JP6014665B2 - 熱式流量計 - Google Patents
熱式流量計 Download PDFInfo
- Publication number
- JP6014665B2 JP6014665B2 JP2014521073A JP2014521073A JP6014665B2 JP 6014665 B2 JP6014665 B2 JP 6014665B2 JP 2014521073 A JP2014521073 A JP 2014521073A JP 2014521073 A JP2014521073 A JP 2014521073A JP 6014665 B2 JP6014665 B2 JP 6014665B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit package
- resin
- manufacturing
- housing
- flow meter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims description 291
- 229920005989 resin Polymers 0.000 claims description 272
- 239000011347 resin Substances 0.000 claims description 272
- 238000000465 moulding Methods 0.000 claims description 188
- 238000001514 detection method Methods 0.000 claims description 143
- 238000012546 transfer Methods 0.000 claims description 124
- 238000000034 method Methods 0.000 claims description 94
- 238000004519 manufacturing process Methods 0.000 claims description 85
- 238000011144 upstream manufacturing Methods 0.000 claims description 72
- 230000008569 process Effects 0.000 claims description 68
- 238000012545 processing Methods 0.000 claims description 29
- 229920005992 thermoplastic resin Polymers 0.000 claims description 21
- 238000004891 communication Methods 0.000 claims description 16
- 229920001187 thermosetting polymer Polymers 0.000 claims description 16
- 238000007788 roughening Methods 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 9
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 238000005488 sandblasting Methods 0.000 claims description 2
- 235000014121 butter Nutrition 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 174
- 230000000694 effects Effects 0.000 description 38
- 238000010438 heat treatment Methods 0.000 description 33
- 238000002485 combustion reaction Methods 0.000 description 31
- 238000012937 correction Methods 0.000 description 26
- 239000000446 fuel Substances 0.000 description 26
- 230000020169 heat generation Effects 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 13
- 230000008859 change Effects 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 238000007689 inspection Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000006872 improvement Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000428 dust Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 238000001721 transfer moulding Methods 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/6842—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/6845—Micromachined devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/684—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
- G01F1/688—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
- G01F1/69—Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
- G01F1/692—Thin-film arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/68—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
- G01F1/696—Circuits therefor, e.g. constant-current flow meters
- G01F1/6965—Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/14—Casings, e.g. of special material
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Description
図1は、電子燃料噴射方式の内燃機関制御システムに、本発明に係る熱式流量計を使用した一実施例を示す、システム図である。エンジンシリンダ112とエンジンピストン114を備える内燃機関110の動作に基づき、吸入空気が被計測気体30としてエアクリーナ122から吸入され、主通路124である例えば吸気ボディ、スロットルボディ126、吸気マニホールド128を介してエンジンシリンダ112の燃焼室に導かれる。前記燃焼室に導かれる吸入空気である被計測気体30の流量は本発明に係る熱式流量計300で計測され、計測された流量に基づいて燃料噴射弁152より燃料が供給され、吸入空気である被計測気体30と共に混合気の状態で燃焼室に導かれる。なお、本実施例では、燃料噴射弁152は内燃機関の吸気ポートに設けられ、吸気ポートに噴射された燃料が吸入空気である被計測気体30と共に混合気を成形し、吸入弁116を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。
エアクリーナ122から取り込まれ主通路124を流れる吸入空気である被計測気体30の流量および温度が、熱式流量計300により計測され、熱式流量計300から吸入空気の流量および温度を表す電気信号が制御装置200に入力される。また、スロットルバルブ132の開度を計測するスロットル角度センサ144の出力が制御装置200に入力され、さらに内燃機関のエンジンピストン114や吸気弁116や排気弁118の位置や状態、さらに内燃機関の回転速度を計測するために、回転角度センサ146の出力が、制御装置200に入力される。排気24の状態から燃料量と空気量との混合比の状態を計測するために、酸素センサ148の出力が制御装置200に入力される。
内燃機関の主要な制御量である燃料供給量や点火時期はいずれも熱式流量計300の出力を主パラメータとして演算される。従って熱式流量計300の計測精度の向上や経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。特に近年、車両の省燃費に関する要望が非常に高く、また排気ガス浄化に関する要望が非常に高い。これらの要望に応えるには熱式流量計300により計測される吸入空気である被計測気体30の流量の計測精度の向上が極めて重要である。また熱式流量計300が高い信頼性を維持していることも大切である。
2.1 熱式流量計300の外観構造
図2および図3、図4は、熱式流量計300の外観を示す図であり、図2(A)は熱式流量計300の左側面図、図2(B)は正面図、図3(A)は右側面図、図3(B)は背面図、図4(A)は平面図、図4(B)は下面図である。熱式流量計300はハウジング302と表カバー303と裏カバー304とを備えている。ハウジング302は、熱式流量計300を主通路124である吸気ボディに固定するためのフランジ312と、外部機器との電気的な接続を行うための外部端子306を有する外部接続部305と、流量等を計測するための計測部310を備えている。計測部310の内部には、副通路を作るための副通路溝が設けられており、さらに計測部310の内部には、主通路124を流れる被計測気体30の流量を計測するための流量検出部602(図20参照)や主通路124を流れる被計測気体30の温度を計測するための温度検出部452を備える回路パッケージ400が設けられている。
熱式流量計300の入口350が、フランジ312から主通路124の中心方向に向かって延びる計測部310の先端側に設けられているので、主通路124の内壁面近傍ではなく、内壁面から離れた中央部に近い部分の気体を副通路に取り込むことができる。このため熱式流量計300は主通路124の内壁面から離れた部分の気体の流量や温度を測定することができ、熱などの影響による計測精度の低下を抑制できる。主通路124の内壁面近傍では、主通路124の温度の影響を受け易く、気体の本来の温度に対して被計測気体30の温度が異なる状態となり、主通路124内の主気体の平均的な状態と異なることになる。特に主通路124がエンジンの吸気ボディである場合は、エンジンからの熱の影響を受け、高温に維持されていることが多い。このため主通路124の内壁面近傍の気体は、主通路124の本来の気温に対して高いことが多く、計測精度を低下させる要因となる。
計測部310の先端側に設けられた副通路よりもフランジ312側の方に位置して、図2および図3に示すように、被計測気体30の流れの上流側に向かって開口する入口343が成形されており、入口343の内部には被計測気体30の温度を計測するための温度検出部452が配置されている。入口343が設けられている計測部310の中央部では、ハウジング302を構成する計測部310内の上流側外壁が下流側に向かって窪んでおり、前記窪み形状の上流側外壁から温度検出部452が上流側に向かって突出する形状を成している。また前記窪み形状の外壁の両側部には表カバー303と裏カバー304が設けられており、前記表カバー303と裏カバー304の上流側端部が、前記窪み形状の外壁より上流側に向かって突出した形状を成している。このため前記窪み形状の外壁とその両側の表カバー303と裏カバー304とにより、被計測気体30を取り込むための入口343が成形される。入口343から取り込まれた被計測気体30は入口343の内部に設けられた温度検出部452に接触することで、温度検出部452によって温度が計測される。さらに窪み形状を成すハウジング302の外壁から上流側に突出した温度検出部452を支える部分に沿って被計測気体30が流れ、表カバー303と裏カバー304に設けられた表側出口344および裏側出口345が主通路124に排出される。
被計測気体30の流れに沿う方向の上流側から入口343に流入する気体の温度が温度検出部452により計測され、さらにその気体が温度検出部452を支える部分である温度検出部452の根元部分に向かって流れることにより、温度検出部452を支える部分の温度を被計測気体30の温度に近づく方向に冷却する作用を為す。主通路124である吸気管の温度が通常高くなり、フランジ312あるいは熱絶縁部315から計測部310内の上流側外壁を通って、温度検出部452を支える部分に熱が伝わり、温度の計測精度に影響を与える恐れがある。上述のように、被計測気体30が温度検出部452により計測された後、温度検出部452の支える部分に沿って流れることにより、前記支える部分が冷却される。従ってフランジ312あるいは熱絶縁部315から計測部310内の上流側外壁を通って温度検出部452を支える部分に熱が伝わるのを抑制できる。
熱式流量計300を構成する計測部310の上流側側面と下流側側面にそれぞれ上流側突起317と下流側突起318とが設けられている。上流側突起317と下流側突起318は根元に対して先端に行くに従い細くなる形状を成しており、主通路124内を流れる吸入空気である被計測気体30の流体抵抗を低減できる。熱絶縁部315と入口343との間に上流側突起317が設けられている。上流側突起317は断面積が大きく、フランジ312あるいは熱絶縁部315からの熱伝導が大きいが、入口343の手前で上流側突起317が途切れており、さらに上流側突起317の温度検出部452側から温度検出部452への距離が、後述するようにハウジング302の上流側外壁の窪みにより、長くなる形状を成している。このため温度検出部452の支え部分への熱絶縁部315からの熱伝導が抑制される。
フランジ312には、その下面である主通路124と対向する部分に、窪み314が複数個設けられており、主通路124との間の熱伝達面を低減し、熱式流量計300が熱の影響を受け難くしている。フランジ312のねじ孔313は熱式流量計300を主通路124に固定するためのもので、これらのねじ孔313の周囲の主通路124に対向する面が主通路124から遠ざけられるように、各ねじ孔313の周囲の主通路124に対向する面と主通路124との間に空間が成形されている。このようにすることで、熱式流量計300に対する主通路124からの熱伝達を低減し、熱による測定精度の低下を防止できる構造をしている。さらにまた前記窪み314は、熱伝導の低減効果だけでなく、ハウジング302の成形時にフランジ312を構成する樹脂の収縮の影響を低減する作用をしている。
図4(A)は熱式流量計300の平面図である。外部接続部305の内部に4本の外部端子306と補正用端子307が設けられている。外部端子306は熱式流量計300の計測結果である流量と温度を出力するための端子および熱式流量計300が動作するための直流電力を供給するための電源端子である。補正用端子307は生産された熱式流量計300の計測を行い、それぞれの熱式流量計300に関する補正値を求めて、熱式流量計300内部のメモリに補正値を記憶するのに使用する端子であり、その後の熱式流量計300の計測動作では上述のメモリに記憶された補正値を表す補正データが使用され、この補正用端子307は使用されない。従って外部端子306が他の外部機器との接続において、補正用端子307が邪魔にならないように、補正用端子307は外部端子306とは異なる形状をしている。この実施例では外部端子306より補正用端子307が短い形状をしており、外部端子306に接続される外部機器への接続端子が外部接続部305に挿入されても、接続の障害にならないようになっている。また外部接続部305の内部には外部端子306に沿って複数個の窪み308が設けられており、これら窪み308は、フランジ312の材料である樹脂が冷えて固まる時の樹脂の収縮による応力集中を低減するためのものである。
3.1 副通路と流量検出部の構造と効果
熱式流量計300から表カバー303および裏カバー304を取り外したハウジング302の状態を図5および図6に示す。図5(A)はハウジング302の左側面図であり、図5(B)はハウジング302の正面図であり、図6(A)はハウジング302の右側面図であり、図6(B)はハウジング302の背面図である。ハウジング302はフランジ312から計測部310が主通路124の中心方向に延びる構造を成しており、その先端側に副通路を成形するための副通路溝が設けられている。この実施例ではハウジング302の表裏両面に副通路溝が設けられており、図5(B)に表側副通路溝332を示し、図6(B)に裏側副通路溝334を示す。副通路の入口350を成形するための入口溝351と出口352を成形するための出口溝353が、ハウジング302の先端部に設けられているので、主通路124の内壁面から離れた部分の気体を、言い換えると主通路124の中央部分に近い部分を流れている気体を被計測気体30として入口350から取り込むことができる。主通路124の内壁面近傍を流れる気体は、主通路124の壁面温度の影響を受け、吸入空気などの主通路124を流れる気体の平均温度と異なる温度を有することが多い。また主通路124の内壁面近傍を流れる気体は、主通路124を流れる気体の平均流速より遅い流速を示すことが多い。実施例の熱式流量計300ではこのような影響を受け難いので、計測精度の低下を抑制できる。
図7は、回路パッケージ400の計測用流路面430が副通路溝の内部に配置されている状態を示す部分拡大図であり、図6のA−A断面図である。なお、この図は概念図であり、図5や図6に示す詳細形状に対して、図7では細部の省略および単純化を行っており、細部に関して少し変形している。図7の左部分が裏側副通路溝334の終端部であり、右側部分が表側副通路溝332の始端部分である。図7では明確に記載していないが、計測用流路面430を有する回路パッケージ400の左右両側には、貫通部が設けられていて、計測用流路面430を有する回路パッケージ400の左右両側で裏側副通路溝334と表側副通路溝332とが繋がっている。
図8は表カバー303の外観を示す図であり、図8(A)は左側面図、図8(B)は正面図、図8(C)は平面図である。図9は裏カバー304の外観を示す図であり、図9(A)は左側面図、図9(B)は正面図、図9(C)は平面図である。図8および図9において、表カバー303や裏カバー304はハウジング302の副通路溝を塞ぐことにより、副通路を作るのに使用される。また突起部356を備え、流路に絞りを設けるために使用される。このため成形精度が高いことが望ましい。表カバー303や裏カバー304は金型に熱可塑性樹脂を注入する樹脂モールド工程により、作られるので、高い成形精度で作ることができる。また、表カバー303と裏カバー304には、突起部380と突起部381が形成されており、ハウジング302の嵌合した際に、図5(B)及び図6(B)に表記した回路パッケージ400の先端側の空洞部382の隙間を埋めると同時に回路パッケージ400の先端部を覆う構成となる。
図10は、図7に示す流量計測部分の他の実施例を示す拡大図であり、図6(B)のA−A断面に相当する部分の他の実施例である。図7と同様、図示しない入口溝から取り込まれた被計測気体30は、図10に示されない計測部310の先端側に設けられた副通路を破線の矢印で示すように流れ、図の左側に位置する裏側副通路溝の終端側に位置する溝から通路386に導かれる。この通路386において、計測用流路面430に設けられた熱伝達面露出部436により流量が計測される。その後表側副通路溝に導かれ、再び図10に示されない計測部310の先端側に設けられた副通路を破線の矢印で示すように流れ、図2(B)に示す出口352から主通路124へ排出される。
図11は図5および図6に示す実施例の他の実施例を示す構成図であり、図5および図6の主通路124に挿入さる計測部310の先端側に対応する、副通路溝を成形する部分を示している。なお、フランジ312や外部接続部305は省略している。図5および図6に示す実施例では、熱式流量計300のハウジング302の表面および裏面の両方の副通路を成形するための副通路溝が設けられている。図11は副通路をハウジング302の表面あるいは裏面のどちらか一方に設ける構造であり、シンプルな構造をしている。ハウジング302の表面あるいは裏面のどちらに副通路を設けても、技術的な内容は略同じであり、図11は表面に副通路を設けた例で、図11を代表例として説明する。
次に再び図5および図6を参照して、回路パッケージ400のハウジング302への樹脂モールド工程による固定について説明する。副通路を成形する副通路溝の所定の場所、例えば図5および図6に示す実施例では、表側副通路溝332と裏側副通路溝334のつながりの部分に、回路パッケージ400の表面に成形された計測用流路面430が配置されるように、回路パッケージ400がハウジング302に配置され固定されている。回路パッケージ400をハウジング302に樹脂モールドにより埋設して固定する部分が、副通路溝より少しフランジ312側に、回路パッケージ400をハウジング302に埋設固定するための固定部372として設けられている。固定部372は第1樹脂モールド工程により成形された回路パッケージ400の外周を覆うようにして埋設している。
図13は図5および図6に示すハウジング302の端子接続部320の拡大図である。しかし次の点が少し異なっている。図5および図6の記載と異なる点は、図5および図6では各外部端子内端361がそれぞれ切り離されているのに対し、図13では各外部端子内端361が切り離される前の状態を示しており、各外部端子内端361はそれぞれ繋ぎ部365で繋がっている。外部端子306の回路パッケージ400側に突出する外部端子内端361が、それぞれ対応する接続端子412と重なり合うように、あるいは対応する接続端子412の近傍に来るようにして、第2モールド工程で、各外部端子306が樹脂モールドによりハウジング302に固定されている。各外部端子306の変形や配置のずれを防ぐために、一実施例として、外部端子内端361が互いに繋ぎ部365でつながった状態で、ハウジング302を成形するための樹脂モールド工程(第2樹脂モールド工程)により外部端子306をハウジング302に固定する。ただし、先に接続端子412と外部端子内端361とを固定して、その後第2モールド工程により外部端子306をハウジング302に固定しても良い。
図13に示す実施例では、外部端子内端361の数より回路パッケージ400が有する端子の数が多い。回路パッケージ400が有する端子の内、接続端子412が外部端子内端361にそれぞれ接続されており、端子414は外部端子内端361に接続されない。すなわち端子414は、回路パッケージ400に設けられているが、外部端子内端361に接続されない端子である。
図13の部分拡大図に示す如く、ハウジング302には孔364が設けられている。孔364は図4(A)に示す外部接続部305の内部に設けられた開口309につながっている。実施例では、ハウジング302の両面が表カバー303と裏カバー304で密閉されている。もし孔364が設けられていないと、端子接続部320を含む空隙内の空気の温度変化により、前記空隙内の気圧と外気圧との間に差が生じる。このような圧力差はできるだけ小さいことが望ましい。このため外部接続部305内に設けられた開口309につながる孔364がハウジング302の空隙内に設けられている。外部接続部305は電気的接続の信頼性向上のため、水などによる悪影響を受けない構造としており、開口309を外部接続部305内に設けることで、開口309からの水の浸入を防止でき、さらにごみや埃などの異物の侵入も防止できる。
上述した図5および図6に示すハウジング302において、流量検出部602や処理部604を備える回路パッケージ400を第1樹脂モールド工程により製造し、次に、被計測気体30を流す副通路を成形する例えば表側副通路溝332や裏側副通路溝334を有するハウジング302を、第2樹脂モールド工程にて製造する。この第2樹脂モールド工程で、前記回路パッケージ400をハウジング302の樹脂内に内蔵して、ハウジング302内に樹脂モールドにより固定する。このようにすることで、流量検出部602が被計測気体30との間で熱伝達を行って流量を計測するための熱伝達面露出部436と副通路、例えば表側副通路溝332や裏側副通路溝334の形状との関係、例えば位置関係や方向の関係を、極めて高い精度で維持することが可能となる。回路パッケージ400毎に生じる誤差やばらつきを非常に小さい値に抑え込むことが可能となる。結果として回路パッケージ400の計測精度を大きく改善できる。例えば従来の接着剤を使用して固定する方式に比べ、2倍以上、計測精度を向上できる。熱式流量計300は量産により生産されることが多く、ここに厳密に計測しながら接着剤で接着する方法には、計測精度の向上に関して限界がある。しかし、本実施例のように第1樹脂モールド工程により回路パッケージ400を製造し、その後被計測気体30を流す副通路を成形する第2樹脂モールド工程にて副通路を成形すると同時に回路パッケージ400と前記副通路とを固定することで、計測精度のばらつきを大幅に低減でき、各熱式流量計300の計測精度を大幅に向上することが可能となる。このことは、図5や図6に示す実施例だけでなく、図7あるいは図10に示す実施例においても同様である。
4.1 熱伝達面露出部436を備える計測用流路面430の成形
図14に第1樹脂モールド工程で作られる回路パッケージ400の外観を示す。なお、回路パッケージ400の外観上に記載した斜線部分は、第1樹脂モールド工程で回路パッケージ400を製造した後に、第2樹脂モールド工程でハウジング302を成形する際に、第2樹脂モールド工程で使用される樹脂により回路パッケージ400が覆われる固定面432を示す。図14(A)は回路パッケージ400の左側面図、図14(B)は回路パッケージ400の正面図、図14(C)は回路パッケージ400の背面図である。回路パッケージ400は、後述する流量検出部602や処理部604を内蔵し、熱硬化性樹脂でこれらがモールドされ、一体成形される。
回路パッケージ400に設けられた温度検出部452は、温度検出部452を支持するために被計測気体30の上流方向に延びている突出部424の先端も設けられて、被計測気体30の温度を検出する機能を備えている。高精度に被計測気体30の温度を検出するには、被計測気体30以外部分との熱の伝達をできるだけ少なくすることが望ましい。温度検出部452を支持する突出部424は、その根元より、先端部分が細い形状を成し、その先端部分に温度検出部452を設けている。このような形状により、温度検出部452への突出部424の根元部からの熱の影響が低減される。
回路パッケージ400には、内蔵する流量検出部602や処理部604を動作させるための電力の供給、および流量の計測値や温度の計測値を出力するために、接続端子412が設けられている。さらに、回路パッケージ400が正しく動作するかどうか、回路部品やその接続に異常が生じていないかの検査を行うために、端子414が設けられている。この実施例では、第1樹脂モールド工程で流量検出部602や処理部604を、熱硬化性樹脂を用いてトランスファモールドすることにより回路パッケージ400が作られる。トランスファモールド成形を行うことにより、回路パッケージ400の寸法精度を向上することができるが、トランスファモールド工程では、流量検出部602や処理部604を内蔵する密閉した金型の内部に加圧した高温の樹脂が圧入されるので、でき上がった回路パッケージ400について、流量検出部602や処理部604およびこれらの配線関係に損傷が無いかを検査することが望ましい。この実施例では、検査のための端子414を設け、生産された各回路パッケージ400についてそれぞれ検査を実施する。検査用の端子414は計測用には使用されないので、上述したように、端子414は外部端子内端361には接続されない。なお各接続端子412には、機械的弾性力を増すために、湾曲部416が設けられている。各接続端子412に機械的弾性力を持たせることで、第1樹脂モールド工程による樹脂と第2樹脂モールド工程による樹脂の熱膨張係数の相違に起因して発生する応力を吸収することができる。すなわち、各接続端子412は第1樹脂モールド工程による熱膨張の影響を受け、さらに各接続端子412に接続される外部端子内端361は第2樹脂モールド工程による樹脂の影響を受ける。これら樹脂の違いに起因する応力の発生を吸収することができる。
図14で斜線の部分は、第2樹脂モールド工程において、ハウジング302に回路パッケージ400を固定するために、第2樹脂モールド工程で使用する熱可塑性樹脂で回路パッケージ400を覆うための、固定面432を示している。図5や図6を用いて説明したとおり、計測用流路面430および計測用流路面430に設けられている熱伝達面露出部436と副通路の形状との関係が、規定された関係となるように、高い精度で維持されることが重要である。第2樹脂モールド工程において、副通路を成形すると共に同時に副通路を成形するハウジング302に回路パッケージ400を固定するので、前記副通路と計測用流路面430および熱伝達面露出部436との関係を極めて高い精度で維持できる。すなわち、第2樹脂モールド工程において回路パッケージ400をハウジング302に固定するので、副通路を備えたハウジング302を成形するための金型内に、回路パッケージ400を高い精度で位置決めして固定することが可能となる。この金型内に高温の熱可塑性樹脂を注入することで、副通路が高い精度で成形されると共に、回路パッケージ400が高い精度で固定される。
5.1 回路パッケージのフレーム枠
図15に回路パッケージ400のフレーム枠512およびフレーム枠512に搭載された回路部品516のチップの搭載状態を示す。なお、破線部508は、回路パッケージ400のモールド成形時に用いられる金型により覆われる部分を示す。フレーム枠512にリード514が機械的に接続されており、フレーム枠512の中央に、プレート532が搭載され、プレート532にチップ状の流量検出部602およびLSIとして作られている処理部604が搭載されている。流量検出部602にはダイヤフラム672が設けられており、これが、上述したモールド成形により上述した熱伝達面露出部436に相当する。また、以下に説明する流量検出部602の各端子と処理部604とがワイヤ542で電気的に接続されている。さらに処理部604の各端子と対応するリード514とがワイヤ543で接続されている。また回路パッケージ400の接続端子となる部分とプレート532との間に位置するリード514は、それらの間にチップ状の回路部品516が接続されている。
図16は、図15のC−C断面の一部を示す図であり、ダイヤフラム672および流量検出部(流量検出素子)602の内部に設けられた空隙674と孔520とを繋ぐ連通孔676を説明する、説明図である。
図18は回路パッケージ400の他の実施例である。他の図に示されている符号と同じ符号は同じ作用をする構成である。先に説明した図14に示す実施例では、回路パッケージ400は、接続端子412と端子414とが回路パッケージ400の同じ辺に設けられている。これに対して図18に示す実施例では、接続端子412と端子414は異なる辺に設けられている。端子414は、熱式流量計300が有する外部との接続端子に接続されない端子である。このように、熱式流量計300が有する外部に接続する接続端子412と外部に接続しない端子414とを異なる方向に設けることにより、接続端子412の端子間を広くでき、その後の作業性が向上する。また端子414を接続端子412と異なる方向に延びるようにすることで、枠512内のリードが一部に集中するのを低減でき、枠512内でのリードの配置が容易となる。とくに接続端子412に対応するリードの部分には、回路部品516であるチップコンデンサなどが接続される。これら回路部品516を設けるにはやや広いスペースが必要となる。図18の実施例では、接続端子412に対応するリードのスペースを確保し易い効果がある。
6.1 回路パッケージ400の生産工程
図19A〜図19Cは熱式流量計300の生産工程を示し、図19Aは回路パッケージ400の生産工程を示し、図19Bは熱式流量計の生産工程を示し、図19Cは熱式流量計の生産工程の他の実施例を示す。図19Aにおいて、ステップ1は図15に示すフレーム枠を生産する工程を示す。このフレーム枠は例えばプレス加工によって作られる。
図19Bに示す工程では、図19Aにより生産された回路パッケージ400と外部端子306とが使用され、ステップ5で第2樹脂モールド工程によりハウジング302がつくられる。このハウジング302は樹脂製の副通路溝やフランジ312や外部接続部305が作られると共に、図14に示す回路パッケージ400の斜線部分が第2樹脂モールド工程の樹脂で覆われ、回路パッケージ400がハウジング302に固定される。前記第1樹脂モールド工程による回路パッケージ400の生産(ステップ3)と第2樹脂モールド工程による熱式流量計300のハウジング302の成形との組み合わせにより、流量検出精度が大幅に改善される。ステップ6で図13に示す各外部端子内端361の切り離しが行われ、接続端子412と外部端子内端361との接続がステップ7で行われる。
図19Cで、図19Aにより生産された回路パッケージ400と外部端子306とが使用され、第2樹脂モールド工程の前にステップ12で接続端子412と外部端子内端361との接続が行われる。この際、若しくはステップ12よりも前の工程で図13に示す各外部端子内端361の切り離しが行われる。ステップ13で第2樹脂モールド工程によりハウジング302がつくられる。このハウジング302は樹脂製の副通路溝やフランジ312や外部接続部305が作られると共に、図14に示す回路パッケージ400の斜線部分が第2樹脂モールド工程の樹脂で覆われ、回路パッケージ400がハウジング302に固定される。前記第1樹脂モールド工程による回路パッケージ400の生産(ステップ3)と第2樹脂モールド工程による熱式流量計300のハウジング302の成形との組み合わせにより、流量検出精度が大幅に改善される。
7.1 熱式流量計300の回路構成の全体
図20は熱式流量計300の流量検出回路601を示す回路図である。なお、先に実施例で説明した温度検出部452に関する計測回路も熱式流量計300に設けられているが、図20では省略している。熱式流量計300の流量検出回路601は、発熱体608を有する流量検出部602と処理部604とを備えている。処理部604は、流量検出部602の発熱体608の発熱量を制御すると共に、流量検出部602の出力に基づいて流量を表す信号を、端子662を介して出力する。前記処理を行うために、処理部604は、Central Processing Unit(以下CPUと記す)612と入力回路614、出力回路616、補正値や計測値と流量との関係を表すデータを保持するメモリ618、一定電圧をそれぞれ必要な回路に供給する電源回路622を備えている。電源回路622には車載バッテリなどの外部電源から、端子664と図示していないグランド端子を介して直流電力が供給される。
図21は、上述した図20の流量検出回路601の回路配置を示す回路構成図である。流量検出回路601は矩形形状の半導体チップとして作られており、図21に示す流量検出回路601の左側から右側に向って、矢印の方向に、被計測気体30が流れる。
302 ハウジング
303 表カバー
304 裏カバー
305 外部接続部
306 外部端子
307 補正用端子
310 計測部
320 端子接続部
332 表側副通路溝
334 裏側副通路溝
356、358 突起部
359 樹脂部
361 外部端子内端
365 繋ぎ部
372 固定部
400 回路パッケージ
412 接続端子
414 端子
424 突出部
430 計測用流路面
432 固定面
436 熱伝達面露出部
438 開口
452 温度検出部
590 圧入孔
594、596 傾斜部
601 流量検出回路
602 流量検出部
604 処理部
608 発熱体
640 発熱制御ブリッジ
650 流量検知ブリッジ
672 ダイヤフラム
Claims (30)
- 主通路から取り込まれた被計測気体を流すための副通路と、前記副通路を流れる被計測気体との間で熱伝達面を介して熱伝達を行うことにより流量を計測するための流量検出部を備える熱式流量計の製造方法であって、
接続端子と前記流量検出部と温度検出部を備える回路パッケージを製造する第1樹脂モールド工程と、
前記副通路を成形するための副通路溝と前記回路パッケージを固定するための固定部とを備えるハウジングを製造する第2樹脂モールド工程と、
前記ハウジングに成形された前記副通路溝をカバーで覆うことにより前記副通路を成形する副通路形成工程と、を備え、
前記第1樹脂モールド工程は、前記流量検出部と接続端子の一部と前記温度検出部とを第1樹脂で一体に成形し、更に、前記熱伝達面を備える計測用流路面を前記回路パッケージの表面に成形し、
前記第2樹脂モールド工程は、前記副通路溝と前記回路パッケージを固定するための固定部とを備える前記ハウジングを第2樹脂により成形し、
前記第1樹脂モールド工程により前記回路パッケージの表面に成形された前記熱伝達面を備える前記計測用流路面を、前記第2樹脂モールド工程による前記副通路溝の成形により、前記副通路溝の内部に配置し、
さらに前記第2樹脂モールド工程で前記ハウジングの固定部が成形されることにより、前記回路パッケージを前記ハウジングに固定しており、
前記第1樹脂モールド工程で前記第1樹脂により成形された前記樹脂表面を包含して前記回路パッケージを前記ハウジングに固定するために、前記回路パッケージの前記計測用流路面と前記回路パッケージの前記接続端子との間に位置するように前記第2樹脂により成形された前記固定部は、前記計測用流路面を流れる被計測気体の流れ方向の第1軸に沿って延びる形状の第1固定部と、前記第1軸を横切る方向に延びる形状の第2固定部とを有するように前記第2樹脂モールド工程により形成され、
前記ハウジングは、外部と接続するための外部端子を有する外部接続部と、前記熱式流量計を前記主通路に固定するためのフランジと、前記副通路溝を前記フランジに固定するための上流側外壁と下流側外壁を備えるように前記第2樹脂モールド工程により形成され、
前記第2固定部は、前記上流側外壁と一体に前記第2樹脂モールド工程により成形され、
前記回路パッケージの温度検出部は、前記第2固定部よりも上流側に配置され、かつ、前記第2樹脂で覆われないように、前記第2樹脂モールド工程により前記ハウジングに固定され、
前記第2樹脂モールド工程では、
前記第2樹脂モールド工程により成形された前記ハウジングの前記第2樹脂から露出している部分が、前記回路パッケージの樹脂表面に複数個存在するようにし、
その内の一つの露出している第1の露出面が、前記熱伝達面を備える前記計測用流路面であり、
その内の一つの露出している第2の露出面が、前記計測用流路面と同一面側であって、かつ、前記第1固定部よりも前記接続端子側にあり、
その内の一つの露出している第3の露出面が、前記第2固定部よりも上流側にあるようにすることを特徴とする熱式流量計の製造方法。 - 請求項1に記載の熱式流量計の製造方法において、
前記第2樹脂モールド工程で、前記ハウジングの前記副通路溝と共に前記ハウジングの前記固定部が前記第2樹脂により成形され、
前記第1樹脂モールド工程で成形された前記回路パッケージの前記第1樹脂の表面の一部が、前記ハウジングの前記固定部を成形する前記第2樹脂により包含されて、前記回路パッケージが前記ハウジングに固定され、
前記回路パッケージの前記第1樹脂の前記表面には、さらに前記ハウジングを成形する前記第2樹脂から露出している部分が存在している、ことを特徴とする熱式流量計の製造方法。 - 請求項1あるいは請求項2の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージの前記計測用流路面と前記接続端子との間に位置する、前記第1樹脂モールド工程による前記第1樹脂で成形された前記樹脂表面を、前記第2樹脂モールド工程で成形された前記固定部の前記第2樹脂により包含して、前記回路パッケージを前記ハウジングに固定した、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項3の内の一に記載の熱式流量計の製造方法において、
前記第1固定部には、前記ハウジングの表側と裏側とを繋ぐ軸に沿う方向に成形された窪みが設けるようにした、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至4の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程で成形された前記回路パッケージの前記第1樹脂の表面の内の、前記第2樹脂モールド工程で前記第2樹脂により成形された前記ハウジングから露出している前記第1樹脂の表面が、前記回路パッケージの前記第1樹脂の表面の内の、前記第2樹脂モールド工程で前記第2樹脂により成形された前記ハウジングにより包含されている前記第1樹脂の表面より、広いことを特徴とする、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項5の内の一に記載の熱式流量計の製造方法において、
前記ハウジングは、その表側とその裏側の両方にそれぞれ前記副通路溝が、前記第2樹脂モールド工程で第2樹脂により成形され、前記表側あるいは前記裏側の前記副通路溝の一方に入口を成形する入口溝が、また他方に出口を成形する出口溝が形成され、前記表側および前記裏側の副通路溝が互いに繋がっており、
前記ハウジングの前記表側および前記裏側にそれぞれ前記カバーが設けられることにより、前記表側および前記裏側にそれぞれ、前記入口あるいは前記出口、および前記副通路が作られる、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項5の内の一に記載の熱式流量計の製造方法において、
前記ハウジングは、その表側とその裏側の内の一方に前記副通路溝が、前記第2樹脂モールド工程で前記第2樹脂により成形され、前記ハウジングの前記表側あるいは前記裏側の内の前記一方に、前記カバーが設けられることにより、前記表側あるいは前記裏側の内の前記一方に前記副通路が作られる、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項7の内の一に記載の熱式流量計の製造方法において、
前記第2樹脂モールド工程で成形された前記副通路溝の内部には、前記第1樹脂モールド工程で成形された前記熱伝達面を備える前記計測用流路面が設けられており、前記計測用流路面に対向する前記カバーには、前記熱伝達面に対向して前記副通路溝の内部に突出する突起部が設けられており、前記カバーに設けられた前記突起部により前記副通路に絞り部が成形され、前記絞り部に前記熱伝達面が配置されている、ことを特徴とする熱式流量計の製造方法。 - 請求項8に記載の熱式流量計の製造方法において、
前記突起部を備えた前記カバーは第3樹脂モールド工程で熱可塑性樹脂により成形される、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項9の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程にて前記回路パッケージの前記計測用流路面および前記計測用流路面の背面がそれぞれ成形され、
前記第2樹脂モールド工程にて前記回路パッケージが前記ハウジングに固定されると共に、前記第2樹脂モールド工程にて成形される前記副通路溝の内部に前記計測用流路面が露出する状態で配置され、また前記計測用流路面の前記背面が前記ハウジングを成形している前記第2樹脂の内部に埋め込まれるように配置され、
前記副通路溝が前記カバーにより覆われることにより前記副通路が作られると共に、さらに前記カバーと前記計測用流路面とにより、前記計測用流路面に沿って前記被計測気体が流れるための流路が作られる、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項9の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程にて成形された前記回路パッケージの前記計測用流路面および前記計測用流路面の前記背面がそれぞれ、前記第2樹脂モールド工程にて成形された前記ハウジングの副通路溝の内部に配置されるように、前記回路パッケージが前記ハウジングに固定され、
前記副通路溝が前記カバーにより覆われることにより前記副通路が作られ、前記副通路には、前記計測用流路面および前記計測用流路面の前記背面のそれぞれに沿って、前記被計測気体が流れるための流路が作られる、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項11の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程で、熱硬化性樹脂により、前記回路パッケージが成形され、
前記第2樹脂モールド工程で、熱可塑性樹脂により、前記副通路溝を備える前記ハウジングが成形される、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項12の内の一に記載の熱式流量計の製造方法において、
前記第2樹脂モールド工程にて、金型内に前記回路パッケージを固定し、少なくとも、前記回路パッケージの表面を包含して前記回路パッケージを前記ハウジングに固定するための前記固定部を成形する位置から、高温の熱可塑性樹脂を注入し、前記第2樹脂モールド工程にて、前記固定部を備える前記ハウジングを成形する、ことを特徴とする熱式流量計の製造方法。 - 請求項13に記載の熱式流量計の製造方法において、
前記第2樹脂モールド工程にて成形される、前記高温の熱可塑性樹脂を注入する位置の前記固定部が、凹部を備えている、ことを特徴とする熱式流量計の製造方法。 - 請求項6に記載の熱式流量計の製造方法において、
前記ハウジングの前記表側あるいは前記裏側に成形された前記副通路溝の一方の内部に、前記第1樹脂モールド工程で成形された前記計測用流路面が配置されるようにして、前記第2樹脂モールド工程で前記ハウジングが成形され、
更に、前記被計測気体の流れの軸における前記計測用流路面より下流側で、前記表側と前記裏側の副通路溝を貫通する孔が、前記第2樹脂モールド工程で成形され、前記被計測気体が前記計測用流路面で計測され、この後前記孔を介して他の側の前記副通路を流れる、ことを特徴とする熱式流量計の製造方法。 - 請求項6に記載の熱式流量計の製造方法において、
前記ハウジングの前記表側あるいは前記裏側に成形された前記副通路溝の一方の内部に、前記第1樹脂モールド工程で成形された前記計測用流路面が配置されるようにして、前記第2樹脂モールド工程で前記ハウジングが成形され、
更に、前記被計測気体の流れの軸における前記計測用流路面より上流側に、前記表側と前記裏側の前記副通路溝を貫通する孔が、前記第2樹脂モールド工程で成形され、前記被計測気体が前記孔を介して、
前記計測用流路面が設けられている前記副通路溝へ他の前記副通路溝から導かれ、前記孔を介して導かれた前記被計測気体が前記計測用流路面で計測される、ことを特徴とする熱式流量計の製造方法。 - 請求項6に記載の熱式流量計の製造方法において、
前記ハウジングの前記表側あるいは前記裏側に成形された前記副通路溝の一方の内部に、前記第1樹脂モールド工程で成形された前記計測用流路面が配置されるようにして、前記第2樹脂モールド工程で前記ハウジングが成形され、
更に、前記被計測気体の流れの軸における前記計測用流路面より上流側および下流側の両方に、前記表側と前記裏側の副通路溝を貫通する第1と第2の孔が、前記第2樹脂モールド工程でそれぞれ成形され、前記被計測気体が前記第1と前記第2の孔を介して、前記表側と前記裏側の前記副通路溝間を流れる、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項17の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージの前記計測用流路面には流量を計測するための前記熱伝達面露出部が設けられており、
前記第1樹脂モールド工程で、前記熱伝達面露出部と前記計測用流路面の背面とに金型を当てて熱硬化性樹脂を圧入することにより前記回路パッケージが成形され、
前記第2樹脂モールド工程により、前記ハウジングに固定された前記回路パッケージの前記計測用流路面の背面に、前記金型の跡が成形されている、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項18の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージの少なくとも前記固定部により包含される表面には、その表面を粗化するための深さが10μm以上の窪みが複数個設けられている、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項19の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージの少なくとも前記固定部により包含される表面には、その表面を粗化するための深さが10μm以上で20μm以下の窪みが複数個設けられている、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項19の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージの少なくとも前記固定部により包含される表面には、その表面を粗化するための深さが10μm以上で1000μm以下の窪みが複数個設けられている、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項19の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程で、前記回路パッケージの少なくとも前記固定部により包含される表面を成形するための金型の内面に凹凸を有するフィルムを配置し、前記フィルムを備えた前記金型に樹脂を圧入して前記回路パッケージを成形することにより、前記回路パッケージの少なくとも前記固定部により包含される前記表面を粗化した、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項19の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程で、前記回路パッケージの少なくとも前記固定部により包含される表面を成形するための金型の内面に凹凸を成形し、前記凹凸を成形した前記金型に樹脂を圧入して前記回路パッケージを成形することにより、前記回路パッケージの少なくとも前記固定部により包含される前記表面を粗化した、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項19の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程で成形された前記回路パッケージの少なくとも前記固定部により包含される表面を、サンドブラストにより、粗化した、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項19の内の一に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程で成形された前記回路パッケージの少なくとも前記固定部により包含される表面を、レーザ加工により、粗化した、ことを特徴とする熱式流量計の製造方法。 - 請求項1乃至請求項25の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージに内蔵された前記流量検出部は、ダイヤフラムを有し、前記ダイヤフラムの表面において前記熱伝達面を介して流量が計測され、前記ダイヤフラムの裏面に空隙が設けられ、前記ダイヤフラムの裏面に設けられた前記空隙が、前記回路パッケージの内部に設けられた連通孔を介して前記回路パッケージの表面に設けられた開口に繋がっている、ことを特徴とする熱式流量計の製造方法。 - 請求項26に記載の熱式流量計の製造方法において、
前記第1樹脂モールド工程にて、表面に開口が設けられた前記回路パッケージが成形され、
前記回路パッケージに内蔵された前記ダイヤフラムの裏面に設けられた前記空隙が、 前記回路パッケージの内部の前記連通孔を介して前記開口に繋がっている、ことを特徴とする熱式流量計の製造方法。 - 請求項25あるいは請求項26の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージは、前記連通孔を有するプレートを内蔵しており、
前記第1樹脂モールド工程において、前記連通孔を有する前記プレートが内蔵されて、前記回路パッケージが成形される、ことを特徴とする熱式流量計の製造方法。 - 請求項25あるいは請求項26の内の一に記載の熱式流量計の製造方法において、
前記回路パッケージは、前記連通孔を有するプレートと、前記プレートに搭載された前記ダイヤフラムとを内蔵しており、
前記第1樹脂モールド工程において、前記連通孔を有しさらに前記ダイヤフラムが搭載された前記プレートが内蔵されて、前記回路パッケージが成形される、ことを特徴とする熱式流量計の製造方法。 - 請求項28あるいは請求項29の内の一に記載の熱式流量計の製造方法において、
前記第2樹脂モールド工程で、前記ハウジングを成形する熱可塑性樹脂により前記回路パッケージの表面の内の一部が包含されて、前記回路パッケージが前記ハウジングに固定され、
前記回路パッケージの表面の内の、前記ハウジングから露出している部分に開口が設けられ、前記ダイヤフラムの裏面に設けられた前記空隙が、前記連通孔を介して前記開口に繋がっている、ことを特徴とする熱式流量計の製造方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/065317 WO2013186910A1 (ja) | 2012-06-15 | 2012-06-15 | 熱式流量計 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015129452A Division JP5961731B2 (ja) | 2015-06-29 | 2015-06-29 | 熱式流量計 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013186910A1 JPWO2013186910A1 (ja) | 2016-02-01 |
JP6014665B2 true JP6014665B2 (ja) | 2016-10-25 |
Family
ID=49757772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014521073A Active JP6014665B2 (ja) | 2012-06-15 | 2012-06-15 | 熱式流量計 |
Country Status (6)
Country | Link |
---|---|
US (4) | US9784605B2 (ja) |
JP (1) | JP6014665B2 (ja) |
CN (4) | CN107063368B (ja) |
DE (1) | DE112012006520B4 (ja) |
MX (1) | MX339283B (ja) |
WO (1) | WO2013186910A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5944222B2 (ja) * | 2012-05-01 | 2016-07-05 | ヤンマー株式会社 | エンジン回転数制御装置 |
JP5884769B2 (ja) | 2013-05-09 | 2016-03-15 | 株式会社デンソー | 空気流量計測装置 |
JP2016090413A (ja) | 2014-11-06 | 2016-05-23 | 日立オートモティブシステムズ株式会社 | 熱式空気流量計 |
JP6154966B2 (ja) * | 2014-12-08 | 2017-06-28 | 日立オートモティブシステムズ株式会社 | 物理量検出装置 |
DE102017206226A1 (de) * | 2017-04-11 | 2018-10-11 | Robert Bosch Gmbh | Sensor zur Erfassung mindestens einer Eigenschaft eines fluiden Mediums |
DE102017112622A1 (de) * | 2017-06-08 | 2018-12-13 | Endress + Hauser Flowtec Ag | Thermisches Durchflussmessgerät |
US11143535B2 (en) * | 2017-09-05 | 2021-10-12 | Hitachi Automotive Systems, Ltd. | Thermal-type flowmeter |
WO2019156041A1 (ja) | 2018-02-07 | 2019-08-15 | 株式会社デンソー | 物理量計測装置 |
JP6838227B2 (ja) * | 2018-03-09 | 2021-03-03 | 日立Astemo株式会社 | 物理量測定装置 |
CN108643987A (zh) * | 2018-04-25 | 2018-10-12 | 天津天传电子有限公司 | 发动机机油断流检测开关及温度检测一体化装置 |
US11927466B2 (en) * | 2018-11-29 | 2024-03-12 | Hitachi Astemo, Ltd. | Physical quantity measurement device including a thermal flow rate sensor with a ventilation flow path |
JP6775629B2 (ja) * | 2019-04-23 | 2020-10-28 | 日立オートモティブシステムズ株式会社 | 物理量検出素子 |
JP7115446B2 (ja) * | 2019-09-04 | 2022-08-09 | 株式会社デンソー | 空気流量測定装置 |
EP3957868B1 (de) * | 2020-08-20 | 2024-07-31 | Pacoma GmbH | Kolben-zylinder-einheit mit kolbenpositionserfassungseinheit und kollimator |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06265384A (ja) * | 1993-03-15 | 1994-09-20 | Hitachi Ltd | 熱式空気流量計 |
JP3438843B2 (ja) * | 1995-06-14 | 2003-08-18 | 株式会社デンソー | 熱式流量計 |
JP3323745B2 (ja) * | 1996-07-25 | 2002-09-09 | 株式会社日立製作所 | 物理量検出装置の特性調整手段および発熱抵抗式空気流量装置 |
JP3019784B2 (ja) * | 1996-09-04 | 2000-03-13 | サンケン電気株式会社 | 流体の流れ検出装置 |
JP3328547B2 (ja) * | 1997-06-16 | 2002-09-24 | 株式会社日立製作所 | 熱式空気流量センサ |
JP2000208809A (ja) * | 1999-01-12 | 2000-07-28 | Oki Electric Ind Co Ltd | 光結合半導体装置 |
WO2000079221A1 (fr) * | 1999-06-24 | 2000-12-28 | Mitsui Mining & Smelting Co., Ltd. | Detecteur de debit, debitmetre et capteur de flux |
KR20010039993A (ko) * | 1999-10-06 | 2001-05-15 | 오카무라 가네오 | 유량 및 유속 측정장치 |
JP3577269B2 (ja) * | 2000-08-30 | 2004-10-13 | 株式会社日立製作所 | 熱式空気流量センサおよびその形成方法 |
JP3785319B2 (ja) | 2000-12-11 | 2006-06-14 | 株式会社日立製作所 | 流量計測装置 |
JP3787509B2 (ja) | 2001-09-03 | 2006-06-21 | 株式会社日立製作所 | 発熱抵抗式空気流量測定装置 |
GR1004106B (el) * | 2002-01-24 | 2003-01-13 | Εκεφε "Δημοκριτος" Ινστιτουτο Μικροηλεκτρονικης | Ολοκληρωμενοι θερμικοι αισθητηρες πυριτιου χαμηλης ισχυος και διαταξεις μικρο-ροης βασισμενοι στην χρηση τεχνολογιας κοιλοτητας αερα σφραγισμενης με μεμβρανη πορωδους πυριτιου ή τεχνολογιας μικρο-καναλιων |
JP2003254805A (ja) * | 2002-03-07 | 2003-09-10 | Hitachi Ltd | 熱式流量センサおよび光供給方法 |
US6708561B2 (en) | 2002-04-19 | 2004-03-23 | Visteon Global Technologies, Inc. | Fluid flow meter having an improved sampling channel |
JP3888228B2 (ja) * | 2002-05-17 | 2007-02-28 | 株式会社デンソー | センサ装置 |
JP2004028631A (ja) * | 2002-06-21 | 2004-01-29 | Mitsubishi Electric Corp | 流量センサ |
JP4310086B2 (ja) | 2002-08-01 | 2009-08-05 | 株式会社日立製作所 | エンジン用電子機器 |
US6826955B2 (en) * | 2002-09-20 | 2004-12-07 | Visteon Global Technologies, Inc. | Mass fluid flow sensor having an improved housing design |
US6752015B2 (en) | 2002-09-24 | 2004-06-22 | Visteon Global Technologies, Inc. | Fluid flow device having reduced fluid ingress |
JP4073324B2 (ja) * | 2003-01-24 | 2008-04-09 | 株式会社日立製作所 | 熱式流量測定装置 |
JP4166705B2 (ja) | 2004-01-13 | 2008-10-15 | 三菱電機株式会社 | 空気流量測定装置 |
JP2005209882A (ja) * | 2004-01-22 | 2005-08-04 | Renesas Technology Corp | 半導体パッケージ及び半導体装置 |
JP2007024589A (ja) * | 2005-07-13 | 2007-02-01 | Hitachi Ltd | 気体流量計測装置 |
JP4161077B2 (ja) | 2005-09-29 | 2008-10-08 | 三菱電機株式会社 | 流量測定装置 |
JP4845187B2 (ja) * | 2006-02-07 | 2011-12-28 | 株式会社山武 | センサのパッケージ構造及びこれを有するフローセンサ |
JP4979262B2 (ja) * | 2006-05-08 | 2012-07-18 | 日立オートモティブシステムズ株式会社 | 流量測定装置 |
JP4952428B2 (ja) * | 2007-08-01 | 2012-06-13 | 株式会社デンソー | センサ装置 |
JP2009270930A (ja) | 2008-05-07 | 2009-11-19 | Denso Corp | 熱式流量センサ |
JP5168091B2 (ja) * | 2008-11-05 | 2013-03-21 | 株式会社デンソー | 熱式フローセンサの製造方法及び熱式フローセンサ |
JP5049996B2 (ja) | 2009-03-31 | 2012-10-17 | 日立オートモティブシステムズ株式会社 | 熱式流量測定装置 |
JP4929335B2 (ja) * | 2009-09-30 | 2012-05-09 | 日立オートモティブシステムズ株式会社 | 熱式流量測定装置 |
JP4827961B2 (ja) * | 2009-10-19 | 2011-11-30 | 三菱電機株式会社 | 流量測定装置 |
JP5208099B2 (ja) * | 2009-12-11 | 2013-06-12 | 日立オートモティブシステムズ株式会社 | 流量センサとその製造方法、及び流量センサモジュール |
JP5195819B2 (ja) | 2010-06-02 | 2013-05-15 | 株式会社デンソー | 空気流量測定装置 |
JP2012052809A (ja) | 2010-08-31 | 2012-03-15 | Hitachi Automotive Systems Ltd | センサの構造 |
JP5256264B2 (ja) | 2010-09-03 | 2013-08-07 | 日立オートモティブシステムズ株式会社 | 熱式空気流量センサ |
JP5496027B2 (ja) | 2010-09-09 | 2014-05-21 | 日立オートモティブシステムズ株式会社 | 熱式空気流量計 |
CN102445246A (zh) * | 2010-09-30 | 2012-05-09 | 美新半导体(无锡)有限公司 | 热式质量流量传感器封装件及其制造方法 |
WO2012049742A1 (ja) | 2010-10-13 | 2012-04-19 | 日立オートモティブシステムズ株式会社 | 流量センサおよびその製造方法並びに流量センサモジュールおよびその製造方法 |
JP5710538B2 (ja) * | 2012-04-06 | 2015-04-30 | 日立オートモティブシステムズ株式会社 | 流量センサ |
JP5916637B2 (ja) * | 2013-01-11 | 2016-05-11 | 日立オートモティブシステムズ株式会社 | 流量センサおよびその製造方法 |
-
2012
- 2012-06-15 WO PCT/JP2012/065317 patent/WO2013186910A1/ja active Application Filing
- 2012-06-15 CN CN201710142275.2A patent/CN107063368B/zh active Active
- 2012-06-15 DE DE112012006520.4T patent/DE112012006520B4/de active Active
- 2012-06-15 CN CN201710142630.6A patent/CN106959140B/zh active Active
- 2012-06-15 CN CN201280073984.5A patent/CN104364615B/zh active Active
- 2012-06-15 CN CN201710142628.9A patent/CN107063369B/zh active Active
- 2012-06-15 MX MX2014015384A patent/MX339283B/es active IP Right Grant
- 2012-06-15 JP JP2014521073A patent/JP6014665B2/ja active Active
- 2012-06-15 US US14/407,730 patent/US9784605B2/en active Active
-
2017
- 2017-09-06 US US15/696,860 patent/US10190897B2/en active Active
-
2019
- 2019-01-15 US US16/248,070 patent/US10655993B2/en active Active
-
2020
- 2020-04-15 US US16/848,978 patent/US10935403B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10655993B2 (en) | 2020-05-19 |
CN107063368A (zh) | 2017-08-18 |
CN104364615A (zh) | 2015-02-18 |
CN107063369B (zh) | 2021-11-02 |
MX339283B (es) | 2016-05-10 |
US20200240822A1 (en) | 2020-07-30 |
US20150122012A1 (en) | 2015-05-07 |
CN107063368B (zh) | 2020-06-16 |
DE112012006520B4 (de) | 2024-09-05 |
WO2013186910A1 (ja) | 2013-12-19 |
JPWO2013186910A1 (ja) | 2016-02-01 |
CN107063369A (zh) | 2017-08-18 |
US9784605B2 (en) | 2017-10-10 |
CN106959140B (zh) | 2021-11-16 |
US10935403B2 (en) | 2021-03-02 |
US10190897B2 (en) | 2019-01-29 |
US20190162569A1 (en) | 2019-05-30 |
US20170363455A1 (en) | 2017-12-21 |
MX2014015384A (es) | 2015-07-14 |
CN104364615B (zh) | 2017-04-05 |
DE112012006520T5 (de) | 2015-03-05 |
CN106959140A (zh) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6014665B2 (ja) | 熱式流量計 | |
JP5758850B2 (ja) | 熱式流量計 | |
JP5763590B2 (ja) | 熱式流量計 | |
JP5632881B2 (ja) | 熱式流量計 | |
JP5662382B2 (ja) | 熱式流量計 | |
JP5738818B2 (ja) | 熱式流量計 | |
JP5675706B2 (ja) | 熱式流量計 | |
JP5675708B2 (ja) | 熱式流量計 | |
JP5676527B2 (ja) | 熱式流量計 | |
JP6272399B2 (ja) | 熱式流量計 | |
JP5759943B2 (ja) | 熱式流量計 | |
JP5759942B2 (ja) | 熱式流量計 | |
JP5961731B2 (ja) | 熱式流量計 | |
JP5841211B2 (ja) | 物理量計測装置及びその製造方法 | |
JP2014001969A (ja) | 熱式流量計 | |
JP5666508B2 (ja) | 熱式流量計 | |
JP5998251B2 (ja) | 物理量検出計 | |
JP6040284B2 (ja) | 熱式流量計 | |
JP6240795B2 (ja) | 熱式流量計 | |
JP5976167B2 (ja) | 熱式流量計 | |
JP2019184623A (ja) | 熱式流量計 | |
JP2018066754A (ja) | 熱式流量計 | |
JP2014001983A (ja) | 熱式流量計 | |
JP6081088B2 (ja) | 熱式流量計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6014665 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |