JP6015280B2 - Adapter power supply - Google Patents
Adapter power supply Download PDFInfo
- Publication number
- JP6015280B2 JP6015280B2 JP2012207646A JP2012207646A JP6015280B2 JP 6015280 B2 JP6015280 B2 JP 6015280B2 JP 2012207646 A JP2012207646 A JP 2012207646A JP 2012207646 A JP2012207646 A JP 2012207646A JP 6015280 B2 JP6015280 B2 JP 6015280B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- power supply
- output voltage
- switching element
- thermoelectric conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 20
- 238000004804 winding Methods 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000020169 heat generation Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 6
- 238000002955 isolation Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0045—Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Direct Current Feeding And Distribution (AREA)
- Rectifiers (AREA)
Description
本発明は、待機時の電力を低減したアダプタ電源装置に関する。 The present invention relates to an adapter power supply apparatus that reduces standby power.
商用交流電源(90〜264Vac)を入力(ワールドワイド入力)して所定の直流出力電圧を得るアダプタ電源装置は、小型テレビジョン受像機やプリンタ装置、更にはノートブック型パーソナルコンピュータ等の各種の電子機器に直流電圧を供給する外部電源装置として幅広く用いられている。この種のアダプタ電源装置は、例えば図6にその概略構成を示すように、概略的には交流電圧を整流する整流回路DBに絶縁トランスTの一次巻線T1を直列に介して接続されたスイッチング素子Qと、自励発振して前記スイッチング素子Qを所定の周期でスイッチング駆動する制御回路(制御用IC)CONTを備える。そして前記絶縁トランスTの二次巻線T2に生起された電圧をダイオードDを介して整流し、出力コンデンサCoutを介して平滑化して所定の直流出力電圧Voutを得るように構成される(例えば特許文献1を参照)。 An adapter power supply that obtains a predetermined DC output voltage by inputting commercial AC power (90 to 264 Vac) (worldwide input) is a variety of electronic devices such as small television receivers, printers, and notebook personal computers. Widely used as an external power supply for supplying DC voltage to equipment. In this type of adapter power supply, for example, as schematically shown in FIG. 6, switching is generally performed by connecting a primary winding T1 of an insulating transformer T in series to a rectifier circuit DB that rectifies an AC voltage. An element Q and a control circuit (control IC) CONT that self-oscillates and switches the switching element Q in a predetermined cycle are provided. The voltage generated in the secondary winding T2 of the insulating transformer T is rectified via a diode D and smoothed via an output capacitor Cout to obtain a predetermined DC output voltage Vout (for example, a patent) Reference 1).
前記制御回路(制御用IC)CONTは、前記絶縁トランスTの二次側に設けられた電圧検出回路Vsensにて検出され、フォトカプラPCを介してフィードバックされる前記直流出力電圧Voutの情報、具体的には直流出力電圧Voutと設定電圧との誤差電圧に応じて前記スイッチング素子Qのオン幅を制御し、これによって前記直流出力電圧Voutを一定化する役割を担う。尚、図中T3は、前記絶縁トランスTの補助巻線である。前記制御回路CONTは、前記スイッチング素子Qのスイッチング動作に伴って前記補助巻線T3に生起される電圧を駆動電源として動作する。 The control circuit (control IC) CONT is detected by the voltage detection circuit Vsens provided on the secondary side of the insulation transformer T, and information on the DC output voltage Vout fed back through the photocoupler PC, specifically Specifically, the ON width of the switching element Q is controlled in accordance with the error voltage between the DC output voltage Vout and the set voltage, thereby playing a role of making the DC output voltage Vout constant. In the figure, T3 is an auxiliary winding of the insulating transformer T. The control circuit CONT operates using a voltage generated in the auxiliary winding T3 in accordance with the switching operation of the switching element Q as a driving power source.
ところで従来、無負荷時または軽負荷時におけるアダプタ電源装置の直流出力電圧Voutを、例えば定格出力電圧[32V]から待機時出力電圧[12V]に切り替えることで、その待機時電力を低減する工夫がなされている。具体的には、例えば図7に示すように当該アダプタ電源装置の電源供給先である電子機器側から、動作(重負荷)状態であることを示す制御信号を入力してスイッチ素子Sを導通(オン)させ、前記制御信号の入力が途絶えたとき(無負荷または軽負荷状態)、前記スイッチ素子Sを遮断(オフ)させている。 By the way, conventionally, there is a device for reducing the standby power by switching the DC output voltage Vout of the adapter power supply device at the time of no load or light load from, for example, the rated output voltage [32V] to the standby output voltage [12V]. Has been made. Specifically, for example, as shown in FIG. 7, a control signal indicating that the adapter power supply is supplied from the electronic device side, which is in an operating (heavy load) state, is connected to the switch element S ( When the input of the control signal is interrupted (no load or light load state), the switch element S is cut off (off).
そして前記スイッチ素子Sの導通(オン)により出力電圧検出用の抵抗R2に補助抵抗R3を並列接続して前記電圧検出回路Vsensによる電圧検出条件を高く設定し、これによって前記直流出力電圧Voutを定格出力である32Vに設定している。また前記スイッチ素子Sを遮断(オフ)により前記補助抵抗R3を切り離すことで前記電圧検出回路Vsensによる電圧検出条件を低く設定し、前記直流出力電圧Voutを待機時の12Vに設定している。 When the switch element S is turned on, an auxiliary resistor R3 is connected in parallel to the output voltage detection resistor R2, and the voltage detection condition by the voltage detection circuit Vsens is set high, whereby the DC output voltage Vout is rated. The output is set to 32V. Further, by disconnecting the auxiliary resistor R3 by cutting off the switch element S, the voltage detection condition by the voltage detection circuit Vsens is set low, and the DC output voltage Vout is set to 12V during standby.
上述した如く無負荷時または軽負荷時におけるアダプタ電源装置の直流出力電圧Voutを低下させれば、確かに待機時における当該アダプタ電源装置の消費電力を低減することが可能となる。しかしながらこのような制御を行うには、前述したように電子機器側から制御信号を取得する必要があり、また2芯の電力ケーブルに代えて、信号伝送線を含む3芯の電力ケーブルを用いることが必要である。しかも電子機器側においては、前記制御信号をアダプタ電源装置に与える為のインターフェースや制御プログラムが必要であり、全体的なシステム構成が複雑化することが否めない。 If the DC output voltage Vout of the adapter power supply device at the time of no load or light load is lowered as described above, it is possible to surely reduce the power consumption of the adapter power supply device during standby. However, in order to perform such control, it is necessary to obtain a control signal from the electronic device side as described above, and a three-core power cable including a signal transmission line is used instead of the two-core power cable. is necessary. Moreover, on the electronic device side, an interface and a control program for supplying the control signal to the adapter power supply are necessary, and it cannot be denied that the overall system configuration is complicated.
本発明はこのような事情を考慮してなされたもので、その目的は、電源供給先である電子機器側に負担を強いることなく、無負荷時や軽負荷時における待機電力を低減することのできるアダプタ電源装置を提供することにある。 The present invention has been made in consideration of such circumstances, and its purpose is to reduce standby power during no load or light load without imposing a burden on the electronic device that is the power supply destination. It is to provide an adapter power supply device that can be used.
上述した目的を達成するべく本発明に係るアダプタ電源装置は、入力交流電圧を整流した入力電圧をスイッチングして絶縁トランスの一次巻線に印加するスイッチング素子と、該絶縁トランスの二次巻線に得られた電圧を整流して直流出力電圧を得るダイオードと、前記スイッチング素子または前記ダイオードの発熱温度と外気温との温度差に応じて前記直流出力電圧を可変設定する熱電変換素子とを具備したことを特徴としている。 In order to achieve the above-described object, an adapter power supply apparatus according to the present invention includes a switching element that switches an input voltage obtained by rectifying an input AC voltage and applies it to a primary winding of an isolation transformer, and a secondary winding of the isolation transformer. A diode that rectifies the obtained voltage to obtain a DC output voltage, and a thermoelectric conversion element that variably sets the DC output voltage according to a temperature difference between the switching element or the heat generation temperature of the diode and the outside air temperature. It is characterized by that.
好ましくは前記熱電変換素子は、前記スイッチング素子または前記ダイオードに装着された放熱器と、前記スイッチング素子を主体として構成されるアブブタ電源装置本体を収納する外囲器との間に装着されて、該外囲器と前記放熱器の温度差、つまり外気温度と前記スイッチング素子または前記ダイオードの発熱温度との差に応じた電圧を生起するように設けられる。 Preferably, the thermoelectric conversion element is mounted between a radiator mounted on the switching element or the diode and an envelope that houses an Abbot power supply main body configured mainly with the switching element. A voltage corresponding to a temperature difference between the envelope and the radiator, that is, a difference between an outside air temperature and a heat generation temperature of the switching element or the diode is generated.
尚、前記スイッチング素子は、前記直流出力電圧を検出する電圧検出回路化が出力するフィードバック電圧に応じてスイッチング制御されるものである。そして前記熱変換素子は、前記温度差に応じて生起する電圧にて、例えば前記電圧検出回路が備える出力電圧検出用の分圧抵抗回路の抵抗値を変更することで、該電圧検出回路の電圧検出特性を変更するスイッチ素子をオン・オフ制御し、これによって前記フィードバック電圧を変更して前記温度差に応じて生起される電圧が設定閾値に満たないときに前記直流出力電圧を低下させるように用いられる。 The switching element is subjected to switching control according to a feedback voltage output from a voltage detection circuit that detects the DC output voltage. Then, the heat conversion element changes the resistance value of the voltage dividing resistor circuit for detecting the output voltage provided in the voltage detection circuit, for example, by the voltage generated according to the temperature difference, whereby the voltage of the voltage detection circuit is changed. A switch element for changing detection characteristics is controlled to be turned on / off, whereby the feedback voltage is changed to reduce the DC output voltage when the voltage generated according to the temperature difference is less than a set threshold value. Used.
具体的には前記熱電変換素子としては、例えば15〜20℃の温度差において1V以上の電圧を生起する熱電変換特性を有するものであれば十分である。 Specifically, the thermoelectric conversion element is sufficient if it has thermoelectric conversion characteristics that generate a voltage of 1 V or more at a temperature difference of 15 to 20 ° C., for example.
上述した構成のアダプタ電源装置によれば、絶縁トランスの一次側におけるスイッチング素子、或いは前記絶縁トランスの二次側におけるダイオードの発熱温度が、無負荷時や軽負荷時においては低くなり、外気温との温度差が小さくなくなることに着目している。そして上記温度差に応じた電圧を生起する熱電変換素子を用い、該熱電変換素子の出力電圧に応じて当該アダプタ電源装置の出力電圧を可変(変更)するものとなっている。 According to the adapter power supply apparatus having the above-described configuration, the heat generation temperature of the switching element on the primary side of the insulation transformer or the diode on the secondary side of the insulation transformer becomes low during no load or light load, We are paying attention to the fact that the temperature difference becomes smaller. And the thermoelectric conversion element which produces the voltage according to the said temperature difference is used, The output voltage of the said adapter power supply device is varied (changed) according to the output voltage of this thermoelectric conversion element.
従って電源供給先の電子機器側から制御信号を取得する必要がないので、前述した3芯の電力ケーブルを用いる必要がなく、また電子機器側に余分な制御負担を強いることもない。また前記熱電変換素子を、例えばスイッチング素子またはダイオードに装着された放熱器と、アブブタ電源装置本体を収納する外囲器との間に装着するだけで良いので、簡易にして効果的に待機電力の低減を図ることが可能となる。 Accordingly, since it is not necessary to acquire a control signal from the electronic device side to which the power is supplied, there is no need to use the above-described three-core power cable, and no excessive control burden is imposed on the electronic device side. Further, since the thermoelectric conversion element only needs to be mounted between a radiator mounted on, for example, a switching element or a diode and an envelope housing the Abbot power supply device main body, it is possible to simply and effectively reduce standby power. Reduction can be achieved.
以下、図面を参照して本発明の一実施形態に係るアダプタ電源装置について説明する。 Hereinafter, an adapter power supply apparatus according to an embodiment of the present invention will be described with reference to the drawings.
この実施形態に係るアダプタ電源装置は、基本的には図6に示した従来装置と同様に、整流回路DBを介して入力交流電圧Vacを整流した入力電圧Vinをスイッチングして絶縁トランスTの一次巻線T1に印加するスイッチング素子Qを備える。そして前記絶縁トランスTの二次巻線T2に得られた電圧をダイオードDを介して整流し、出力コンデンサCoutを介して平滑化して所定の直流出力電圧Voutを得るように構成される。 The adapter power supply according to this embodiment basically switches the input voltage Vin obtained by rectifying the input AC voltage Vac via the rectifier circuit DB to switch the primary voltage of the insulation transformer T as in the conventional device shown in FIG. A switching element Q to be applied to the winding T1 is provided. The voltage obtained at the secondary winding T2 of the insulation transformer T is rectified via a diode D and smoothed via an output capacitor Cout to obtain a predetermined DC output voltage Vout.
また直列接続された分圧抵抗R1,R2を含む電圧検出回路Vsensは、前記出力コンデンサCoutに得られる直流出力電圧Voutを検出する。そして前記電圧検出回路Vsensは、例えば前記直流出力電圧Voutと設定電圧(比較基準電圧)との誤差電圧を、フォトカプラPCを介して制御回路(制御用IC)CONTにフィードバックしている。前記制御回路(制御用IC)CONTは、このようにしてフィードバックされる前記直流出力電圧Voutの情報に従って前記スイッチング素子Qのスイッチング周波数、或いはそのオン幅を制御することで前記直流出力電圧Voutが前記設定電圧となるように制御する。 A voltage detection circuit Vsens including voltage dividing resistors R1 and R2 connected in series detects a DC output voltage Vout obtained at the output capacitor Cout. The voltage detection circuit Vsens feeds back, for example, an error voltage between the DC output voltage Vout and the set voltage (comparison reference voltage) to the control circuit (control IC) CONT via the photocoupler PC. The control circuit (control IC) CONT controls the switching frequency of the switching element Q or the ON width thereof according to the information of the DC output voltage Vout fed back in this way, so that the DC output voltage Vout is Control to set voltage.
基本的にはこのように構成されるアダプタ電源装置において、本発明が特徴とするところは、図1に示すように出力電圧検出用の抵抗R2に前記補助抵抗R3を選択的に並列接続するスイッチ素子Sをオン・オフ制御する駆動源として、熱電変換素子TCを設けた点にある。具体的には前記熱電変換素子TCの出力電圧Vteを前記スイッチ素子(MOS-FET)Sのゲートに印加し、該スイッチ素子Sをオン制御することで前記抵抗R2に前記補助抵抗R3を並列接続し、これによって前記直流出力電圧Voutを切り替えるように構成したことを特徴としている。 Basically, in the adapter power supply apparatus configured as described above, the present invention is characterized in that a switch for selectively connecting the auxiliary resistor R3 in parallel with the output voltage detecting resistor R2 as shown in FIG. A thermoelectric conversion element TC is provided as a drive source for controlling on / off of the element S. Specifically, the output voltage Vte of the thermoelectric conversion element TC is applied to the gate of the switch element (MOS-FET) S, and the switch element S is turned on to connect the auxiliary resistor R3 to the resistor R2 in parallel. In this way, the DC output voltage Vout is switched.
特に前記熱電変換素子TCは、図2にアブブタ電源装置のレイアウト構造例を示すように、前記絶縁トランスTの一次側における前記スイッチング素子Qに装着された放熱器(ヒートシンク)HS1、または前記絶縁トランスTの二次側における前記ダイオードDに装着された放熱器HS2と、当該アブブタ電源装置本体を収納する樹脂製の外囲器PACとの間に装着される。そして前記熱電変換素子TCは、前記放熱器HS1,HS2と外囲器PACとの温度差、より具体的には前記放熱器HS1,HS2を介して伝熱される前記スイッチング素子Qまたは前記ダイオードDの発熱温度と、前記外囲器PACを介して伝熱される外気温との温度差に応じた電圧Vteを生起するように設けられる。 In particular, the thermoelectric conversion element TC includes a radiator (heat sink) HS1 attached to the switching element Q on the primary side of the insulation transformer T, or the insulation transformer, as shown in FIG. It is mounted between the radiator HS2 mounted on the diode D on the secondary side of T and a resin envelope PAC that houses the main body of the power supply. The thermoelectric conversion element TC includes a temperature difference between the radiators HS1 and HS2 and the envelope PAC, more specifically, the switching element Q or the diode D that is transferred through the radiators HS1 and HS2. A voltage Vte corresponding to a temperature difference between the heat generation temperature and the outside air temperature transferred through the envelope PAC is generated.
尚、図2においてQは回路基板Bに実装されたスイッチング素子、Dはダイオードをそれぞれ示している。また図中Cin,Fin,T,Coutは、前記回路基板B上における入力コンデンサ、入力ノイズフィルタ、絶縁トランス、および出力コンデンサの各実装領域をそれぞれ示している。これらの主要部品以外にも、前記回路基板B上には当該スイッチング電源装置を構成する各種電子部品が搭載されることは言うまでもない。 In FIG. 2, Q indicates a switching element mounted on the circuit board B, and D indicates a diode. In the figure, Cin, Fin, T, and Cout indicate mounting regions of the input capacitor, the input noise filter, the insulating transformer, and the output capacitor on the circuit board B, respectively. In addition to these main components, it goes without saying that various electronic components constituting the switching power supply device are mounted on the circuit board B.
ちなみに前記熱電変換素子TCは、例えばN型半導体とP型半導体とをその一端において接合した構造を有し、ゼーベック効果によって前記各半導体の両端の温度差ΔTに応じた電圧Vteを生起する素子である。前記熱電変換素子TCは、図3にその変換電圧特性の一例を示すように、前記温度差ΔTが大きい程、前記電圧Vteが高くなる熱電変換特性を有する。前記スイッチ素子Sをオン制御する上での前記熱電変換素子TCとしては、例えば15〜20℃の温度差ΔTにおいて1V以上の電圧Vteを生起する熱電変換特性を有するものが採用される。 Incidentally, the thermoelectric conversion element TC is an element that has a structure in which, for example, an N-type semiconductor and a P-type semiconductor are joined at one end thereof, and generates a voltage Vte corresponding to a temperature difference ΔT at both ends of each semiconductor by the Seebeck effect. is there. As shown in FIG. 3 as an example of the conversion voltage characteristic, the thermoelectric conversion element TC has a thermoelectric conversion characteristic in which the voltage Vte increases as the temperature difference ΔT increases. As the thermoelectric conversion element TC for turning on the switch element S, for example, an element having a thermoelectric conversion characteristic that generates a voltage Vte of 1 V or more at a temperature difference ΔT of 15 to 20 ° C. is employed.
ここでアブブタ電源装置における前記スイッチング素子Qや前記ダイオードDの発熱温度は、その仕様や動作条件によって異なるが、例えば定格出力時には70〜80℃に達する。これ故、前記放熱器HS1,HS2と外囲器PACとの温度差として30〜40℃を見込むことができる。従ってアブブタ電源装置の定格出力時には前記熱電変換素子TCの出力電圧Vteとして1.5〜2V程度を得ることができ、例えばFETからなるスイッチ素子Sを十分にオン動作させることができる。 Here, the heat generation temperature of the switching element Q and the diode D in the Abbot power supply device varies depending on the specifications and operating conditions, but reaches, for example, 70 to 80 ° C. at the rated output. Therefore, 30 to 40 ° C. can be expected as a temperature difference between the radiators HS1 and HS2 and the envelope PAC. Therefore, at the rated output of the power supply device, about 1.5 to 2 V can be obtained as the output voltage Vte of the thermoelectric conversion element TC. For example, the switch element S made of FET can be sufficiently turned on.
そしてアブブタ電源装置の負荷が軽くなり、或いは無負荷になると、前記スイッチング素子Qのスイッチング動作が抑制され、これに伴って前記スイッチング素子Qや前記ダイオードDの発熱温度が低下する。すると前記熱電変換素子TCに加わる温度差ΔTが小さくなり、該熱電変換素子TCの出力電圧Vteが低下する。この結果、前記スイッチ素子Sがそのオン状態を維持することができなくなり、オフ動作して前記補助抵抗R3が切り離されることで、前記直流出力電圧Voutが、例えば12Vと低く設定される。 When the load on the power supply device becomes light or no load is applied, the switching operation of the switching element Q is suppressed, and accordingly, the heat generation temperature of the switching element Q and the diode D decreases. Then, the temperature difference ΔT applied to the thermoelectric conversion element TC becomes small, and the output voltage Vte of the thermoelectric conversion element TC decreases. As a result, the switch element S cannot maintain its on state, and the DC output voltage Vout is set to be as low as 12 V, for example, by turning off and disconnecting the auxiliary resistor R3.
具体的には前記電圧検出回路Vsensにおける出力電圧設定用の比較基準電圧Vrefが[2.5V]であるとき、前記出力電圧検出用の抵抗R1を[285kΩ]、抵抗R2を[75kΩ]、そして補助抵抗R3を[35kΩ]として設定すると、並列接続されたときの前記抵抗R2と補助抵抗R3の合成抵抗は[24kΩ]となる。すると前記熱電変換素子TCの出力電圧Vteが前記スイッチ素子Sの動作閾値電圧Vgsthを上回るとき(Vte≧Vgsth)、該スイッチ素子Sのオン動作によって前記直流出力電圧Voutは
Vout/Vref={R1+(R2//R3)}/(R2//R3)
なる関係から、
Vout=2.5×(1+285/24)=32(V)
となる。
Specifically, when the output voltage setting comparison reference voltage Vref in the voltage detection circuit Vsens is [2.5 V], the output voltage detection resistor R1 is [285 kΩ], the resistor R2 is [75 kΩ], and When the auxiliary resistor R3 is set as [35 kΩ], the combined resistance of the resistor R2 and the auxiliary resistor R3 when connected in parallel is [24 kΩ]. Then, when the output voltage Vte of the thermoelectric conversion element TC exceeds the operation threshold voltage Vgsth of the switch element S (Vte ≧ Vgsth), the DC output voltage Vout becomes Vout / Vref = {R1 + ( R2 // R3)} / (R2 // R3)
From the relationship
Vout = 2.5 × (1 + 285/24) = 32 (V)
It becomes.
また前記出力電圧Vteが前記動作閾値電圧Vgsthに満たないときには(Vte<Vgsth)、該スイッチ素子Sのオフ動作によって前記直流出力電圧Voutは
Vout=2.5×(1+285/75)=12(V)
となる。
When the output voltage Vte is less than the operation threshold voltage Vgsth (Vte <Vgsth), the DC output voltage Vout is Vout = 2.5 × (1 + 285/75) = 12 (V )
It becomes.
一方、前記スイッチ素子Sとして用いる低電圧駆動のMOS-FETについて考察してみると、市場にはその動作閾値電圧Vgsthが0.9V、1.2V、1.5V、1.8V、2.5Vのものが各種展開されている。従ってこれらの動作閾値電圧Vgsthの異なるMOS-FETを前記スイッチ素子Sとして選定することにより、例えば図4に示すように負荷に応じて前記出力電圧の切り替えポイントを適宜調整することが可能となる。 On the other hand, when considering a low-voltage drive MOS-FET used as the switch element S, the operating threshold voltage Vgsth is 0.9V, 1.2V, 1.5V, 1.8V, 2.5V on the market. Various things are being developed. Therefore, by selecting these MOS-FETs having different operating threshold voltages Vgsth as the switch element S, the switching point of the output voltage can be appropriately adjusted according to the load as shown in FIG. 4, for example.
尚、前記スイッチング素子Qおよび前記ダイオードDの発熱量は、該スイッチング素子QおよびダイオードDに流れる電流Ioutに伴って変化する。そしてスイッチング素子QおよびダイオードDの発熱に伴う前記放熱器(ヒートシンク)HSの温度変化は、該放熱器(ヒートシンク)HSを自然冷却する場合、一般的には温度上昇時には早く、温度下降時には遅い。従って前記直流出力電圧Voutは、実際には前記動作閾値電圧Vgsthを基準として、或るヒステリシスを持って切り替えられる。 Note that the amount of heat generated by the switching element Q and the diode D varies with the current Iout flowing through the switching element Q and the diode D. The temperature change of the radiator (heat sink) HS accompanying the heat generation of the switching element Q and the diode D is generally quick when the radiator (heat sink) HS is naturally cooled and late when the temperature is lowered. Therefore, the DC output voltage Vout is actually switched with a certain hysteresis with reference to the operation threshold voltage Vgsth.
かくして上述した如く構成されたアダプタ電源装置によれば、図5に出力電圧Voutと入力電力Pinとの関係を示すように、無負荷時または軽負荷時にその出力電圧Voutを、例えば12Vに切り替えることによって、前記出力電圧Voutが19V〜32Vの定格出力時に比較して大幅に低減することができる。しかも電源供給先の電子機器側から制御信号を取得することなく、自ら前記スイッチング素子Qまたは前記ダイオードDの発熱温度に応じて負荷状態を判定し、無負荷時または軽負荷時にその出力電圧Voutを低く切り替えることができる。従って簡易にして効果的に待機時の電力消費を低減することが可能となる。 Thus, according to the adapter power supply apparatus configured as described above, the output voltage Vout is switched to, for example, 12 V at no load or light load as shown in FIG. 5 showing the relationship between the output voltage Vout and the input power Pin. Thus, the output voltage Vout can be significantly reduced as compared with the rated output of 19V to 32V. In addition, without obtaining a control signal from the electronic device to which the power is supplied, the load state is determined according to the heat generation temperature of the switching element Q or the diode D, and the output voltage Vout at the time of no load or light load. Can be switched low. Therefore, it becomes possible to simplify and effectively reduce power consumption during standby.
また上述した構成のアダプタ電源装置によれば、電源供給先の電子機器側から制御信号を取得する必要がないので、前述したように3芯の電力ケーブルを用いる必要がない。また前記電子機器側に前記制御信号を生成して出力する為の処理負担を強いることもなく、電子機器側の構成を変更する必要もない。故に既存のアダプタ電源装置に本発明を容易に適用することが可能であり、その実用的利点が多大である。 Further, according to the adapter power supply device having the above-described configuration, it is not necessary to acquire a control signal from the electronic device side to which power is supplied, and thus it is not necessary to use a three-core power cable as described above. Further, the processing load for generating and outputting the control signal to the electronic device side is not imposed, and it is not necessary to change the configuration of the electronic device side. Therefore, the present invention can be easily applied to an existing adapter power supply apparatus, and its practical advantages are great.
尚、本発明は上述した実施形態に限定されるものではない。例えばアブブタ電源装置の直流出力電圧Voutについては、その電力供給先の電子機器の仕様に応じたものであれば良く、必ずしも前述した32Vに特定されないことは言うまでもない。また無負荷または軽負荷時に設定する直流出力電圧Voutについても、当該アダプタ電源装置の動作を保証し得る最低電圧を満たすように定めれば良いものである。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。 The present invention is not limited to the embodiment described above. For example, the DC output voltage Vout of the Abbot power supply device may be any voltage as long as it conforms to the specifications of the electronic device to which the power is supplied, and needless to say, it is not necessarily specified as 32V. Further, the DC output voltage Vout set at the time of no load or light load may be determined so as to satisfy the minimum voltage that can guarantee the operation of the adapter power supply device. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.
Q スイッチング素子
T 絶縁トランス
D ダイオード
Cout 出力コンデンサ
Vsens 電圧検出回路
PC フォトカプラ
CONT 制御回路
R1,R2 抵抗
S スイッチ素子(MOS-FET)
R3 補助抵抗
TC 熱電変換素子
HC1,HC2 放熱器(ヒートシンク)
Q switching element T isolation transformer D diode Cout output capacitor Vsens voltage detection circuit PC photocoupler CONT control circuit R1, R2 resistance S switching element (MOS-FET)
R3 Auxiliary resistance TC Thermoelectric conversion element HC1, HC2 Radiator (heat sink)
Claims (4)
前記スイッチング素子は、前記直流出力電圧を検出する電圧検出回路化が出力するフィードバック電圧に応じてスイッチング制御されるものであって、
前記熱変換素子は、前記温度差に応じて生起する電圧にて、前記電圧検出回路の電圧検出特性を変更するスイッチ素子をオン・オフ制御して前記フィードバック電圧を制御し、前記温度差に応じて生起される電圧が設定閾値に満たないときに前記直流出力電圧を低下させることを特徴とするアダプタ電源装置。 A switching element that switches the input voltage obtained by rectifying the input AC voltage and applies it to the primary winding of the insulation transformer, a diode that rectifies the voltage obtained in the secondary winding of the insulation transformer and obtains a DC output voltage, In the adapter power supply device comprising the thermoelectric conversion element that variably sets the DC output voltage according to the temperature difference between the heating temperature of the switching element or the diode and the outside air temperature ,
The switching element is subjected to switching control according to a feedback voltage output by a voltage detection circuit that detects the DC output voltage,
The heat conversion element controls the feedback voltage by turning on and off a switch element that changes a voltage detection characteristic of the voltage detection circuit with a voltage generated according to the temperature difference, and according to the temperature difference. The adapter power supply apparatus is characterized in that the DC output voltage is lowered when the voltage generated by the operation is less than a set threshold value .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012207646A JP6015280B2 (en) | 2012-09-20 | 2012-09-20 | Adapter power supply |
US13/962,498 US9136770B2 (en) | 2012-09-20 | 2013-08-08 | Adapter power supply having thermoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012207646A JP6015280B2 (en) | 2012-09-20 | 2012-09-20 | Adapter power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014064378A JP2014064378A (en) | 2014-04-10 |
JP6015280B2 true JP6015280B2 (en) | 2016-10-26 |
Family
ID=50274303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012207646A Expired - Fee Related JP6015280B2 (en) | 2012-09-20 | 2012-09-20 | Adapter power supply |
Country Status (2)
Country | Link |
---|---|
US (1) | US9136770B2 (en) |
JP (1) | JP6015280B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7476815B2 (en) * | 2021-01-28 | 2024-05-01 | 株式会社島津製作所 | High Frequency Power Supply |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6143975A (en) * | 1999-01-25 | 2000-11-07 | Dell Usa, L.P. | Thermoelectric regenerator |
US6721893B1 (en) * | 2000-06-12 | 2004-04-13 | Advanced Micro Devices, Inc. | System for suspending operation of a switching regulator circuit in a power supply if the temperature of the switching regulator is too high |
JP4045404B2 (en) * | 2001-12-12 | 2008-02-13 | 株式会社安川電機 | Power module and its protection system |
US20050268955A1 (en) * | 2004-06-08 | 2005-12-08 | Meyerkord Daniel J | Diesel-electric locomotive engine waste heat recovery system |
JP2006129658A (en) * | 2004-11-01 | 2006-05-18 | Hakko Denki Kk | Thermoelectric generator, preparation method of dc-dc converter, and boosting conversion method |
JP4628164B2 (en) | 2005-04-12 | 2011-02-09 | シャープ株式会社 | Flat screen television |
US8538529B2 (en) * | 2006-04-26 | 2013-09-17 | Cardiac Pacemakers, Inc. | Power converter for use with implantable thermoelectric generator |
JP2009188159A (en) * | 2008-02-06 | 2009-08-20 | Panasonic Corp | Power converter |
KR20090118306A (en) * | 2008-05-13 | 2009-11-18 | 삼성전자주식회사 | A method and apparatus for electric power supply using thermoelectric |
JP2010068638A (en) * | 2008-09-11 | 2010-03-25 | Seiko Epson Corp | Ac adaptor |
JP5430105B2 (en) * | 2008-09-18 | 2014-02-26 | パナソニック株式会社 | Power supply system |
JP5391486B2 (en) | 2009-07-03 | 2014-01-15 | Dxアンテナ株式会社 | Self-excited switching power supply |
JP4799658B2 (en) * | 2009-11-30 | 2011-10-26 | 株式会社東芝 | Information processing device |
JP5104891B2 (en) * | 2010-03-08 | 2012-12-19 | コニカミノルタビジネステクノロジーズ株式会社 | Power system |
WO2012017523A1 (en) * | 2010-08-04 | 2012-02-09 | 富士通株式会社 | Power measuring system and power temperature converter |
-
2012
- 2012-09-20 JP JP2012207646A patent/JP6015280B2/en not_active Expired - Fee Related
-
2013
- 2013-08-08 US US13/962,498 patent/US9136770B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9136770B2 (en) | 2015-09-15 |
US20140078785A1 (en) | 2014-03-20 |
JP2014064378A (en) | 2014-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI425754B (en) | Flyback converter system and feedback controlling apparatus and method for the same | |
TWI513163B (en) | Flyback-based power conversion apparatus | |
JP7108173B2 (en) | Switching power supply and DC power supply | |
US20120081086A1 (en) | Power supply circuit and a method for operating a power supply circuit | |
JP2004248488A (en) | Motor power supply apparatus | |
JP3961505B2 (en) | Voltage detection circuit, power supply device and semiconductor device | |
US9577539B2 (en) | Power supply device and power supply system that have a serial connection terminal, a reverse flow prevention rectifying device and a bypass rectifying device | |
US9882495B2 (en) | Switching power supply with internal power supply circuit | |
JP6213087B2 (en) | Isolated switching power supply | |
TWI489759B (en) | System and method for electric power conversion | |
TWI633743B (en) | Power bypass apparatus with current-sharing function and method of controlling the same | |
JP6015280B2 (en) | Adapter power supply | |
JP2008289334A (en) | Switching power supply device, and power supply control method | |
TWI535165B (en) | Power supplying device having over-voltage protection | |
CN113131743A (en) | Isolated power supply and secondary side control circuit thereof | |
US10050555B2 (en) | Power supplies having synchronous and asynchronous modes of operation | |
JP2008271758A (en) | Dc-dc converter | |
JP6365488B2 (en) | Electrical equipment | |
JP4728360B2 (en) | Power circuit | |
JP6060707B2 (en) | Power supply | |
JP2004173391A (en) | Power circuit | |
JP6330772B2 (en) | Electrical equipment | |
JP5561827B2 (en) | Switching power supply | |
JP7570282B2 (en) | Transformer-equipped watt-hour meter | |
US20140085942A1 (en) | Shunt regulator having protection function and power supply device having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6015280 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |