[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6020626B2 - Device Ge substrate cleaning method, cleaning water supply device and cleaning device - Google Patents

Device Ge substrate cleaning method, cleaning water supply device and cleaning device Download PDF

Info

Publication number
JP6020626B2
JP6020626B2 JP2015044330A JP2015044330A JP6020626B2 JP 6020626 B2 JP6020626 B2 JP 6020626B2 JP 2015044330 A JP2015044330 A JP 2015044330A JP 2015044330 A JP2015044330 A JP 2015044330A JP 6020626 B2 JP6020626 B2 JP 6020626B2
Authority
JP
Japan
Prior art keywords
cleaning
water
substrate
gas
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015044330A
Other languages
Japanese (ja)
Other versions
JP2015146435A (en
Inventor
裕人 床嶋
裕人 床嶋
融 正岡
融 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015044330A priority Critical patent/JP6020626B2/en
Publication of JP2015146435A publication Critical patent/JP2015146435A/en
Application granted granted Critical
Publication of JP6020626B2 publication Critical patent/JP6020626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Detergent Compositions (AREA)

Description

本発明は、電子デバイス用のゲルマニウム(Ge)基板をGeの溶解及び溶解に起因する表面あれを抑制しながら、高度な清浄度に洗浄する技術に関する。   The present invention relates to a technique for cleaning a germanium (Ge) substrate for electronic devices with a high degree of cleanness while suppressing surface roughness caused by dissolution and dissolution of Ge.

従来、電子部品となるSi基板の洗浄には、RCA洗浄を代表とする高濃度の薬液や洗剤が用いられてきた。また、このような高濃度の薬液や洗剤に代る洗浄方法として、超純水に水素、酸素、オゾン等のガスを溶解させたガス溶解水を用いる方法も提案されている(例えば特許文献1)。   Conventionally, high concentration chemicals and detergents typified by RCA cleaning have been used for cleaning an Si substrate as an electronic component. Further, as a cleaning method instead of such a high concentration chemical solution or detergent, a method using gas-dissolved water in which a gas such as hydrogen, oxygen, ozone or the like is dissolved in ultrapure water has been proposed (for example, Patent Document 1). ).

近年、デバイスの微細化が進み、ゲートやチャネル材料にSiベースのものが採用されている。例えば、CMOS(シーモス、Complementary Metal Oxide Semiconductor;相補型金属酸化膜半導体)における高移動度実現のため、チャンネルとしてSi基板に代わってGe基板が採用されている。
しかし、Ge基板は、Geの酸化物の溶解し易さが問題となっている。即ち、液中の酸化性物質(溶存酸素、過酸化水素など)によってGeの酸化が進行し、容易に溶解するようになることで、基板表面ラフネスの増大や膜ロスなどのトラブル(以下これらを「表面あれ」と称す。)が懸念されている。
In recent years, miniaturization of devices has progressed, and Si-based materials have been adopted as gate and channel materials. For example, a Ge substrate is employed as a channel instead of a Si substrate in order to realize high mobility in CMOS (Chimos, Complementary Metal Oxide Semiconductor; complementary metal oxide semiconductor).
However, the Ge substrate has a problem of easy dissolution of Ge oxide. That is, the oxidation of Ge progresses due to the oxidizing substances (dissolved oxygen, hydrogen peroxide, etc.) in the liquid and becomes easy to dissolve, thereby causing troubles such as an increase in substrate surface roughness and film loss (hereinafter referred to as these). There is concern about this.

そこで、Ge基板の洗浄に当っては、洗浄工程や薬品を濯ぐリンス工程で、可能な限り基板表面を酸化、溶解させずに目的を満たす洗浄方法が望まれているが、従来において、Ge基板の表面の酸化、溶解を防止しつつ十分な洗浄効果を得る洗浄方法は確立されていないのが現状である。   Therefore, in the cleaning of the Ge substrate, there is a demand for a cleaning method that satisfies the purpose without oxidizing and dissolving the substrate surface as much as possible in the cleaning step and the rinsing step of rinsing the chemical. At present, no cleaning method has been established to obtain a sufficient cleaning effect while preventing oxidation and dissolution of the surface of the substrate.

特開2012−186348号公報JP 2012-186348 A

本発明は上記従来の実状に鑑みてなされたものであって、Ge基板の洗浄工程やリンス工程において、Geの酸化、溶解及び溶解に起因する表面あれを抑制しながら、効果的に洗浄またはリンス洗浄を行うことができる洗浄方法、洗浄水供給装置及び洗浄装置を提供することを課題とする。   The present invention has been made in view of the above-mentioned conventional situation, and in the Ge substrate cleaning process and the rinsing process, while effectively preventing surface roughness caused by oxidation, dissolution and dissolution of Ge, cleaning or rinsing can be effectively performed. It is an object of the present invention to provide a cleaning method, a cleaning water supply device, and a cleaning device that can perform cleaning.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、Geは水中の溶存酸素や過酸化水素で酸化されて溶解が進行するため、それらを除去した水で洗浄またはリンスすることでGeの溶解を抑制することができること、また、水素ガスを溶解させた還元性の水素ガス溶解水を用いたり、窒素ガスを溶解させて水中への酸素の溶解を抑制した水を用いることで、さらにGeの酸化、溶解を抑制することが可能であること、また、これらの溶存酸素、過酸化水素の除去と、水素ガス、窒素ガス添加を組み合わせたり、超音波などの物理的洗浄や、微量な薬品を添加した化学的洗浄を併用することで、微粒子などの不純物除去効果を発現させることができることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors oxidize with dissolved oxygen or hydrogen peroxide in water and progress in dissolution. By washing or rinsing with water from which Ge has been removed, By being able to suppress the dissolution of Ge, by using reducing hydrogen gas-dissolved water in which hydrogen gas is dissolved, or by using water in which dissolution of oxygen in water is suppressed by dissolving nitrogen gas, Furthermore, it is possible to suppress the oxidation and dissolution of Ge, and the combination of removal of these dissolved oxygen and hydrogen peroxide with addition of hydrogen gas and nitrogen gas, physical cleaning such as ultrasonic waves, It has been found that the effect of removing impurities such as fine particles can be exhibited by using chemical cleaning with the addition of various chemicals.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] デバイス用Ge基板を洗浄する方法において、溶存酸素と過酸化水素を除去した水を用いて超音波洗浄するデバイス用Ge基板の洗浄方法であって、前記超音波洗浄に用いる水が水素ガスを溶解させたガス溶解水であることを特徴とするデバイス用Ge基板の洗浄方法。 [1] A method for cleaning a Ge substrate for devices, wherein the Ge substrate for devices is ultrasonically cleaned using water from which dissolved oxygen and hydrogen peroxide have been removed, wherein the water used for the ultrasonic cleaning is hydrogen. A method for cleaning a Ge substrate for a device, which is gas-dissolved water in which a gas is dissolved.

] [1]において、前記洗浄に用いる水の溶存酸素濃度が50μg/L以下、H濃度が50μg/L以下であることを特徴とするデバイス用Ge基板の洗浄方法。 [2] Oite to [1], wherein the dissolved oxygen concentration of water used for washing is 50 [mu] g / L or less, the method of cleaning the Ge substrate for devices wherein the concentration of H 2 O 2 is equal to or less than 50 [mu] g / L.

] [1]又は2]において、前記洗浄に用いる水が、酸、アルカリ、キレート剤及び界面活性剤よりなる群から選ばれる1種又は2種以上の薬品を含むことを特徴とするデバイス用Ge基板の洗浄方法。 [3], wherein Oite to [1] or [2], the water used for the cleaning, acid, alkali, to include one or more chemicals selected from chelating agents and the group consisting of surfactants A method for cleaning a Ge substrate for a device.

] デバイス用Ge基板の洗浄に用いる洗浄水をGe基板の超音波洗浄機に供給する装置において、水中の溶存酸素を除去する脱気手段と、該脱気手段で溶存酸素を除去した水に水素ガスを溶解させるガス溶解手段と、水中の過酸化水素を除去する過酸化水素除去手段と、該過酸化水素除去手段と該脱気手段と該ガス溶解手段で処理された水を該超音波洗浄機に供給する手段とを有することを特徴とするデバイス用Ge基板の洗浄水供給装置。 [ 4 ] In an apparatus for supplying cleaning water used for cleaning a Ge substrate for devices to an ultrasonic cleaning machine for a Ge substrate, degassing means for removing dissolved oxygen in water, and water from which dissolved oxygen has been removed by the degassing means ultra gas dissolving means for dissolving the hydrogen gas, and hydrogen peroxide removing means for removing the water of hydrogen peroxide, the treated water in the hydrogen peroxide removal means and dehydration gas means and said gas dissolving means flush water supply device of the Ge substrate device characterized by having a means for supplying a sonic cleaner.

] []において、前記脱気手段で溶存酸素を除去した水に、酸、アルカリ、キレート剤及び界面活性剤よりなる群から選ばれる1種又は2種以上の薬品を添加する薬品添加手段を有することを特徴とするデバイス用Ge基板の洗浄水供給装置。 [ 5 ] In [ 4 ], the chemical addition in which one or more chemicals selected from the group consisting of acids, alkalis, chelating agents and surfactants are added to the water from which dissolved oxygen has been removed by the degassing means A cleaning water supply device for a Ge substrate for devices, characterized in that the device has a means.

] デバイス用Ge基板を洗浄する装置において、[]又は[]に記載のデバイス用Ge基板の洗浄水供給装置と、該デバイス用Ge基板の洗浄水供給装置からの洗浄水が供給される超音波洗浄機とを有することを特徴とするデバイス用Ge基板の洗浄装置。 [ 6 ] In the apparatus for cleaning the device Ge substrate, the cleaning water supply device for the device Ge substrate according to [ 4 ] or [ 5 ] and the cleaning water from the cleaning water supply device for the device Ge substrate are supplied. cleaning apparatus of the Ge substrate device characterized by having an ultrasonic cleaner to be.

本発明によれば、Ge基板の洗浄工程やリンス工程において、Geの酸化、溶解及び溶解に起因する表面あれを抑制しながら、効果的に洗浄またはリンス洗浄を行うことができる。また、更に、水素ガス等のガスや薬品を添加したり、超音波などの物理的洗浄を併用することで、微粒子などの不純物除去効果も得ることができ、高い洗浄効果を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, in the washing | cleaning process and rinse process of Ge board | substrate, it can wash | clean or rinse effectively, suppressing the surface roughness resulting from oxidation, melt | dissolution, and melt | dissolution of Ge. Furthermore, by adding a gas such as hydrogen gas or chemicals or using physical cleaning such as ultrasonic waves, an effect of removing impurities such as fine particles can be obtained, and a high cleaning effect can be obtained.

本発明のデバイス用Ge基板の洗浄装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the washing | cleaning apparatus of Ge board | substrate for devices of this invention.

以下に本発明の実施の形態を詳細に説明する。   Embodiments of the present invention are described in detail below.

本発明においては、デバイス用Ge基板の洗浄に当たり、水中の溶存酸素(DO)、更には過酸化水素(H)を除去した水を用いて洗浄を行うことにより、洗浄時のGeの酸化、溶解及び溶解に起因する表面あれを防止する。
なお、本発明において、洗浄とは、微粒子等の汚染除去のための洗浄と、薬品等を用いた洗浄後の仕上げ洗浄であるリンス洗浄の両方を含むものとする。
In the present invention, when cleaning the Ge substrate for devices, cleaning is performed using water from which dissolved oxygen (DO) in water and hydrogen peroxide (H 2 O 2 ) have been removed. Prevents surface roughness caused by oxidation, dissolution and dissolution.
In the present invention, the term “cleaning” includes both cleaning for removing contaminants such as fine particles and rinsing cleaning that is finishing cleaning after cleaning using chemicals.

本発明において、Ge基板の洗浄に用いる水は、水素ガスや窒素ガス等の非酸化性ガスが溶解したガス溶解水であってもよく、酸、アルカリ、キレート剤、界面活性剤といった薬品を含むものであってもよく、このような水を用いることにより、Geの酸化、溶解、表面あれを抑制した上で、微粒子等の汚染除去効果を十分なものとすることができる。
また、Ge基板の洗浄には超音波洗浄、高圧ジェット洗浄、二流体洗浄といった物理的洗浄作用を付与することにより、より一層高い洗浄効果を得ることができる。
In the present invention, water used for cleaning the Ge substrate may be gas-dissolved water in which a non-oxidizing gas such as hydrogen gas or nitrogen gas is dissolved, and includes chemicals such as acids, alkalis, chelating agents, and surfactants. By using such water, it is possible to suppress the oxidation, dissolution, and surface roughness of Ge and to sufficiently remove the contamination of fine particles and the like.
Further, a higher cleaning effect can be obtained by applying physical cleaning operations such as ultrasonic cleaning, high-pressure jet cleaning, and two-fluid cleaning to the Ge substrate.

<DO除去>
給水のDO除去装置としては、水質を悪化させるものでなければ特に制限はなく、真空脱気塔、膜脱気装置などが用いられ、コンパクトで管理も容易な膜脱気装置が好適である。その排気機構も水質を悪化させるものでなければ制限はない。オイルを用いる真空ポンプはオイルの逆拡散により、水質の悪化が懸念されるので、オイルフリースクロール真空ポンプや、水封式真空ポンプなどが用いられる。
<DO removal>
The DO removal device for feed water is not particularly limited as long as it does not deteriorate the water quality, and a vacuum deaeration tower, a membrane deaeration device, etc. are used, and a membrane deaeration device that is compact and easy to manage is suitable. The exhaust mechanism is not limited as long as it does not deteriorate the water quality. The oil-free scroll vacuum pump, the water-sealed vacuum pump, etc. are used for the vacuum pump using oil because there is a concern that the water quality deteriorates due to the reverse diffusion of the oil.

本発明においてGe基板の洗浄に用いる水は、DO除去により、DO濃度を50μg/L以下、例えば1〜10μg/L程度に低減したものであることが好ましい。DO濃度が上記上限より高いと、Geの酸化、溶解を抑制することができないおそれがあり、また、過度にDO濃度を低減してもそれに見合う効果は得られず、徒に脱気に要するコストがかさみ、経済的に不利である。   In the present invention, the water used for cleaning the Ge substrate is preferably one in which the DO concentration is reduced to 50 μg / L or less, for example, about 1 to 10 μg / L by DO removal. If the DO concentration is higher than the above upper limit, the oxidation and dissolution of Ge may not be suppressed, and even if the DO concentration is excessively reduced, an effect commensurate with it cannot be obtained, and the cost required for deaeration. This is economically disadvantageous.

<H除去>
給水中にHが含まれていなければ、Hの除去は不要であるが、Hを含む給水の場合は、Hの除去を行う。Hの除去方法としては、通常、PtやPbなどの触媒や、亜硫酸型樹脂などを用いてHを還元除去する方法が用いられる。H除去機構が、Hを分解して酸素と水とする反応機構の場合は、DOの除去に先立ちHの分解を行うことが、Hの分解で発生した酸素を残留させない点で好ましい。Ptなどの触媒を用いてHを水素で還元して水とする反応機構の場合は、DO除去の前段で行っても後段で行ってもよい。
<H 2 O 2 removal>
It must contain the H 2 O 2 in water, but the removal of H 2 O 2 is not required, in the case of water containing H 2 O 2, to remove the H 2 O 2. As a method for removing of H 2 O 2 is usually a catalyst and such as Pt and Pb, the method of the H 2 O 2 to reduce and remove by using a sulfite type resin is used. If the H 2 O 2 removal mechanism is a reaction mechanism that decomposes H 2 O 2 into oxygen and water, the decomposition of H 2 O 2 prior to the removal of DO is the decomposition of H 2 O 2 . This is preferable in that the generated oxygen does not remain. In the case of a reaction mechanism in which H 2 O 2 is reduced to hydrogen by using a catalyst such as Pt, the reaction may be performed before or after DO removal.

本発明において、Ge基板の洗浄に用いる水のH濃度は、1μg/L以下、特に比色法による検出限界値以下であることが好ましい。 In the present invention, the H 2 O 2 concentration of water used for cleaning the Ge substrate is preferably 1 μg / L or less, particularly preferably a detection limit value or less by the colorimetric method.

<ガス溶解>
本発明においては、上記のようにDO除去及び必要に応じてH除去を行った水に、非酸化性ガスを溶解させて洗浄に用いてもよく、このようなガス溶解水を用いることにより、微粒子等の汚染除去効果を高めることができる。
<Gas dissolution>
In the present invention, the non-oxidizing gas may be dissolved in the water that has been subjected to DO removal and H 2 O 2 removal as necessary as described above, and such gas-dissolved water is used. As a result, the effect of removing contamination such as fine particles can be enhanced.

非酸化性ガスとしては、Geを酸化させないものであればよく、例えば、水素ガス、窒素ガス、アルゴンガス等の希ガスの1種又は2種以上を用いることができ、特に水素ガス、窒素ガスが好ましい。   Any non-oxidizing gas may be used as long as it does not oxidize Ge. For example, one or more kinds of rare gases such as hydrogen gas, nitrogen gas, and argon gas can be used. Is preferred.

これらの非酸化性ガスの溶解にはコンパクトで管理も容易なガス溶解膜を用いることが好ましい。ガス溶解膜によるガス溶解量は、通常、流量計で検知した水量に応じて、マスフローコントローラ等のガス流量調節機構により調節される。   For dissolving these non-oxidizing gases, it is preferable to use a gas-dissolving film that is compact and easy to manage. The amount of gas dissolved by the gas dissolution membrane is usually adjusted by a gas flow rate adjusting mechanism such as a mass flow controller according to the amount of water detected by a flow meter.

Ge基板の洗浄に用いるガス溶解水のガス濃度としては特に制限はなく、洗浄水の水温における飽和溶解度未満であっても、飽和溶解度以上であってもよいが、溶解ガス濃度が高い程洗浄効果が上がる傾向にあることから、ガス溶解に要するコストとの兼ね合いで、溶解ガス濃度は高くすることが好ましい。例えば水素ガスであれば1.2〜1.6mg/L、窒素ガスであれば14〜18mg/L程度とすることが好ましい。   The gas concentration of the gas dissolved water used for cleaning the Ge substrate is not particularly limited, and may be less than or equal to the saturation solubility at the water temperature of the cleaning water. The higher the dissolved gas concentration, the higher the cleaning effect. Therefore, it is preferable to increase the dissolved gas concentration in consideration of the cost required for gas dissolution. For example, it is preferable that the hydrogen gas is about 1.2 to 1.6 mg / L, and the nitrogen gas is about 14 to 18 mg / L.

<薬品添加>
本発明で用いる洗浄水には、塩酸、硫酸、フッ酸、リン酸、酢酸などの酸や、アンモニア、TMAH(テトラメチルアンモニウムヒドロキシド)、コリンなどのアルカリや、キレート剤、界面活性剤などの薬品の1種又は2種以上を添加してもよく、このような薬品を添加することにより、微粒子等の汚染除去効果を高めることができる。特に、アンモニア等のアルカリを添加して、洗浄水のpHを7以上、好ましくは9〜14のアルカリ性に調整することにより、微粒子等の除去効果を高めることができる。なお、このpH調整にはアルカリ性薬品を用いる他、アルカリ性ガスを用いても良いが、取扱いが簡便で濃度管理を容易に行えるアンモニアを用いることが好ましい。特にアンモニアを1mg/L以上、例えば1〜200mg/L程度添加して、pH7〜11に調整した洗浄水を用いることにより、良好な洗浄効果を得ることができる。なお、この洗浄水のpHが過度に高かったりアンモニアの添加量が過度に多いと、被洗浄物に対するダメージが出るおそれがあり、好ましくない。
薬品の添加は、前述のガスの溶解後であっても溶解前であってもよい。
<Chemical addition>
The washing water used in the present invention includes acids such as hydrochloric acid, sulfuric acid, hydrofluoric acid, phosphoric acid and acetic acid, alkalis such as ammonia, TMAH (tetramethylammonium hydroxide) and choline, chelating agents, surfactants and the like. One kind or two or more kinds of chemicals may be added. By adding such chemicals, the effect of removing contaminants such as fine particles can be enhanced. In particular, the effect of removing fine particles and the like can be enhanced by adding an alkali such as ammonia and adjusting the pH of the washing water to 7 or more, preferably 9 to 14 alkaline. In addition, although alkaline chemicals may be used for this pH adjustment, an alkaline gas may be used, but it is preferable to use ammonia that is easy to handle and can easily control the concentration. In particular, it is possible to obtain a good cleaning effect by using washing water adjusted to pH 7 to 11 by adding ammonia at 1 mg / L or more, for example, about 1 to 200 mg / L. In addition, if the pH of the washing water is excessively high or the amount of ammonia added is excessively large, there is a possibility that damage to the object to be cleaned may occur, which is not preferable.
The chemical may be added after the gas is dissolved or before the gas is dissolved.

<給水配管>
給水及び給水に上述の処理を施した洗浄水を洗浄機に供給するための配管は、水質を悪化させるものでなければその材質には特に制限はないが、ガス透過性が低いCVP(塩化ビニル)、PVDF(ポリフッ化ビニリデン)などの材質よりなるものが好ましい。
<Water supply piping>
There are no particular restrictions on the material of the water supply and the piping for supplying the cleaning water that has been subjected to the above-described treatment to the cleaning machine as long as it does not deteriorate the water quality, but CVP (vinyl chloride) having low gas permeability. ) And PVDF (polyvinylidene fluoride) are preferable.

<水温>
給水及び洗浄水の温度は、給水配管や給水機構の各部の耐熱性にもよるが、通常20〜80℃の範囲であり、例えば20〜30℃又は60〜80℃の温度とすることが好ましい。
<Water temperature>
Although the temperature of water supply and washing water depends on the heat resistance of each part of the water supply pipe and the water supply mechanism, it is usually in the range of 20 to 80 ° C., for example, preferably 20 to 30 ° C. or 60 to 80 ° C. .

<洗浄方法>
本発明における洗浄方法としては特に制限はなく、被洗浄物に洗浄水を噴き付けて洗浄する方法や、洗浄水中に被洗浄物を浸漬して洗浄する方法など、従来公知のいずれの方法も採用することができるが、洗浄水に超音波を付加しながら行う超音波洗浄、或いは、吐出ノズルから、洗浄水又は洗浄水と気体との混合流体を被洗浄物に向けて吐出させて洗浄する高圧ジェット洗浄又は二流体洗浄を行うことが好ましい。
<Washing method>
The cleaning method in the present invention is not particularly limited, and any conventionally known method such as a method of spraying cleaning water on the object to be cleaned and a method of immersing and cleaning the object to be cleaned is adopted. Ultrasonic cleaning performed while applying ultrasonic waves to the cleaning water, or high pressure that discharges cleaning water or a mixed fluid of cleaning water and gas from the discharge nozzle toward the object to be cleaned It is preferable to perform jet cleaning or two-fluid cleaning.

超音波洗浄を行う場合、洗浄水中に被洗浄物を浸漬し、被洗浄物が浸漬された洗浄水に超音波を付与してもよく、被洗浄物に超音波を印加した洗浄水を吹き付けて洗浄する枚葉式洗浄を行ってもよい。
超音波洗浄において用いる超音波に制限はないが、一般的に使用される10kHz〜3MHzの超音波が好適に用いられる。
When performing ultrasonic cleaning, the object to be cleaned may be immersed in the cleaning water, and ultrasonic waves may be applied to the cleaning water in which the object to be cleaned is immersed, or by spraying the cleaning water to which the object is cleaned. Single wafer cleaning may be performed.
Although there is no restriction | limiting in the ultrasonic wave used in ultrasonic cleaning, The ultrasonic wave of 10 kHz-3 MHz generally used is used suitably.

高圧ジェット洗浄を行う場合、洗浄流体吐出ノズルから吐出させる洗浄水の吐出条件としては、例えば次のような条件を採用することができる。
洗浄水供給量:0.5〜30L/min
ノズル液圧:5〜20MPa
When performing high-pressure jet cleaning, for example, the following conditions can be adopted as discharge conditions for the cleaning water discharged from the cleaning fluid discharge nozzle.
Washing water supply amount: 0.5-30 L / min
Nozzle hydraulic pressure: 5-20MPa

また、二流体洗浄を行う場合、気体(キャリアガス)としては、窒素ガス、水素ガス、アルゴンガス等の非酸化性ガスの1種又は2種以上を用いることができ、その洗浄流体吐出ノズルから吐出させる洗浄水及びキャリアガスの吐出条件としては、例えば、次のような条件を採用することができる。
洗浄水供給量:0.05〜0.5L/min
ノズル液圧:0.05〜0.5MPa
キャリアガス圧:0.1〜0.6MPa
When performing two-fluid cleaning, as the gas (carrier gas), one or more of non-oxidizing gases such as nitrogen gas, hydrogen gas, and argon gas can be used. From the cleaning fluid discharge nozzle For example, the following conditions can be adopted as discharge conditions for the cleaning water and carrier gas to be discharged.
Washing water supply amount: 0.05 to 0.5 L / min
Nozzle hydraulic pressure: 0.05 to 0.5 MPa
Carrier gas pressure: 0.1-0.6 MPa

なお、洗浄時間は、用いる洗浄水の水質や、ガス溶解、薬品添加の有無、その他の洗浄条件によっても異なるが、枚葉洗浄の場合、通常30〜180秒程度である。   The washing time varies depending on the quality of the washing water used, gas dissolution, the presence or absence of chemical addition, and other washing conditions, but in the case of single wafer washing, it is usually about 30 to 180 seconds.

<洗浄装置>
以下に、図1を参照して、本発明の洗浄装置を具体的に説明する。
図1において、1はH除去装置、2は脱気膜モジュール、3はガス溶解膜モジュール、4は洗浄機、5は超音波ノズル、6は被洗浄物であるGe基板、7は回転台を示す。Pは脱気膜モジュール2の気室側を真空引きするための排気ポンプ、Fは水流量計、Gはガス流量調節機構である。
<Washing device>
Hereinafter, the cleaning apparatus of the present invention will be described in detail with reference to FIG.
In FIG. 1, 1 is an H 2 O 2 removal device, 2 is a degassing membrane module, 3 is a gas dissolution membrane module, 4 is a cleaning machine, 5 is an ultrasonic nozzle, 6 is a Ge substrate that is an object to be cleaned, 7 is Indicates a turntable. P is an exhaust pump for evacuating the air chamber side of the degassing membrane module 2, F is a water flow meter, and G is a gas flow rate adjusting mechanism.

純水等の給水は、まず、H除去装置1でHが除去された後、脱気膜モジュール2で脱気処理され、水中のDOが除去される。脱気膜モジュール2でDOが除去された水は、次いでガス溶解膜モジュール3で水素ガス等の非酸化性ガスが溶解される。このガス溶解膜モジュール3へのガス流量は、水流量計Fの計測値に基いてガス流量調節機構Gで制御され、所定の溶解ガス濃度のガス溶解水が調製される。 Water such as pure water after first H 2 O 2 was removed by H 2 O 2 removing device 1, is degassed with degassing membrane module 2, water DO is removed. The water from which DO has been removed by the degassing membrane module 2 is then dissolved in a non-oxidizing gas such as hydrogen gas by the gas dissolving membrane module 3. The gas flow rate to the gas dissolution membrane module 3 is controlled by the gas flow rate adjusting mechanism G based on the measured value of the water flow meter F, and the gas dissolved water having a predetermined dissolved gas concentration is prepared.

ガス溶解膜モジュール3からのガス溶解水には、必要に応じて薬品が添加された後、洗浄機4の超音波ノズル5で超音波が印加されてGe基板6に吹き付けられる。Ge基板6は回転台7上に載置されており、Ge基板6を回転させながら吹き付け洗浄が行われる。   After chemicals are added to the gas-dissolved water from the gas-dissolved membrane module 3 as necessary, ultrasonic waves are applied by the ultrasonic nozzle 5 of the cleaning machine 4 and sprayed onto the Ge substrate 6. The Ge substrate 6 is placed on a turntable 7, and spray cleaning is performed while the Ge substrate 6 is rotated.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

[実施例1]
図1に示す洗浄装置により、Si粒子で汚染させたGe基板(φ3インチ,洗浄前の微粒子数:約2000個/基板)を被洗浄物として洗浄実験を行った。
なお、洗浄前後のGe基板表面の微粒子数は、Ge基板表面をレーザー顕微鏡で観察して0.5μm以上の微粒子の個数を計測して求めた。また、除去率は洗浄前後の微粒子の個数から算出した。
[Example 1]
With the cleaning apparatus shown in FIG. 1, a cleaning experiment was performed using a Ge substrate contaminated with Si particles (φ3 inches, number of fine particles before cleaning: about 2000 / substrate) as an object to be cleaned.
The number of fine particles on the surface of the Ge substrate before and after cleaning was determined by observing the surface of the Ge substrate with a laser microscope and measuring the number of fine particles of 0.5 μm or more. The removal rate was calculated from the number of fine particles before and after cleaning.

各部の仕様ないし条件は以下の通りである。
脱気膜:ポリポア社製「リキセルG248」
ガス溶解膜:ポリポア社製「リキセルG248」
除去装置:栗田工業(株)製「ナノセイバー(登録商標)」
供給ガス:水素ガス
給水:純水
水温:25℃
水量5L/min
水素ガス流量:78mL/min
The specifications and conditions of each part are as follows.
Degassing membrane: “Liquicel G248” manufactured by Polypore
Gas-dissolved membrane: “Liquicel G248” manufactured by Polypore
H 2 O 2 removal device: “Nano Saver (registered trademark)” manufactured by Kurita Kogyo Co., Ltd.
Supply gas: Hydrogen gas Supply water: Pure water Water temperature: 25 ° C
Water volume 5L / min
Hydrogen gas flow rate: 78 mL / min

純水を給水とし、H除去装置(ナノセイバー)1でHを分解除去してH濃度を<1μg/Lとし、脱気膜モジュール2で脱気を行いDO濃度10μg/L程度とした水を、ガス溶解膜モジュール3へ5L/minで供給した。水素ガスは、溶存水素ガス濃度が1.4mg/Lとなるように、供給水素ガス量78L/minとして、全量を溶解させた。ガス溶解膜モジュール3の後段でアンモニアを1mg/L添加し、pH9.5程度となるように調整して超音波ノズル式枚葉洗浄機4に供給した。超音波はメガソニック(MS)周波数1MHzとし、洗浄時間は120秒とした。 Pure water is used as feed water, H 2 O 2 is decomposed and removed by the H 2 O 2 removal device (Nano Saver) 1 to make the H 2 O 2 concentration <1 μg / L, and deaeration is carried out by the degassing membrane module 2. Water having a concentration of about 10 μg / L was supplied to the gas-dissolving membrane module 3 at 5 L / min. The total amount of hydrogen gas was dissolved at a supply hydrogen gas amount of 78 L / min so that the dissolved hydrogen gas concentration was 1.4 mg / L. Ammonia was added at 1 mg / L in the subsequent stage of the gas-dissolving membrane module 3, and the pH was adjusted to about 9.5 and supplied to the ultrasonic nozzle type single wafer cleaning machine 4. The ultrasonic wave had a megasonic (MS) frequency of 1 MHz and the cleaning time was 120 seconds.

洗浄後のGe基板の微粒子数を調べ、微粒子除去率を求めた。また、Ge基板の表面あれの状態をICP−MSによる水中のGe分析(Geの酸化、溶解による水中のGe溶出濃度)とAFM(原子間力顕微鏡)によるGe基板の表面粗さRmaxの測定により評価した。結果を表1に示す。   The number of fine particles on the Ge substrate after washing was examined to obtain the fine particle removal rate. Also, the surface roughness of the Ge substrate was analyzed by Ge analysis in water by ICP-MS (Ge elution concentration of Ge by oxidation and dissolution of Ge) and measurement of the surface roughness Rmax of the Ge substrate by AFM (Atomic Force Microscope). evaluated. The results are shown in Table 1.

比較例2]
実施例1において、給水のH除去、水素ガス溶解、アンモニア添加を行わず、脱気によりDO10μg/L程度とした純水(H1μg/L)による超音波洗浄としたこと以外は同様にして洗浄実験を行い、微粒子除去率及びGe基板の表面あれの状態を調べ、結果を表1に示した。
[ Comparative Example 2]
In Example 1, H 2 O 2 removal of feed water, hydrogen gas dissolution, and ammonia addition were not performed, and ultrasonic cleaning with pure water (H 2 O 2 1 μg / L) adjusted to about DO 10 μg / L by degassing was performed. A cleaning experiment was conducted in the same manner except that the particle removal rate and the state of the surface of the Ge substrate were examined. The results are shown in Table 1.

比較例3]
実施例1において、給水の水素ガス溶解、アンモニア添加を行わず、H<1μg/L、DO10μg/L程度に除去した純水による超音波洗浄としたこと以外は同様にして洗浄実験を行い、微粒子除去率及びGe基板の表面あれの状態を調べ、結果を表1に示した。
[ Comparative Example 3]
In Example 1, the cleaning experiment was performed in the same manner except that the water was not dissolved in hydrogen gas and added with ammonia, and ultrasonic cleaning was performed with pure water removed to about H 2 O 2 <1 μg / L and DO 10 μg / L. Then, the particle removal rate and the state of the surface of the Ge substrate were examined, and the results are shown in Table 1.

[実施例4]
実施例1において、給水のアンモニア添加を行わず、H<1μg/L、DO10μg/L程度に除去すると共に溶存水素ガス濃度1.4mg/Lとした純水による超音波洗浄としたこと以外は同様にして洗浄実験を行い、微粒子除去率及びGe基板の表面あれの状態を調べ、結果を表1に示した。
[Example 4]
In Example 1, without ammonia addition of water, H 2 O 2 <1μg / L, it is referred to as an ultrasonic cleaning with pure water and the dissolved hydrogen gas concentration 1.4 mg / L with removal of about DO10μg / L A cleaning experiment was conducted in the same manner except that the particle removal rate and the state of the surface of the Ge substrate were examined. The results are shown in Table 1.

比較例4
実施例1において、超音波を付与せずに洗浄したこと以外は同様にして洗浄実験を行い、微粒子除去率及びGe基板の表面あれの状態を調べ、結果を表1に示した。
[ Comparative Example 4 ]
A cleaning experiment was performed in the same manner as in Example 1 except that cleaning was performed without applying ultrasonic waves, and the fine particle removal rate and the state of the surface of the Ge substrate were examined. The results are shown in Table 1.

[比較例1]
実施例1において、給水のH除去、脱気、水素ガス溶解、アンモニア添加を行わず、H濃度10μg/L、DO濃度数百μg/Lの純水による超音波洗浄としたこと以外は同様にして洗浄実験を行い、微粒子除去率及びGe基板の表面あれの状態を調べ、結果を表1に示した。
[Comparative Example 1]
In Example 1, ultrasonic cleaning with pure water having H 2 O 2 concentration of 10 μg / L and DO concentration of several hundred μg / L without H 2 O 2 removal, degassing, hydrogen gas dissolution, and ammonia addition in the feed water A cleaning experiment was conducted in the same manner except for the above, and the particle removal rate and the state of the surface of the Ge substrate were examined. The results are shown in Table 1.

[参考例1]
Ge基板の代りに、実施例1における汚染Ge基板と同程度に汚染させた汚染Si基板を被洗浄物として、比較例1と同様にして洗浄実験を行い、微粒子除去率及びSi基板の表面あれの状態(Rmax)を調べ、結果を表1に示した。
[Reference Example 1]
In place of the Ge substrate, a contaminated Si substrate contaminated to the same extent as the contaminated Ge substrate in Example 1 was used as an object to be cleaned. The state (Rmax) was examined, and the results are shown in Table 1.

Figure 0006020626
Figure 0006020626

表1より次のことが分かる。
純水に何ら処理を行うことなく超音波洗浄を行った比較例1では、微粒子除去率も高くはないが、特にGe基板の表面あれの問題がある。この結果は、洗浄水として純水を用いてもGe基板の表面あれを防止し得ないことを示している。
Table 1 shows the following.
In Comparative Example 1 in which ultrasonic cleaning was performed without performing any treatment on pure water, the fine particle removal rate was not high, but there was a problem of surface roughness of the Ge substrate in particular. This result shows that even if pure water is used as the cleaning water, the surface roughness of the Ge substrate cannot be prevented.

これに対して、洗浄水として、H除去、脱気によるDO除去、水素ガス溶解及びアンモニア添加を行ったものを用いて超音波洗浄を行った実施例1は、最も良好な結果が得られ、Ge基板の表面あれを抑制した上で、高い微粒子除去率を得ることができる。 In contrast, as washing water, H 2 O 2 is removed, DO removed by degassing, examples 1 was subjected to ultrasonic cleaning with those subjected to hydrogen gas dissolved and ammonia addition, the best results As a result, it is possible to obtain a high particle removal rate while suppressing surface roughness of the Ge substrate.

この実施例1に対して、アンモニア添加のみを行わなかった実施例4は、実施例1と同様にGe基板の表面あれを抑制することができ、また、実施例1に次いで高い洗浄効果を得ることができている。この結果から、薬品添加の有無は、洗浄コストと洗浄効果との兼ね合いから、経済性と洗浄結果の要求レベルに応じて適宜選択されることが分かる。
また、実施例1に対して超音波を付与しなかったこと以外は同様に行った比較例4や、実施例1に対してHガス溶解及びアンモニア添加を行わなかったこと以外は同様に行った比較例3では、微粒子除去率は劣るが、Ge基板の表面あれは十分に抑制されている。
また、脱気によるDO除去のみを行って超音波洗浄を行った比較例2は、微粒子除去率は比較例1よりも劣るが、Ge基板の表面あれの抑制の目的は達成されている。
比較例4の洗浄方法は、微粒子除去を必要としない薬液洗浄後の仕上げ洗浄においては、Ge基板の表面あれを抑制した上で高いリンス効果を得ることができる。
In contrast to Example 1, Example 4 in which only the addition of ammonia was not performed can suppress the surface roughness of the Ge substrate as in Example 1, and also obtains a high cleaning effect after Example 1. Is able to. From this result, it can be seen that the presence / absence of chemical addition is appropriately selected according to the cost efficiency and the required level of the cleaning result in consideration of the cleaning cost and the cleaning effect.
Also, except for not applying ultrasonic waves to Example 1 and Comparative Example 4 were carried out in the same manner, except that no made of H 2 gas dissolved and ammonia added to Example 1 carried out in the same manner In Comparative Example 3, the fine particle removal rate is inferior, but the surface roughness of the Ge substrate is sufficiently suppressed.
Moreover, although the comparative example 2 which performed ultrasonic cleaning by performing only the DO removal by deaeration is inferior to the comparative example 1, the object of suppressing the surface roughness of the Ge substrate has been achieved.
The cleaning method of Comparative Example 4 can obtain a high rinsing effect while suppressing surface roughness of the Ge substrate in the final cleaning after the chemical cleaning that does not require removal of the fine particles.

Si基板の洗浄を行った参考例1では、基板の表面あれの問題はなく、表面あれはGe基板に特有の問題であることが分かる。   In Reference Example 1 in which the Si substrate was cleaned, it was found that there was no problem with the surface of the substrate, and that the surface was a problem specific to the Ge substrate.

1 H除去装置
2 脱気膜モジュール
3 ガス溶解膜モジュール
4 洗浄機
5 超音波ノズル
6 Ge基板
7 回転台
1 H 2 O 2 removing device 2 degassing membrane module 3 gas dissolving membrane module 4 washer 5 ultrasonic nozzle 6 Ge substrate 7 turntable

Claims (6)

デバイス用Ge基板を洗浄する方法において、溶存酸素と過酸化水素を除去した水を用いて超音波洗浄するデバイス用Ge基板の洗浄方法であって、
前記超音波洗浄に用いる水が水素ガスを溶解させたガス溶解水であることを特徴とするデバイス用Ge基板の洗浄方法。
In the method for cleaning a Ge substrate for a device, the Ge substrate for a device is cleaned by ultrasonic cleaning using water from which dissolved oxygen and hydrogen peroxide have been removed,
A method for cleaning a Ge substrate for devices, wherein the water used for the ultrasonic cleaning is gas-dissolved water in which hydrogen gas is dissolved.
請求項1において、前記洗浄に用いる水の溶存酸素濃度が50μg/L以下、H濃度が50μg/L以下であることを特徴とするデバイス用Ge基板の洗浄方法。 2. The method for cleaning a Ge substrate for a device according to claim 1, wherein the dissolved oxygen concentration of water used for the cleaning is 50 μg / L or less and the H 2 O 2 concentration is 50 μg / L or less. 請求項1又は2において、前記洗浄に用いる水が、酸、アルカリ、キレート剤及び界面活性剤よりなる群から選ばれる1種又は2種以上の薬品を含むことを特徴とするデバイス用Ge基板の洗浄方法。   3. The Ge substrate for a device according to claim 1, wherein the water used for the cleaning contains one or more chemicals selected from the group consisting of an acid, an alkali, a chelating agent, and a surfactant. Cleaning method. デバイス用Ge基板の洗浄に用いる洗浄水をGe基板の超音波洗浄機に供給する装置において、水中の溶存酸素を除去する脱気手段と、該脱気手段で溶存酸素を除去した水に水素ガスを溶解させるガス溶解手段と、水中の過酸化水素を除去する過酸化水素除去手段と、該過酸化水素除去手段と該脱気手段と該ガス溶解手段で処理された水を該超音波洗浄機に供給する手段とを有することを特徴とするデバイス用Ge基板の洗浄水供給装置。 In an apparatus for supplying cleaning water used for cleaning a Ge substrate for a device to an ultrasonic cleaning machine for a Ge substrate, degassing means for removing dissolved oxygen in water, and hydrogen gas in water from which dissolved oxygen has been removed by the degassing means Gas dissolving means for dissolving water, hydrogen peroxide removing means for removing hydrogen peroxide in water, water treated by the hydrogen peroxide removing means, degassing means, and gas dissolving means for the ultrasonic cleaner And a cleaning water supply device for a Ge substrate for a device. 請求項において、前記脱気手段で溶存酸素を除去した水に、酸、アルカリ、キレート剤及び界面活性剤よりなる群から選ばれる1種又は2種以上の薬品を添加する薬品添加手段を有することを特徴とするデバイス用Ge基板の洗浄水供給装置。 5. The chemical addition means according to claim 4 , wherein one or more chemicals selected from the group consisting of acids, alkalis, chelating agents and surfactants are added to the water from which dissolved oxygen has been removed by the deaeration means. A cleaning water supply device for a Ge substrate for a device. デバイス用Ge基板を洗浄する装置において、請求項又はに記載のデバイス用Ge基板の洗浄水供給装置と、該デバイス用Ge基板の洗浄水供給装置からの洗浄水が供給される超音波洗浄機とを有することを特徴とするデバイス用Ge基板の洗浄装置。 In the apparatus which wash | cleans the Ge substrate for devices, the ultrasonic cleaning by which the cleaning water supply apparatus of the Ge substrate for devices of Claim 4 or 5 and the washing water from the washing water supply apparatus of this Ge substrate for devices are supplied And a Ge substrate cleaning apparatus for devices.
JP2015044330A 2015-03-06 2015-03-06 Device Ge substrate cleaning method, cleaning water supply device and cleaning device Expired - Fee Related JP6020626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044330A JP6020626B2 (en) 2015-03-06 2015-03-06 Device Ge substrate cleaning method, cleaning water supply device and cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044330A JP6020626B2 (en) 2015-03-06 2015-03-06 Device Ge substrate cleaning method, cleaning water supply device and cleaning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013104250A Division JP2014225570A (en) 2013-05-16 2013-05-16 METHOD FOR CLEANING Ge SUBSTRATE FOR DEVICE, CLEANING WATER SUPPLY DEVICE AND CLEANING DEVICE

Publications (2)

Publication Number Publication Date
JP2015146435A JP2015146435A (en) 2015-08-13
JP6020626B2 true JP6020626B2 (en) 2016-11-02

Family

ID=53890523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044330A Expired - Fee Related JP6020626B2 (en) 2015-03-06 2015-03-06 Device Ge substrate cleaning method, cleaning water supply device and cleaning device

Country Status (1)

Country Link
JP (1) JP6020626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721080B (en) * 2017-01-09 2021-03-11 大陸商盛美半導體設備(上海)股份有限公司 Device for cleaning substrate and high temperature chemical solution supply system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136077A (en) * 2001-10-31 2003-05-13 Nec Corp Apparatus for making washing water or dipping water used in production of semiconductor
JP2005045206A (en) * 2003-07-07 2005-02-17 Dainippon Screen Mfg Co Ltd Method and equipment for substrate processing
CN101379597B (en) * 2006-02-01 2012-07-18 国立大学法人东北大学 Semiconductor device manufacturing method and method for reducing microroughness of semiconductor surface
JP5585076B2 (en) * 2009-12-24 2014-09-10 栗田工業株式会社 Cleaning method
JP2013045961A (en) * 2011-08-25 2013-03-04 Dainippon Screen Mfg Co Ltd Substrate cleaning method, substrate cleaning liquid and substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI721080B (en) * 2017-01-09 2021-03-11 大陸商盛美半導體設備(上海)股份有限公司 Device for cleaning substrate and high temperature chemical solution supply system

Also Published As

Publication number Publication date
JP2015146435A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
KR100303933B1 (en) Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
TWI447799B (en) Method of cleaning substrates and substrate cleaner
JP5585076B2 (en) Cleaning method
TWI405621B (en) Cleaning liquid and cleaning method for electronic material
JPH1027771A (en) Cleaning method and device
WO2009128327A1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP2009543344A (en) Post-etch wafer surface cleaning with liquid meniscus
KR19990067948A (en) Wash water for electronic material
JP2012143708A (en) Washing method
JP2002261062A (en) Method and device for removing particle on semiconductor wafer
JP4482844B2 (en) Wafer cleaning method
CN114078692A (en) Wafer cleaning method and wafer cleaning equipment
WO2011086876A1 (en) Surface cleaning method for silicon wafer
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
JP2007214412A (en) Semiconductor substrate cleaning method
WO2015189933A1 (en) METHOD FOR CLEANING Ge SUBSTRATE FOR DEVICE, CLEANING-WATER-SUPPLYING DEVICE, AND CLEANING DEVICE
JP2014225570A (en) METHOD FOR CLEANING Ge SUBSTRATE FOR DEVICE, CLEANING WATER SUPPLY DEVICE AND CLEANING DEVICE
TW201600183A (en) Clean method, clean water supply device and clean device for element Ge substrate
JP2004296463A (en) Cleaning method and cleaning device
JP2002001243A (en) Method for cleaning electronic material
KR20100057326A (en) Apparatus and method for cleaning wafer
JP2007073806A (en) Silicon wafer cleansing method
JP2002261063A (en) Method and device for removing particle on semiconductor wafer
JPH11265870A (en) Cleaning of electronic material
JP2011204958A (en) Cleaning method and cleaning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees