JP6007016B2 - Circuit board laminate and metal base circuit board - Google Patents
Circuit board laminate and metal base circuit board Download PDFInfo
- Publication number
- JP6007016B2 JP6007016B2 JP2012168658A JP2012168658A JP6007016B2 JP 6007016 B2 JP6007016 B2 JP 6007016B2 JP 2012168658 A JP2012168658 A JP 2012168658A JP 2012168658 A JP2012168658 A JP 2012168658A JP 6007016 B2 JP6007016 B2 JP 6007016B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit board
- shape
- insulating layer
- metal substrate
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 78
- 239000002184 metal Substances 0.000 title claims description 78
- 239000000758 substrate Substances 0.000 claims description 55
- 239000002245 particle Substances 0.000 claims description 38
- 239000011256 inorganic filler Substances 0.000 claims description 25
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- 229910052582 BN Inorganic materials 0.000 claims description 21
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 20
- 239000011888 foil Substances 0.000 claims description 18
- 239000000835 fiber Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 50
- 238000000034 method Methods 0.000 description 22
- 238000000576 coating method Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 239000011342 resin composition Substances 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 239000002904 solvent Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000011889 copper foil Substances 0.000 description 11
- 238000009413 insulation Methods 0.000 description 9
- 238000000465 moulding Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004962 Polyamide-imide Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 229920002312 polyamide-imide Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000491 Polyphenylsulfone Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- -1 carbide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Insulated Metal Substrates For Printed Circuits (AREA)
Description
本発明は、回路基板用積層板及び金属ベース回路基板に関するものである。 The present invention relates to a circuit board laminate and a metal base circuit board.
近年のエレクトロニクス技術の発達は目覚ましく、電気電子機器の高性能化及び小型化は急速に進行している。これに伴い、電気素子及び/又は電子素子を実装した部品の発熱量は益々大きくなっている。このような背景のもと、典型的にはMOSFET(metal-oxide-semiconductor field-effect transistor)及びIGBT(insulated-gate bipolar transistor)などの所謂パワーデバイスを搭載する金属ベース回路基板には、十分な耐熱性に加え、優れた放熱性が求められている。 In recent years, the development of electronics technology has been remarkable, and the performance and miniaturization of electrical and electronic equipment are rapidly progressing. Along with this, the amount of heat generated by components mounted with electrical elements and / or electronic elements is increasing. Under such circumstances, a metal base circuit board on which so-called power devices such as a MOSFET (metal-oxide-semiconductor field-effect transistor) and an IGBT (insulated-gate bipolar transistor) are typically mounted is sufficient. In addition to heat resistance, excellent heat dissipation is required.
金属ベース回路基板は、金属基板上に絶縁層と回路パターンとがこの順に積層された構造を有している。金属ベース回路基板の放熱性を高めるために、この絶縁層には、母材となる樹脂に、熱伝導率が高く且つ絶縁性の六方晶窒化ホウ素(h−BN)を分散させた樹脂組成物が一般に広く用いられている。 The metal base circuit board has a structure in which an insulating layer and a circuit pattern are laminated in this order on a metal board. In order to improve the heat dissipation of the metal base circuit board, a resin composition in which insulating hexagonal boron nitride (h-BN) having high thermal conductivity and insulation is dispersed in the insulating layer for the insulating layer. Is widely used.
この六方晶窒化ホウ素は、黒鉛と同様の層状の結晶構造を有し、形状が鱗片状である。そして、長径方向(結晶方向)の熱伝導率が高く、短径方向(層の厚さ方向)の熱伝導率が低いという異方的な熱伝導性を有している。そのため、プレス成形法、射出成形法、押出成形法、カレンダー成形法、ロール成形法、ドクターブレード成形法等のような公知の成形方法によってシート状に絶縁層を成形すると、成形時の圧力や流動によって、樹脂中の鱗片状窒化ホウ素が絶縁層内で倒れた状態、すなわち、図7に示すように、鱗片状窒化ホウ素5の長径方向が絶縁層のシート面方向と一致するように配向されやすいという傾向がある。このようにして得られる熱伝導性絶縁層は、絶縁層の面方向の熱伝導性に優れたものとなり、絶縁層の厚み方向が熱伝導経路となる使用形態において熱伝導性が十分でないという問題があった。
This hexagonal boron nitride has a layered crystal structure similar to that of graphite and has a scaly shape. And it has anisotropic thermal conductivity that the thermal conductivity in the major axis direction (crystal direction) is high and the thermal conductivity in the minor axis direction (layer thickness direction) is low. Therefore, if the insulating layer is formed into a sheet shape by a known molding method such as press molding method, injection molding method, extrusion molding method, calendar molding method, roll molding method, doctor blade molding method, etc., pressure and flow during molding Therefore, the scaly boron nitride in the resin is tilted in the insulating layer, that is, as shown in FIG. 7, the major axis direction of the
また、すべての鱗片状窒化ホウ素の長径方向を絶縁層の厚み方向に平行に配向させてしまうと、熱伝導性が向上する代わりに絶縁性が著しく低下してしまうため、熱伝導性と絶縁性とのバランスを考慮しつつ、熱伝導性絶縁層における鱗片状窒化ホウ素の配向を調整しなければならない。 In addition, if the major axis direction of all the scaly boron nitrides is oriented parallel to the thickness direction of the insulating layer, the thermal conductivity is significantly reduced instead of improving the thermal conductivity. The orientation of the flaky boron nitride in the thermally conductive insulating layer must be adjusted in consideration of the balance with the above.
このため、樹脂中に分散する鱗片状窒化ホウ素の長径方向をバランスよく配向させることにより、熱伝導性と絶縁性に優れた絶縁放熱性シートを提供すべく、鱗片状窒化ホウ素の一次粒子が凝集した二次凝集粒子を含有させてなる絶縁放熱性シートが提案されている(例えば、特許文献1〜3を参照)。
Therefore, primary particles of flaky boron nitride agglomerate in order to provide an insulating heat-radiating sheet excellent in thermal conductivity and insulation by orienting the major axis direction of flaky boron nitride dispersed in the resin in a balanced manner. Insulated heat-radiating sheets containing the secondary aggregated particles have been proposed (see, for example,
鱗片状窒化ホウ素の一次粒子が凝集した二次凝集粒子を用いる上掲の方法では、鱗片状窒化ホウ素の長径方向(結晶方向)を絶縁層の厚み方向に平行に配向するには限界があり、絶縁層の厚み方向の熱伝導性を十分に向上させることが困難であった。また、二次凝集体は少なからず空孔を有しているため、そのような二次凝集体を分散してなる樹脂組成物を用いて絶縁層を形成しても金属ベース回路基板に用いられる絶縁放熱シートとして十分な絶縁性が得られないという問題があった。 In the above-described method using secondary aggregated particles in which primary particles of flaky boron nitride are aggregated, there is a limit to orienting the major axis direction (crystal direction) of flaky boron nitride parallel to the thickness direction of the insulating layer, It has been difficult to sufficiently improve the thermal conductivity in the thickness direction of the insulating layer. In addition, since the secondary aggregate has a number of pores, even if an insulating layer is formed using a resin composition in which such secondary aggregate is dispersed, it is used for a metal base circuit board. There has been a problem that sufficient insulation cannot be obtained as an insulating heat dissipation sheet.
本発明は、このような実情に鑑み、熱伝導性と絶縁性に優れた回路基板用積層板、及び、この回路基板用積層板を用いて形成された金属ベース回路基板を提供することを目的とする。 In view of such circumstances, the present invention has an object to provide a laminate for a circuit board excellent in thermal conductivity and insulation, and a metal base circuit board formed using the laminate for a circuit board. And
本発明の第1側面によると、金属基板と、該金属基板上に設けられた絶縁層と、該絶縁層上に設けられた金属箔とを具備する回路基板用積層板であって、前記金属基板の絶縁層側の表面に溝が形成されており、且つ、前記絶縁層がアスペクト比2以上の非球状無機充填材と樹脂を含有することを特徴とする回路基板用積層板が提供される。 According to a first aspect of the present invention, there is provided a circuit board laminate comprising a metal substrate, an insulating layer provided on the metal substrate, and a metal foil provided on the insulating layer. There is provided a laminated board for a circuit board, wherein a groove is formed on the surface of the substrate on the insulating layer side, and the insulating layer contains a non-spherical inorganic filler having an aspect ratio of 2 or more and a resin. .
本発明の一形態において、上記非球状無機充填材は、例えば、鱗片状、板状、又は繊維状である。
本発明の他の形態において、上記非球状無機充填材は、例えば、鱗片状の窒化ホウ素であり、その平均粒子径は、例えば、1μm以上50μmの範囲内である。
In one embodiment of the present invention, the non-spherical inorganic filler is, for example, in a scale shape, a plate shape, or a fiber shape.
In another embodiment of the present invention, the non-spherical inorganic filler is, for example, scaly boron nitride, and the average particle diameter thereof is, for example, in the range of 1 μm to 50 μm.
本発明の他の形態において、上記金属基板表面に形成された溝は、例えば、深さが10〜150μmであり、且つ、ピッチが0.1μm以上である。 In another embodiment of the present invention, the grooves formed on the surface of the metal substrate have, for example, a depth of 10 to 150 μm and a pitch of 0.1 μm or more.
本発明の他の形態において、上記金属基板表面の溝は、例えば、ストライプ状、格子状又はドット状に形成されている。 In another embodiment of the present invention, the grooves on the surface of the metal substrate are formed in a stripe shape, a lattice shape, or a dot shape, for example.
本発明の他の形態において、上記金属基板表面の溝は、その断面形状が、例えば、V字型、U字型又は矩形型である。 In another embodiment of the present invention, the groove on the surface of the metal substrate has a cross-sectional shape of, for example, a V shape, a U shape, or a rectangular shape.
本発明の第2側面によると、上述した回路基板用積層板の金属箔をパターニングすることによって得られる金属ベース回路基板が提供される。 According to the 2nd side surface of this invention, the metal base circuit board obtained by patterning the metal foil of the laminated board for circuit boards mentioned above is provided.
本発明により、熱伝導性及び絶縁性に優れた回路基板用積層体、及び、この回路基板用積層体を用いて形成された金属ベース回路基板の提供が可能となった。 According to the present invention, it is possible to provide a circuit board laminate excellent in thermal conductivity and insulation, and a metal base circuit board formed using the circuit board laminate.
以下、本発明の態様について図面を参照しながら詳細に説明する。
本発明に係る回路基板用積層板は、表面に溝が形成された金属基板と、該金属基板の溝が形成された表面上に設けられた絶縁層と、該絶縁層上に設けられた金属箔とを具備してなり、絶縁層は、非球状の無機充填材と樹脂を含有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A laminated board for a circuit board according to the present invention includes a metal substrate having a groove formed on a surface thereof, an insulating layer provided on the surface of the metal substrate having a groove formed thereon, and a metal provided on the insulating layer. The insulating layer contains a non-spherical inorganic filler and a resin.
上記の通り、絶縁層を構成する樹脂中に分散される無機充填材として、例えば鱗片状窒化ホウ素のような非球状の無機充填材を使用した場合、粒子の長径方向(面内方向)が絶縁層の面方向と一致するように配向されやすい。一方、鱗片状窒化ホウ素のように、非球状の無機充填材における長径方向(面内方向)の熱伝導率が高く、短径方向(厚み方向)の熱伝導率が低い場合、そのような非球状無機充填材を用いて形成される従来の絶縁層においては、粒子の長径方向(面内方向)が絶縁層の面方向と一致するように配向されやすいために絶縁層の厚み方向における熱伝導性が十分でないという問題があった。 As described above, when a non-spherical inorganic filler such as flaky boron nitride is used as the inorganic filler dispersed in the resin constituting the insulating layer, the major axis direction (in-plane direction) of the particles is insulated. It is easily oriented so as to coincide with the plane direction of the layer. On the other hand, when the thermal conductivity in the major axis direction (in-plane direction) of the non-spherical inorganic filler is high and the thermal conductivity in the minor axis direction (thickness direction) is low, such as scaly boron nitride, In a conventional insulating layer formed using a spherical inorganic filler, heat conduction in the thickness direction of the insulating layer is easy because the major axis direction (in-plane direction) of the particles tends to be aligned with the surface direction of the insulating layer. There was a problem that the sex was not enough.
図1にその一態様が示されているように、本発明に係る回路基板用積層板1は、金属基板2の絶縁層3側の表面に溝が形成されている。このため、例えば図3に模式的に示されているように、金属基板2上に形成された絶縁層3のマトリクス樹脂6中に分散された非球状無機分散材5の長径方向が、溝の深さ方向に配向する。その結果、絶縁性を低下させることなく絶縁層の厚み方向の熱伝導性を向上させることができる。
As shown in FIG. 1, the
絶縁層に用いられる無機充填材は、非球状の無機粒子であり、例えば、鱗片状、板状、繊維状などの形状が挙げられるが、これらに限定されるものではなく、アスペクト比が2以上であればよい。ここでアスペクト比は、粒子の形状が球又は立方体に近いか否かを表す指標となるものである。例えば鱗片状又は板状粒子の場合には、アスペクト比は粒子直径と粒子厚みとの比(粒子直径/粒子厚み)として表される。ここで粒子直径は後述する平均粒子径(D50)を表し、粒子厚みはSEMにより得られる粒子10個の断面画像から測定される平均厚みを表す。また、例えば繊維状粒子の場合には、アスペクト比は繊維状粒子の長辺と短辺との比(長辺/短辺)として表される。ここで当該比(長辺/短辺)は非偏光光源方式による繊維長分布測定(ISO16065−2規格)から得られる平均長を表す。 The inorganic filler used for the insulating layer is non-spherical inorganic particles, and examples thereof include a scale shape, a plate shape, and a fiber shape. However, the shape is not limited to these, and the aspect ratio is 2 or more. If it is. Here, the aspect ratio is an index indicating whether or not the shape of the particle is close to a sphere or a cube. For example, in the case of scaly or plate-like particles, the aspect ratio is expressed as the ratio of particle diameter to particle thickness (particle diameter / particle thickness). Here, the particle diameter represents an average particle diameter (D50) described later, and the particle thickness represents an average thickness measured from a cross-sectional image of 10 particles obtained by SEM. For example, in the case of fibrous particles, the aspect ratio is expressed as the ratio of the long side to the short side (long side / short side) of the fibrous particle. Here, the ratio (long side / short side) represents an average length obtained from fiber length distribution measurement (ISO16065-2 standard) by a non-polarized light source method.
無機充填材のアスペクト比が2未満であると、形状が球状もしくは立方体に近いために、金属基板表面に形成された溝に樹脂が流動しても粒子の長径方向が溝の深さ方向に配向しにくくなるため、所望とする熱伝導性が得られない。本発明の一形態において、無機充填材のアスペクト比は、例えば5〜60であることが好ましく、10〜30であることがより好ましい。 If the aspect ratio of the inorganic filler is less than 2, the shape is close to a sphere or a cube, so even if the resin flows into the groove formed on the surface of the metal substrate, the major axis direction of the particles is oriented in the depth direction of the groove. Therefore, the desired thermal conductivity cannot be obtained. In one embodiment of the present invention, the aspect ratio of the inorganic filler is preferably 5 to 60, for example, and more preferably 10 to 30.
非球状の無機充填材として、具体的には、例えば窒化ホウ素、窒化アルミ、窒化ケイ素、アルミナ、シリカ、炭化物、金属繊維、樹脂繊維等が挙げられる。本発明の一形態において、非球状の無機充填材は、鱗片状の窒化ホウ素(六方晶系窒化ホウ素[h−BN])であることが好ましい。 Specific examples of the non-spherical inorganic filler include boron nitride, aluminum nitride, silicon nitride, alumina, silica, carbide, metal fiber, and resin fiber. In one embodiment of the present invention, the non-spherical inorganic filler is preferably scaly boron nitride (hexagonal boron nitride [h-BN]).
また、本発明の一形態において、非球状無機充填材の平均粒子径は、1μm以上50μm以下であることが好ましく、5μm以上25μm以下であることがより好ましい。 In one embodiment of the present invention, the average particle diameter of the non-spherical inorganic filler is preferably 1 μm or more and 50 μm or less, and more preferably 5 μm or more and 25 μm or less.
ここで、平均粒子径とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒径である、体積基準累積50%径(D50)を意味する。粒径の測定は、平均粒子径(D50)が1μm以下の場合は光透過式遠心沈降法により測定され、1μmを超える場合はレーザー回折・散乱法により測定される。 Here, the average particle diameter is a particle diameter at a point at which the cumulative curve is 50% in a cumulative curve obtained by obtaining a particle size distribution on a volume basis and setting the total volume to 100%. D50). The particle size is measured by the light transmission centrifugal sedimentation method when the average particle size (D50) is 1 μm or less, and is measured by the laser diffraction / scattering method when it exceeds 1 μm.
本発明の一形態において、絶縁層における非球状無機充填材の含有率(充填率)は、絶縁層に含有される樹脂を基準として40〜80体積%であることが好ましく、50〜70体積%あることがより好ましい。充填率が低すぎると配向はできても粒子同士の接点が少なくなってしまうため熱伝達のパスが形成できにくい問題が生じ得る。一方、充填率が高すぎると粘度が高くなりすぎるため樹脂の流動性が低下する問題が生じ得る。 In one embodiment of the present invention, the content (filling rate) of the non-spherical inorganic filler in the insulating layer is preferably 40 to 80% by volume based on the resin contained in the insulating layer, and 50 to 70% by volume. More preferably. If the filling rate is too low, there may be a problem that it is difficult to form a heat transfer path because the number of contact points between the particles is reduced even if the orientation can be achieved. On the other hand, if the filling rate is too high, the viscosity becomes too high, which may cause a problem that the fluidity of the resin is lowered.
絶縁層のマトリクスとなる樹脂としては、加熱および/または加圧により流動性を示す樹脂であれば特に限定されるものではない。例えば、ポリアミドイミド、液晶ポリエステル、ポリエーテルエーテルケトン、ポリサルホン、ポリフェニルサルホン、ポリエーテルサルホン、ポリフェニレンスルフィド、エポキシ樹脂、イミド樹脂などが挙げられる。これらの樹脂は、単独又は組み合わせて用いることができる。 The resin that becomes the matrix of the insulating layer is not particularly limited as long as it is a resin that exhibits fluidity when heated and / or pressurized. Examples thereof include polyamide imide, liquid crystal polyester, polyether ether ketone, polysulfone, polyphenyl sulfone, polyether sulfone, polyphenylene sulfide, epoxy resin, and imide resin. These resins can be used alone or in combination.
絶縁層を形成する樹脂組成物は、上述した非球状無機充填材及び樹脂以外に、例えば、溶剤を含有している。溶剤は、樹脂100質量部に対して、例えば10〜9900質量部、より好ましくは100〜1900質量部含有させる。溶剤の量が過度に多い場合、塗膜から大量の溶剤を除去しなければならず、塗膜の外観不良を生じやすい。また、多くの乾燥時間を要するため生産性が低下する。一方、溶剤の量が過度に少ない場合、組成物が高粘度化する傾向があり、その取扱い性等が低下する。溶剤としては、例えば、N−メチルピロリドン、ジメチルアセトアミド、テトラフルオロイソプロパノール、メチルエチルケトン、エチレンジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート、メチルイソブチルケトンなどが挙げられる。 The resin composition forming the insulating layer contains, for example, a solvent in addition to the above-described non-spherical inorganic filler and resin. For example, 10 to 9900 parts by mass, and more preferably 100 to 1900 parts by mass of the solvent is contained with respect to 100 parts by mass of the resin. When the amount of the solvent is excessively large, a large amount of the solvent must be removed from the coating film, which tends to cause a poor appearance of the coating film. In addition, productivity is reduced because a lot of drying time is required. On the other hand, when the amount of the solvent is excessively small, the composition tends to increase in viscosity, and the handleability and the like deteriorate. Examples of the solvent include N-methylpyrrolidone, dimethylacetamide, tetrafluoroisopropanol, methyl ethyl ketone, ethylene diglycol acetate, propylene glycol monomethyl ether acetate, and methyl isobutyl ketone.
また、樹脂組成物は、更に種々の添加剤を含有していてもよい。添加剤としては、例えば、シランカップリング剤及びチタンカップリング剤などのカップリング剤、イオン吸着剤などが挙げられる。 The resin composition may further contain various additives. Examples of the additive include coupling agents such as a silane coupling agent and a titanium coupling agent, and an ion adsorbent.
金属基板において絶縁層が形成される側の表面は、溝(凹部)が形成されることにより凹凸面となっている。溝の深さ(d)、ピッチ(p)、形状などは、用いる無機充填材の粒子サイズや、金属ベース回路基板としての用途における放熱性と絶縁性のバランスにより適宜設定される。配向度を高めたい場合には、樹脂流動が十分に出来る範囲で溝のピッチを小さくして、深さを深くすればよい。溝の深さ(d)は、例えば、10〜150μmであることが好ましく、20〜100μmであることがより好ましい。溝のピッチ(p)は、例えば、1μm以上であることが好ましく、1〜300μmであることがより好ましく、60〜250μmであることが更に好ましい。溝の断面形状は、限定されるものではないが、例えば、V字型、U字型又は矩形型であり、溝の基板表面上の形状は、限定されるものではないが、例えば、ストライプ状、格子状又はドット状である。 The surface on the side where the insulating layer is formed in the metal substrate is an uneven surface due to the formation of grooves (recesses). The depth (d), pitch (p), shape, and the like of the groove are appropriately set depending on the particle size of the inorganic filler to be used and the balance between heat dissipation and insulation in the use as a metal base circuit board. In order to increase the degree of orientation, the groove pitch can be reduced and the depth can be increased within a range in which the resin can flow sufficiently. The depth (d) of the groove is, for example, preferably 10 to 150 μm, and more preferably 20 to 100 μm. The pitch (p) of the grooves is preferably 1 μm or more, more preferably 1 to 300 μm, still more preferably 60 to 250 μm, for example. The cross-sectional shape of the groove is not limited, but is, for example, V-shaped, U-shaped, or rectangular. The shape of the groove on the substrate surface is not limited, but is, for example, a stripe shape. , Grid or dot.
金属基板は、例えば、単体金属又は合金からなる。金属基板の材料としては、例えば、アルミニウム、鉄、銅、アルミニウム合金、又はステンレスを使用することができる。金属基板は、炭素などの非金属を更に含んでいてもよい。例えば、金属基板は、炭素と複合化したアルミニウムを含んでいてもよい。また、金属基板は、単層構造を有していてもよく、多層構造を有していてもよい。 The metal substrate is made of, for example, a single metal or an alloy. As a material of the metal substrate, for example, aluminum, iron, copper, aluminum alloy, or stainless steel can be used. The metal substrate may further contain a nonmetal such as carbon. For example, the metal substrate may contain aluminum combined with carbon. The metal substrate may have a single layer structure or a multilayer structure.
金属基板は、高い熱伝導率を有している。典型的には、金属基板は、60W・m−1・K−1以上の熱伝導率を有している。
金属基板は、可撓性を有していてもよく、可撓性を有していなくてもよい。金属基板の厚さは、例えば、0.2〜5mmの範囲内にある。
The metal substrate has a high thermal conductivity. Typically, the metal substrate has a thermal conductivity of 60 W · m −1 · K −1 or more.
The metal substrate may have flexibility or may not have flexibility. The thickness of the metal substrate is, for example, in the range of 0.2 to 5 mm.
金属基板表面への溝の形成方法としては、特に限定されるものではなく、例えば、エッチング、プレス成形、切削加工、ダイス加工、ローレット加工、サンドブラスト等、公知の方法を用いることができる。 The method for forming the groove on the surface of the metal substrate is not particularly limited, and for example, known methods such as etching, press molding, cutting, dicing, knurling, and sandblasting can be used.
図1に示すように、金属箔4は、絶縁層3上に設けられている。金属箔4は、絶縁層3を間に挟んで金属基板2と向き合っている。
金属箔4は、例えば、単体金属又は合金からなる。金属箔4の材料としては、例えば、銅又はアルミニウムを使用することができる。金属箔4の厚さは、例えば、10〜50μmの範囲である。
As shown in FIG. 1, the
The
本発明に係る回路基板用積層板1は、例えば、以下の方法により製造する。
まず、上述した樹脂を溶剤に溶解させて、光学的に等方性の溶液を得る。次に、上述した非球状の無機充填材を溶液中に分散させて分散液を得る。無機充填材は、例えば、ボールミル、三本ロール、遠心撹拌機又はビーズミルを用いて、粉砕しつつ上記溶液中に分散させてもよい。また、上記溶液に無機充填材を加えるのに先立って、この溶液にシランカップリング剤、イオン吸着剤などの添加剤を加えてもよい。
The
First, the above-described resin is dissolved in a solvent to obtain an optically isotropic solution. Next, the non-spherical inorganic filler described above is dispersed in the solution to obtain a dispersion. The inorganic filler may be dispersed in the solution while being pulverized using, for example, a ball mill, a three roll, a centrifugal stirrer or a bead mill. Prior to adding the inorganic filler to the solution, an additive such as a silane coupling agent or an ion adsorbent may be added to the solution.
次に、この分散液を、表面に溝が形成された金属基板2及び金属箔4の少なくとも一方に塗布する。分散液の塗布には、例えば、ロールコート法、バーコート法又はスクリーン印刷法を利用することができる。連続式で行ってもよく、単板式で行ってもよい。
Next, this dispersion is applied to at least one of the
必要に応じて塗膜を乾燥させた後、金属基板2と金属箔4とが塗膜を挟んで向き合うように重ね合わせる。さらに、それらを熱プレスする。以上のようにして、回路基板用積層板1を得る。
After drying a coating film as needed, it overlap | superposes so that the
この方法では、樹脂組成物である分散液を金属基板2及び金属箔4の少なくとも一方に塗布することにより塗膜を形成するが、他の態様において、分散液をPETフィルム等の基材に塗布し乾燥することにより予め塗膜を形成し、これを金属基板2及び金属箔4の一方に熱転写してもよい。
樹脂組成物の金属基板2への塗布時、又は、樹脂組成物からなる塗膜の金属基板2への加熱加圧時に、金属基板2の表面に形成された溝(凹部)に非球状無機充填材が分散された樹脂が流れ込み、非球状無機充填材の長径方向が溝の形状に沿って絶縁層の厚み方向に配向する結果、放熱性及び絶縁性の向上効果がもたらされる。
In this method, a coating film is formed by applying a dispersion liquid, which is a resin composition, to at least one of the
When the resin composition is applied to the
次に、上述した回路基板用積層板1から得られる金属ベース回路基板1´について説明する。
図2に示す金属ベース回路基板1´は、図1に示す回路基板用積層板から得られるものであり、金属基板2と、絶縁層3と、回路パターン4´とを含んでいる。回路パターン4´は、図1を参照しながら説明した回路基板用積層板の金属箔4をパターニングすることにより得られる。このパターニングは、例えば、金属箔4の上にマスクパターンを形成し、金属箔4の露出部をエッチングによって除去することにより得られる。金属ベース回路基板1´は、例えば、先の回路基板用積層板1の金属箔4に対して上記のパターニングを行い、必要に応じて、切断及び穴あけ加工などの加工を行うことにより得ることができる。
Next, a metal
A metal
この金属ベース回路基板1´は、上述した回路基板用積層板1から得られるので、放熱性及び絶縁性に優れている。
Since this metal
以下に、本発明の例を記載する。本発明はこれらに限定されるものでない。
<樹脂組成物の調製>
合成例1:樹脂組成物1
固形分30質量%のポリアミドイミド樹脂溶液(日立化成製、「HPC9000」/溶剤:ジメチルアセトアミド)に対して、窒化ホウ素(電気化学工業製、「SGP」、平均粒径20μm、アスペクト比20)を、樹脂固形分を基準として60体積%となるよう配合し絶縁性樹脂組成物を調製した。
Examples of the present invention will be described below. The present invention is not limited to these.
<Preparation of resin composition>
Synthesis Example 1:
Boron nitride (manufactured by Denki Kagaku Kogyo, “SGP”, average particle size 20 μm, aspect ratio 20) is applied to a polyamideimide resin solution (Hitachi Chemical Co., Ltd., “HPC9000” / solvent: dimethylacetamide) having a solid content of 30% by mass. An insulating resin composition was prepared by blending to 60% by volume based on the resin solid content.
合成例2:対照用樹脂組成物1
固形分30質量%のポリアミドイミド樹脂溶液(日立化成製、「HPC9000」)に対して、窒化ホウ素(電気化学工業製、「SGP」、平均粒径20μm)を、スプレードライ法により凝集させた凝集窒化ホウ素(平均粒径50μm、アスペクト比1.3)を合計で、樹脂固形分を基準として65体積%となるよう配合し絶縁性樹脂組成物を作製した。
Synthesis Example 2:
Aggregation in which boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd., “SGP”, average particle size 20 μm) is aggregated by a spray drying method to a polyamideimide resin solution (manufactured by Hitachi Chemical Co., Ltd., “HPC9000”) having a solid content of 30% by mass Boron nitride (average particle size: 50 μm, aspect ratio: 1.3) was added in a total amount of 65% by volume based on the resin solid content to produce an insulating resin composition.
なお、平均粒子径はレーザー回折・散乱法にて測定した。また、アスペクト比は、粒子直径/粒子厚みを表し、粒子直径は上述した平均粒子径(D50)であり、粒子厚みはSEMにより得られる粒子10個の断面画像から測定される平均厚みである。但し、凝集体の場合のアスペクト比は、SEMにより得られる粒子10個の断面画像から測定される、最長径の平均値/最長径と直角に交わる径の平均値、より得られる値である。 The average particle size was measured by a laser diffraction / scattering method. The aspect ratio represents particle diameter / particle thickness, the particle diameter is the average particle diameter (D50) described above, and the particle thickness is an average thickness measured from a cross-sectional image of 10 particles obtained by SEM. However, the aspect ratio in the case of an agglomerate is a value obtained from the average value of the longest diameter / the average value of the diameters perpendicular to the longest diameter measured from a cross-sectional image of 10 particles obtained by SEM.
<金属基板>
金属基板として、熱伝導率140W/mk、厚み2.0mmのアルミニウム合金板の片側表面に、下表に示すピッチ(p)及び深さ(d)を有する断面V字型の溝をストライプ状に形成したアルミ基板(a)、(b)及び(c)を使用した。また、比較用として溝加工が施されていない平滑アルミ基板(熱伝導率140W/mk、厚み2.0mmのアルミニウム合金板)を使用した。
As a metal substrate, a V-shaped groove having a pitch (p) and a depth (d) shown in the following table is striped on one surface of an aluminum alloy plate having a thermal conductivity of 140 W / mk and a thickness of 2.0 mm. The formed aluminum substrates (a), (b) and (c) were used. For comparison, a smooth aluminum substrate (thermal conductivity 140 W / mk, aluminum alloy plate having a thickness of 2.0 mm) that was not grooved was used.
<評価>
回路基板用積層板の密度、BN配向度、熱抵抗及び耐電圧を、下記評価方法に従い評価した。
[密度]
上述した方法により得られた各絶縁性樹脂組成物を、遊星式攪拌脱泡機で5分攪拌した後、厚み70μmの銅箔上に熱接着後の厚みが約100μmになるように塗布し、220℃で溶媒が無くなるまで乾燥した。この塗膜が形成された銅箔を、上述した各アルミ基板上に塗膜が中間層となるように積層し、圧力20MPa、温度270℃で熱接着した。得られた回路基板用積層板をサンプルとして、銅箔とアルミ板をケミカルエッチングして絶縁層のみを取り出した。
<Evaluation>
The density, BN orientation, thermal resistance, and withstand voltage of the circuit board laminate were evaluated according to the following evaluation methods.
[density]
Each of the insulating resin compositions obtained by the above-described method was stirred for 5 minutes with a planetary stirring and defoaming machine, and then applied on a copper foil having a thickness of 70 μm so that the thickness after thermal bonding was about 100 μm. Dry at 220 ° C. until the solvent is gone. The copper foil on which this coating film was formed was laminated on each of the above-described aluminum substrates so that the coating film became an intermediate layer, and thermally bonded at a pressure of 20 MPa and a temperature of 270 ° C. Using the obtained laminate for circuit board as a sample, the copper foil and the aluminum plate were chemically etched to take out only the insulating layer.
上記のようにして得られた絶縁層からシートサイズ50×50mmに切り出し、アルキメデス法により乾燥塗膜の密度を測定した。その値を塗膜密度(g/cm3)とした。 The insulating layer obtained as described above was cut into a sheet size of 50 × 50 mm, and the density of the dried coating film was measured by Archimedes method. The value was made into the coating-film density (g / cm < 3 >).
[BN配向度]
上述した方法により得られた各絶縁性樹脂組成物を、遊星式攪拌脱泡機で5分攪拌した後、厚み70μmの銅箔上に熱接着後の厚みが約100μmになるように塗布し、220℃で溶媒が無くなるまで乾燥した。この塗膜が形成された銅箔を、上述した各アルミ基板上に塗膜が中間層となるように積層し、圧力20MPa、温度270℃で熱接着した。得られた回路基板用積層板をサンプルとして、銅箔とアルミ板をケミカルエッチングして絶縁層のみを取り出した。
[BN orientation]
Each of the insulating resin compositions obtained by the above-described method was stirred for 5 minutes with a planetary stirring and defoaming machine, and then applied on a copper foil having a thickness of 70 μm so that the thickness after thermal bonding was about 100 μm. Dry at 220 ° C. until the solvent is gone. The copper foil on which this coating film was formed was laminated on each of the above-described aluminum substrates so that the coating film became an intermediate layer, and thermally bonded at a pressure of 20 MPa and a temperature of 270 ° C. Using the obtained laminate for circuit board as a sample, the copper foil and the aluminum plate were chemically etched to take out only the insulating layer.
上記のようにして得られた絶縁層からシートサイズ50×50mmに切り出し、X線回折より得られる窒化ホウ素のa軸(100)とc軸(002)のピーク強度を求め、式(1)よりBN配向度(I.O.P)を求めた。
[熱抵抗]
上述した方法により得られた各絶縁性樹脂組成物を、遊星式攪拌脱泡機で5分攪拌した後、厚み70μmの銅箔上に熱接着後の厚みが約100μmになるように塗布し、220℃で溶媒が無くなるまで乾燥した。この塗膜が形成された銅箔を、上述した各アルミ基板上に塗膜が中間層となるように積層し、圧力20MPa、温度270℃で熱接着した。得られた回路基板用積層板をサンプルとして、熱抵抗を以下の方法により評価した。
[Thermal resistance]
Each of the insulating resin compositions obtained by the above-described method was stirred for 5 minutes with a planetary stirring and defoaming machine, and then applied on a copper foil having a thickness of 70 μm so that the thickness after thermal bonding was about 100 μm. Dry at 220 ° C. until the solvent is gone. The copper foil on which this coating film was formed was laminated on each of the above-described aluminum substrates so that the coating film became an intermediate layer, and thermally bonded at a pressure of 20 MPa and a temperature of 270 ° C. Using the obtained laminate for circuit board as a sample, thermal resistance was evaluated by the following method.
上記のようにして得られた積層体からシートサイズ30×40mmの基板を切り出し、基板中央にランドサイズ14×10mmを配置した。この基板にはんだでトランジスタC2233(東芝製)を取り付け、基板裏面に熱伝導性のシリコーングリースを使い水冷却装置にセットして30Wの電力を供給したときに発熱するトランジスタ表面と冷却装置表面の温度を測定した。そして式(2)より熱抵抗(℃/W)を求めた。
[耐電圧]
上述した方法により得られた各絶縁性樹脂組成物を、遊星式攪拌脱泡機で5分攪拌した後、厚み70μmの銅箔上に熱接着後の厚みが約100μmになるように塗布し、220℃で溶媒が無くなるまで乾燥した。この塗膜が形成された銅箔を、上述した各アルミ基板上に塗膜が中間層となるように積層し、圧力20MPa、温度270℃で熱接着した。得られた回路基板用積層板をサンプルとして、熱抵抗を以下の方法により評価した。
[Withstand voltage]
Each of the insulating resin compositions obtained by the above-described method was stirred for 5 minutes with a planetary stirring and defoaming machine, and then applied on a copper foil having a thickness of 70 μm so that the thickness after thermal bonding was about 100 μm. Dry at 220 ° C. until the solvent is gone. The copper foil on which this coating film was formed was laminated on each of the above-described aluminum substrates so that the coating film became an intermediate layer, and thermally bonded at a pressure of 20 MPa and a temperature of 270 ° C. Using the obtained laminate for circuit board as a sample, thermal resistance was evaluated by the following method.
上記のようにして得られた積層体からシートサイズ50×50mmの基板を切り出し、基板中央にランドサイズφ20mmを配置した。絶縁油中にこの基板を浸漬し、室温で交流電圧を銅箔に印加し絶縁破壊する電圧(kV)を測定した。 A substrate having a sheet size of 50 × 50 mm was cut out from the laminate obtained as described above, and a land size φ20 mm was arranged in the center of the substrate. This substrate was immersed in insulating oil, and an AC voltage was applied to the copper foil at room temperature to measure the voltage (kV) at which dielectric breakdown occurred.
評価結果を表2に示す。また、実施例1〜3の評価において作製した各試料の断面のSEM写真を各々図4−6に示す。 The evaluation results are shown in Table 2. Moreover, the SEM photograph of the cross section of each sample produced in evaluation of Examples 1-3 is each shown to FIGS. 4-6.
表2に示す
表2より、表面に溝加工が施されたAl基板を用いることにより、密度及びBN配向度が高められ、熱伝導率及び耐電圧に優れることがわかった。なお、表面に溝加工が施されたAl基板を用いることによりBN配向度が高まることは、図4−6からも確認することができる。すなわち、図4−6において、Al基板の表面に施された溝の形状に沿って鱗片状BNの長径方向が絶縁層の厚み方向に配向している。 From Table 2, it was found that by using an Al substrate having a grooved surface, the density and BN orientation were increased, and the thermal conductivity and withstand voltage were excellent. In addition, it can confirm also from FIGS. 4-6 that BN orientation degree increases by using the Al substrate by which the groove process was given to the surface. That is, in FIG. 4-6, the major axis direction of the scaly BN is oriented in the thickness direction of the insulating layer along the shape of the groove formed on the surface of the Al substrate.
1・・・回路基板用積層板、1’・・・金属ベース回路基板、2・・・金属基板、3・・・絶縁層、4・・・金属箔、4’・・・回路パターン、5・・・非球状無機充填材、6・・・樹脂
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012168658A JP6007016B2 (en) | 2012-07-30 | 2012-07-30 | Circuit board laminate and metal base circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012168658A JP6007016B2 (en) | 2012-07-30 | 2012-07-30 | Circuit board laminate and metal base circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014027226A JP2014027226A (en) | 2014-02-06 |
JP6007016B2 true JP6007016B2 (en) | 2016-10-12 |
Family
ID=50200589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012168658A Active JP6007016B2 (en) | 2012-07-30 | 2012-07-30 | Circuit board laminate and metal base circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6007016B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190033287A (en) * | 2017-09-21 | 2019-03-29 | 엘지이노텍 주식회사 | Circuit board |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6368657B2 (en) * | 2015-02-02 | 2018-08-01 | 日本発條株式会社 | Metal base circuit board and manufacturing method thereof |
KR102548609B1 (en) * | 2016-04-22 | 2023-06-28 | 엘지이노텍 주식회사 | Printed circuit board |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6450592A (en) * | 1987-08-21 | 1989-02-27 | Shinko Chem | Super-heat dissipation type composite circuit board |
JP5063710B2 (en) * | 2010-01-05 | 2012-10-31 | 三菱電機株式会社 | Power module |
JP2012064691A (en) * | 2010-09-15 | 2012-03-29 | Furukawa Electric Co Ltd:The | Thermal diffusion sheet |
-
2012
- 2012-07-30 JP JP2012168658A patent/JP6007016B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190033287A (en) * | 2017-09-21 | 2019-03-29 | 엘지이노텍 주식회사 | Circuit board |
KR102415733B1 (en) * | 2017-09-21 | 2022-07-04 | 엘지이노텍 주식회사 | Circuit board |
Also Published As
Publication number | Publication date |
---|---|
JP2014027226A (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6023474B2 (en) | Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof | |
JP5647945B2 (en) | Insulating resin composition for circuit board, insulating sheet for circuit board, laminated board for circuit board, and metal base circuit board | |
KR102187240B1 (en) | Boron-nitride powder and resin composition containing same | |
JP6612584B2 (en) | Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same | |
JP2012253167A (en) | Thermally conductive insulation sheet, metal base substrate and circuit board | |
WO2019164002A1 (en) | Insulating heat dissipation sheet | |
WO2012026012A1 (en) | Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material | |
JP6125282B2 (en) | Boron nitride composite powder and thermosetting resin composition using the same | |
JP2008120065A (en) | Heat radiating film | |
JP6007016B2 (en) | Circuit board laminate and metal base circuit board | |
CN114600567A (en) | Heat radiating fin and preparation method thereof | |
CN108368418B (en) | Two-dimensional heat conducting material and use thereof | |
JP2017092345A (en) | Heat conduction sheet and method of manufacturing the same, and semiconductor device | |
WO2015029407A1 (en) | Insulating heat-conductive sheet | |
KR102073532B1 (en) | Heat dissipation circuit board | |
JP2013131564A (en) | Heat conductive sheet, semiconductor device using the heat conductive sheet, and method of manufacturing semiconductor device | |
JP2007153969A (en) | Highly heat-conductive resin composition and substrate for wiring | |
CN104708869A (en) | Aluminum-based copper-clad plate with high thermal conductivity and manufacturing method thereof | |
JP7257104B2 (en) | laminate | |
JP2008208183A (en) | Resin composition, prepreg and laminate | |
JP7291118B2 (en) | laminate | |
WO2020145083A1 (en) | Resin composition, method for producing said resin composition, and thermally conductive sheet | |
JP7532947B2 (en) | Insulating heat dissipation material, insulating film, and method for producing insulating film | |
JP7468190B2 (en) | Insulating heat dissipation material, insulating film, and method for producing insulating film | |
WO2024090364A1 (en) | Multilayer body and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6007016 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |