前述した従来の柱上下端に塑性ヒンジを形成する耐震架構構造の場合、以下のような課題があった。
(1) 前記の(a)に対して、重要構造物では、塑性化を許容すること自体が許容されない場合がある。塑性ヒンジが1フレーム内に4箇所形成されると、耐荷機構が不安定になり、特に橋脚高さが高い橋脚においてP-Δ効果が無視できなくなり、変形が1方向に累積して増加する傾向が現れ、非常に危険である。また、大きく塑性化を許容する構造とする場合、地震後の残留変形が大きくなることも問題となる。橋脚の柱下端は地中部にあることが殆どであり、点検に掘削を伴うなど、地震損傷を確認する作業に時間と労力を要するため、地震直後の供用開始が困難となる。柱上端についても、高所作業になるため、点検作業は容易ではない。
(2) 前述の(b)に対して、実用上大きな問題はないが、塑性ヒンジが形成されないと、ダンパーの変位は一様ではないので、常時の風振動やレベル1地震動のように、小さな変位領域においては、減衰性能が必ずしも理想的ではない。
(3) 前述の(c)に対して、図15に示すように、Xブレースを複数設置する場合、上下からの2本のブレース6を1点で接合して柱3に定着すると、ブレース6の圧縮力と引張力が柱3の軸方向のずれ力となって柱3に作用するので(図15(b)参照)、これを定着することは、柱3の一般部においては、比較的容易であった。しかし、最上段・最下段のブレース6を柱3に斜めに定着するには、柱3にせん断力が作用する(図15(c)参照)。制震橋脚においては、橋脚の剛性をできるだけ小さくするために断面寸法を小さくすることが有利でありながら、こうした集中荷重は構造上の大きな問題であった。例えば、降伏荷重の大きなダンパーを柱中間部にのみに設置すると、ダンパーの降伏荷重に相当するブレース6の軸方向力が発生し、こうした比較的大きな軸力に対処するためにブレース6と柱3の接合部の構造が複雑になり、コスト・施工性が劣っていた。柱3自身についても、中間部に横方向力(即ち、部材軸に直交する方向の力で、柱にせん断力が発生する)が作用するため、柱3の接合部近傍の補強が必要となる。
(4) 一方、塑性ヒンジが形成される柱上下端は、柱頭部の梁・フーチングに接合される位置でもあるので、柱頭部の梁下面・フーチングの上面にブレースの反力を取らせることは比較的容易であるから、むしろそこに積極的にブレースを取り付ける方が有利である。但し、塑性ヒンジという大きな塑性化(即ち損傷)が生じる位置やそのかなりの近傍において、ブレースの反力を確実に定着する必要がある。
(5) 高橋脚やRC主塔のようにフレーム構造の支間に対し、高さが大きい形状の場合、高さ方向に多数のブレース・ダンパーを配置することが望ましい。
本発明は、RCラーメン構造の制震橋脚において従来の柱上下端部に積極的に塑性ヒンジを形成する場合の課題を解決すべくなされたもので、基本的に柱上下端部の塑性ヒンジの形成を回避することで、復旧性の向上、地震応答の低減、残留変形の減少、施工性の向上等を図ることができ、また柱上下端部にもブレースを配設することで、フレーム架構全体で効率的なエネルギー吸収が可能となる制震橋脚構造を提供するものである。
本発明の請求項1は、基礎(フーチング)基礎上に間隔をおいて立設された2本以上のRC部材の柱とこの柱の頂部に掛け渡されたRC部材の梁とからなるRCフレーム架構と、このRCフレーム架構の構面内に配置された制震機能を備えた複数段のブレースからなるブレース架構とから構成される制震橋脚構造であって、レベル2地震動が前記RCフレーム架構とブレース架構とから構成される制震橋脚構造に作用した場合に塑性ヒンジが形成される、前記RCフレーム架構の柱の上下端部の4つの塑性ヒンジ区間に超高強度繊維補強コンクリート又はモルタルからなるプレキャスト型枠を使用するとともに、この柱の上下端部にも左右一対の柱を連結するブレースが配置され、この柱の上下端部のブレースの一端がそれぞれ梁の下面と基礎の上面に接合されており、レベル2地震動に対しても柱上下端部に塑性ヒンジを形成させないようにしてあるとともに、前記柱の上下端および中間部を含む複数個所の前記ブレース位置にはダンパーが設置され、前記RCフレーム架構の変形の増大によって複数配置した前記ダンパーの上下方向の変位の比率が一定になるようにしてあり、前記RCフレーム架構の上下方向の全体に亘って分散したエネルギー吸収が発生するようにしてあることを特徴とする制震橋脚構造である。本発明は、柱が2本あるいは3本以上の平面架構(図13参照)、柱が橋軸方向と橋軸方向に2本以上の立体架構に適用できる。
本発明においては、設計上は柱上下端部に塑性ヒンジが形成されることを許容しない。重要構造物などでレベル2地震時に柱上下端部に塑性ヒンジが形成されるのを回避するためには、後述するような高強度繊維補強コンクリート又はモルタルからなるプレキャスト型枠(図2、図3等)を用いるなどして柱の高じん性化を図る。
また、本発明では、柱上下端部における塑性ヒンジ区間にも積極的にブレースを配置する。従来の柱上下端に塑性ヒンジを形成する耐震架構構造においては柱途中に一本のブレースが接合され、柱にせん断力が発生するため(図15参照)、柱に補強が必要となるが、本発明の柱上下端部に配置したブレースは柱上部の梁や柱下部の基礎に反力を取らせることができる。柱上下端部は、塑性ヒンジという大きな塑性化(損傷)が生じる位置であり、ブレースの反力を確実に定着する。この最上下部ブレースの定着方法には、例えば次のいずれかの方法を用いることができる。
(1)例えば、図2、図3に示すように、柱の上下端位置にハンチを設け、このハンチにブレースの端部を接合する。ブレースの端部に取り付けた定着金物を、PC鋼棒とアンカープレート、孔開き鋼板ジベル、スタッドジベル等で定着させる。引張力はハンチを貫通するPC鋼材の引張力で伝達し、基礎内や梁内のアンカープレートに負担させ、あるいはジベル等で負担させる。圧縮力はハンチに直接取らせるか、および/または、ハンチを貫通するPC鋼材の圧縮力で伝達し、アンカープレートに負担させる。これらの定着方法は、柱途中に設けられたハンチにも適用できる。
あるいは、図4に示すように、略ピン接合となるように、板材や1本の丸鋼からなるアンカーを埋め込んで定着し、柱の外周を取り囲む鋼管を設置し、鉛直方向の定着は基礎や梁へ埋め込んだアンカーによって負担する。これは柱上下端部のプレキャスト型枠の範囲にブレースを取り付ける場合であり、上下に分割した複数ブロックからなるプレキャスト型枠を用いる方法の効果を阻害しないようにする定着方法である。
(2)例えば、図5、図6に示すように、基礎上面あるいは梁下面における柱近傍に斜めに定着する。近傍とは、上下2本のブレースと柱とにより略三角形を形成し、柱の変形によりダンパーに相対変形が生じる程度を意味する。図5では、孔開き鋼板ジベルやスタッドジベルなどを有する定着金物を柱のプレキャスト型枠の内側に隣接して配置している。図6のように、柱を挟んで橋軸方向の前後の2箇所に分けて設置してもよい。
(3)例えば、図7に示すように、柱上下端部を跨いでブレースを設置し、基礎上面または梁下面に定着する。左右のブレースを別々に取り付ける方法、または左右のブレース先端を結合し、これに上下方向の変位を拘束する機構を付与した上で水平方向の相対変位が生じるように基礎上面または梁下面に定着する方法などがある。
ブレース(鋼製やRC製など)の形態は、正面視でX形ブレースのダブルワーレントラスが好ましい。ワーレントラスはフレームの構造特性が左右非対称になるが本発明に含まれる。ダンパーは、鋼製ハニカムダンパーを一例として挙げることができるが、相対せん断変位に対して作用するものであればよく、高減衰ゴム、鉛プラグ入り積層ゴム(LRB)、摩擦型、粘性体サンドイッチ型などを用いることができる。また、ブレース自身に、ブレース軸方向の伸縮変位に応じてエネルギーを吸収できるダンパーブレース、例えば座屈拘束ブレースや伸縮ダンパーなどを用いることができる。
請求項1に記載の制震橋脚構造において、柱の上下端部の塑性ヒンジ区間が、高強度繊維補強コンクリート又はモルタルからなるプレキャスト型枠と当該プレキャスト型枠内に打設されたコンクリートから構成され、前記プレキャスト型枠には、ひび割れ誘発目地が上下方向に間隔をおいて複数形成されていることを特徴とする制震橋脚構造である。例えば、プレキャスト型枠を上下方向に複数のブロックに分割し、各ブロックの接合部に引張強度の低いひび割れ誘発目地を形成し、ひび割れを分散させて誘導発生させるようにしてもよい。
レベル2地震時に柱上下端部に塑性ヒンジが形成されるのを回避するために、高強度繊維補強コンクリート等からなるプレキャストFRC型枠を用いる場合であり、断面を絞った柱断面でも柱上下端部のコンクリートの圧縮損傷を防止する。高強度繊維補強コンクリート等は、圧縮強度が高いコンクリート等内に鋼繊維、炭素繊維あるいはガラス繊維などが混入された材料であり、圧縮強度が100〜250N/mm2、曲げ引張強度が10〜40 N/mm2、ひび割れ発生時引張強度が5〜15 N/mm2の超高強度繊維補強コンクリート(UFC)が好ましい。塑性ヒンジ区間のプレキャスト型枠に高い圧縮強度と引張強度を有する材料を用い、その内部を拘束することにより、コアコンクリートの圧壊と主鉄筋の座屈を抑制し、高い変形性能を実現することができる。必要に応じて、軸方向鋼材を高強度の鉄筋とする。UFC型枠の適用範囲は、最小でも1D以上、望ましくは2D以上で、柱のモーメント勾配とUFC型枠以外のコンクリート強度に応じてコンクリートの圧縮損傷を防止する範囲とする。
プレキャスト型枠は、プレキャスト型枠の製造用型枠内に高強度繊維補強コンクリート又はモルタルを多層に分割して打設することにより、打継ぎ面において繊維が上下に連続しない目地が形成され、プレキャスト型枠に前記目地によるひび割れ誘発目地が一体的に形成されるようにしてもよい。
プレキャスト型枠の製造時に高強度繊維補強コンクリート等を製造用型枠の周方向に連続して投入し、多層に分割して打設することにより、周方向には繊維が連続して配置されるが、各層の打継ぎ面において繊維が連続しないひび割れ誘発目地が形成され、一つのプレキャスト型枠にひび割れ誘発目地が上下方向に間隔をおいて複数形成されるようにした場合である。このひび割れ誘発目地により容易にひび割れが発生する。地震時など橋脚等曲げが発生しない状態では、ひび割れは発生せず、中小規模の地震後にひび割れが閉じるので、従来のような目地処理が不要でありながら、長期耐久性が確保できる。
プレキャスト型枠によるFRC型枠構造部と柱中間部のRC構造部との境界部において、それぞれの端部にハンチが形成され、このハンチにブレースが接合されるようにしてもよい。
例えば図8に示すように、FRC(UFC)型枠構造部とRC構造部の境界部は、弾性係数の相違によるRC構造部側の応力集中を緩和するためにハンチ等を形成するのが望ましい。
柱途中、特にFRC(UFC)型枠構造部とRC構造部の境界部におけるブレースの定着方法は、例えば図9に示すように、前述した最上下ブレースの定着方法と同様に、定着金物に、スタッドジベル、孔開き鋼板ジベル、PC鋼棒・アンカープレート等を設けた定着方法を用いることができる。また、PC鋼棒とアンカープレートによる定着方法では、図10(c)に示すように、FRC(UFC)型枠構造部とRC構造部の境界部が一対の定着板の鋼板とその拘束力により補強されるため、前述のハンチを不要とすることもできる。
本発明の請求項2は、請求項1に記載の制震橋脚構造において、柱の上下端部を除く中間部のブレースは、上下2本のブレースの端部を一箇所に集合させて柱に定着されていることを特徴とする制震橋脚構造である。
例えば図10に示すように、柱途中におけるブレースは1本を柱に定着することをせず、圧縮と引張の生じる上下2本のブレースを1組として柱に取り付けることで、柱軸方向のへのずれ力だけが作用するようにし(図14、図15参照)、取り付け部の構造を簡単にする。即ち、スタッドジベルや孔開き鋼板ジベル等の簡単で容易な定着方法が可能となる。
本発明の請求項3は、請求項1または2に記載の制震橋脚構造において、左右一対の柱間に正面視でX形のブレースが配置され、このX形ブレースの交点で左右に分割され、この交点に上下方向の相対変位に応じてエネルギーを吸収するダンパーが配置されていることを特徴とする制震橋脚構造である。
例えば図1に示すように、ブレース形態がダブルワーレントラス構造の場合である。図1(a)の塑性ヒンジを形成させ、平行四辺形で変形させる場合に比べ、図1(b)の塑性ヒンジを形成させない本発明では、フレーム架構高さ方向の中央でのダンパーの相対変位がフレーム架構上下端付近のダンパーに比べ大きいが、こうした構造内の各取り付け位置におけるダンパーの比率は、地震応答の過程において、即ちフレームの変形の大小に関わらず、ほぼ一定である。従って、ハニカムダンパー等のダンパーの容量を配置位置によって変化させることにより、フレーム架構全体でエネルギー吸収を生じさせることが可能である。
本発明の請求項4は、請求項1または2に記載の制震橋脚構造において、柱とブレースとの間に上下方向の相対変位に応じてエネルギーを吸収するダンパーが配置されていることを特徴とする制震橋脚構造である。
例えば図11に示すように、ダブルワーレントラス構造に適用した場合である。柱とブレースとの接合部にハニカムダンパー等のダンパーを設置する。例えばダンパーは一つ置きに配置されており、柱の上下端部には塑性ヒンジが形成されず、多数のダンパーの上下方向の相対変位で地震エネルギーが吸収される。
本発明の請求項5は、請求項1または2に記載の制震橋脚構造において、ブレースが軸方向の伸縮変位に応じてエネルギーを吸収するダンパーブレースであることを特徴とする制震橋脚構造である。
例えば図12に示すように、ダブルワーレントラス構造においてブレース自身をダンパーブレース(伸縮ダンパーや座屈拘束ブレース等)とした場合である。全てのダンパーブレースはその両端を柱に接合し、柱の上下端部には塑性ヒンジが形成されず、多数のダンパーブレース自身の伸縮で地震エネルギーが吸収される。
以上のような本発明においては、(1)柱の上下端部の曲げモーメントが大きくなる部分に例えばUFC等のプレキャスト型枠を適用することにより、同箇所のかぶり部分を高強度化することができ、柱部材のコンクリートの圧壊を遅延化することができる。本発明で実現しようとする制震橋脚では、断面を可能な限り小規模化し、固有周期を長くすることにより、地震時における慣性力を低減する。また、前述したような理由(発明が解決しようとする課題の欄の (1)参照)によりレベル2地震時でも柱部材が塑性化しないことを想定する。そのため、従来の制震橋脚では、高い軸圧縮力を受けるような小さな断面の中に多くの鉄筋が配置されることになり、曲げ変形時におけるコンクリートの圧縮力が大きくなることから、鉄筋が降伏する前にコンクリートが圧壊することにより塑性化してしまう可能性が考えられる。一般にコンクリートの圧壊が先行する破壊モードは、脆性的であるため、RC部材の設計において避けるべきである。このような場合でも、例えばUFC等のプレキャスト型枠を用いた技術を適用することにより、コンクリートの圧壊を主筋の降伏以後とすることができる。
(2)フレーム架構の変形形状は、柱部材の剛性に依存するので、塑性ヒンジを形成させる場合(図1(a)参照)は、形成前後で大きく異なり、形成前後を通して最適なダンパーの配置とすることは不可能であった。本発明のように塑性変形を許容しない構造であれば、柱の剛性の変化は、コンクリートのひび割れの有無によるものだけである。ひび割れ発生範囲は変形とともに変化し、柱上下端から柱中間部に向かってひび割れ領域は進展するが、制震橋脚においては通常の橋脚に比べ鉄筋比が大きく、ひび割れ前後の断面剛性の差は、さほど大きくはなく、フレーム架構の変形形状は、柱の全長にひび割れ剛性(いわゆるRC剛性)を仮定した変形と概ね等しい。このため、フレーム架構の変形の増大によって、複数配置したダンパーの変位の比率を一定にすることが可能であるから、フレーム架構全体でエネルギー吸収を生じさせることが可能となる。
なお、ダンパーの容量を配置位置に応じて変化させることは、例えばハニカムダンパーを利用すれば、その枚数、くし歯の本数・寸法を適宜組み合わせることで容易である。特に制震橋脚では、必要とされるダンパーの反力が大きいので、元々複数枚のハニカムダンパーが必要であるから、実用上何ら問題はない。
(3)複数のダンパーを設置することにより、RCフレーム架構の上下方向の全体に亘って分散したエネルギー吸収が発生するので、柱中間部のみにブレースを配置し、大型のダンパーに集中してエネルギーを吸収する場合に比べ、柱の寸法は変わらず、ブレースの軸力が小さくなり、1箇所当たりのブレース−柱の接合構造が簡単になる。これにより、施工性も向上する。
(4)本発明による制震橋脚では、ダンパー機能を有するブレースを複数設置することを想定することから、柱の途中にブレースの定着部を設ける必要がある。定着方法として提案するスタッドジベル、孔開き鋼板ジベルを用いた方法では、柱の打設時に定着部を設置する必要があるが、複合構造物等において実績のある方法であり、負担すべき定着力も小さいので、定着構造における確実性・簡易性に優れている。一方、柱内を貫通するPC鋼棒により緊張する方法では、摩擦係数の設定により定着力の評価が変化するものの、UFC等のプレキャスト型枠とRC構造部との境界部での定着においては、柱表面に設置される定着板とPC鋼棒による拘束力が境界部に作用することにより、同部分が補強されるため、応力集中の緩和を目的として設置されることが望ましいハンチなどが不要となる。また、予め柱内にシース管などによりPC鋼棒の貫通孔を設けることにより、柱部材の打設・脱型後に定着部を含めたダンパーの取り付け作業を行うことができるため、施工性も向上する。
(5)最上部・最下部、UFC等のプレキャスト型枠とRC構造部の境界などのハンチ部にダンパーを取り付ける場合には、ハンチ部に定着部を設けるような定着方法が適用できる。前述したように、ハンチ部にはスタッドジベルや孔開き鋼板ジベル、PC鋼棒などによりブレースの定着金物を設置することができる。これらの方法は、特に、UFC等のプレキャスト型枠のハンチ部に有効であり、この場合、プレキャスト型枠に予め定着部を設置・埋設しておくことにより、橋脚の建設時における施工性を向上させることができる。
(6)基礎や梁の柱上下端部におけるブレースの定着では、柱部材に比べて剛な基礎や梁に定着点を設けることができる。この場合も、スタッドジベルや孔開き鋼板ジベルなどの定着方法を用いることができるが、設置箇所の断面が大きいため、設置方法に自由度を持たせることができ、施工性などにおいて有利となる。
以上のような本発明に係る制震橋脚は、都市内高架橋等の一般的な橋梁においても適用可能であるが、特に、橋脚高さが高い高橋脚(例えば30m程度以上)や吊り橋のRC主塔等において、構造重量の低減や耐震性能の向上効果が大きくなるため好適である。
本発明は、以上のような構成からなるので、次のような効果が得られる。
(1)柱上下端部におけるUFC等のプレキャスト型枠の適用などにより、柱上下端の格点部の塑性化を許容しないことで、地震後の柱上下端部の点検(高所作業・地中部作業)が不要となり、復旧性すなわち地震後の供用性が向上する。
また、降伏を許容し、変形で長周期化させる場合に比べ、固有周期が安定していて、地震応答が予測しやすい。近年、地震動の評価技術が向上し、断層震源情報・地殻構造・架橋地点の地盤の特性等から決まる地震動の卓越周期帯域を予測することが可能になりつつあるが、こうした地震動の卓越周期帯域と構造物の振動周期を確実に分離し、できるだけ共振を抑え、地震応答をより小さくすることが可能となる。
また、柱に塑性変形が生じないので、残留変形が著しく小さい。また、塑性ヒンジの形成を許容する場合、一般に格点部付近には帯鉄筋を密に配置する必要があるが、軸方向鋼材の降伏を許容しないことで、必要な帯鉄筋の量を減じることができ、施工性が向上する。
(2)塑性ヒンジを形成させ、平行四辺形で変形させる場合に比べ、橋脚高さ方向の中央でのダンパーの相対変位が、フレーム架構の上下端付近のダンパーに比べ大きいが、こうした構造内の各取り付け位置におけるダンパーの変形の比率は、地震応答の過程において(即ちフレーム架構の変形の大小に関わらず)ほぼ一定である。このため、地震時の応答の終始において、効率的なダンパーの配置が可能となる。
(3)UFC等のプレキャスト型枠にハンチを設けてそのハンチにブレースを取り付けることで、柱上下端へのブレース取り付けが可能になり、フレーム架構全体に亘ってダンパーを作用させることが可能となる。
(4)柱上下端部のブレースを、塑性ヒンジを跨いで取り付けることで、損傷の大きい部位への取り付けが無くなる。
また、ブレースは1本を柱に定着させることをせず、すべて、柱への取り付けにおいて、圧縮と引張の生じる2本のブレースを1組として取り付けることで、フレーム架構には部材軸方向へのずれ力だけが作用し、取り付け部の構造を簡単にすることができる。例えば、PC鋼棒で圧縮力を入れ、摩擦で固定するなど、引き抜きに比べ、構造が簡単になる。
また、ダンパーの容量をフレーム架構の変形に応じて変え、2つのダンパーから伝わってくる圧縮と引張の大きさを略等しくすることで、ずれ力だけを作用させることが可能となるので、スタッドジベルや孔開き鋼板ジベルなど容易な定着方法が適用可能となる。
なお、2本のブレースを1組としない場合には、基礎上面や梁下面にブレース1本を単独で定着するが、このような部位では、マッシブなコンクリートに定着するので、構造上の問題がない。
以下、本発明を図示する実施形態に基づいて説明する。この実施形態は、RCラーメン構造の橋脚に適用した例である。図1は、従来と本発明でフレーム架構の変形状態を比較した概略図である。この図1において、RCラーメン構造の橋脚1は、基礎(フーチング)2上に間隔をおいて立設された一対のRC部材の柱3と、この柱3の頂部に掛け渡されたRC部材の梁あるいは主桁の柱頭部横桁4とからなるRCフレーム架構5と、このRCフレーム架構5の構面内に配置されたブレース6に制震装置(ダンパーやダンパーブレース等)を備えたブレース架構7とから構成されている。
本発明においては、想定以上の地震動(レベル2地震動)により塑性ヒンジHが形成されるRCフレーム架構5の柱3の上下端部にも、左右一対の柱3を連結するブレース6を配置し、この柱3の上下端部のブレース6の一端をそれぞれ、後述するように、柱3の上下端にそれぞれ形成したハンチに接合し、あるいは梁4の下面とフーチング2の上面に接合し、さらに、柱3の上下端部に後述するプレキャスト型枠を用いるなどして高強度化を図り、柱3の上下端部における合計4箇所に塑性ヒンジHが形成されないようにする。
図1(a)の従来構造では、柱の上下端部に塑性ヒンジHが形成され、フレーム架構5が平行四辺形となって変形し、柱間中央のトラス格点に設置されたダンパーの相対変位は等しい。これに対して、図1(b)の本発明構造では、柱3は上下固定梁として変形し、ダンパーの相対変位は柱上部・下部で小さく、中間部で大きい。
図2〜図5に示すように、本発明においては、レベル2地震時における塑性ヒンジHの形成を回避するために、柱3の上下端部の4つの塑性ヒンジ区間Lに超高強度繊維補強コンクリート又はモルタルからなるプレキャスト型枠(以下、UFC型枠と記載)10を使用し、断面を絞った柱上下端部のコンクリートの圧縮損傷を防止する。軸方向鋼材11(図3参照)を高強度の鉄筋とする。UFC型枠10の適用範囲は、最小でも1D以上、望ましくは2D以上で、柱3のモーメント勾配とUFC型枠以外のコンクリート強度に応じてコンクリートの圧縮損傷を防止する範囲とする。
なお、超高強度繊維補強コンクリート又はモルタルは、圧縮強度が高いコンクリート又はモルタル内に鋼繊維、炭素繊維あるいはガラス繊維などが混入された材料であり、圧縮強度が100〜250N/mm2、曲げ引張強度が10〜40 N/mm2、ひび割れ発生時引張強度が5〜15 N/mm2のものをいう。
UFC型枠10のひび割れ誘発構造は、特願2006−200272に記載の構造を用いることができる。例えば、プレキャスト型枠の製造時に高強度繊維補強コンクリート又はモルタルを製造用型枠の周方向に連続して投入し、多層に分割して打設することにより、周方向には繊維が連続して配置されるが、各層の打継ぎ面において繊維が連続しないひび割れ誘発目地が形成され、一つのプレキャスト型枠にひび割れ誘発目地が上下方向に間隔をおいて複数形成されるようにしたものを使用する。このひび割れ誘発目地により容易にひび割れが発生する。地震時など橋脚等に曲げが発生しない状態では、ひび割れは発生せず、中小規模の地震後にひび割れが閉じるので、従来のような目地処理が不要でありながら、長期耐久性が確保できる。また、これに限らず、複数の各プレキャスト型枠ブロックの接合部に引張強度の低いひび割れ誘発目地としたものなどでもよい。
柱3の上下端部の曲げモーメントが大きくなる部分にUFC型枠10を適用することにより、同箇所のかぶり部分を高強度化することができ、柱3のコンクリートの圧壊を遅延化することができる。レベル2地震時でも柱3が塑性化せず、コンクリートの圧壊を主筋の降伏以後とすることができる。なお、UFC型枠以外の柱3には、普通コンクリートによるプレキャスト型枠が用いられ、あるいは、従来のRC部材の施工法と同様に場所打ちコンクリートが用いられる。
本発明では、塑性ヒンジ区間の柱上下端部にもブレース6が取り付けられており、後述するように、降伏荷重のなるべく小さなダンパーの付いたブレースをラーメン高さの全域に均等に振り分けるのが望ましい。
図1(a)の塑性ヒンジを形成させ、平行四辺形で変形させる場合に比べ、図1(b)の塑性ヒンジを形成させない本発明では、フレーム架構5の高さ方向中央でのダンパーの相対変位がフレーム架構5の上下端付近のダンパーに比べ大きいが、各取り付け位置におけるダンパーの比率は、地震応答の過程において(即ちフレームの変形の大小に関わらず)、ほぼ一定である。従って、ハニカムダンパー等のダンパーの容量を配置位置によって変化させることにより、フレーム架構5全体でエネルギー吸収を生じさせることが可能となる。最上部・最下部のブレース6の定着方法には、以下に示す方法のいずれかを用いることができる。
(1) 図2、図3は、柱上下端部のUFC型枠におけるブレースの接合構造の一例を示したものである。UFC型枠10の下部または上部の隅角部にハンチ12を設け、このハンチ12にブレース6の端部を接合する。
図2の実施形態では、柱3の下端の定着部にハンチ12を設け、ブレース6の端部に取り付けた定着金物20をPC鋼棒21とアンカープレート22で定着する。引張力はハンチ12を貫通するPC鋼棒21で伝達し、フーチング2内のアンカープレート22に負担させる。圧縮力は定着金物20を介してハンチ12に直接取らせる。
図3の実施形態では、柱3の上端の定着部にハンチ12を設け、ブレース6の端部に孔開き鋼板ジベル23を取り付け、上下に分割したUFC型枠10の継ぎ目に斜めのスリット24を設け、このスリット24から孔開き鋼板ジベル23を柱3内に定着し、圧縮力・引張力とも孔開き鋼板ジベル23で負担する。孔開き鋼板ジベル23には、軸方向鉄筋11が通る孔25が形成されている。その他、スタッドジベル等を設けた定着板などを用いることができる(図9参照)。
図4は、複数のブロックに分割したUFC型枠を用いる場合の効果を阻害することのないようにしたブレースの接合構造の例である。図4(a)では、略ピン接合となるように、ブレース6を構成する平面と直交する板材からなるアンカー26をフーチング2(または梁4)に埋め込み、あるいは一本の丸鋼からなるアンカー26を埋め込む。図4(b)では、柱3の外周を取り囲む鋼管27を設置し、鉛直方向の定着はフーチング2(または梁4)へ埋め込んだ孔開き鋼板ジベル27aのアンカーによって負担する。
(2) 図5、図6は、柱上下端部のUFC型枠におけるブレースの接合構造の他の例であり、ブレース6をフーチング2の天端(または梁4の下面)における柱3の近傍に斜めに定着する場合である。いずれも、UFC型枠10に隣接してT字形の定着具30を配置し、その鋼板30aにブレース6を溶接等で接合する。ここで、柱3の近傍とは、上下2本のブレース6と柱3とにより略三角形を形成し、柱3の変形によりダンパーに相対変形が生じる程度を意味する。
図5(a)では、定着に孔開き鋼板ジベル30bを用いている。この孔にはフーチング2の鉄筋を挿通することが可能である。フーチングの鉄筋は多数あり、こうした孔開き鋼板ジベルの貫通鉄筋の治具としての使用も問題が少なく、ブレース6の引張力を負担するための孔開き鋼板ジベルの制約は少ない。
図5(b)は、頭付きスタッド30cを用いている。図5(c)は、シアキー30dと異形スタッド30eによりせん断力と引抜力を負担させている。
図6は、ブレース6を柱3の前後(橋軸方向)の2箇所に分けて設置する方法である。この図6では、ブレース6を鋼管とする図を示したが、フレーム構面が面外にも変形する場合は、面外方向に曲げ剛性の小さい部材を設けることにより、鋭角をダンパー位置とする前後2本のブレース6が形成する三角形はフレーム構面の面外変形にも追随させることが可能である。また、柱3の下端近傍で前後2本のブレース6をコの字状の部材で一旦接合し、そこからダンパー位置までを一本のブレースで結合することもできる(図示省略)。
(3) 図7は、柱上下端部におけるブレースの接合構造の他の例であり、左右一対のブレース6を柱3の上下端部を跨いで配置し、フーチング2の天端(または梁4の下面)の中央に定着する場合である。図7(a)に示すように、RCフレーム架構5の中間部に、3個の正面視でX形ブレース6を配置し、上部・下部に逆V字状・V字状のブレース6を配置し、X形ブレース6の交点にハニカムダンパー等のダンパー8を配置し、梁4の下面とフーチング1の上面にもダンパー8を配置している。
図7(b)、(c)は、フーチング2の天端にブレース6を定着する方法であり、図7(b)では左右のブレース6を別々に取り付ける方法である。フーチング2の中央の天端に凹部40を形成し、ハニカムダンパー8の上部をブレース6の端部に取り付け、下部を凹部40の傾斜面に取り付け、ブレース6の軸方向の斜めの相対変位を吸収できるようにしている。
図7(c)では、左右のブレース6の端部を鋼板梁41に結合し、この鋼板梁41の両端をそれぞれ鋼板柱42で支持し、鋼板梁41と鋼板柱42とは、上下方向の変位は拘束し、水平方向の移動は許容する機構、例えばピンと水平方向に長い長孔で接続し、ハニカムダンパー8の上部を鋼板梁41に取り付け、下部をフーチング2の天端にアンカーボルト43等で定着し、ハニカムダンパー8に水平方向の相対変位が生じるようにしている。鋼板柱42は孔開き鋼板ジベル42aとフーチング鉄筋44によりフーチング2に定着されている。
図8は、柱3のUFC型枠10とRC構造部13との境界部におけるブレース6の接合状態の例を示したものである。UFC型枠10とRC構造部13との境界部は、弾性係数の相違によるRC構造部側の応力集中を緩和するためにハンチ12などを設置することが望ましい。図8(a)は、境界部の鉛直面にブレース6を接合した場合、図8(b)は、ハンチ12の傾斜面に直接ブレース6を接合した場合である。
図9は、UFC型枠10とRC構造部13との境界部などにおけるブレース6の定着構造の例を示したものである。前述の通り、ハンチ12を設けるのが望ましいが、そのハンチ12にブレース6を取り付ける場合には、ハンチ12の傾斜面とブレース6とを略直交させることも可能であり、特にブレース6の圧縮力を柱3またはフーチング2や梁4に伝達することは容易であり、また引張力についても、ブレース6の軸方向延長に定着金物を埋設することが可能であり、柱の一般部に比べて、定着の深さ・定着金物の寸法の制限を受けにくいという利点がある。
図9(a)は、定着金物20にスタッドジベル28を設けた場合である。図9(b)は、定着金物20に孔開き鋼板ジベル23を設けた場合である。図9(c)は、定着金物20をPC鋼棒21とアンカープレート22で定着する場合である。
図10は、UFC型枠10とRC構造部13との境界部および柱3の途中におけるブレース6の定着構造の例を示したものである。Xブレースを複数設置する場合、上下からの2本のブレース6を1点で接合して柱3に定着すると、ブレース6の圧縮力と引張力が柱3の軸方向のずれ力となって柱3に作用する(図13(b)参照)。従って、負担すべき定着力は、柱軸方向へのずれ力のみでダンパーの降伏荷重であるため、その構造を比較的簡易なものとすることができる。
図10(a)は、定着金物20にスタッドジベル28を設けた場合であり、柱コンクリートの打設時に埋設する。図10(b)は、定着金物20に孔開き鋼板ジベル23を設けた場合であり、柱コンクリートの打設時に埋設する。
図10(c)は、柱3内にPC鋼棒21を貫通させる孔を設け、定着金物20とアンカープレート22とでブレース定着部を挟み込むようにPC鋼棒21を緊張する。この場合、ブレース6の定着力は、PC鋼棒21により導入される緊張力に伴う摩擦力により確保される。また、この方法では、UFC型枠10とRC構造部13との境界部が定着板であると鋼板と拘束力により補強されるサンドイッチ構造であるため、前述した境界部におけるハンチ等を設ける必要が無くなる。
図11は、ダブルワーレントラス構造のRCラーメン構造の橋脚1に適用した例であり、柱3とブレース6との接合部にハニカムダンパー等のダンパー8を設置した場合の変形前後の状態を示す。ダンパー8は一つ置きに配置されており、柱3の上下端部には塑性ヒンジが形成されず、多数のダンパー8の上下方向の相対変位で地震エネルギーが吸収される。
図12は、図11のダブルワーレントラス構造においてブレース自身をダンパーブレース6とした例である。ダンパーブレース6には伸縮ダンパーまたは座屈拘束ダンパー(塑性化させる芯材を拘束材で座屈補剛したもの)等を用いる。全てのダンパーブレース6はその両端を柱3に接合し、ダンパーブレース6自身が伸縮する。図12の状態においては、左下から右上に傾斜するダンパーブレース6aが伸張し、右下から左上に傾斜するダンパーブレース6bが圧縮される。
図13、図14は、本発明の制震橋脚構造において柱を3本とした場合の例である。柱を一辺Dの正方形断面としたとき、断面積はD2に比例し、曲げ剛性はD4に比例する。従って、上部構造の重量を支持するために、同じ総断面積であるなら、2本の柱で支持するよりも3本以上の細い柱を多数配置した方が、曲げ剛性は小さくなり、制震橋脚には好適である。車線数が多い広幅員の上部構造を支持する橋脚では、橋脚の橋軸直角方向の幅を一般に上部構造(主桁)の幅程度にする必要があるから、柱3本による橋脚構造を用いることは合理的である。
図13において、(a)の従来構造の壁式橋脚の場合、剛性が極めて大きい。(b)の2本柱の門形フレームによる制震橋脚の場合、剛性が低く長周期化が可能となる。(c)の3本柱の2径間フレームによる制震橋脚の場合、さらに剛性が低い。また、図14に示すように、3本柱の中柱では、左右・上下の4本のブレースからの力が打ち消し合うので、構造をより簡単なものにすることができる。
また、図示しないが、柱が橋軸方向と橋軸方向に2本以上の立体ラーメン架構にも適用できる。
なお、本発明は、以上のような図示例に限定されないことは言うまでもない。