法のうち少なくともいずれか一方の方法で測定される比表面積が上記数値範囲内であればよい。 The specific surface area of the hydrophilic inorganic fine particles may be 50 to 1000 m 2 / g, or 100 to 400 m 2 / g. When the specific surface area of the hydrophilic inorganic fine particles is within these numerical ranges, the oxygen absorbing ability of the oxygen scavenger tends to be further improved. The specific surface area here is a value measured by a nitrogen adsorption method or a water source press-fitting method. The specific surface area measured by at least one of the nitrogen adsorption method and the water source press-in method may be within the above numerical range.

親水性無機微粒子が酸素吸収組成物を吸収し易い性質を有することが、脱酸素剤の酸素吸収能力向上に寄与し得る。親水性無機微粒子が酸素吸収組成物を吸収する程度は、親水性無機微粒子の吸液量によって評価することができる。この吸液量は、酸素吸収組成物を構成する酸素吸収物質を含む液剤及び遷移金属化合物からなる試験液を親水性無機微粒子の粉末に吸液させる方法により、測定される。吸液量測定用の試験液は、酸素吸収物質を含む液剤、及び遷移金属化合物を、酸素吸収組成物における質量比と同じ質量比で含む。この方法で測定される吸液量(親水性無機微粒子1g当たりの、吸液された試験液の質量)が、2.0g/g以上であると、高い酸素吸収能力が得られる傾向がある。同様の観点から、この吸液量は2.5g/g以上、又は3.0g/g以上であってもよい。吸液量の上限は、特に制限されないが、例えば20g/g以下であってもよい。吸液量の測定方法の詳細は、後述の実施例において説明される。   The hydrophilic inorganic fine particles having the property of easily absorbing the oxygen-absorbing composition can contribute to the improvement of the oxygen absorbing ability of the oxygen scavenger. The degree to which the hydrophilic inorganic fine particles absorb the oxygen-absorbing composition can be evaluated by the amount of the hydrophilic inorganic fine particles absorbed. This liquid absorption amount is measured by a method in which a test liquid composed of a liquid agent containing an oxygen-absorbing substance constituting the oxygen-absorbing composition and a transition metal compound is absorbed into powder of hydrophilic inorganic fine particles. The test liquid for measuring the liquid absorption contains a liquid agent containing an oxygen absorbing substance and a transition metal compound at the same mass ratio as the mass ratio in the oxygen absorbing composition. When the amount of liquid absorption measured by this method (the mass of the test liquid absorbed per 1 g of hydrophilic inorganic fine particles) is 2.0 g / g or more, high oxygen absorption ability tends to be obtained. From the same viewpoint, the liquid absorption amount may be 2.5 g / g or more, or 3.0 g / g or more. The upper limit of the liquid absorption amount is not particularly limited, but may be, for example, 20 g / g or less. Details of the method for measuring the liquid absorption amount will be described in the examples described later.

以上例示した平均粒径、細孔容積、比表面積及び吸液量を有する親水性無機微粒子は、通常の方法によって製造することが可能であり、市販品の中から適宜選択して入手することもできる。   The hydrophilic inorganic fine particles having the average particle diameter, the pore volume, the specific surface area and the liquid absorption amount exemplified above can be produced by a usual method, and can be obtained by appropriately selecting from commercially available products. it can.

造粒物の表面に付着している親水性無機微粒子の量(付着量)は、造粒物の質量100質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、2質量部以上又は3質量部以上であってもよい。親水性無機微粒子の量がこれらの範囲内にあると、脱酸素剤の適切な酸素吸収能力が得られ易い。造粒物の表面に付着している親水性無機微粒子の量の上限は、特に制限されないが、造粒性等の観点から、30質量部以下、15質量部以下、10質量部以下又は8質量部以下であってもよい。造粒物に付着していない単独の親水性無機微粒子が、脱酸素剤の粒子と混在していることがあり得るが、単独の親水性無機微粒子の量は上記付着量に含まれない。   The amount (adhesion amount) of hydrophilic inorganic fine particles adhering to the surface of the granulated product is 0.1 parts by mass or more, 0.5 parts by mass or more, and 1 mass with respect to 100 parts by mass of the granulated product. Part or more, 2 parts by mass or more, or 3 parts by mass or more. When the amount of the hydrophilic inorganic fine particles is within these ranges, it is easy to obtain an appropriate oxygen absorbing capacity of the oxygen scavenger. The upper limit of the amount of the hydrophilic inorganic fine particles adhering to the surface of the granulated product is not particularly limited, but from the viewpoint of granulation property and the like, 30 parts by mass or less, 15 parts by mass or less, 10 parts by mass or less, or 8 parts by mass. Or less. Although the single hydrophilic inorganic fine particles not attached to the granulated material may be mixed with the oxygen scavenger particles, the amount of the single hydrophilic inorganic fine particles is not included in the amount of adhesion.

脱酸素剤は、担持体及び酸素吸収組成物を含む複数の造粒物を含む造粒物粉体と複数の親水性無機微粒子とを混ぜ合わせることにより、造粒物の表面に親水性無機微粒子を付着させる工程を備える方法によって、得ることができる。造粒物粉体と親水性無機微粒子とが全体として混ぜ合わせられた混合粉体を形成することにより、個々の造粒物の表面に複数の親水性無機微粒子が付着する。例えば、造粒物と、親水性無機微粒子とを混合し、得られた混合物を振とうすることにより、造粒物に親水性無機微粒子を付着させることができる。   The oxygen scavenger is a mixture of a granulated powder containing a plurality of granulated materials containing a carrier and an oxygen absorbing composition and a plurality of hydrophilic inorganic fine particles, whereby hydrophilic inorganic fine particles are formed on the surface of the granulated material. It can be obtained by a method comprising the step of attaching. By forming a mixed powder in which the granulated powder and the hydrophilic inorganic fine particles are mixed together as a whole, a plurality of hydrophilic inorganic fine particles adhere to the surface of each granulated product. For example, the hydrophilic inorganic fine particles can be attached to the granulated product by mixing the granulated product and the hydrophilic inorganic fine particles and shaking the resulting mixture.

上記のような粉体同士を混ぜ合わせる方法により造粒物に付着した親水性無機微粒子は、比較的薄い層を形成しており、この点で、本実施形態の脱酸素剤の形態は、例えば打錠成形によって得られた外郭部を有する錠剤とは一般に異なる。具体的には、造粒物の表面に付着している親水性無機微粒子は、厚み1mm以下、又は0.7mm以下の層を形成し得る。親水性無機微粒子の層が薄いことは、複合粒子の表面をエネルギー分散型X線分析(EDX分析)によって元素分析したときに、造粒物を構成する材料(酸素吸収物質、アルカリ性化合物又は遷移金属化合物)に含まれる元素が検出されることから、確認することもできる。一般に、本実施形態に係る脱酸素剤の場合、造粒物を構成する材料に含まれる少なくとも1種の元素が、0.05原子数%以上、又は0.1原子数%以上の濃度で検出されることが多い。一方、造粒物を内包するある程度の厚さの外郭部が打錠成形によって形成されている場合、造粒物を構成する材料の元素がEDX分析によって実質的に検出されることはない。   The hydrophilic inorganic fine particles attached to the granulated product by the method of mixing the powders as described above form a relatively thin layer. In this respect, the oxygen scavenger form of the present embodiment is, for example, It is generally different from a tablet having an outer part obtained by tableting. Specifically, the hydrophilic inorganic fine particles adhering to the surface of the granulated product can form a layer having a thickness of 1 mm or less or 0.7 mm or less. The thin layer of hydrophilic inorganic fine particles means that when the surface of the composite particle is subjected to elemental analysis by energy dispersive X-ray analysis (EDX analysis), the material constituting the granulated material (oxygen-absorbing substance, alkaline compound or transition metal) Since the element contained in the compound) is detected, it can also be confirmed. In general, in the case of the oxygen scavenger according to the present embodiment, at least one element contained in the material constituting the granulated material is detected at a concentration of 0.05 atomic% or more, or 0.1 atomic% or more. Often done. On the other hand, when the outer shell having a certain thickness including the granulated material is formed by tableting, the element of the material constituting the granulated material is not substantially detected by EDX analysis.

一実施形態に係る脱酸素包装体は、上記の実施形態に係る脱酸素剤と、この脱酸素剤を収容した通気性包材とから主として構成され得る。通気性包材は、当該技術分野で通常用いられるものから適宜選択することができる。通気性包材の具体例としては、有孔プラスチックフィルム、不織布、マイクロポーラスフィルム、紙又はこれらの組み合わせからなる基材よって形成された袋体が挙げられる。この脱酸素剤包装体は、例えば、各種の食品包装容器の中に収容して、食品の鮮度維持等の目的で使用することができる。   The oxygen scavenging package according to one embodiment can be mainly composed of the oxygen scavenger according to the above embodiment and a breathable packaging material containing the oxygen scavenger. The breathable packaging material can be appropriately selected from those normally used in the technical field. Specific examples of the breathable packaging material include a bag formed of a substrate made of a perforated plastic film, a nonwoven fabric, a microporous film, paper, or a combination thereof. This oxygen scavenger package can be used, for example, for the purpose of maintaining the freshness of food by being housed in various food packaging containers.

一実施形態に係る食品包装体は、上記脱酸素剤包装体と、この脱酸素剤包装体が封入された食品包装容器とを備える。食品包装容器は、食品包装の分野で通常用いられるものから適宜選択することができ、密封可能な容器が好適である。食品包装容器としては、袋体、深絞り包装体、トレイ包装体、ストレッチ包装体等が挙げられる。   The food packaging body which concerns on one Embodiment is provided with the said oxygen scavenger packaging body and the food packaging container with which this oxygen scavenger packaging body was enclosed. The food packaging container can be appropriately selected from those normally used in the field of food packaging, and a sealable container is suitable. Examples of food packaging containers include bags, deep drawn packages, tray packages, stretch packages, and the like.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1〜5)
1.造粒物
表1に示す原料を密封状態で均一に混合して、活性炭と、活性炭に担持された脱酸素剤、アルカリ化合物、遷移金属塩及びバインダーを含む酸素吸収組成物とを含有する混合物を得た。得られた混合物をスクリーン孔径1.0mmφ、開孔率22.6%のスクリーンを設けた押出し造粒機により造粒し、顆粒状の造粒物を得た。表1は、各原料の配合量を質量部で示す。
(Examples 1-5)
1. Granulated product The raw materials shown in Table 1 are uniformly mixed in a sealed state, and a mixture containing activated carbon and an oxygen absorbing composition containing an oxygen scavenger, an alkali compound, a transition metal salt and a binder supported on the activated carbon is prepared. Obtained. The obtained mixture was granulated by an extrusion granulator provided with a screen having a screen hole diameter of 1.0 mmφ and an aperture ratio of 22.6% to obtain a granular granulated product. Table 1 shows the amount of each raw material in parts by mass.

Figure 0006020757
Figure 0006020757

2.無機微粒子
以下の親水性無機微粒子を準備した。
<親水性二酸化ケイ素(SiO)粒子>
・サイロページ720(富士シリシア化学製)
・NIPGEL AZ−200(東ソー・シリカ製)
・NIPGEL AY−6A3(東ソー・シリカ製)
<非晶質ケイ酸カルシウム水和物(CaO・mSiO・nHO)粒子>
・フローライト(富田製薬製)
・非晶質ケイ酸カルシウム開発品
2. Inorganic fine particles The following hydrophilic inorganic fine particles were prepared.
<Hydrophilic silicon dioxide (SiO 2 ) particles>
・ Silo page 720 (manufactured by Fuji Silysia Chemical)
・ NIPGEL AZ-200 (manufactured by Tosoh Silica)
・ NIPGEL AY-6A3 (Tosoh Silica)
<Amorphous calcium silicate hydrate (CaO.mSiO 2 .nH 2 O) particles>
・ Flowlight (Tomita Pharmaceutical)
・ Developed product of amorphous calcium silicate

表2に、各無機微粒子の吸液量、平均粒径、平均細孔径、比表面積及び細孔容積を示す。平均粒径はレーザー回析法による測定値である。比表面積及び細孔容積は、二酸化ケイ素粒子関しては窒素吸着法による測定値であり、ケイ酸カルシウム水和物粒子に関しては水銀圧入法による測定値である。   Table 2 shows the liquid absorption amount, average particle diameter, average pore diameter, specific surface area, and pore volume of each inorganic fine particle. The average particle diameter is a value measured by a laser diffraction method. The specific surface area and pore volume are measured values by a nitrogen adsorption method for silicon dioxide particles, and measured values by a mercury intrusion method for calcium silicate hydrate particles.

無機微粒子の吸液量は、以下の手順で測定した。
(1)グリセリン、硫酸銅(II)及び水を50:15:20の質量比で混合して、試験液を準備する。
(2)所定量の無機微粒子に対して試験液を少量ずつ滴下しながら、無機微粒子を薬さじでこねる。粉末状の無機微粒子が試験液を吸収しながら1つの塊となる限界までに滴下した試験液の量(限界量)を記録する。試験液の滴下量が無機微粒子の限界量を超えると、無機微粒子が試験液を吸収できなくなり、1つの塊が崩れてスラリー状になる。
(3)以下の式により、吸液量を計算する。
吸液量[g/g]=試験液の限界量[g]/無機微粒子の質量[g]
The liquid absorption amount of the inorganic fine particles was measured by the following procedure.
(1) Glycerin, copper (II) sulfate and water are mixed at a mass ratio of 50:15:20 to prepare a test solution.
(2) Knead the inorganic fine particles with a spoon while dripping the test solution little by little into a predetermined amount of the inorganic fine particles. Record the amount (limit amount) of the test solution dripped up to the limit where the powdered inorganic fine particles absorb the test solution and become one lump. When the dropping amount of the test liquid exceeds the limit amount of the inorganic fine particles, the inorganic fine particles cannot absorb the test liquid, and one lump is broken and becomes a slurry.
(3) The amount of liquid absorption is calculated by the following formula.
Liquid absorption [g / g] = limit amount of test liquid [g] / mass of inorganic fine particles [g]

3.脱酸素剤
各種無機微粒子0.9gを、酸素バリア性の袋に入れた。そこに、30gの造粒物を入れ、袋をヒートシールした。袋を振るって、無機微粒子によって造粒物が被覆された脱酸素剤を形成させた。袋を開け、内部の空気を追い出すように再びヒートシールして、脱酸素剤を保管した。
3. Oxygen scavenger 0.9 g of various inorganic fine particles were placed in an oxygen barrier bag. There, 30 g of granulated material was put, and the bag was heat-sealed. The bag was shaken to form an oxygen scavenger in which the granulated material was coated with inorganic fine particles. The bag was opened and heat sealed again to expel the air inside and the oxygen scavenger was stored.

4.エネルギー分散型X線分析(EDX分析)
実施例1の脱酸素剤の表面を、加速電圧20kV、分析時間100秒(ライブタイム)の条件のEDX分析により分析した。その結果、造粒物を構成する硫酸銅に由来するCu元素が1.06原子数%の濃度で検出された。このことから、親水性無機微粒子が造粒物の表面に非常に薄く付着していることが確認された。同様の酸素吸収組成物からなる中心部と外郭部を有する錠剤を作成し、その表面をEDX分析により分析したところ、Cu元素は検出されなかった。
4. Energy dispersive X-ray analysis (EDX analysis)
The surface of the oxygen scavenger of Example 1 was analyzed by EDX analysis under the conditions of an acceleration voltage of 20 kV and an analysis time of 100 seconds (live time). As a result, Cu element derived from copper sulfate constituting the granulated product was detected at a concentration of 1.06 atomic%. From this, it was confirmed that the hydrophilic inorganic fine particles adhered very thinly on the surface of the granulated product. When the tablet which has the center part and outer part which consist of the same oxygen absorption composition was created and the surface was analyzed by EDX analysis, Cu element was not detected.

5.酸素吸収能力
脱酸素剤2.0gを、有孔包材によって形成された袋(縦60mm、横60mm)に収納し、脱酸素剤包装体を作製した。有効包材として、ポリエチレンテレフタレート/ポリエチレン/紙/ポリエチレンから構成される積層材料を用いた。脱酸素剤包装体を、ショ糖44%水溶液を浸した脱脂綿(水分活性0.95)とともに、ガスバリア性の袋の中に入れた。袋を密封し、その中に空気500mLを注入してから、袋を25℃の雰囲気に放置した。24時間、及び48時間後の袋内の酸素濃度を測定した。酸素濃度が低いことは、酸素吸収能力が高いことを意味する。
5. Oxygen absorption capacity 2.0 g of oxygen scavenger was housed in a bag (60 mm long, 60 mm wide) made of a perforated packaging material to produce a deoxidant package. As an effective packaging material, a laminated material composed of polyethylene terephthalate / polyethylene / paper / polyethylene was used. The oxygen scavenger package was placed in a gas barrier bag together with absorbent cotton soaked with a 44% aqueous solution of sucrose (water activity 0.95). The bag was sealed and 500 mL of air was injected therein, and then the bag was left in an atmosphere at 25 ° C. The oxygen concentration in the bag after 24 hours and 48 hours was measured. Low oxygen concentration means high oxygen absorption capacity.

5.結果
表2は、無機微粒子の特性、造粒物と無機微粒子の組み合わせ、及び酸素吸収能力の評価結果を示す。比較例は、造粒物を無機微粒子によって被覆せず、そのまま脱酸素剤として用いた例である。親水性無機微粒子を多孔質の担持体に担持させた各実施例の脱酸素剤は、優れた酸素吸収能力を示すことが確認された。
5. Results Table 2 shows the evaluation results of the characteristics of the inorganic fine particles, the combination of the granulated product and the inorganic fine particles, and the oxygen absorption capacity. The comparative example is an example in which the granulated material is not coated with inorganic fine particles and used as an oxygen scavenger as it is. It was confirmed that the oxygen scavenger of each Example in which hydrophilic inorganic fine particles were supported on a porous carrier exhibited an excellent oxygen absorbing ability.

Figure 0006020757
Figure 0006020757

(実施例6〜15)
親水性二酸化ケイ素粒子(サイロページ720)の造粒物への付着量を、表3に示す量に変更したこと以外は実施例1と同様にして、脱酸素剤を作製した。実施例8では、実施例1と同じ付着量で脱酸素剤を再度準備した。比較例は、造粒物を無機微粒子によって被覆せず、そのまま脱酸素剤として用いた例である。得られた脱酸素剤2.74gを、有孔包材によって形成された袋(縦60mm、横60mm)に収納し、脱酸素剤包装体を作製した。有効包材として、ポリエチレンテレフタレート/ポリエチレン/紙/ポリエチレンから構成される積層材料を用いた。脱酸素剤包装体を、ショ糖44%水溶液を浸した脱脂綿(水分活性0.95)とともに、ガスバリア性の袋の中に入れた。袋を密封し、その中に空気500mLを注入してから、袋を25℃の雰囲気に放置した。24時間後の袋内の酸素濃度を測定した。一部の実施例及び比較例については48時間後の袋内の酸素濃度も測定した。測定結果を表3に示す。広い範囲の付着量で、付着前の造粒物と比較して高い脱酸素吸収能力が得られることが確認された。
(Examples 6 to 15)
An oxygen scavenger was prepared in the same manner as in Example 1 except that the amount of hydrophilic silicon dioxide particles (silopage 720) attached to the granulated product was changed to the amount shown in Table 3. In Example 8, the oxygen scavenger was prepared again with the same adhesion amount as in Example 1. The comparative example is an example in which the granulated material is not coated with inorganic fine particles and used as an oxygen scavenger as it is. 2.74 g of the obtained oxygen scavenger was stored in a bag (length 60 mm, width 60 mm) formed of a perforated packaging material to produce a oxygen scavenger package. As an effective packaging material, a laminated material composed of polyethylene terephthalate / polyethylene / paper / polyethylene was used. The oxygen scavenger package was placed in a gas barrier bag together with absorbent cotton soaked with a 44% aqueous solution of sucrose (water activity 0.95). The bag was sealed and 500 mL of air was injected therein, and then the bag was left in an atmosphere at 25 ° C. The oxygen concentration in the bag after 24 hours was measured. In some examples and comparative examples, the oxygen concentration in the bag after 48 hours was also measured. Table 3 shows the measurement results. It was confirmed that a high deoxygen absorption capacity can be obtained in a wide range of adhesion amount compared with the granulated product before adhesion.

Figure 0006020757
Figure 0006020757

Claims (13)

多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む、造粒物と、
前記造粒物の表面に付着している親水性無機微粒子と、
を備える複数の複合粒子を含む粉体である脱酸素剤であって、
前記酸素吸収組成物が、酸素吸収物質を含む液剤、アルカリ性化合物、及び遷移金属化合物を含有する、
脱酸素剤。
A granulated product comprising a porous carrier and an oxygen-absorbing composition carried on the carrier;
Hydrophilic inorganic fine particles adhering to the surface of the granulated product,
An oxygen scavenger that is a powder comprising a plurality of composite particles comprising:
The oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance, an alkaline compound, and a transition metal compound.
Oxygen scavenger.
前記親水性無機微粒子が、150μm以下の平均粒径を有する、請求項1に記載の脱酸素剤。   The oxygen scavenger according to claim 1, wherein the hydrophilic inorganic fine particles have an average particle size of 150 μm or less. 前記親水性無機微粒子が、0.5mL/g以上の細孔容積を有する、請求項1又は2に記載の脱酸素剤。   The oxygen scavenger according to claim 1 or 2, wherein the hydrophilic inorganic fine particles have a pore volume of 0.5 mL / g or more. 前記親水性無機微粒子の量が、前記造粒物の質量100質量部に対して0.1〜30質量部である、請求項1〜3のいずれか一項に記載の脱酸素剤。   The oxygen scavenger according to any one of claims 1 to 3, wherein the amount of the hydrophilic inorganic fine particles is 0.1 to 30 parts by mass with respect to 100 parts by mass of the granulated product. 前記複合粒子の質量が、前記複合粒子1個当たり0.3〜10.0mgである、請求項1〜4のいずれか一項に記載の脱酸素剤。   The oxygen scavenger according to any one of claims 1 to 4, wherein a mass of the composite particles is 0.3 to 10.0 mg per composite particle. 前記造粒物の表面に付着している前記親水性無機微粒子が、厚み1mm以下の層を形成している、請求項1〜5のいずれか一項に記載の脱酸素剤。   The oxygen scavenger according to any one of claims 1 to 5, wherein the hydrophilic inorganic fine particles attached to the surface of the granulated material form a layer having a thickness of 1 mm or less. 前記親水性無機微粒子が、前記複合粒子の表面をエネルギー分散型X線分析によって元素分析したときに前記酸素吸収物質、前記アルカリ性化合物又は前記遷移金属化合物に含まれる元素が検出されるように、前記造粒物の表面に付着している、請求項1〜6のいずれか一項に記載の脱酸素剤。   The hydrophilic inorganic fine particles so that the elements contained in the oxygen-absorbing substance, the alkaline compound or the transition metal compound are detected when the surface of the composite particle is subjected to elemental analysis by energy dispersive X-ray analysis. The oxygen scavenger according to any one of claims 1 to 6, which is attached to the surface of the granulated product. 多孔質の担持体、及び前記担持体に担持された酸素吸収組成物を含む複数の造粒物からなる造粒物粉体と複数の親水性無機微粒子とを混ぜ合わせることにより、前記造粒物の表面に前記親水性無機微粒子を付着させて、前記造粒物及び前記親水性無機微粒子を含む粉体である脱酸素剤を得る工程を備え、
前記酸素吸収組成物が、酸素吸収物質を含む液剤、アルカリ性化合物、及び遷移金属化合物を含有する、
脱酸素剤を製造する方法。
By mixing a porous support and a granulated powder comprising a plurality of granules containing an oxygen absorbing composition supported on the support and a plurality of hydrophilic inorganic fine particles, the granulated product is mixed. A step of adhering the hydrophilic inorganic fine particles to the surface to obtain an oxygen scavenger that is a powder containing the granulated product and the hydrophilic inorganic fine particles,
The oxygen absorbing composition contains a liquid agent containing an oxygen absorbing substance, an alkaline compound, and a transition metal compound.
A method for producing an oxygen scavenger.
前記親水性無機微粒子が、150μm以下の平均粒径を有する、請求項8に記載の方法。   The method according to claim 8, wherein the hydrophilic inorganic fine particles have an average particle diameter of 150 μm or less. 前記親水性無機微粒子が、0.5mL/g以上の細孔容積を有する、請求項8又は9に記載の方法。   The method according to claim 8 or 9, wherein the hydrophilic inorganic fine particles have a pore volume of 0.5 mL / g or more. 前記造粒物に付着される前記親水性無機微粒子の量が、前記造粒物の質量100質量部に対して0.1〜30質量部である、請求項8〜10のいずれか一項に記載の方法。   The amount of the hydrophilic inorganic fine particles attached to the granulated product is 0.1 to 30 parts by mass with respect to 100 parts by mass of the granulated product, according to any one of claims 8 to 10. The method described. 請求項1〜7のいずれか一項に記載の脱酸素剤と、該脱酸素剤を収容した通気性包材と、を備える、脱酸素剤包装体。   An oxygen scavenger package comprising the oxygen scavenger according to any one of claims 1 to 7 and a breathable packaging material containing the oxygen scavenger. 請求項12に記載の脱酸素剤包装体と、該脱酸素剤包装体が封入された食品包装容器と、を備える、食品包装体。   A food package comprising the oxygen scavenger package according to claim 12 and a food packaging container in which the oxygen scavenger package is enclosed.
JP2016115422A 2015-12-07 2016-06-09 Oxygen scavenger and method for producing the same Active JP6020757B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015238586 2015-12-07
JP2015238586 2015-12-07

Publications (2)

Publication Number Publication Date
JP6020757B1 true JP6020757B1 (en) 2016-11-02
JP2017104845A JP2017104845A (en) 2017-06-15

Family

ID=57216903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115422A Active JP6020757B1 (en) 2015-12-07 2016-06-09 Oxygen scavenger and method for producing the same

Country Status (1)

Country Link
JP (1) JP6020757B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020270B2 (en) * 2018-04-24 2022-02-16 凸版印刷株式会社 Oxygen scavenger and oxygen scavenger packaging, as well as food packaging
JP7230437B2 (en) * 2018-11-06 2023-03-01 凸版印刷株式会社 Method for inspecting oxygen absorption performance of oxygen absorber, method for manufacturing oxygen absorber, oxygen absorber, oxygen absorber package, and food package
JP7286946B2 (en) * 2018-11-06 2023-06-06 凸版印刷株式会社 Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package
JP2020168608A (en) * 2019-04-03 2020-10-15 凸版印刷株式会社 Deoxidation agent
JP7326840B2 (en) * 2019-04-23 2023-08-16 凸版印刷株式会社 oxygen scavenger
JP7263989B2 (en) * 2019-09-06 2023-04-25 凸版印刷株式会社 Oxygen absorber, oxygen absorber package and food package
JP7310534B2 (en) * 2019-10-18 2023-07-19 凸版印刷株式会社 Oxygen absorber and its manufacturing method, oxygen absorber package, food package
JP2021167217A (en) * 2020-04-13 2021-10-21 凸版印刷株式会社 Oxygen scavenger package and food package
JP7571392B2 (en) * 2020-05-21 2024-10-23 Toppanホールディングス株式会社 Method for determining the oxygen absorption capacity of oxygen absorbers
JP7571393B2 (en) * 2020-05-25 2024-10-23 Toppanホールディングス株式会社 Oxygen absorber, oxygen absorber package, and food package

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109859A (en) * 1985-11-08 1987-05-21 Suntory Ltd Material having deoxygenating function
JPH0938486A (en) * 1995-07-28 1997-02-10 Mitsubishi Gas Chem Co Inc Disoxidant and its packed body
JPH09117660A (en) * 1995-10-23 1997-05-06 Toppan Printing Co Ltd Oxygen absorbing material and its manufacture
JP2003144112A (en) * 2001-11-07 2003-05-20 Mitsubishi Gas Chem Co Inc Free-oxygen absorber composition
JP2008264665A (en) * 2007-04-19 2008-11-06 Mitsubishi Gas Chem Co Inc Method for manufacturing deoxidizer composition
JP2015199054A (en) * 2014-03-31 2015-11-12 凸版印刷株式会社 Oxygen absorbent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109859A (en) * 1985-11-08 1987-05-21 Suntory Ltd Material having deoxygenating function
JPH0938486A (en) * 1995-07-28 1997-02-10 Mitsubishi Gas Chem Co Inc Disoxidant and its packed body
JPH09117660A (en) * 1995-10-23 1997-05-06 Toppan Printing Co Ltd Oxygen absorbing material and its manufacture
JP2003144112A (en) * 2001-11-07 2003-05-20 Mitsubishi Gas Chem Co Inc Free-oxygen absorber composition
JP2008264665A (en) * 2007-04-19 2008-11-06 Mitsubishi Gas Chem Co Inc Method for manufacturing deoxidizer composition
JP2015199054A (en) * 2014-03-31 2015-11-12 凸版印刷株式会社 Oxygen absorbent

Also Published As

Publication number Publication date
JP2017104845A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6020757B1 (en) Oxygen scavenger and method for producing the same
JP6759755B2 (en) Oxygen scavenger and its manufacturing method
EP4173691A1 (en) Oxygen scavenger composition and method for producing same
WO2017169015A1 (en) Deoxidizer composition
JP6275197B2 (en) Oxygen scavenger and method for producing the same
EP3977864A1 (en) Oxygen scavenger composition and production method for same
JP6759754B2 (en) Oxygen scavenger and its manufacturing method
JP7459595B2 (en) Oxygen scavenger composition
JP7020270B2 (en) Oxygen scavenger and oxygen scavenger packaging, as well as food packaging
JP6834282B2 (en) Oxygen scavenger, method of manufacturing oxygen scavenger, oxygen scavenger package and food package
JP7238913B2 (en) Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package
JP7571392B2 (en) Method for determining the oxygen absorption capacity of oxygen absorbers
JP7286946B2 (en) Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package
JP2021167217A (en) Oxygen scavenger package and food package
JP7326840B2 (en) oxygen scavenger
JP7286947B2 (en) Oxygen absorber manufacturing method, oxygen absorber, oxygen absorber package, and food package
JP7230437B2 (en) Method for inspecting oxygen absorption performance of oxygen absorber, method for manufacturing oxygen absorber, oxygen absorber, oxygen absorber package, and food package
JP7571393B2 (en) Oxygen absorber, oxygen absorber package, and food package
JP2022039415A (en) Deoxidizer, deoxidizer package, food package, and method for producing deoxidizer
JP7263989B2 (en) Oxygen absorber, oxygen absorber package and food package
JPS59232078A (en) Production of granular agent to preserve freshness
JP2021030145A (en) Deoxidizer, deoxidizer package and food package
JP6879445B2 (en) Oxygen scavenger composition
JP2022185384A (en) Deoxidant with antibacterial
JP7310534B2 (en) Oxygen absorber and its manufacturing method, oxygen absorber package, food package

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250