JP6095470B2 - Internal combustion engine - Google Patents
Internal combustion engine Download PDFInfo
- Publication number
- JP6095470B2 JP6095470B2 JP2013097958A JP2013097958A JP6095470B2 JP 6095470 B2 JP6095470 B2 JP 6095470B2 JP 2013097958 A JP2013097958 A JP 2013097958A JP 2013097958 A JP2013097958 A JP 2013097958A JP 6095470 B2 JP6095470 B2 JP 6095470B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- recirculation
- diesel engine
- exhaust gas
- steam generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 33
- 239000012530 fluid Substances 0.000 claims description 32
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 12
- 230000002000 scavenging effect Effects 0.000 claims description 12
- 239000002826 coolant Substances 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims 1
- 239000007858 starting material Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 128
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003134 recirculating effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000004540 pour-on Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/34—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D23/00—Controlling engines characterised by their being supercharged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/35—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Supercharger (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
本発明は、請求項1の前文に記載したターボ過給部と排気ガス再循環部とを備えた2サイクル大型ディーゼルエンジンに関する。 The present invention relates to a two-cycle large-size diesel engine including a turbocharger and an exhaust gas recirculation unit described in the preamble of claim 1.
特に大型内燃エンジンでは、エンジンから到来する排気ガスからエネルギーを取り出し、こうしてエンジンに供給すべき給気空気もしくはエンジンに供給すべき給気ガスを圧縮して燃焼向上をもたらすためにターボ過給機段が一般に用いられている。特に多シリンダエンジンでは、全体としてターボ過給機段を形成する複数のターボ過給機もこのために利用される。 In particular for large internal combustion engines, the turbocharger stage is used to extract energy from the exhaust gas coming from the engine and thus compress the charge air to be supplied to the engine or the charge gas to be supplied to the engine to improve combustion. Is commonly used. Particularly in a multi-cylinder engine, a plurality of turbochargers that form a turbocharger stage as a whole are also used for this purpose.
排出された燃焼ガスもしくは排気ガスからのエネルギー回収に係わるターボ過給等の措置の他に、今日では極力きれいな燃焼に焦点が当てられている。このためしばしば排気ガスの一部をエンジンの吸気側に再循環させ、こうして燃焼温度を下げ、こうしてエンジンのNOx排出量が下げられる。 In addition to measures such as turbocharging for recovering energy from exhausted combustion gas or exhaust gas, today, the focus is on clean combustion as much as possible. For this reason, part of the exhaust gas is often recirculated to the intake side of the engine, thus lowering the combustion temperature and thus reducing the NOx emissions of the engine.
再循環管路中にしばしば例えば排気ガス洗浄装置等のガス処理装置が設けられ、還流排気ガスに含まれた硫黄粒子と煤粒子が意図することなく燃焼室に還流されることのないようにされている。なぜならば、これらが燃焼室に還流されると排気ガス還流は確かにエンジンのNOx排出量の低下をもたらしはするが、しかしその代わりに排気ガス排出物中の硫黄負荷量を高めるであろう。こうして例えば当方の特許文献1は、再循環管路中にガス洗浄装置がある排気再循環式ディーゼルエンジンを示している。 A gas treatment device such as an exhaust gas cleaning device is often provided in the recirculation pipe so that sulfur particles and soot particles contained in the recirculated exhaust gas are not recirculated to the combustion chamber unintentionally. ing. This is because when they are recirculated to the combustion chamber, exhaust gas recirculation will certainly lead to a reduction in engine NOx emissions, but will instead increase the sulfur load in the exhaust emissions. Thus, for example, our Patent Document 1 shows an exhaust gas recirculation type diesel engine having a gas cleaning device in a recirculation line.
このようなガス処理装置を流通するとき還流排気ガス中で圧力低下が生じる。還流排気ガスを取り出す時点の燃焼室内の圧力に最終的に一致した還流排気ガス中の圧力はこのようなガス処理装置を流通しない場合でもしばしばそんなに高くなく、排気ガスを付加的圧縮機なしに吸入経路内の掃気空気もしくは給気空気に直接導入できるほどである。このことが特にあてはまるのは、掃気ガス高圧側で、つまりエンジンに供給すべき掃気空気もしくは給気空気が圧縮される給気空気‐ターボ過給機もしくはターボ過給機段の下流側で、再循環管路が吸入経路に注ぐ場合である。還流排気ガスを掃気ガス高圧側で吸入経路に導入し、それとともにターボ過給機タービンの上流側で排気経路から再循環管路を分岐することは、還流すべき排気ガスがなおターボ過給機段の単数もしくは複数の給気空気圧縮機内にも装入されて内燃エンジンの全効率を低下させる事態を生じることのないようにするために望ましい。 When circulating through such a gas treatment device, a pressure drop occurs in the recirculated exhaust gas. The pressure in the recirculated exhaust gas, which finally matches the pressure in the combustion chamber at the time when the recirculated exhaust gas is taken out, is often not so high even when not flowing through such a gas treatment device, and the exhaust gas is sucked in without an additional compressor. It can be introduced directly into the scavenging air or supply air in the path. This is especially true on the high side of the scavenging gas, that is, on the downstream side of the scavenging air or turbocharger or turbocharger stage where the scavenging air or charge air to be supplied to the engine is compressed. This is the case when the circulation line pours into the suction path. Introducing the recirculated exhaust gas into the intake passage on the scavenging gas high pressure side and at the same time branching the recirculation line from the exhaust passage upstream of the turbocharger turbine means that the exhaust gas to be recirculated is still in the turbocharger It is desirable to prevent the occurrence of a situation in which the efficiency of the internal combustion engine is reduced by being inserted into one or a plurality of supply air compressors.
特許文献2に述べられた自動車用ターボ複合ディーゼルエンジンでは、高圧側で排気ガスが還流され、つまりターボ過給機タービンの上流側で排気経路から再循環管路が分岐されて給気空気圧縮機の下流側で吸入経路に注いでいる。給気空気の圧縮に役立つターボ過給機のタービン下流側で、還流されるのでなく環境へと吐き出される排気ガスを流通させる他のパワータービンが排気管路に一体化されており、この排気管路は制御可能な油圧クラッチと変速機とを介してクランク軸に接続されている。還流排気ガスは再循環管路に取り付けられた熱交換器によって冷却される。この熱交換器は蒸気発生器として実施されており、パワータービン下流側で排気ガス管路の適宜に形成された他の熱交換器‐蒸気発生器と一緒に蒸気タービンを駆動するのに役立つ。この蒸気タービンは油圧クラッチを介してクランク軸に、または駆動系統中の補機、例えば発電機に、駆動出力を放出する。パワータービンによって一方で、環境に吐き出される排気ガスから、エンジンのターボ過給機によって利用されないエネルギーを取り出すことができる。しかし特許文献2によれば付加的パワータービンは主として、パワータービンをクランク軸と結合する油圧クラッチの制御によって、吐き出された排気ガスにとって障害物として邪魔となるパワータービンで生じる背圧を調整し、それとともに、吐き出された排気ガスに対する還流排気ガスの割合と排気経路中のターボ過給機上流側で優勢な還流排気ガスの圧力とを調整するのに役立つ。つまりパワータービンをクランク軸と結合する油圧クラッチは結局、吸入経路中の掃気ガス高圧側で優勢な圧力レベルに還流排気ガスを高めるように調整される。 In the turbo turbo diesel engine described in Patent Document 2, the exhaust gas is recirculated on the high pressure side, that is, the recirculation pipe is branched from the exhaust path on the upstream side of the turbocharger turbine. Is pouring into the suction path downstream. Another power turbine that circulates exhaust gas that is not recirculated but exhausted to the environment is integrated into the exhaust pipe on the downstream side of the turbocharger turbine, which is useful for compressing the supply air. The path is connected to the crankshaft via a controllable hydraulic clutch and transmission. The reflux exhaust gas is cooled by a heat exchanger attached to the recirculation line. This heat exchanger is implemented as a steam generator and serves to drive the steam turbine together with other appropriately formed heat exchanger-steam generators in the exhaust gas line downstream of the power turbine. The steam turbine emits drive output to the crankshaft via a hydraulic clutch or to an auxiliary machine in the drive system, such as a generator. On the other hand, energy that is not used by the turbocharger of the engine can be extracted from the exhaust gas discharged into the environment by the power turbine. However, according to Patent Document 2, the additional power turbine mainly adjusts the back pressure generated in the power turbine that becomes an obstacle to the discharged exhaust gas by controlling the hydraulic clutch that couples the power turbine to the crankshaft. At the same time, it is useful for adjusting the ratio of the recirculated exhaust gas to the exhausted exhaust gas and the pressure of the recirculated exhaust gas that is dominant on the upstream side of the turbocharger in the exhaust path. That is, the hydraulic clutch that couples the power turbine to the crankshaft is eventually adjusted to increase the recirculated exhaust gas to a prevailing pressure level on the scavenging gas high pressure side in the intake path.
それに対して、高圧側で排気ガスが還流され、つまりターボ過給機タービン上流側で排気経路から再循環管路が分岐されてターボ過給機のコンプレッサ下流側で吸入経路に注ぐ2サイクル大型ディーゼルエンジンでは普通、吸入経路中の掃気ガス高圧側で優勢な圧力レベルに還流排気ガスを高めるために電動駆動式圧縮機が再循環管路中に設けられており、そのことは例えば当方の特許文献3(国際出願番号PCT/DK93/00398)から読み取ることができる。そこでは、圧縮機の上流側でガス洗浄器が再循環管路中にある。再循環管路中の圧縮機を駆動するのに必要な電気出力は例えば、内燃エンジンによって駆動される船舶の搭載電源を駆動するために設けられる発電機セットから取り出すことができる。しかしこれにより内燃エンジンの全効率が低下する。 On the other hand, the exhaust gas is recirculated on the high-pressure side, that is, a two-cycle large-sized diesel that recirculates from the exhaust path upstream of the turbocharger turbine and pours into the intake path downstream of the turbocharger compressor In an engine, an electrically driven compressor is usually provided in the recirculation line in order to raise the recirculated exhaust gas to a prevailing pressure level on the high side of the scavenging gas in the intake path. 3 (International Application No. PCT / DK93 / 00398). There, a gas scrubber is in the recirculation line upstream of the compressor. The electrical output required to drive the compressor in the recirculation line can be taken from, for example, a generator set provided to drive the onboard power supply of the ship driven by the internal combustion engine. However, this reduces the overall efficiency of the internal combustion engine.
別の提案は、前文に係るディーゼルエンジンにおいて、やはりエンジン軸に装着される油圧ポンプを介して高圧作動油を供給される油圧作動式タービンを介して再循環管路中のファンを駆動することである(特許文献4参照)。そこでは還流排気ガスを冷却する冷却器も既に開示されている。しかしエンジン軸で取り出される油圧ポンプの出力はやはりディーゼルエンジンの全効率を低下させる。 Another proposal is to drive a fan in the recirculation line through a hydraulically operated turbine that is supplied with high-pressure hydraulic oil via a hydraulic pump that is also mounted on the engine shaft in the diesel engine according to the preamble. Yes (see Patent Document 4). There has already been disclosed a cooler for cooling the recirculated exhaust gas. However, the output of the hydraulic pump taken out by the engine shaft still reduces the overall efficiency of the diesel engine.
排気ガスもしくは燃焼ガスを再循環させる2サイクル大型ディーゼルエンジンの他の1例は当方の特許文献5から読み取ることができる。そこでも、掃気ガス高圧側、つまり吸入経路中のターボ圧縮機下流側で優勢な掃気空気圧力もしくは給気空気圧力に還流排気ガス部分流を圧縮するために再循環ガス圧縮機、つまり再循環管路中に配置される圧縮機が設けられている。再循環管路中に配置される圧縮機の電動式補助駆動部は、再循環ガス圧縮機と一緒に低圧ターボ過給機を形成するタービンによって支援される。この再循環タービンはやはりターボ過給機の給気空気コンプレッサ下流側で給気空気から分岐される給気空気部分流、つまりターボ過給給気空気部分流によって駆動される。この給気空気部分流は再循環タービンの駆動時に弛緩され、燃焼室過給に寄与することなく排気経路に導出されねばならない。つまりここでは内燃エンジンの全効率は再循環タービンを駆動するのに必要な給気空気部分流の過給に利用される出力分だけ低下し、また電動式補助駆動部で消費される出力分だけ低下する。 Another example of a two-cycle large diesel engine that recirculates exhaust gas or combustion gas can be read from US Pat. Again, the recirculation gas compressor, i.e. the recirculation pipe, compresses the recirculated exhaust gas partial flow to the scavenging gas high pressure side, i.e. the scavenging air pressure or supply air pressure prevailing on the downstream side of the turbo compressor in the intake path A compressor disposed in the road is provided. The motorized auxiliary drive of the compressor located in the recirculation line is supported by a turbine that, together with the recirculation gas compressor, forms a low pressure turbocharger. This recirculation turbine is also driven by a partial charge air flow that branches off from the supply air downstream of the turbocharger supply air compressor, that is, a turbocharged air partial flow. This supply air partial flow is relaxed when the recirculation turbine is driven and must be led to the exhaust path without contributing to combustion chamber supercharging. In other words, the total efficiency of the internal combustion engine is reduced here by the output used to supercharge the supply air partial flow required to drive the recirculation turbine, and only by the output consumed by the electric auxiliary drive. descend.
そのことを前提に本発明の課題は、冒頭に指摘した種類の内燃エンジンにおいて全効率をさらに高めることである。 Given that, the object of the present invention is to further increase the overall efficiency in an internal combustion engine of the type pointed out at the beginning.
本発明によればディーゼルエンジン、特に2サイクル大型ディーゼルエンジンが、再循環ガス圧縮機を駆動するために、変速機なしに再循環ガス圧縮機と連結された蒸気タービンを有する。 According to the invention, a diesel engine, in particular a two-cycle large diesel engine, has a steam turbine connected to the recirculation gas compressor without a transmission for driving the recirculation gas compressor.
これにより有利には、内燃エンジンで常に発生する損失熱は再循環ガス圧縮機を作動させるのに利用することができる。これにより例えば前文に係る種類の大型2サイクル船舶ディーゼルエンジンにおいて、本来再循環ガス圧縮機を作動させるために加えねばならないディーゼルエンジン出力の約2%の節約を得ることができる。 This advantageously allows the heat loss always generated in the internal combustion engine to be used to operate the recirculation gas compressor. This can save, for example, about 2% of the diesel engine power that must be added to operate the recirculating gas compressor in a large two-cycle marine diesel engine of the type described in the preamble.
蒸気発生用に損失熱を取り出すのに特別適しているのは燃焼室から到来する排気ガス流である。それゆえに有利には、内燃エンジン排気ガスの少なくとも一部で作動される蒸気発生器が設けられている。 Particularly suitable for extracting heat loss for steam generation is the exhaust gas stream coming from the combustion chamber. Therefore, advantageously a steam generator is provided which is operated on at least part of the internal combustion engine exhaust gas.
例えば内燃エンジンの給気空気‐ターボ過給機段の排気ガス低圧側で蒸気発生器は排気ガス管路から流通させることができよう。この排気ガス管路は作動流体管路を介して、再循環ガス圧縮機と連結された蒸気タービンと結合されている。 For example, the steam generator could be circulated from the exhaust gas line on the low pressure side of the exhaust air-turbocharger stage of the internal combustion engine. This exhaust gas line is connected via a working fluid line to a steam turbine connected to a recirculation gas compressor.
本発明は、給気空気‐ターボ過給機もしくはターボ過給機段の高圧側で排気ガスを還流させる前文に係る種類の内燃エンジンにおいて特に利用することができる。 The invention can be used in particular in an internal combustion engine of the kind according to the preamble that recirculates exhaust gas on the high-pressure side of the charge air-turbocharger or turbocharger stage.
特にこのようなシステムにおいて特別有利であるのは、蒸気発生器が再循環管路中で蒸気タービン上流側に設けられているときである。というのも一方で還流排気ガスに含まれた熱エネルギーは従来利用されていなかったからである。他方で、還流排気ガスを冷却し、これにより過給改善をもたらすことは望ましくさえある。つまり還流排気ガスから熱を取り出すことによって、従来利用されなかった源から再循環ガス圧縮機用駆動エネルギーが獲得されるだけでなく、付加的に還流排気ガスの所望する冷却も達成される。 Particularly advantageous in such systems is when a steam generator is provided upstream of the steam turbine in the recirculation line. On the other hand, the heat energy contained in the recirculated exhaust gas has not been used in the past. On the other hand, it may even be desirable to cool the recirculated exhaust gas, thereby providing a boost. In other words, by extracting heat from the recirculated exhaust gas, not only is the drive energy for the recirculated gas compressor obtained from a source that has not been used in the past, but also the desired cooling of the recirculated exhaust gas is achieved.
蒸気発生器は、作動媒体、通常水を加熱し蒸発させ場合によっては過熱させるために還流排気ガスから熱を取り出す熱交換器として形成しておくことができる。 The steam generator can be formed as a heat exchanger that extracts heat from the recirculated exhaust gas to heat and evaporate the working medium, usually water, and in some cases overheat.
還流排気ガス部分流中には再循環ガス圧縮機の蒸気タービンを駆動するために十分に取出し可能な熱エネルギーが存在しているので、蒸気発生器も、再循環ガス圧縮機を駆動する蒸気タービンも、そして蒸気タービン用回転数制御部も、比較的簡素に形成しておくことができる。主に再循環ガス圧縮機は変速機なしに蒸気タービンと連結され、統合されて蒸気ターボセットとされている。その場合、大きな2サイクル大型ディーゼルエンジンにおいて再循環ガス圧縮機の回転数範囲が例えば約7000〜15000 rpmで蒸気タービンの回転数範囲に一致するように蒸気タービンは設計されねばならない。再循環ガス圧縮機もしくはこれと結合された蒸気タービンで必要とされる力と再循環管路中で上流側に設けられた蒸気発生器で生成されて蒸気タービンに作用する蒸気力との間に1対1の関係が成立している理由からも、蒸気ターボセットは変速機なしに留めることができる。 Since there is enough heat energy in the recirculated exhaust gas partial flow to drive the steam turbine of the recirculation gas compressor, the steam generator also uses the steam turbine to drive the recirculation gas compressor. In addition, the rotational speed control unit for the steam turbine can be formed relatively simply. Mainly, the recirculation gas compressor is connected to a steam turbine without a transmission and integrated into a steam turbo set. In that case, the steam turbine must be designed in a large two-cycle large diesel engine so that the recirculation gas compressor speed range is, for example, about 7000-15000 rpm and matches the steam turbine speed range. Between the force required by the recirculation gas compressor or the steam turbine coupled thereto and the steam force generated by the steam generator provided upstream in the recirculation line and acting on the steam turbine. The steam turbo set can be kept without a transmission because the one-to-one relationship is established.
その際有利には、蒸気タービンの回転数を制御するために蒸気発生器から蒸気タービンに至る圧力管路中に専ら蒸気絞り弁が配置して設けられている。この蒸気弁もしくは絞り弁または蒸気絞り弁は蒸気タービン用回転数制御部として十分である。その場合最も単純な事例において、ここで非制御式の蒸気絞り弁の直径低減が好適に選択されているとき、他の制御素子は何ら必要でない。しかし蒸気絞り弁は、蒸気絞り弁を操作者が手動でまたは好適な駆動部を介して再調整または変位させることができるように調節可能としておくこともできる。しかしその場合にも蒸気タービンの回転数制御は非制御蒸気絞り弁を介するだけで、または操作者によって設定可能な蒸気絞り弁を介するだけで行うことができる。 In this case, a steam throttle valve is advantageously arranged exclusively in the pressure line from the steam generator to the steam turbine in order to control the rotational speed of the steam turbine. This steam valve or throttle valve or steam throttle valve is sufficient as a rotational speed control unit for the steam turbine. In that case, in the simplest case, no other control element is required when the diameter reduction of the uncontrolled steam throttle valve is preferably chosen here. However, the steam throttle valve can also be adjustable so that the steam throttle valve can be readjusted or displaced manually by an operator or via a suitable drive. However, in this case as well, the rotational speed control of the steam turbine can be performed only through a non-controlled steam throttle valve or only through a steam throttle valve that can be set by an operator.
上で述べた1対1の関係のゆえに多くの場合非制御蒸気絞り弁または操作者によって設定可能な蒸気絞り弁で十分であり、蒸気タービン回転数の制御は特別簡単なものに抑えることができる。 Because of the one-to-one relationship described above, an uncontrolled steam throttle valve or a steam throttle valve that can be set by an operator is often sufficient, and the control of the steam turbine speed can be limited to a particularly simple one. .
しかし、設定可能な蒸気絞り弁は開ループ制御回路または閉ループ制御回路中でアクチュエータとして機能させることも考えられよう。その場合にも蒸気絞り弁用の制御部もしくは測定素子と制御素子とをなお設けておかねばならない。しかしその場合にも蒸気タービン回転数の制御は蒸気発生器から蒸気タービンに至る圧力管路中に配置される蒸気絞り弁を介するだけで、例えば再循環管路の末端に配置される圧力センサからの圧力センサ信号に応答して、行うことができる。蒸気発生器と蒸気タービンとの間で圧力管路が並列である場合、各圧力管路または単に幾つかの圧力管路の複数の蒸気絞り弁を並列に接続することも当然に考えられよう。 However, it is also conceivable that the configurable steam throttle valve functions as an actuator in an open loop control circuit or a closed loop control circuit. Even in such a case, a control unit or measuring element and control element for the steam throttle valve must still be provided. In this case, however, the rotation speed of the steam turbine is controlled only via a steam throttle valve arranged in the pressure line from the steam generator to the steam turbine, for example from a pressure sensor arranged at the end of the recirculation line. In response to the pressure sensor signal. Of course, if the pressure lines are in parallel between the steam generator and the steam turbine, it would be conceivable to connect a plurality of steam throttle valves in each pressure line or simply several pressure lines in parallel.
単純な構造と簡単な制御の意味で有利には、他の出力部に連結されていない独自の単一の蒸気タービンが再循環ガス圧縮機の駆動用に設けられており、再循環ガス圧縮機用に他の並列駆動部は何ら設けられてもいない。内燃エンジンの始動段階中に再循環ガス圧縮機を増速させる単に1つの小型電動式補助駆動部が有利なことがあり、この補助駆動部は場合によっては蒸気ターボセットの軸に連結可能である。 In terms of simple structure and easy control, a unique single steam turbine not connected to the other output is advantageously provided for driving the recirculation gas compressor, For this reason, no other parallel driving unit is provided. It may be advantageous to have just one small electric auxiliary drive that speeds up the recirculation gas compressor during the start-up phase of the internal combustion engine, this auxiliary drive being possibly connectable to the shaft of the steam turboset .
しかし、蒸気タービンに連結可能な付加的出力部、例えば発電機を設け、または過剰の蒸気エネルギーを付加的発電に利用できるようにするために過剰蒸気を装入できる付加的蒸気負荷、例えば発電機セットを設けることも考えられよう。同様に、発生された蒸気の一部はスートブロワを介して蒸気発生器の、または再循環管路の下流側管路部分の、還流排気ガスに含まれた有害物質粒子による腐食作用に曝される再循環管路側表面に注入することが考えられよう。 However, additional steam loads that can be connected to the steam turbine, such as generators, or additional steam loads that can be charged with excess steam to make excess steam energy available for additional power generation, such as generators. A set could be considered. Similarly, part of the generated steam is exposed to corrosive action by harmful substance particles contained in the recirculated exhaust gas through the soot blower in the steam generator or in the downstream pipe part of the recirculation pipe. It would be possible to inject into the recirculation line side surface.
蒸気タービンはごく単純な、従って安価に作製できる幾何学形状を有することができ、例えば単に1つまたは2つの翼車もしくは羽根車を備えている。というのも、再循環管路中の蒸気発生器で十分な蒸気エネルギーが蒸気タービンの駆動用に利用可能であり、それゆえに大きな最適化が必要でないからである。蒸気タービンを駆動するのに必要な蒸気エネルギーを用意するのに僅かな面が必要であるにすぎないので蒸気発生器はやはり比較的小型のものに抑えることができる。 A steam turbine can have a geometry that is very simple and therefore inexpensive to make, for example, it simply comprises one or two impellers or impellers. This is because sufficient steam energy is available for driving the steam turbine in the steam generator in the recirculation line and therefore no great optimization is required. The steam generator can still be kept relatively small since only a few planes are required to provide the steam energy required to drive the steam turbine.
再循環ガス圧縮機‐蒸気タービンで「消費」される蒸気は、蒸気発生のために十分な新鮮水、例えば船舶上に海水が用意されているとき、単純に環境に放出することができる。しかし作動流体管路の汚染を避けるために、十分な程度に利用可能ではない作動流体、例えば含塩量の多くない淡水を使用することがしばしば必要となるので、熱力学的サイクルプロセスの枠内で、つまり閉システム内で、作動流体なしにまたは作動流体の僅かな損失のみで蒸気発生と蒸気エネルギーの消費とを実行するのが有利である。それゆえに、作動流体管路が蒸気タービンから、流れの点で下流側に設けられた凝縮器へと通じ、この凝縮器内で作動流体が液化され、そこから供給ポンプへと供給され、作動流体管路を介して供給ポンプと結合された蒸気発生器がこの供給ポンプから供給されると有利である。 The steam “consumed” in the recirculating gas compressor-steam turbine can simply be released to the environment when enough fresh water is available for steam generation, eg sea water on the ship. However, in order to avoid contamination of the working fluid line, it is often necessary to use a working fluid that is not sufficiently available, for example fresh water with a low salt content, so that it is within the framework of the thermodynamic cycle process. In other words, it is advantageous to carry out steam generation and consumption of steam energy in a closed system without working fluid or with only a small loss of working fluid. Therefore, a working fluid line leads from the steam turbine to a condenser provided downstream at the point of flow, in which the working fluid is liquefied and fed from there to a feed pump, Advantageously, a steam generator, which is connected via a line with a feed pump, is fed from this feed pump.
別の目的、例えば付加的発電のために、または付加的蒸気作動式給気空気圧縮機を介したエンジン燃焼室の過給改善のために、排気ガスに含まれた熱を一層効率的に利用すべき場合、一層手間がかかるが一層効率的な部品も当然に使用することができる。その場合蒸気発生器は例えば、再循環管路によって案内された管束を有することができ、この管束は作動流体管路の一部を形成し、還流排気ガスが管束の周囲を流れる。管束の管は排気ガス路中で螺旋状に装着することができる。蒸発器と下流側過熱器段とを備えた多段蒸気発生器も考えられようが、しかし再循環ガス圧縮機と連結された蒸気タービンを作動させるだけのためには必ずしも必要でない。 More efficient use of the heat contained in the exhaust gas for other purposes, for example for additional power generation or to improve the supercharging of the engine combustion chamber via an additional steam-operated charge air compressor If so, more efficient but more efficient parts can of course be used. The steam generator can then have, for example, a tube bundle guided by a recirculation line, which forms part of the working fluid line, and the reflux exhaust gas flows around the tube bundle. The tubes of the tube bundle can be mounted spirally in the exhaust gas path. A multi-stage steam generator with an evaporator and a downstream superheater stage could be considered, but is not necessarily required to only operate a steam turbine connected to a recirculation gas compressor.
再循環経路中の付加的ガス洗浄装置によって還流排気ガスからの煤および硫黄の洗浄除去を引き起こすことができ、これにより内燃エンジンの有害物質排出量が低下する。その際特別適しているのは、提案されたように蒸気タービンを介して、特に再循環管路中に配置される蒸気発生器によって発生される蒸気、従って還流排気ガス自体によって発生される蒸気によって、再循環ガス圧縮機を駆動することである。つまりガス洗浄器によって還流排気ガス中のガス圧力がさらに低下し、再循環ガス圧縮機は相応に一層高性能に、しかし一層性能貪欲的(leistungshungriger)にも実施しておかねばならず、従って節約の潜在力は相応に高い。 Additional gas scrubbers in the recirculation path can cause scrubbing and sulfur scavenging removal from the recirculated exhaust gas, thereby reducing the toxic substance emissions of the internal combustion engine. Particularly suitable here is the steam generated by the steam turbine as proposed, in particular by the steam generated by the steam generator arranged in the recirculation line, and therefore by the steam generated by the reflux exhaust gas itself. The recirculation gas compressor is driven. In other words, the gas scrubber further reduces the gas pressure in the recirculated exhaust gas, and the recirculation gas compressor must be implemented correspondingly with higher performance, but also with more performance hunger, thus saving The potential of is reasonably high.
再循環管路中に蒸気発生器が配置されている場合、還流排気ガス部分流を冷却する蒸気発生器と再循環ガス圧縮機とに対してガス洗浄器が流れの点で中間配置され、つまり蒸気発生器の下流側にあると有利でもある。というのもその場合、蒸気発生器内で事前に冷却を行わないガス洗浄器と比べて、しかも還流排気ガス部分流内で同じ圧力低下において、ガス洗浄器はかなり小型に、従って一層安価に寸法設計することができるからである。その際、蒸気タービン、蒸気発生器、そして蒸気タービン回転数の制御部について既に事前に述べたことがあてはまる。予想される圧力損失は、再循環管路中の蒸気発生器によって再循環ガス圧縮機の駆動に利用可能な十分に存在するエネルギーに基づいて容易に補償することができるので、ガス洗浄装置は比較的小型にかつ単純に構成しておくことができる。 If a steam generator is arranged in the recirculation line, a gas scrubber is placed in the middle of the flow with respect to the steam generator for cooling the recirculated exhaust gas partial flow and the recirculation gas compressor, i.e. It is also advantageous if it is downstream of the steam generator. This is because in that case the gas scrubber is considerably smaller and therefore cheaper at the same pressure drop in the recirculated exhaust gas partial flow compared to the gas scrubber without pre-cooling in the steam generator. This is because it can be designed. In doing so, what has already been said in advance about the steam turbine, the steam generator and the control part of the steam turbine rotational speed apply. The expected pressure loss can be easily compensated based on the sufficient existing energy available to drive the recirculation gas compressor by the steam generator in the recirculation line, so the gas scrubber is comparative It can be made small and simple.
冷却機構もしくは冷却器、例えば液体水を冷却媒体として作動する伝熱式熱交換器が再循環管路中に付加的になお設けられている場合、還流排気ガスの温度はさらになお低下させることができ、低温時に高い排気ガス密度、従って小さな体積流量に基づいて一層有利な充填度が得られる。冷却器が流れの点で蒸気発生器と排気洗浄装置とに対して中間配置されている場合、排気ガスはガス洗浄器内で合成樹脂部材もしくはプラスチック部品の使用が可能となるほどに冷却することができ、これにより作製費用と重量はかなり低下させることができ、ガス洗浄器内に腐食しない表面または僅かに腐食するだけの表面をもたらすことができる。 If a cooling mechanism or cooler, for example a heat transfer heat exchanger operating with liquid water as the cooling medium, is additionally provided in the recirculation line, the temperature of the reflux exhaust gas can be further reduced. And a more advantageous degree of filling can be obtained on the basis of a high exhaust gas density at low temperatures and thus a small volume flow. If the cooler is placed intermediate to the steam generator and the exhaust scrubber in terms of flow, the exhaust gas can be cooled in the scrubber to such an extent that synthetic resin parts or plastic parts can be used. This can significantly reduce production costs and weight, and can result in surfaces that do not corrode or only corrode in the gas scrubber.
冷却器は同時に、蒸気発生器に液状で供給される作動流体、つまり一般に液体水のための予熱器として利用することができる。換言するなら、作動流体は冷却器内で加温された冷却媒体によって予熱することができ、またはそれ自体冷却媒体として利用することができる。 At the same time, the cooler can be used as a preheater for the working fluid supplied in liquid form to the steam generator, ie generally liquid water. In other words, the working fluid can be preheated by a cooling medium warmed in the cooler, or can itself be used as a cooling medium.
有利には、再循環管路中にガス洗浄装置が設けられている限り、ガス洗浄に基づいて排気ガス中に存在する水粒子を圧縮機に達する前に分離するために再循環ガス圧縮機の上流側に液滴分離器が設けられている。その場合、水滴は出口側液滴分離器で、再循環管路を流通する体積流から分離され、好適な凝縮物出口を通して排出することができる。これにより、吸入経路への入口で吸入経路内の優勢圧力レベルに高められるべき体積流のさらなる縮小が生じる。液滴分離器として実証されたのは排気ガス冷却のゆえにプラスチック製とすることもできる転向板、充填体、ストレーナ、有孔底である。 Advantageously, as long as a gas scrubber is provided in the recirculation line, the recirculation gas compressor is used to separate the water particles present in the exhaust gas before reaching the compressor based on gas scrubbing. A droplet separator is provided on the upstream side. In that case, the water droplets can be separated from the volume stream flowing through the recirculation line at the outlet side droplet separator and discharged through a suitable condensate outlet. This results in a further reduction of the volume flow that should be increased to the prevailing pressure level in the suction path at the inlet to the suction path. Demonstrated as droplet separators are turning plates, packings, strainers and perforated bottoms that can be made of plastic due to exhaust gas cooling.
以下、添付図面を基に本発明の好ましい1実施形態を詳しく説明する。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
本発明の主な応用分野は、船舶駆動部としてまたは発電所用に使用することのできる大型エンジン、特に2サイクル大型ディーゼルエンジンである。このようなエンジンの構造と作動方式はそれ自体知られている。 The main field of application of the present invention is large engines, in particular two-cycle large diesel engines, which can be used as ship drives or for power plants. Such engine structures and modes of operation are known per se.
図1に略示された2サイクル大型ディーゼルエンジンは一連のシリンダZを有することができる。各シリンダZは協動するピストンKとで燃焼室Bを限定する。燃焼室Bの上端にそれぞれ排気弁Aが設けられており、燃焼時に発生する排気ガスはこの排気弁を通して排気ガス集合容器15内に排出される。そこから排気ガスは単数(または複数)の排気管路23を通してターボ過給機1のタービン18に達する。 The two-cycle large diesel engine schematically shown in FIG. 1 can have a series of cylinders Z. Each cylinder Z defines a combustion chamber B with a cooperating piston K. Exhaust valves A are provided at the upper ends of the combustion chambers B, and exhaust gas generated during combustion is discharged into the exhaust gas collecting container 15 through the exhaust valves. From there, the exhaust gas reaches the turbine 18 of the turbocharger 1 through a single (or multiple) exhaust line 23.
しかし排気ガスの一部は、図示例において排気ガス集合容器15で分岐する再循環管路、しかし場合によっては排気管路12からも分岐する再循環管路3から内燃エンジンの吸気側に、もしくは吸入経路11、13、14内に還流される。再循環管路3は既に排気ガス集合容器15の上流側で排気経路12、15から、または既に燃焼室Bの独自の出口を通して、分岐することもできる。 However, a part of the exhaust gas is recirculated in the illustrated example from the recirculation line 15 branched from the exhaust gas collecting container 15, but in some cases from the recirculation line 3 also branched from the exhaust line 12, to the intake side of the internal combustion engine, or It is recirculated into the suction paths 11, 13 and 14. The recirculation line 3 can also be branched from the exhaust passages 12, 15 already upstream of the exhaust gas collection vessel 15 or already through a unique outlet of the combustion chamber B.
吸入経路11、13、14は入口側に給気空気‐ターボ過給機1の圧縮機19を有し、この圧縮機は、供給された給気空気を高い圧力レベルに高めるために、タービン18に通された排気ガスを介して駆動される。この圧縮機19から給気空気管路11が選択的給気冷却器13を介して給気空気集合容器14もしくは給気空気集合管路14に通じ、後者から個々の燃焼室(単・複)Bに新気が装入される。給気空気蓄積部14の前で排気ガス再循環管路3が給気空気管路11に注ぎ、詳細には給気冷却器13の上流側かまたは再循環管路3内での十分な冷却に基づいて給気冷却器の下流側のいずれかで注ぐ。 The intake passages 11, 13, 14 have a compressor 19 of the charge air-turbosupercharger 1 on the inlet side, which is connected to the turbine 18 in order to increase the supplied charge air to a high pressure level. It is driven via the exhaust gas passed through. From this compressor 19, a supply air line 11 is connected to a supply air collection container 14 or a supply air collection line 14 via a selective supply cooler 13, and from the latter, individual combustion chambers (single / multiple) B gets fresh. The exhaust gas recirculation line 3 is poured into the supply air line 11 in front of the supply air accumulator 14 and, in particular, sufficient cooling either upstream of the supply air cooler 13 or in the recirculation line 3 Pour on either of the downstream sides of the charge air cooler.
再循環管路3は入口側で、熱交換器として形成された蒸気発生器5に通されており、閉サイクルシステムの反対側でこの蒸気発生器に作動流体管路4が通されており、蒸気発生器5内で蒸発されるべき液体作動流体はこの作動流体管路を通して蒸気発生器5に供給される。蒸気発生器5の下流側で蒸気タービン8は作動流体管路4の圧力管路部分を介して蒸気発生器5と結合されており、蒸気発生器5内で獲得された蒸気圧力で駆動され、それ自身は再循環ガス圧縮機10を駆動する。この再循環ガス圧縮機は蒸気発生器5の下流側で再循環管路3の出口側末端にあり、還流排気ガスを給気空気管路11内の優勢圧力レベルに高める。 The recirculation line 3 is passed on the inlet side to a steam generator 5 formed as a heat exchanger, and on the opposite side of the closed cycle system, the working fluid line 4 is passed to this steam generator, The liquid working fluid to be evaporated in the steam generator 5 is supplied to the steam generator 5 through this working fluid line. On the downstream side of the steam generator 5, the steam turbine 8 is coupled to the steam generator 5 via the pressure line portion of the working fluid line 4, and is driven by the steam pressure acquired in the steam generator 5, It drives the recirculation gas compressor 10 itself. This recirculation gas compressor is at the outlet end of the recirculation line 3 downstream of the steam generator 5 and raises the recirculated exhaust gas to the prevailing pressure level in the supply air line 11.
作動流体管路4によって形成される水‐蒸気サイクルが蒸気タービン8の下流側に凝縮器9を有し、蒸気タービン8で弛緩した蒸気状作動流体はこの凝縮器内で凝縮し、次に供給ポンプ16によって再び蒸気発生器5に供給される。凝縮器9と供給ポンプ16とに対して供給容器を中間配置しておくことができ、凝縮した作動流体がこの供給容器内に集められる。 The water-steam cycle formed by the working fluid line 4 has a condenser 9 downstream of the steam turbine 8, and the steam-like working fluid relaxed in the steam turbine 8 is condensed in this condenser and then supplied The steam is supplied again to the steam generator 5 by the pump 16. A supply container can be placed intermediately between the condenser 9 and the supply pump 16, and the condensed working fluid is collected in this supply container.
磁気タービン8と再循環ガス圧縮機10は変速機なしに共通の軸を介して互いに結合されてトルクを伝達し、蒸気ターボセット8、10を形成する。蒸気タービン8の回転数は蒸気発生器5とタービン8との間の作動流体管路4の圧力管路部分内の絞り17もしくは蒸気絞り弁17を介して設定される。 The magnetic turbine 8 and the recirculation gas compressor 10 are coupled to each other via a common shaft without a transmission to transmit torque and form the steam turbo sets 8 and 10. The rotational speed of the steam turbine 8 is set via a throttle 17 or a steam throttle valve 17 in the pressure line portion of the working fluid line 4 between the steam generator 5 and the turbine 8.
再循環管路は入口側蒸気発生器5と出口側圧縮機もしくは送風機10との間の領域においてまずガス処理装置に通されており、このガス処理装置は伝熱式熱交換器6とその下流側にガス洗浄装置7とを有する。ガス処理装置はさらに入口側予噴射機構、つまり例えば再循環管路3中に設けられる単数または複数のノズルを有することができ、ノズルは給水口から到来する冷却水を装入され、この冷却水を再循環管路3内に噴射し、これにより再循環管路3内に、特に再循環管路3のうち予噴射機構の下流側に配置された領域に、湿潤環境を生成する。この湿潤環境は伝熱式熱交換器6に通され、これにより冷却されている。その場合伝熱式熱交換器6の排気ガス側で優勢な湿潤環境は熱交換器6の壁に、煤の付着または排気ガスに含まれた硫黄粒子の化学作用に対する液状腐食防止層を形成する。ガス洗浄装置7は有利には伝熱式熱交換器6の下方にあり、予噴射機構内で再循環管路3に噴射されて熱交換器6内を流通する冷却液と、熱交換器6内での冷却によって排気ガス流から凝縮した液体はガス洗浄器7内に流れる。熱交換器6内で冷却され、これと結びついて排気ガスに常に含まれている水蒸気(大型ディーゼルエンジンの排気ガスは25質量%までの水を含む)が凝縮することによって排気ガスの第1予洗浄が行われる。 The recirculation line is first passed through the gas treatment device in the region between the inlet side steam generator 5 and the outlet side compressor or blower 10, which is connected to the heat transfer heat exchanger 6 and its downstream side. A gas cleaning device 7 is provided on the side. The gas treatment device can further comprise an inlet-side pre-injection mechanism, i.e. one or more nozzles provided in the recirculation line 3, for example, which are charged with cooling water coming from the water inlet. Is injected into the recirculation line 3, thereby generating a humid environment in the recirculation line 3, particularly in a region of the recirculation line 3 disposed downstream of the pre-injection mechanism. This moist environment is passed through the heat transfer heat exchanger 6 to be cooled. In that case, the prevailing wet environment on the exhaust gas side of the heat transfer type heat exchanger 6 forms a liquid corrosion prevention layer on the wall of the heat exchanger 6 against the adhesion of soot or the chemical action of sulfur particles contained in the exhaust gas. . The gas scrubber 7 is advantageously below the heat transfer heat exchanger 6, the coolant injected into the recirculation line 3 in the pre-injection mechanism and flowing through the heat exchanger 6, and the heat exchanger 6. The liquid condensed from the exhaust gas stream due to cooling inside flows into the gas scrubber 7. The water vapor is cooled in the heat exchanger 6 and combined with this, the water vapor that is always contained in the exhaust gas (the exhaust gas of a large diesel engine contains up to 25% by mass of water) condenses, so Cleaning is performed.
冷却材側で伝熱式熱交換器6を流通する冷たい液体水は大抵の場合好適に用意することができ、高い熱伝達容量を有する。船舶で内燃エンジンを利用する場合、熱交換器6に海水を装入することが同様に考えられよう。さらに、図に破線で示したように伝熱式熱交換器6を冷却媒体としての水‐蒸気サイクルの作動流体で作動させ、これにより、作動流体を蒸気発生器5に供給する前に作動流体を予熱することが考えられよう。 Cold liquid water flowing through the heat transfer heat exchanger 6 on the coolant side can be suitably prepared in most cases and has a high heat transfer capacity. If an internal combustion engine is used in a ship, it may be considered that the heat exchanger 6 is charged with seawater. Further, as shown by the broken line in the figure, the heat transfer heat exchanger 6 is operated with the working fluid of the water-steam cycle as a cooling medium, so that the working fluid is supplied to the steam generator 5 before being supplied to the steam generator 5. It would be possible to preheat
冷たい排気ガス流になお含まれている水滴を分離し、こうして排気ガス流をさらになお乾燥させて最終洗浄に服させるために、再循環管路3中のガス洗浄装置の下流側で選択的になお液滴分離器配置、つまり排気ガス流の経路中に例えばさまざまな転向板または適宜な充填体を設けておくことができる。そこに液体出口を設けておくこともできる。 Selectively downstream of the gas scrubber in recirculation line 3 to separate the water droplets still contained in the cold exhaust gas stream and thus further dry the exhaust gas stream and subject it to final cleaning. For example, various turning plates or appropriate fillers can be provided in the droplet separator arrangement, that is, the exhaust gas flow path. A liquid outlet can also be provided there.
乾燥し浄化された冷たい排気ガス流がいまや圧縮機10に供給される。この圧縮機は再循環管路3の末端にあり、蒸気発生器5内で発生される蒸気もしくはこの蒸気で作動される蒸気タービン8を介してそれ自身駆動される。 The dried and purified cold exhaust gas stream is now fed to the compressor 10. This compressor is at the end of the recirculation line 3 and is itself driven via the steam generated in the steam generator 5 or the steam turbine 8 operated with this steam.
蒸気発生器5は再循環管路3の管路部分として形成しておくことができ、この管路部分は作動流体管路のうち蒸気ボイラとして形成される管路部分に通されている。蒸気発生器5に液状で供給される作動流体の温度と還流排気ガスの温度との差が大きいので、対流熱伝達用に利用可能な面は比較的小さくしておくことができ、蒸気発生器5は単純に二重壁管の態様に形成しておくことができ、この管内で排気ガスは蒸発されるべき作動流体の周囲を流れまたはその逆である。 The steam generator 5 can be formed as a pipe part of the recirculation pipe 3, and this pipe part is passed through a pipe part formed as a steam boiler in the working fluid pipe. Since the difference between the temperature of the working fluid supplied in liquid form to the steam generator 5 and the temperature of the recirculated exhaust gas is large, the surface available for convective heat transfer can be kept relatively small. 5 can simply be formed in the form of a double-walled tube, in which the exhaust gas flows around the working fluid to be evaporated or vice versa.
図示実施形態の変更および修正は、本発明の枠から逸脱することなく可能である。 Changes and modifications to the illustrated embodiments are possible without departing from the scope of the invention.
蒸気発生器を2段式または多段式に、シェルアンドチューブ形熱交換器として形成された1つの蒸発器とシェルアンドチューブ形熱交換器として形成された1つまたは複数の過熱器段とを備えて設計し、再循環ガス圧縮機‐ターボセットで必要とされない蒸気力を利用するために、選択的に投入可能な別の蒸気負荷に至る他の圧力管路を設けることが考えられよう。 Steam generator in two or multiple stages, with one evaporator formed as a shell and tube heat exchanger and one or more superheater stages formed as a shell and tube heat exchanger In order to take advantage of the steam power that is designed and utilized not in the recirculating gas compressor-turbo set, it would be conceivable to provide other pressure lines leading to another steam load that can be selectively charged.
再循環管路中に配置される蒸気発生器5の代わりにまたはそれを補足して、再循環ガス圧縮機‐蒸気タービン8を作動させるのに必要な蒸気圧力を完全にまたは部分的に提供するために、図に破線で示唆したように排気経路中で給気空気‐ターボ過給機1のタービン18の下流側に別の蒸気発生器5aを設けておくこともできる。 Instead of or in addition to the steam generator 5 located in the recirculation line, it provides fully or partly the steam pressure required to operate the recirculation gas compressor-steam turbine 8 Therefore, as suggested by a broken line in the figure, another steam generator 5a can be provided on the downstream side of the turbine 18 of the supply air-turbosupercharger 1 in the exhaust path.
Claims (10)
シリンダ(Z)とクランク軸と協動するピストン(K)とによって限定される少なくとも1つの燃焼室(B)を備えており、前記燃焼室が、主に排気弁(A)の弁頭と付設された頭座との間に形成されて排気ガスを排気経路(12、15)内に排出する少なくとも1つの出口と、主に前記ピストン(K)によって制御可能で吸入経路(11、13、14)から掃気ガスを供給する少なくとも1つの入口とを有し、
前記吸入経路(11、13、14)中に圧縮機(19)と前記排気経路(12、15)中にタービン(18)とを有する少なくとも1つのターボ過給機(1)を備えており、
前記排気経路(12、15)または前記燃焼室(B)から分岐して前記吸入経路(11、13、14)へと通じて排気ガス部分流を前記吸入経路(11、13、14)に還流させる再循環管路(3)を備えており、還流排気ガス部分流を前記吸入経路(11、13、14)内の掃気ガス流に押し込むために前記再循環管路中に少なくとも1つの再循環ガス圧縮機(10)が設けられているものにおいて、
前記再循環ガス圧縮機(10)を駆動するために、前記再循環ガス圧縮機(10)と連結されてトルクを伝達する蒸気タービン(8)が設けられており、つまり前記再循環ガス圧縮機(10)とで変速機なしの蒸気ターボセット(8、10)を形成する蒸気タービン(8)が設けられ、
作動流体を蒸発させるために、2サイクル大型ディーゼルエンジンの排気ガスの少なくとも一部で作動される蒸気発生器(5;5a)が設けられており、前記再循環ガス圧縮機(10)と連結された前記蒸気タービン(8)に蒸気を供給するために作動流体管路(4)が、前記蒸気発生器(5)から前記蒸気タービン(8)に至る少なくとも1つの圧力管路(4)を含み、
還流排気ガス部分流で作動される熱交換器(5)が前記蒸気発生器(5)として前記再循環管路(3)中で前記蒸気タービン(8)の上流側に設けられ、
前記作動流体管路(4)が前記蒸気タービン(8)から、流れの点で下流側に設けられた凝縮器(9)へと通じ、前記凝縮器(9)内で作動流体が液化され、そこから供給ポンプ(16)に供給され、前記作動流体管路(4)を介して前記供給ポンプ(16)と結合された前記蒸気発生器(5)へ前記供給ポンプ(16)で供給されることを特徴とする2サイクル大型ディーゼルエンジン。 A two-cycle large diesel engine,
It has at least one combustion chamber (B) limited by a cylinder (Z) and a piston (K) that cooperates with the crankshaft. The combustion chamber is mainly attached to the valve head of the exhaust valve (A). And at least one outlet formed between the head and the exhaust passage for discharging exhaust gas into the exhaust passage (12, 15), and the intake passage (11, 13, 14) mainly controllable by the piston (K) And at least one inlet for supplying scavenging gas from
At least one turbocharger (1) having a compressor (19) in the suction path (11, 13, 14) and a turbine (18) in the exhaust path (12, 15);
Branches from the exhaust path (12, 15) or the combustion chamber (B) to the intake path (11, 13, 14) to recirculate the exhaust gas partial flow to the intake path (11, 13, 14) A recirculation line (3) for allowing at least one recirculation in the recirculation line to push the recirculated exhaust gas partial flow into the scavenging gas flow in the suction path (11, 13, 14) In what is provided with a gas compressor (10),
In order to drive the recirculation gas compressor (10), a steam turbine (8) connected to the recirculation gas compressor (10) and transmitting torque is provided, that is, the recirculation gas compressor. (10) and a steam turbine (8) forming a steam turbo set (8, 10) without a transmission is provided,
In order to evaporate the working fluid, a steam generator (5; 5a) is provided which is operated with at least part of the exhaust gas of a two-cycle large diesel engine and is connected to the recirculation gas compressor (10). The working fluid line (4) for supplying steam to the steam turbine (8) includes at least one pressure line (4) from the steam generator (5) to the steam turbine (8). ,
A heat exchanger (5) operated with a recirculated exhaust gas partial flow is provided upstream of the steam turbine (8) in the recirculation line (3) as the steam generator (5) ,
The working fluid line (4) leads from the steam turbine (8) to a condenser (9) provided downstream in terms of flow, and the working fluid is liquefied in the condenser (9), From there, it is supplied to the supply pump (16) and supplied to the steam generator (5) connected to the supply pump (16) via the working fluid line (4) by the supply pump (16). This is a two-cycle large diesel engine.
The working fluid line (4) is passed through the cooling mechanism (6) in a region upstream of the steam generator (8), and the working fluid is preheated by the cooling medium or uses itself as the cooling medium. The two-cycle large diesel engine according to claim 9 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012009319.5 | 2012-05-10 | ||
DE102012009319.5A DE102012009319B4 (en) | 2012-05-10 | 2012-05-10 | Two-stroke large diesel engine with Rezirkulationsgasverdichter and thus coupled steam turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013234662A JP2013234662A (en) | 2013-11-21 |
JP6095470B2 true JP6095470B2 (en) | 2017-03-15 |
Family
ID=49475257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013097958A Active JP6095470B2 (en) | 2012-05-10 | 2013-05-07 | Internal combustion engine |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6095470B2 (en) |
KR (2) | KR20130126505A (en) |
CN (1) | CN103388525B (en) |
DE (1) | DE102012009319B4 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103953470B (en) * | 2014-03-21 | 2016-06-29 | 哈尔滨工程大学 | A kind of supercharged diesel engine air intake duct humidifying device |
CN104500218B (en) * | 2014-11-26 | 2017-01-11 | 上海交通大学 | System capable of simultaneously improving low-speed working condition performance, high-speed working condition fuel efficiency, NOx emission and transient performance of internal combustion engine |
JP5778849B1 (en) | 2014-12-22 | 2015-09-16 | 三井造船株式会社 | Power equipment |
JP6156410B2 (en) | 2015-02-25 | 2017-07-05 | トヨタ自動車株式会社 | Rankine cycle system |
WO2017041857A1 (en) * | 2015-09-11 | 2017-03-16 | Volvo Truck Corporation | Exhaust gas recirculation arrangement |
DE102016200567A1 (en) * | 2016-01-18 | 2017-07-20 | Mahle International Gmbh | Engine system |
KR102463697B1 (en) * | 2016-12-14 | 2022-11-07 | 현대자동차주식회사 | Vehicle heat exchanger |
FR3064300A1 (en) * | 2017-03-23 | 2018-09-28 | New Times | TWO-TIME EXPLOSION ENGINE |
US10995657B2 (en) * | 2017-12-20 | 2021-05-04 | John Manley McDonald | Externally powered turbine for an internal combustion engine |
AT522176B1 (en) * | 2019-07-23 | 2020-09-15 | Avl List Gmbh | METHOD OF OPERATING A COMBUSTION ENGINE |
DE102019122643A1 (en) * | 2019-08-22 | 2021-02-25 | Man Energy Solutions Se | Exhaust gas recirculation fan and internal combustion engine |
CN113864040B (en) * | 2021-09-24 | 2022-12-06 | 中船动力研究院有限公司 | Pressure regulating system for low-load air suction of two-stroke diesel engine and ship |
CN114000961A (en) * | 2021-10-27 | 2022-02-01 | 中船动力研究院有限公司 | Exhaust gas recirculation system |
EP4365423A1 (en) | 2022-11-04 | 2024-05-08 | Winterthur Gas & Diesel Ltd. | Gas cooling device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4366674A (en) * | 1980-06-06 | 1983-01-04 | Caterpillar Tractor Co. | Internal combustion engine with Rankine bottoming cycle |
JPS61151039U (en) * | 1985-03-11 | 1986-09-18 | ||
DK170218B1 (en) * | 1993-06-04 | 1995-06-26 | Man B & W Diesel Gmbh | Large pressurized diesel engine |
JP4342094B2 (en) * | 2000-09-04 | 2009-10-14 | 大阪瓦斯株式会社 | Waste heat absorption refrigerator |
CN100400843C (en) * | 2002-05-21 | 2008-07-09 | 曼B与W狄赛尔公司 | Large internal combustion engine with supercharger |
DE10331187B4 (en) * | 2003-07-10 | 2007-09-06 | Man B & W Diesel A/S | reciprocating internal combustion engine |
JP4458966B2 (en) * | 2004-07-15 | 2010-04-28 | エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド | Reciprocating internal combustion engine |
JP4709923B2 (en) * | 2006-04-12 | 2011-06-29 | エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド | Large turbocharged diesel engine with energy recovery configuration |
US20090031999A1 (en) * | 2007-08-02 | 2009-02-05 | Donald Charles Erickson | Charge air chiller |
DE102007052118A1 (en) * | 2007-10-30 | 2009-05-07 | Voith Patent Gmbh | Power transmission controlling method for power train of e.g. lorry, involves interrupting power transmission in turbo-compound system within range of rotational speed-torque-values depending on detected rotational speed and detected torque |
DE102008058612B4 (en) * | 2008-11-22 | 2017-05-24 | Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland | Internal combustion engine and exhaust valve housing and Rezirkulationsgassammelbehälter this |
DE102009010808B3 (en) | 2009-02-27 | 2010-08-19 | Man Diesel Filial Af Man Diesel Se, Tyskland | Method and apparatus for cleaning engine exhaust |
JP5271961B2 (en) * | 2010-05-18 | 2013-08-21 | 三菱重工業株式会社 | Supercharger for internal combustion engine |
JP5787500B2 (en) * | 2010-08-24 | 2015-09-30 | 三菱重工業株式会社 | Engine exhaust gas purification device and ship |
CN202170824U (en) * | 2011-07-19 | 2012-03-21 | 上海外高桥造船海洋工程设计有限公司 | Marine diesel engine waste gas thermal circulation device |
-
2012
- 2012-05-10 DE DE102012009319.5A patent/DE102012009319B4/en active Active
-
2013
- 2013-05-07 JP JP2013097958A patent/JP6095470B2/en active Active
- 2013-05-09 KR KR1020130052381A patent/KR20130126505A/en active Search and Examination
- 2013-05-10 CN CN201310172357.3A patent/CN103388525B/en active Active
-
2017
- 2017-02-24 KR KR1020170024477A patent/KR101793460B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN103388525B (en) | 2018-03-16 |
KR20170028912A (en) | 2017-03-14 |
DE102012009319A1 (en) | 2013-11-14 |
KR20130126505A (en) | 2013-11-20 |
JP2013234662A (en) | 2013-11-21 |
CN103388525A (en) | 2013-11-13 |
DE102012009319B4 (en) | 2018-11-08 |
KR101793460B1 (en) | 2017-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6095470B2 (en) | Internal combustion engine | |
DK178133B1 (en) | Large turbocharged diesel engine with energy recovery device | |
JP5221541B2 (en) | Supercharger | |
US8371251B2 (en) | Methods and apparatuses for heating, concentrating and evaporating fluid | |
US20120260654A1 (en) | Driving device | |
JP5497900B2 (en) | Internal combustion engine | |
JP5121892B2 (en) | Large turbocharged diesel engine with energy recovery configuration | |
JP6122300B2 (en) | Engine system and ship | |
JP2001132442A (en) | Engine provided with energy recovering device | |
JP2001132538A (en) | Engine provided with energy recovery device | |
JP5377532B2 (en) | Large turbocharged diesel engine with energy recovery configuration | |
JP5612187B2 (en) | Turbocharged large low-speed two-stroke uniflow internal combustion engine with crosshead and steam turbine | |
JP5965019B1 (en) | Fuel supply device | |
WO2011065304A1 (en) | Steam turbine power generation system and ship provided with same | |
RU2232912C2 (en) | Method of operation and design of internal combustion piston engine with complex system of deep recovery of heat and reduction of harmful emission | |
JP2019501333A (en) | Cleaning method for air-fuel mixture cooler and internal combustion engine | |
JP2018066277A (en) | Outboard motor | |
CN102900484B (en) | Large-scale turbocharged diesel engine with energy recovery device | |
CN102900483B (en) | There is the large cross-head type two-stroke diesel engine of energy recycle device | |
JP2020060177A (en) | Exhaust energy recovery system of two-stroke reciprocating engine | |
GB2544479B (en) | Internal combustion engine with increased thermal efficiency | |
RU1835460C (en) | Power plant | |
RU2323115C1 (en) | Locomotive power plant with regeneration of heat | |
RO130861B1 (en) | Supercharged engine with counter-rotating shafts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6095470 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |