[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6067419B2 - Method for manufacturing laminated member - Google Patents

Method for manufacturing laminated member Download PDF

Info

Publication number
JP6067419B2
JP6067419B2 JP2013039529A JP2013039529A JP6067419B2 JP 6067419 B2 JP6067419 B2 JP 6067419B2 JP 2013039529 A JP2013039529 A JP 2013039529A JP 2013039529 A JP2013039529 A JP 2013039529A JP 6067419 B2 JP6067419 B2 JP 6067419B2
Authority
JP
Japan
Prior art keywords
layer
polyimide
film
laminated member
support material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013039529A
Other languages
Japanese (ja)
Other versions
JP2014166722A (en
Inventor
平石 克文
克文 平石
重喜 西澤
重喜 西澤
芳樹 須藤
芳樹 須藤
若菜 ▲高▼吉
若菜 ▲高▼吉
奈津子 岡▲崎▼
奈津子 岡▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2013039529A priority Critical patent/JP6067419B2/en
Priority to TW106115970A priority patent/TWI639637B/en
Priority to TW103105243A priority patent/TWI604014B/en
Priority to CN201410058089.7A priority patent/CN104015466B/en
Priority to CN201710343270.6A priority patent/CN107264003B/en
Priority to KR1020140021959A priority patent/KR20140108136A/en
Publication of JP2014166722A publication Critical patent/JP2014166722A/en
Application granted granted Critical
Publication of JP6067419B2 publication Critical patent/JP6067419B2/en
Priority to KR1020210010103A priority patent/KR102392962B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0038Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving application of liquid to the layers prior to lamination, e.g. wet laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、積層部材の製造方法に関し、詳しくは、長尺の基材フィルムを長手方向に繰り出して所定の機能層を形成した後、基材フィルムの一部を分離して取り除き、薄肉化して積層部材を得るようにする積層部材の製造方法に関する。   The present invention relates to a method for producing a laminated member, and more specifically, after a long base film is drawn out in the longitudinal direction to form a predetermined functional layer, a part of the base film is separated and removed to reduce the thickness. The present invention relates to a method for manufacturing a laminated member for obtaining a laminated member.

例えば、液晶表示装置や有機EL表示装置等の表示装置は、テレビのような大型ディスプレイや、携帯電話、パソコン、スマートフォンなどの小型ディスプレイをはじめ、各種のディスプレイ用途に使用されている。このうち、例えば、有機EL表示装置では、ガラス基板上に薄膜トランジスタ(以下、TFT)を形成し、電極、発光層、電極を順次形成して、最後に別途ガラス基板や多層薄膜等で気密封止して作られる。   For example, display devices such as a liquid crystal display device and an organic EL display device are used for various displays such as a large display such as a television and a small display such as a mobile phone, a personal computer, and a smartphone. Among these, for example, in an organic EL display device, a thin film transistor (hereinafter referred to as TFT) is formed on a glass substrate, an electrode, a light emitting layer, and an electrode are sequentially formed, and finally hermetically sealed with a glass substrate or a multilayer thin film. Made.

これらの表示装置において、ガラス基板を樹脂基板に置き換えることで、従来よりも薄型、軽量、フレキシブル化が実現でき、表示装置の用途やバリエーションを更に広げることができる。しかしながら、一般に、樹脂はガラスと比較して寸法安定性、透明性、耐熱性、耐湿性、ガスバリア性等に劣るため、これらを改善するための検討が種々行われている。   In these display devices, by replacing the glass substrate with a resin substrate, it is possible to realize a thinner, lighter, and more flexible display than in the past, and the applications and variations of the display device can be further expanded. However, in general, resins are inferior in dimensional stability, transparency, heat resistance, moisture resistance, gas barrier properties, and the like as compared with glass, and various studies have been made to improve them.

例えば、特許文献1では、フレキシブルディスプレイ用の樹脂基板として有用なポリイミド、及びその前駆体に係る発明が提案されており、シクロへキシルフェニルテトラカルボン酸等のような脂環式構造を含んだテトラカルボン酸類を用いて、各種ジアミンと反応させたポリイミドが、透明性に優れることを開示している。また、非特許文献1及び2では、透明性の高い樹脂材料を支持基板に適用した有機EL表示装置が提案されている。   For example, Patent Document 1 proposes an invention related to a polyimide useful as a resin substrate for a flexible display and a precursor thereof, and includes a tetracyclic structure including an alicyclic structure such as cyclohexylphenyltetracarboxylic acid. It discloses that polyimides reacted with various diamines using carboxylic acids are excellent in transparency. Non-Patent Documents 1 and 2 propose organic EL display devices in which a highly transparent resin material is applied to a support substrate.

一方で、フレキシブル性に優れる樹脂基板を用いることで、ロール・ツー・ロール方式での製造を可能にすることができる。例えば、特許文献2には、有機EL表示装置の製造において、ポリカーボネート等のような透明なプラスチック基板の両面にバリア層を有したロール状フィルム基板を用いて、ロール・ツー・ロール方式で搬送させ、スパッタ装置によりロール状フィルム基板上に薄膜トランジスタの活性層を形成することが記載されている(図6参照)。このような長尺の樹脂基材を用いることで連続操業が可能になり、表示装置の生産性向上が期待できる。   On the other hand, by using a resin substrate having excellent flexibility, it is possible to make a roll-to-roll method. For example, Patent Document 2 discloses that in the manufacture of an organic EL display device, a roll-shaped film substrate having barrier layers on both sides of a transparent plastic substrate such as polycarbonate is used and conveyed in a roll-to-roll manner. Describes that an active layer of a thin film transistor is formed on a roll-shaped film substrate by a sputtering apparatus (see FIG. 6). By using such a long resin base material, continuous operation becomes possible, and an improvement in productivity of the display device can be expected.

特開2008−231327号公報JP 2008-231327 A 特開2011−181590号公報JP 2011-181590 A

S. An et.al.,“2.8-inch WQVGA Flexible AMOLED Using High Performance Low Temperature Polysilicon TFT on Plastic Substrates”, SID2010 DIGEST, p706(2010)S. An et. al., “2.8-inch WQVGA Flexible AMOLED Using High Performance Low Temperature Polysilicon TFT on Plastic Substrates”, SID2010 DIGEST, p706 (2010) Oishi et.al.,“Transparent PI for flexible display”,IDW‘11 FLX2/FMC4-1Oishi et. al., “Transparent PI for flexible display”, IDW’11 FLX2 / FMC4-1

上記のように、表示装置等で用いられているガラス基板を樹脂基板(樹脂フィルム)に置き換えることで、薄型、軽量、フレキシブル化が可能になる。特に、スマートフォンをはじめとしたモバイル機器では薄型・軽量化の開発競争が激しく、その要望は極めて強い。ところが、樹脂基板の厚みを薄くするにはハンドリング性を十分考慮する必要があり、とりわけロール・ツー・ロール方式のように長尺の樹脂フィルムを搬送する際には、フィルムが極端に薄いと巻取り時などにおいてその伸びが問題となり、場合によってはフィルムに皺が生じたり、破けが発生してしまうおそれがある。また、フィルム自体に皺や破けなどが発生しない場合であっても、TFTや電極、発光層といったフィルム上に形成される各種機能層が、フィルムの伸縮により製造過程で品質に影響を受けるおそれがある。   As described above, replacement of a glass substrate used in a display device or the like with a resin substrate (resin film) makes it possible to reduce the thickness, weight, and flexibility. In particular, mobile devices such as smartphones are highly competitive in the development of thinner and lighter devices, and the demand is extremely strong. However, in order to reduce the thickness of the resin substrate, it is necessary to fully consider handling properties. Especially when a long resin film is transported as in the roll-to-roll method, if the film is extremely thin, it is wound. The elongation becomes a problem at the time of removal, and in some cases, the film may be wrinkled or broken. Even if the film itself does not wrinkle or break, the various functional layers formed on the film, such as TFTs, electrodes, and light-emitting layers, may be affected by quality during the manufacturing process due to the expansion and contraction of the film. is there.

そこで、本発明は、これらの問題を鑑みてなされたものであり、薄い樹脂フィルム上に機能層を備えた積層部材を得る上で、その製造過程におけるハンドリング性を考慮しながら、機能層の品質への影響を抑えて、積層部材を製造することができる方法を提供することを目的とする。   Therefore, the present invention has been made in view of these problems. In obtaining a laminated member having a functional layer on a thin resin film, the quality of the functional layer is taken into consideration in the handling process in the manufacturing process. An object of the present invention is to provide a method capable of producing a laminated member while suppressing the influence on the surface.

上記課題を解決するために、本発明者らは鋭意検討した結果、支持材上にポリイミド層を備えた基材フィルムを用いて、ポリイミド層側に機能層を形成した後に、ポリイミド層と支持材との界面を利用して支持材を分離し、取り除いて薄肉化することで、製造過程でのハンドリング性の低下や機能層の品質への影響を抑えて、ポリイミド層からなる樹脂フィルム上に機能層を備えた積層部材を得ることができることを見出し、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, after forming a functional layer on the polyimide layer side using a base film provided with a polyimide layer on the support material, the polyimide layer and the support material By separating and removing the support material using the interface with the thin film, it is possible to function on the resin film consisting of the polyimide layer, suppressing the deterioration of handling in the manufacturing process and the effect on the quality of the functional layer. The present inventors have found that a laminated member having a layer can be obtained and completed the present invention.

すなわち、本発明は、ロール状に巻き取られた長尺の基材フィルムをロール・ツー・ロール方式により長手方向に繰り出して成膜処理し、必要に応じてパターニング処理して、基材フィルム上に機能層を形成して積層部材を連続的に製造する方法であって、前記基材フィルムが、支持材上にポリアミド酸溶液を塗布してイミド化させたポリイミド層を備えるものであり、該ポリイミド層側に機能層を形成した後、ポリイミド層と支持材との界面を利用して支持材を分離して取り除き、基材フィルムを薄肉化することを特徴とする積層部材の製造方法である。 That is, the present invention is to roll out a long base film wound up in a roll shape in the longitudinal direction by a roll-to-roll method , perform a film forming process, and perform a patterning process as necessary. a laminated by forming a functional layer member a continuous process for producing the substrate film, which comprises a polyimide layer having a polyamic acid solution was applied by imidization on the support member, the After the functional layer is formed on the polyimide layer side, the support material is separated and removed using the interface between the polyimide layer and the support material, and the base material film is thinned. .

本発明では、ロール状に巻き取られた長尺状の基材フィルムを長手方向に繰り出して成膜処理し、必要に応じてその成膜をパターニング処理するなどして、基材フィルム上に機能層を形成した後、基材フィルムの一部を分離して取り除き、薄肉化して、薄い樹脂フィルム(ポリイミド層)上に機能層を備えた積層部材を得るようにする。   In the present invention, a long base film wound up in a roll shape is stretched in the longitudinal direction to form a film, and if necessary, the film is patterned to function on the base film. After the layer is formed, a part of the base film is separated and removed, and thinned to obtain a laminated member having a functional layer on a thin resin film (polyimide layer).

一般に、ロール・ツー・ロール方式を採用する場合には、送り出し側のロール巻機構に巻き取られた長尺の樹脂フィルムは、送出機構によって長手方向に繰り出されながらロール搬送されて、成膜等のプロセス処理がなされ、巻取機構を介して、巻き取り側のロール巻機構で巻き取られていく。   In general, when adopting a roll-to-roll method, a long resin film wound up by a feed-side roll winding mechanism is transported in a roll while being fed out in a longitudinal direction by a delivery mechanism, to form a film, etc. The process is performed, and the film is wound by the roll-winding mechanism on the winding side via the winding mechanism.

ここで、上記特許文献2では、長尺の樹脂フィルムとして、ポリカーボネートのほかに、ポリスルホン系樹脂、オレフィン系樹脂、環状ポリオレフィン系樹脂等のような透明なプラスチックフィルムが使用できるとし、その厚みは50〜200μm程度であるとする(段落0083参照)。ところが、少なくとも、樹脂フィルムが巻き取り側のロール巻機構で巻き取られていく際には引張応力が掛かる状態になることから、樹脂フィルムの厚みが薄くなると当然に伸びや縮みが問題となる。そのため、少なくとも100μm程度の厚みを有していないと、実際には、ロール巻機構で巻き取る際に皺が発生したり、フィルムが破けてしまうような不具合が発生してしまう。また、機能層を形成するために複数層の成膜を行ったり、成膜後に一旦巻き取られた樹脂フィルムを再度ロール・ツー・ロール方式により繰り出しながら、成膜した金属をパターニング処理するなどして複数の工程を経るような場合には、フィルムの伸縮があると寸法精度が維持されず、得られる機能層の品質に影響を与えてしまうこともある。   Here, in Patent Document 2, it is assumed that a transparent plastic film such as a polysulfone resin, an olefin resin, a cyclic polyolefin resin, or the like can be used as the long resin film in addition to the polycarbonate, and the thickness thereof is 50. It is assumed that the thickness is about 200 μm (see paragraph 0083). However, since the tensile stress is applied at least when the resin film is wound up by the roll-side roll winding mechanism, naturally, elongation and shrinkage become a problem when the thickness of the resin film is reduced. Therefore, if it does not have a thickness of at least about 100 μm, in actuality, defects such as wrinkles or tearing of the film occur when winding with the roll winding mechanism. In addition, multiple layers may be formed to form a functional layer, or the formed metal may be subjected to patterning while the resin film once wound up is rolled out again by a roll-to-roll method. In a case where a plurality of processes are performed, if there is expansion and contraction of the film, the dimensional accuracy is not maintained, and the quality of the obtained functional layer may be affected.

そこで、本発明においては、支持材上にポリアミド酸溶液を塗布してイミド化させたポリイミド層を備えた基材フィルムを用いるようにし、ロール・ツー・ロール方式等によって少なくとも機能層を形成する間は、基材フィルムの厚みによって機械的強度を確保するようにし、機能層を形成した後には、ポリイミド層と支持材との界面を利用して支持材を分離して取り除くことで、ポリイミド層からなる薄い樹脂フィルム上に機能層を備えた積層部材を得るようにする。なお、本発明における積層部材の製造方法は、送り出し側のロール巻機構と巻き取り側のロール巻機構とを備えたロール・ツー・ロール方式に適用できることは勿論、例えば、巻き取り側のロール巻機構の手前の巻取機構によってロール搬送された基材フィルムをシート状に裁断するような不完全なロール・ツー・ロール方式にも適用することができ、いずれかの場面でフィルムに張力が掛かるような場合に特に有効である。   Therefore, in the present invention, a base film having a polyimide layer imidized by applying a polyamic acid solution on a support material is used, and at least a functional layer is formed by a roll-to-roll method or the like. The mechanical strength is ensured by the thickness of the base film, and after the functional layer is formed, the support material is separated and removed using the interface between the polyimide layer and the support material. A laminated member having a functional layer on a thin resin film is obtained. In addition, the manufacturing method of the laminated member in the present invention can be applied to a roll-to-roll method including a roll-side roll winding mechanism and a roll-side roll winding mechanism. It can also be applied to an incomplete roll-to-roll system that cuts the substrate film rolled by the take-up mechanism in front of the mechanism into a sheet, and tension is applied to the film in any situation This is particularly effective in such cases.

本発明において、ポリイミド層と支持材との界面を利用して支持材を分離して取り除き、基材フィルムを薄肉化できるようにするためには、ポリイミド層と支持材との界面を剥離し易い状態にする必要がある。その手段として、好適には、ポリイミド層と支持材との界面において、特定の化学構造を有するポリイミドを利用するのがよい。   In the present invention, the interface between the polyimide layer and the support material is easily separated by using the interface between the polyimide layer and the support material so that the base film can be thinned. It needs to be in a state. As the means, it is preferable to use a polyimide having a specific chemical structure at the interface between the polyimide layer and the support material.

一般に、ポリイミドは、原料である酸無水物とジアミンとを重合して得られ、下記一般式(1)で表すことができる。

Figure 0006067419
式中、Ar1は酸無水物残基である4価の有機基を表し、Ar2はジアミン残基である2価の有機基であり、耐熱性の観点から、Ar1、Ar2の少なくとも一方は、芳香族残基であるのが望ましい。 Generally, a polyimide is obtained by polymerizing a raw acid anhydride and a diamine, and can be represented by the following general formula (1).
Figure 0006067419
In the formula, Ar 1 represents a tetravalent organic group which is an acid anhydride residue, Ar 2 is a divalent organic group which is a diamine residue, and from the viewpoint of heat resistance, Ar 1 and Ar 2 are at least One is preferably an aromatic residue.

本発明において好適に用いられるポリイミド(ポリイミド樹脂)は、その第1の例として、下記繰り返し構造単位(a)を有するポリイミドが挙げられる。より好ましくは、下記繰り返し単位を80モル%以上の割合で含有するものであるのがよい。

Figure 0006067419
このような繰返し構造単位のうち、更に好ましくは、下記繰り返し構造単位(b)を有するポリイミドである。
Figure 0006067419
As a polyimide (polyimide resin) suitably used in the present invention, a polyimide having the following repeating structural unit (a) can be given as a first example. More preferably, the following repeating unit is contained in a proportion of 80 mol% or more.
Figure 0006067419
Among such repeating structural units, a polyimide having the following repeating structural unit (b) is more preferable.
Figure 0006067419

この第1の例のような繰返し構造単位(a)又は(b)を有するポリイミドであれば、ガラス転移温度(Tg)が300℃以上の耐熱性ポリイミド面を形成することができるため、ポリイミド層がこのようなポリイミドにより形成されるようにするか、或いは、支持材の表面がこのようなポリイミドからなる耐熱性ポリイミド面を有するようにすることで、ポリイミド層と支持材との界面での分離を容易にすることができる。   If it is a polyimide which has a repeating structural unit (a) or (b) like this 1st example, since a glass transition temperature (Tg) can form a heat resistant polyimide surface with 300 degreeC or more, a polyimide layer Is formed by such a polyimide, or the surface of the support material has a heat-resistant polyimide surface made of such a polyimide, so that separation at the interface between the polyimide layer and the support material is performed. Can be made easier.

ここで、上記第1の例として示したポリイミドを利用する場合、そのポリイミド以外に最大20モル%未満の割合で添加されてもよいその他のポリイミドについては、特に制限されるものではなく、後述するような一般的な酸無水物とジアミンを使用することができる。   Here, when the polyimide shown as the first example is used, other polyimides that may be added in a proportion of less than 20 mol% at the maximum other than the polyimide are not particularly limited and will be described later. Such general acid anhydrides and diamines can be used.

また、好適に用いられるポリイミド(ポリイミド樹脂)の第2の例としては、含フッ素ポリイミドが挙げられる。すなわち、ポリイミド層がこのようなポリイミドにより形成されるようにするか、或いは、支持材の表面がこのようなポリイミドからなる耐熱性ポリイミド面を有するようにすることで、ポリイミド層と支持材との界面での分離を容易にすることができる。ここで、含フッ素ポリイミドとは、ポリイミド構造中にフッ素原子を有するものを指し、ポリイミド原料である酸無水物、及びジアミンの少なくとも一方の成分において、フッ素含有基を有するものである。このような含フッ素ポリイミドとしては、例えば、上記一般式(1)で表されるもののうち、式中のAr1が4価の有機基であり、Ar2が下記一般式(2)又は(3)で表される2価の有機基で表されるものが例示される。

Figure 0006067419
Moreover, fluorine-containing polyimide is mentioned as a 2nd example of the polyimide (polyimide resin) used suitably. That is, the polyimide layer is formed of such a polyimide, or the surface of the support material has a heat-resistant polyimide surface made of such a polyimide, so that the polyimide layer and the support material Separation at the interface can be facilitated. Here, the fluorine-containing polyimide means one having a fluorine atom in the polyimide structure, and has a fluorine-containing group in at least one component of an acid anhydride and a diamine which are polyimide raw materials. As such a fluorine-containing polyimide, for example, among those represented by the general formula (1), Ar 1 in the formula is a tetravalent organic group, and Ar 2 is represented by the following general formula (2) or (3 What is represented by a divalent organic group represented by
Figure 0006067419

上記一般式(2)又は一般式(3)におけるR1〜R8は、互いに独立に水素原子、フッ素原子、炭素数1〜5までのアルキル基若しくはアルコキシ基、又はフッ素置換炭化水素基であり、一般式(2)にあっては、R1〜R4のうち少なくとも一つはフッ素原子又はフッ素置換炭化水素基であり、また、一般式(3)にあっては、R1〜R8のうち少なくとも一つはフッ素原子又はフッ素置換炭化水素基である。このうち、R1〜R8の好適な具体的としては、−H、−CH3、−OCH3、−F、−CF3などが挙げられるが、式(2)又は式(3)において少なくとも一つの置換基が、−F又は−CF3の何れかであるのが好ましい。 R 1 to R 8 in the general formula (2) or the general formula (3) are each independently a hydrogen atom, a fluorine atom, an alkyl group or an alkoxy group having 1 to 5 carbon atoms, or a fluorine-substituted hydrocarbon group. In the general formula (2), at least one of R 1 to R 4 is a fluorine atom or a fluorine-substituted hydrocarbon group, and in the general formula (3), R 1 to R 8. At least one of them is a fluorine atom or a fluorine-substituted hydrocarbon group. Among these, preferred specific examples of R 1 to R 8 include —H, —CH 3 , —OCH 3 , —F, —CF 3, and the like. At least in Formula (2) or Formula (3), One substituent is preferably either —F or —CF 3 .

含フッ素ポリイミドを形成する際の一般式(1)中のAr1の具体例としては、例えば、以下のような4価の酸無水物残基が挙げられる。

Figure 0006067419
Specific examples of Ar 1 in the general formula (1) when forming the fluorine-containing polyimide include, for example, the following tetravalent acid anhydride residues.
Figure 0006067419

上記のような含フッ素ポリイミドには透明性に優れたものが含まれ、例えば液晶表示装置や有機EL表示装置等の表示装置をはじめ、それらで使用されて透明性が要求される積層部材を得る場合には、ポリイミド層を形成するものとして好適であるが、その透明性をより優れたものとしたり、ポリイミド層と支持材との界面での剥離性をより向上させることなどを考慮すれば、一般式(1)におけるAr2を与える具体的なジアミン残基として、好ましくは、以下のものを使用するのがよい。

Figure 0006067419
The fluorine-containing polyimide as described above includes those having excellent transparency. For example, display devices such as liquid crystal display devices and organic EL display devices are used, and laminated members that require transparency are obtained. In this case, it is suitable for forming the polyimide layer, but if it is considered to make its transparency more excellent or to improve the peelability at the interface between the polyimide layer and the support material, As specific diamine residues that give Ar 2 in the general formula (1), the following are preferably used.
Figure 0006067419

また、このような含フッ素ポリイミドにおいて、次に挙げる一般式(4)又は(5)で表される構造単位のどちらか一方を80モル%以上の割合で有する場合には、透明性と剥離性が優れる他、熱膨張性が低く寸法安定性に優れることからより好ましい。すなわち、下記一般式(4)又は(5)で表される構造単位を有するポリイミドであれば、440nmから780nmの波長領域での透過率が70%以上、好適には80%以上を示すことから、表示装置等のように透明性が要求される積層部材におけるポリイミド層を形成するものとしてより有利である。また、300℃以上のガラス転移温度(Tg)を有するようになると共に、熱膨張係数は25ppm/K以下、好適には10ppm/K以下にすることができる。そのため、このようなポリイミドをポリイミド層と支持材との両方で使用することで、プロセス中に温度変化を受けても両者の熱膨係数が近いため、反ったり皺が寄ったりすることを防止できる。

Figure 0006067419
Further, in such a fluorine-containing polyimide, when any one of the structural units represented by the following general formula (4) or (5) is contained in a proportion of 80 mol% or more, transparency and releasability are obtained. In addition, the thermal expansion property is low and the dimensional stability is excellent. That is, if the polyimide has a structural unit represented by the following general formula (4) or (5), the transmittance in the wavelength region from 440 nm to 780 nm is 70% or more, preferably 80% or more. It is more advantageous for forming a polyimide layer in a laminated member that requires transparency, such as a display device. Further, it has a glass transition temperature (Tg) of 300 ° C. or higher, and the thermal expansion coefficient can be 25 ppm / K or less, preferably 10 ppm / K or less. Therefore, by using such a polyimide in both the polyimide layer and the support material, even when subjected to a temperature change during the process, the thermal expansion coefficient of both of them is close, so that warpage or wrinkles can be prevented. .
Figure 0006067419

ここで、ポリイミドを一般式(4)又は(5)の構造に係るポリイミドとした場合、そのポリイミド以外に最大20モル%未満の割合で添加されてもよいその他のポリイミドについては、特に制限されるものではなく、一般的な酸無水物とジアミンを使用することができる。なかでも好ましく使用される酸無水物としては、ピロメリット酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸ニ無水物、1,4-シクロヘキサンジカルボン酸、1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,2'−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物等が挙げられる。一方の、ジアミンとしては、4,4'−ジアミノジフェニルサルフォン、トランス−1,4−ジアミノシクロヘキサン、4,4'−ジアミノシクロヘキシルメタン、2,2'−ビス(4−アミノシクロヘキシル)−ヘキサフルオロプロパン、2,2'−ビス(トリフルオロメチル)−4,4'−ジアミノビシクロヘキサン等が挙げられる。   Here, when the polyimide is a polyimide according to the structure of the general formula (4) or (5), other polyimides that may be added at a ratio of less than 20 mol% at the maximum other than the polyimide are particularly limited. In general, general acid anhydrides and diamines can be used. Among these, acid anhydrides preferably used include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,4-cyclohexanedicarboxylic acid, 1,2,3 , 4-cyclobutanetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, and the like. On the other hand, diamines include 4,4'-diaminodiphenylsulfone, trans-1,4-diaminocyclohexane, 4,4'-diaminocyclohexylmethane, 2,2'-bis (4-aminocyclohexyl) -hexafluoro. Examples include propane and 2,2′-bis (trifluoromethyl) -4,4′-diaminobicyclohexane.

上記第1及び第2の例を含めて、各種ポリイミドは、ポリアミド酸をイミド化して得ることができる。ここで、ポリアミド酸の樹脂溶液は、原料であるジアミンと酸二無水物とを実質的に等モル使用し、有機溶媒中で反応させることによって得るのがよい。より具体的には、窒素気流下にN,N−ジメチルアセトアミドなどの有機極性溶媒にジアミンを溶解させた後、テトラカルボン酸二無水物を加えて、室温で5時間程度反応させることにより得ることができる。塗工時の膜厚均一化と得られるポリイミドフィルムの機械強度の観点から、得られたポリアミド酸の重量平均分子量は1万から30万が好ましい。なお、得られるポリイミド層の好ましい分子量範囲もこのポリアミド酸と同じ分子量範囲である。また、ポリイミド層は、単層で形成されていてもよく、複数層から形成されてもよい。複数層から形成される場合には、少なくとも支持材との界面を形成する層については、上記第1及び第2の例として挙げたようなポリイミドを用いるようにすればよい。   Various polyimides including the first and second examples can be obtained by imidizing polyamic acid. Here, the polyamic acid resin solution is preferably obtained by using substantially equal moles of diamine and acid dianhydride as raw materials and reacting them in an organic solvent. More specifically, it is obtained by dissolving diamine in an organic polar solvent such as N, N-dimethylacetamide under a nitrogen stream, adding tetracarboxylic dianhydride, and reacting at room temperature for about 5 hours. Can do. The weight average molecular weight of the obtained polyamic acid is preferably 10,000 to 300,000 from the viewpoint of uniform film thickness during coating and mechanical strength of the resulting polyimide film. In addition, the preferable molecular weight range of the polyimide layer obtained is also the same molecular weight range as this polyamic acid. Moreover, the polyimide layer may be formed of a single layer or may be formed of a plurality of layers. In the case of being formed from a plurality of layers, at least the layer forming the interface with the support material may be made of polyimide as exemplified in the first and second examples.

そして、支持材上にポリイミド層を有した基材フィルムを得るには、支持材にポリアミド酸溶液を塗布した後、例えば、150〜160℃程度で加熱処理して樹脂溶液中に含まれる溶剤を除去し、更に高温で加熱処理してポリアミド酸をイミド化させる。イミド化に際して行う加熱処理は、例えば、160℃程度の温度から350℃程度の温度まで連続的又は段階的に昇温を行うようにすればよい。この際、長尺の支持材を用意しておき、これをロール・ツー・ロール方式で搬送しながら、ポリイミド層を形成するポリアミド酸の樹脂溶液を塗布するキャスト法を採用するのが好適である。   And in order to obtain the base film which has a polyimide layer on a support material, after apply | coating a polyamic acid solution to a support material, it heat-processes at about 150-160 degreeC, for example, and the solvent contained in a resin solution is used. The polyamic acid is imidized by removing and further heat-treating at a high temperature. The heat treatment performed at the time of imidation may be performed continuously or stepwise from a temperature of about 160 ° C. to a temperature of about 350 ° C., for example. At this time, it is preferable to use a casting method in which a long support material is prepared, and a polyamic acid resin solution for forming a polyimide layer is applied while being conveyed by a roll-to-roll method. .

本発明における基材フィルムを形成する支持材については、フレキシブル性を有すると共に、少なくともポリアミド酸溶液を塗布してイミド化させてポリイミド層を形成する際の熱処理に耐え得る耐熱性を備えたものであればよい。具体的には、銅箔やSUS箔などの金属箔、銅張積層体(CCL)などの金属箔−樹脂積層体、ポリイミド等の樹脂フィルム等が挙げられる。このうち、上述したように、支持材の表面が第1及び第2の例で挙げたようなポリイミドからなる耐熱性ポリイミド面を有するようにするには、これらのポリイミドを備えた金属箔−ポリイミド積層体のような支持材とするか、或いは、これらのポリイミドからなるポリイミドフィルムを単独で支持材として用いるようにしてもよい。また、ポリイミド層と支持材との界面での分離を最も容易にするには、ポリイミド層と支持材との界面がいずれも第1及び第2の例で挙げたポリイミドによって形成されるのがよい。   The support material for forming the base film in the present invention has flexibility and at least heat resistance that can withstand heat treatment when forming a polyimide layer by applying a polyamic acid solution and imidizing it. I just need it. Specifically, metal foils such as copper foil and SUS foil, metal foil-resin laminates such as copper clad laminate (CCL), resin films such as polyimide, and the like. Among these, as described above, in order to have the surface of the support material have a heat-resistant polyimide surface made of polyimide as mentioned in the first and second examples, the metal foil-polyimide provided with these polyimides A support material such as a laminate may be used, or a polyimide film made of these polyimides may be used alone as a support material. Moreover, in order to make the separation at the interface between the polyimide layer and the support material the easiest, the interface between the polyimide layer and the support material should be formed of the polyimides mentioned in the first and second examples. .

また、本発明における支持材については、ポリイミド層と支持材との界面での分離を容易にできる観点から、好ましくは、ポリイミド層と支持材との界面における支持材の表面は、表面粗さRaが100nm以下であるのがよい。更には、支持材が電気導電性を有するか、又は、ポリイミド層とは反対側の背面に電気導電層を有すると、ロール・ツー・ロール方式のようにフィルムを繰り出し、それを巻き取る際に発生する静電気による帯電を防止できる利点がある。   Further, for the support material in the present invention, from the viewpoint of facilitating separation at the interface between the polyimide layer and the support material, the surface of the support material at the interface between the polyimide layer and the support material is preferably surface roughness Ra. Is preferably 100 nm or less. Furthermore, when the support material has electrical conductivity, or has an electrical conductive layer on the back side opposite to the polyimide layer, when the film is unwound and rolled up like a roll-to-roll system, There is an advantage that charging due to generated static electricity can be prevented.

本発明においては、上記で例示したポリイミドを用いるなどすることにより、好適には、ポリイミド層と支持材との界面における接着強度が1N/m以上500N/m以下、より好適には5N/m以上300N/m以下、更に好適には10N/m以上200N/m以下にすることができて、例えば人の手で容易に剥離することができるようになる。   In the present invention, by using the polyimide exemplified above, the adhesive strength at the interface between the polyimide layer and the support material is preferably 1 N / m or more and 500 N / m or less, more preferably 5 N / m or more. It can be 300 N / m or less, more preferably 10 N / m or more and 200 N / m or less. For example, it can be easily peeled off by human hands.

本発明においては、前述したように、支持材の存在によって基材フィルムの厚みが確保されるため、ポリイミド層の厚みを薄くしても機能層を形成する際の機械的強度は維持される。ロール・ツー・ロール方式のようにフィルムを繰り出し、それを巻き取るような場合には、送出機構や巻取機構のロール、更には巻取り側のロール巻機構等でフィルムに対して引張応力が掛かるため、一般には100μm程度のフィルム厚みが必要になるが、本発明では支持材と合せて少なくともその厚みに達していればよい。そのため、ポリイミド層の厚みは100μm以下にすることができ、好適には50μm以下、より好適には30μm以下まで薄くすることができる。なお、機能層を備えた積層部材とする上で、絶縁性を担保することなどを考慮すれば、ポリイミド層の厚みの下限は2μm、好ましくは5μmにするのが望ましい。   In the present invention, as described above, since the thickness of the base film is ensured by the presence of the support material, the mechanical strength when forming the functional layer is maintained even if the thickness of the polyimide layer is reduced. When the film is fed out and wound up as in the roll-to-roll system, the tensile stress is applied to the film by the roll of the feeding mechanism or the winding mechanism, and further by the roll winding mechanism on the winding side. In general, a film thickness of about 100 [mu] m is required for this, but in the present invention, it is sufficient that the film thickness reaches at least that of the support material. Therefore, the thickness of the polyimide layer can be 100 μm or less, preferably 50 μm or less, and more preferably 30 μm or less. Note that the lower limit of the thickness of the polyimide layer is preferably 2 μm, and preferably 5 μm, in view of ensuring insulation in the laminated member including the functional layer.

一方、支持材の厚みについては、ポリイミド層を含めて基材フィルムとして必要な厚さを保つことができればよく、任意に設定することができる。すなわち、支持材としての役割や巻取り性等を考慮すれば、例えば10〜200μmの厚みを例示することができるが、特に制限はない。但し、ポリイミド層の方が支持材よりも薄くなるようにするのが望ましい。   On the other hand, about the thickness of a support material, what is necessary is just to be able to maintain thickness required as a base film including a polyimide layer, and can be set arbitrarily. That is, considering the role as a support material, winding property, and the like, for example, a thickness of 10 to 200 μm can be exemplified, but there is no particular limitation. However, it is desirable that the polyimide layer be thinner than the support material.

本発明における積層部材は、液晶表示装置や有機EL表示装置をはじめ、電子ペーパー、タッチパネル等の表示装置又はその構成部品として用いることができるほか、有機EL照明装置で用いたり、ITO等が積層された導電性フィルム、水分や酸素等の浸透を防止するガスバリアフィルム、フレキシブル回路基板の構成部品などの各種機能を有した機能性材料として用いられるものである。すなわち、本発明で言う機能層とは、これら表示装置、照明装置、又はその構成部品をはじめ、各種機能性材料を構成するものであって、具体的には、電極層、発光層、ガスバリア層、接着層、薄膜トランジスタ、配線層、透明導電層等の1種又は2種以上を組み合わせたようなものを総称するものである。   The laminated member in the present invention can be used as a display device such as a liquid crystal display device or an organic EL display device, an electronic paper, a touch panel or the like, or a component thereof, and is used in an organic EL lighting device or laminated with ITO or the like. It is used as a functional material having various functions such as a conductive film, a gas barrier film that prevents permeation of moisture, oxygen, and the like, and a component part of a flexible circuit board. That is, the functional layer referred to in the present invention constitutes various functional materials including these display devices, lighting devices, or components thereof, and specifically includes an electrode layer, a light emitting layer, and a gas barrier layer. , An adhesive layer, a thin film transistor, a wiring layer, a transparent conductive layer, and the like are collectively referred to as one or a combination of two or more.

そして、これらの機能層は、金属等を成膜した後、必要に応じて所定の形状にパターニングしたり、熱処理するなど、公知の方法を用いて得ることができる。すなわち、これら機能層を形成するための手段については特に制限されず、例えば、スパッタリング、蒸着、CVD、印刷、露光、浸漬など、適宜選択されたものであり、必要な場合には真空チャンバー内などでこれらのプロセス処理を行うようにしてもよい。そして、支持材を分離して取り除くのは、各種プロセス処理を経て機能層を形成した直後であってもよく、ある程度の期間で支持材と一体にしておき、例えば表示装置や機能性材料として利用する直前に分離して取り除くようにしてもよい。   These functional layers can be obtained by using a known method such as forming a metal or the like, then patterning the metal into a predetermined shape as necessary, or performing a heat treatment. That is, the means for forming these functional layers is not particularly limited, and is appropriately selected, for example, sputtering, vapor deposition, CVD, printing, exposure, immersion, etc., and if necessary, in a vacuum chamber, etc. These process processes may be performed. Then, the support material may be separated and removed immediately after the functional layer is formed through various process treatments. The support material may be integrated with the support material for a certain period of time, for example, as a display device or a functional material. You may make it remove | separate and remove immediately before doing.

本発明によれば、薄い樹脂フィルム上に機能層を備えた積層部材を得る上で、少なくとも機能層を形成する間は基材フィルムの厚みによって機械的強度が確保され、機能層を形成した後には、基材フィルムにおけるポリイミド層と支持材との界面を利用して支持材を分離して取り除き、薄肉化することで、ポリイミド層からなる薄い樹脂フィルム上に機能層を備えた積層部材を不具合なく効率的に製造することができる。   According to the present invention, after obtaining a laminated member having a functional layer on a thin resin film, mechanical strength is ensured by the thickness of the base film at least during the formation of the functional layer, and after the functional layer is formed. Is a problem with a laminated member equipped with a functional layer on a thin resin film consisting of a polyimide layer by separating and removing the support material by utilizing the interface between the polyimide layer and the support material in the base film and making it thin. And can be manufactured efficiently.

また、本発明によって得られた積層部材は、樹脂フィルムの厚みを薄くすることができるため、表示装置や各種機能性材料等に好適に用いられ、薄型化、軽量化、フレキシブル化を更に実現することができる。   Moreover, since the laminated member obtained by the present invention can reduce the thickness of the resin film, it is suitably used for a display device, various functional materials, and the like, and further realizes a reduction in thickness, weight, and flexibility. be able to.

図1は、長尺の基材フィルムに機能層を形成するためのロール・ツー・ロール装置を示す模式図である。FIG. 1 is a schematic view showing a roll-to-roll apparatus for forming a functional layer on a long base film. 図2は、長尺ロール状の基材フィルムを示す模式図である。FIG. 2 is a schematic view showing a long roll-shaped base film. 図3は、基材フィルムの断面模式図を示す。FIG. 3 shows a schematic cross-sectional view of the base film. 図4は、基材フィルム上に機能層を形成した後の断面模式図を示す。FIG. 4 shows a schematic cross-sectional view after the functional layer is formed on the base film. 図5は、基材フィルムから支持材を分離して取り除く様子を示す模式図である。FIG. 5 is a schematic diagram showing how the support material is separated and removed from the base film.

以下、本発明について、図面を用いながら具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to the drawings. The present invention is not limited to these contents.

図1には、ロール・ツー・ロール方式により、基材フィルム上に機能層を形成する様子が示されている。このロール・ツー・ロール装置は、送り出し側のロール巻機構14に巻き取られた長尺の基材フィルム10が、送出機構12により長手方向に繰り出されて、スパッタ装置等のプロセス処理部11で所定の金属を成膜して機能層が形成され、巻取機構13を介して、巻き取り側のロール巻機構15で巻き取られていく。ここで、プロセス処理に真空環境が必要な場合は、ロール・ツー・ロール装置全体は真空チャンバー内に設置される。   FIG. 1 shows a state in which a functional layer is formed on a base film by a roll-to-roll method. In this roll-to-roll apparatus, a long base film 10 taken up by a delivery-side roll winding mechanism 14 is fed out in a longitudinal direction by a delivery mechanism 12 and is processed by a process processing unit 11 such as a sputtering apparatus. A functional layer is formed by depositing a predetermined metal, and the film is wound by the roll winding mechanism 15 on the winding side via the winding mechanism 13. Here, when a vacuum environment is required for the process, the entire roll-to-roll apparatus is installed in a vacuum chamber.

また、図2には、長尺ロール状の基材フィルム10が示されている。この基材フィルム10は、図3〜図5の縦断面図に示されるように、支持材1上にポリアミド酸溶液を塗布してイミド化させたポリイミド層2を備えたものであり、ポリイミド層2の表面に機能層3を形成した後は、ポリイミド層2と支持材1との界面を利用して支持材1を分離し、取り除いて薄肉化することができる。   Moreover, the long roll-shaped base film 10 is shown by FIG. As shown in the longitudinal sectional views of FIGS. 3 to 5, the base film 10 includes a polyimide layer 2 that is imidized by applying a polyamic acid solution on a support material 1. After the functional layer 3 is formed on the surface 2, the support material 1 can be separated using the interface between the polyimide layer 2 and the support material 1, removed, and thinned.

基材フィルム10上に形成される機能層については、本発明によって得られた積層部材20の用途に応じて適宜選択でき、例えば、電極層、発光層、ガスバリア層、接着層、薄膜トランジスタ、配線層、透明導電層等の1種又は2種以上を組み合わせたようなものを例示することができる。以下、いくつかの積層部材の用途にあわせて、機能層を得るための具体例を説明する。   About the functional layer formed on the base film 10, it can select suitably according to the use of the laminated member 20 obtained by this invention, For example, an electrode layer, a light emitting layer, a gas barrier layer, an adhesive layer, a thin-film transistor, a wiring layer Examples thereof include a combination of one or more transparent conductive layers and the like. Hereinafter, specific examples for obtaining a functional layer will be described in accordance with uses of some laminated members.

(透明導電フィルムの製造)
支持材1上にポリイミド層2を備えた長尺のロール状基材フィルム10に透明導電層を積層することで、透明導電フィルムを得ることができる。すなわち、この場合は透明導電層が機能層3に相当する。透明導電フィルムを得るにあたっては、例えば、上記第2の例で示した一般式(4)又は(5)で表される構造単位のどちらか一方を80モル%以上の割合で有するポリイミドからなるポリイミドフィルムを支持材1とし、ポリイミド層2についても同様のポリイミドから形成されるようにして、ロール状に巻き取られた長尺の透明基材フィルム10を用意する。ここで、支持材1のポリイミドフィルムは、上記第1の例で示した構造単位(a)を有するポリイミドであってもよい。
(Manufacture of transparent conductive film)
A transparent conductive film can be obtained by laminating a transparent conductive layer on a long roll-shaped substrate film 10 provided with a polyimide layer 2 on a support material 1. That is, in this case, the transparent conductive layer corresponds to the functional layer 3. In obtaining a transparent conductive film, for example, a polyimide made of polyimide having one of the structural units represented by the general formula (4) or (5) shown in the second example in a proportion of 80 mol% or more. A long transparent substrate film 10 wound in a roll shape is prepared so that the film is a support material 1 and the polyimide layer 2 is formed of the same polyimide. Here, the polyimide film of the support material 1 may be a polyimide having the structural unit (a) shown in the first example.

この透明基材フィルム10を図1に示されたようなロール・ツー・ロール装置にセットする。図1に示したように、透明基材フィルム10は、送り出し側のロール巻機構14、送出機構12、巻取機構13、及び、巻き取り側のロール巻機構15に保持され、長手方向に繰り出された透明基材フィルム10のポリイミド層2の表面に対して、プロセス処理部11で蒸着法等の手段によって透明導電層が積層される。その際、透明導電層の積層のために真空環境が必要な場合には、ロール・ツー・ロール装置全体を真空チャンバー内に設置してプロセス処理を行うようにすればよい。   The transparent base film 10 is set in a roll-to-roll apparatus as shown in FIG. As shown in FIG. 1, the transparent base film 10 is held by the roll-side roll mechanism 14, the feed mechanism 12, the wind-up mechanism 13, and the roll-side roll mechanism 15, and is fed out in the longitudinal direction. A transparent conductive layer is laminated on the surface of the polyimide layer 2 of the transparent base film 10 by means such as a vapor deposition method in the process processing unit 11. At that time, if a vacuum environment is required for laminating the transparent conductive layer, the entire roll-to-roll apparatus may be installed in a vacuum chamber to perform the process.

ここで、上記一般式(4)又は(5)で表される構造単位のどちらか一方を80モル%以上の割合で有するポリイミドによってポリイミド層2を形成する場合、低熱膨張性でありながら、可視光領域における透過率が高くて透明性に優れる。また、寸法安定性にも優れて、耐熱性が高く、更には、表面平滑性が良好であり、面内方向のリタデーションが小さいといった特徴を有する。しかも、支持材1についても同様のポリイミドからなるポリイミドフィルムを使用することで、キャスト法により形成されたポリイミド層2と支持体1とはある程度の接着力により一体化されて、ロール・ツー・ロール装置にて透明導電層を形成することができ、透明導電層を形成した後には、支持材1とポリイミド層2との界面を利用して容易に分離して薄肉化することができる。   Here, when the polyimide layer 2 is formed of polyimide having one of the structural units represented by the general formula (4) or (5) at a ratio of 80 mol% or more, it is visible while being low in thermal expansion. High transmittance in the light region and excellent transparency. Further, it has excellent dimensional stability, high heat resistance, good surface smoothness, and small retardation in the in-plane direction. Moreover, by using a polyimide film made of the same polyimide for the support material 1, the polyimide layer 2 formed by the casting method and the support body 1 are integrated with a certain degree of adhesive force, and roll-to-roll. A transparent conductive layer can be formed by an apparatus, and after the transparent conductive layer is formed, it can be easily separated and thinned using the interface between the support material 1 and the polyimide layer 2.

ところで、透明導電層としてITOを使用すると、基材フィルム10上に蒸着した時点ではアモルファス状態であって、その抵抗値は高い。例えば、透明導電フィルムをタッチパネルに適用する場合、低抵抗化が必要である。そのため、タッチパネル用の電極パターンにパターニング処理した後には200℃〜300℃程度のアニール処理を施して抵抗値を下げるようにするが、本実施形態のような基材フィルム10であれば、このようなアニール温度に対して十分な耐熱性を有しており、アニール処理により十分な低抵抗化を図ることができる。   By the way, when ITO is used as the transparent conductive layer, it is in an amorphous state when deposited on the base film 10 and has a high resistance value. For example, when applying a transparent conductive film to a touch panel, resistance reduction is required. Therefore, after patterning the electrode pattern for the touch panel, an annealing process of about 200 ° C. to 300 ° C. is performed so as to lower the resistance value. It has sufficient heat resistance with respect to an appropriate annealing temperature, and a sufficiently low resistance can be achieved by annealing treatment.

また、透明導電フィルムをタッチパネル等に供することを考慮すると、できるだけその厚みは薄い方が良い。例えば厚み50μmのフィルムを単独でロール・ツー・ロール装置に適用すると、ハンドリングのし難さや搬送過程でのフィルムの伸びが問題になる。ところが、本実施形態のような基材フィルム10を用いれば、例えば支持材1とポリイミド層2の厚みをそれぞれ50μmとすれば、これらの問題を解決しながら、厚みがおよそ50μmの透明導電フィルム(透明導電層の厚みは100nm程度)を工業的に生産性良く製造することができる。   In consideration of providing the transparent conductive film to a touch panel or the like, the thickness should be as thin as possible. For example, when a film having a thickness of 50 μm is applied alone to a roll-to-roll apparatus, difficulty in handling and elongation of the film during the conveyance process become problems. However, if the base film 10 as in the present embodiment is used, for example, if the thickness of the support material 1 and the polyimide layer 2 is 50 μm, respectively, while solving these problems, a transparent conductive film having a thickness of approximately 50 μm ( The transparent conductive layer has a thickness of about 100 nm) and can be produced industrially with high productivity.

(ガスバリアフィルムの製造)
例えば、有機EL装置の有機EL発光層に水分や酸素が侵入すると特性劣化を起こすため、水分や酸素の侵入防止するためのガスバリア層が不可欠である。そこで、プロセス処理部11において、例えばCVD法により、酸化珪素、酸化アルミニウム、炭化珪素、酸化炭化珪素、炭化窒化珪素、窒化珪素、窒化酸化珪素等の無機酸化物膜を成膜して機能層とし、それ以外は上記透明導電フィルムの場合と同様にして、薄肉化されたガスバリアフィルムを得ることができる。
(Manufacture of gas barrier film)
For example, when moisture or oxygen enters the organic EL light-emitting layer of the organic EL device, the characteristics are deteriorated. Therefore, a gas barrier layer for preventing the penetration of moisture and oxygen is indispensable. Therefore, in the process processing unit 11, an inorganic oxide film such as silicon oxide, aluminum oxide, silicon carbide, silicon oxycarbide, silicon carbonitride, silicon nitride, or silicon nitride oxide is formed as a functional layer by, for example, the CVD method. Other than that, a thin gas barrier film can be obtained in the same manner as in the case of the transparent conductive film.

ところで、無機酸化物膜からなるガスバリア層の熱膨張係数(CTE)と、ポリイミド層2からなるポリイミドフィルムのCTEとの差が大きくなってしまうと、カールが発生してしまうほか、寸法安定性が悪化したり、場合によってはクラックが発生してしまうおそれがある。特に、大面積フィルムを製造した場合には、反りの問題はより顕著になる。ところが、上記一般式(4)又は(5)で表される構造単位のどちらか一方を80モル%以上の割合で有するポリイミドによってポリイミド層2を形成すれば、好適にはCTEを15ppm/K以下にすることができ、一般に10ppm/K以下のCTEを有する無機酸化物膜との差を小さくすることができるため、これらのような不具合発生は解消される。なお、ガスバリア層は上記のような無機膜の1種類から形成されても良く、2種以上を含むようにして形成してもよい。   By the way, if the difference between the coefficient of thermal expansion (CTE) of the gas barrier layer made of the inorganic oxide film and the CTE of the polyimide film made of the polyimide layer 2 becomes large, curling occurs and dimensional stability is increased. There is a risk that it will deteriorate or cracks may occur in some cases. In particular, when a large area film is manufactured, the problem of warpage becomes more prominent. However, if the polyimide layer 2 is formed of polyimide having one of the structural units represented by the general formula (4) or (5) at a ratio of 80 mol% or more, the CTE is preferably 15 ppm / K or less. In general, the difference from the inorganic oxide film having a CTE of 10 ppm / K or less can be reduced, so that such problems are eliminated. The gas barrier layer may be formed from one kind of the inorganic film as described above, or may be formed so as to include two or more kinds.

(薄膜トランジスタの製造)
先ず、薄膜トランジスタ(TFT)は、アモルファスシリコンTFT(a-Si TFT)とポリシリコンTFTとに大別され、ポリシリコンTFTでは、プロセス温度の低温化が可能な低温ポリシリコンTFT(LTPS-TFT)が主流となっている。以下では、液晶表示装置のバックプレーン等に利用される薄膜トランジスタ(TFT)を得るにあたり、ボトムゲート構造のa−Si TFTを得る方法を説明する。
(Manufacture of thin film transistors)
First, thin film transistors (TFTs) are roughly classified into amorphous silicon TFTs (a-Si TFTs) and polysilicon TFTs. In polysilicon TFTs, low-temperature polysilicon TFTs (LTPS-TFTs) that can lower the process temperature are used. It has become mainstream. Hereinafter, a method of obtaining a bottom gate structure a-Si TFT will be described in obtaining a thin film transistor (TFT) used for a backplane or the like of a liquid crystal display device.

予め、基材フィルム10には、外部からの酸素や水蒸気等の侵入を防止するために、上述したガスバリアフィルムの製造方法と同様の方法でガスバリア層を設けておく。次いで、ゲート電極及び配線を形成するための材料を成膜する。成膜材料としては主にAl系材料が用いられ、スパッタリング等の手段によって積層される。成膜後はホトリソ工程でゲート及び配線のパターンを転写し、エッチング処理によって所定の形状に成形(パターニング)される。   In advance, in order to prevent the entry of oxygen, water vapor, and the like from the outside, the base film 10 is provided with a gas barrier layer in the same manner as the above-described method for manufacturing a gas barrier film. Next, a material for forming the gate electrode and the wiring is formed. Al-based material is mainly used as the film forming material, and is laminated by means such as sputtering. After film formation, the gate and wiring patterns are transferred in a photolithography process, and formed into a predetermined shape (patterning) by etching.

次に、ゲート絶縁膜(SiN、SiO2等)、半導体層(a-Si)が同様にCVD等の方法で成膜され、所定の形状に成形される。以下、同様に成膜工程、ホトリソ工程、エッチング工程等の加工プロセスを繰り返して、ドレイン配線及びソース電極、層間絶縁膜等が形成され、a−Si TFTを得ることができる。なお、上記のようなa−Si TFTを得るには、各種プロセス処理のためのプロセス処理部11をそれぞれ横並びにして、連続して基材フィルム10を処理するようにしてもよく、或いは、一旦巻き取られた樹脂フィルムを再度ロール・ツー・ロール方式により繰り出して、プロセス処理をいくつかの工程に分けて行うようにしてもよい。 Next, a gate insulating film (SiN, SiO 2 or the like) and a semiconductor layer (a-Si) are similarly formed by a method such as CVD and formed into a predetermined shape. Thereafter, processing processes such as a film forming process, a photolithography process, and an etching process are similarly repeated to form drain wirings, source electrodes, an interlayer insulating film, and the like, and an a-Si TFT can be obtained. In order to obtain the a-Si TFT as described above, the base film 10 may be continuously processed with the process processing units 11 for various process processes arranged side by side, or once. The wound resin film may be fed out again by a roll-to-roll method so that the process is divided into several steps.

(有機EL表示装置の製造)
例えば、ボトムエミッション構造を有する有機EL表示装置を得るには、先ず、基材フィルム10のポリイミド層2側に対して、上述した方法と同様にしてガスバリア層を設けて、水分や酸素の透湿を阻止する構造にする。次に、ガスバリア層の上面には、やはり上述した薄膜トランジスタ(TFT)を含む回路構成層を形成する。この場合、薄膜トランジスタとしてLTPS−TFTが主に選択される。この回路構成層には、その上面にマトリックス状に配置された画素領域のそれぞれに対して、例えばITOの透明導電膜からなるアノード電極を形成して構成する。更に、アノード電極の上面には有機EL発光層を形成し、この発光層の上面にはカソード電極を形成する。このカソード電極は各画素領域に共通に形成される。そして、このカソード電極の面を被うようにして、再度ガスバリア層を形成し、更に最表面には、表面保護のため封止基板を設置する。この封止基板のカソード電極側の面にも水分や酸素の透湿を阻止するガスバリア層を積層しておくのが望ましい。
(Manufacture of organic EL display devices)
For example, in order to obtain an organic EL display device having a bottom emission structure, first, a gas barrier layer is provided on the polyimide layer 2 side of the base film 10 in the same manner as described above, and moisture and oxygen are permeable to moisture. Make the structure to prevent. Next, a circuit constituent layer including the above-described thin film transistor (TFT) is formed on the upper surface of the gas barrier layer. In this case, LTPS-TFT is mainly selected as the thin film transistor. In this circuit configuration layer, an anode electrode made of, for example, an ITO transparent conductive film is formed on each of the pixel regions arranged in a matrix on the upper surface thereof. Further, an organic EL light emitting layer is formed on the upper surface of the anode electrode, and a cathode electrode is formed on the upper surface of the light emitting layer. This cathode electrode is formed in common in each pixel region. Then, a gas barrier layer is formed again so as to cover the surface of the cathode electrode, and a sealing substrate is installed on the outermost surface for surface protection. It is desirable to laminate a gas barrier layer that prevents moisture and oxygen from permeating through the surface of the sealing substrate on the cathode electrode side.

このように、有機EL表示装置では、上記順序で基材フィルム10のポリイミド層2に対して、各種薄膜を成膜し、最後に封止基板で封止するのが一般的である。なお、有機EL発光層は、正孔注入層−正孔輸送層−発光層−電子輸送層等の多層膜(アノード電極−発光層−カソード電極)で形成されるが、特に、有機EL発光層は水分や酸素により劣化するため真空蒸着で形成され、電極形成も含めて真空中で連続形成されるのが一般的である。   As described above, in the organic EL display device, various thin films are generally formed on the polyimide layer 2 of the base film 10 in the above order, and finally sealed with a sealing substrate. The organic EL light-emitting layer is formed of a multilayer film (anode electrode-light-emitting layer-cathode electrode) such as a hole injection layer-hole transport layer-light-emitting layer-electron transport layer. Since it deteriorates due to moisture and oxygen, it is generally formed by vacuum deposition, and it is generally formed continuously in vacuum including electrode formation.

(有機EL照明装置の製造)
有機EL照明を得るにあたり、その機能層については、上述した有機EL表示装置におけるTFT層を除いたボトムエミッション構造が一般的である。ここで、アノード電極は一般にITO等の透明電極が用いられ、電極抵抗は高温処理をするほど低抵抗となる。上記でも述べたように、ITOの場合、200〜300℃程度の熱処理が一般的である。なお、有機EL照明は大形化の方向にあり、ITO電極では抵抗値が不十分になりつつあり、様々な代替電極材料が探索されている。その場合、アニール処理の温度が200〜300℃よりも更に高温になる可能性が高いが、上記のようなポリイミドを用いた基材フィルムであれば十分な耐熱性を有するため、様々な代替電極材料にも対応することができる。
(Manufacture of organic EL lighting devices)
In obtaining organic EL illumination, the functional layer generally has a bottom emission structure excluding the TFT layer in the organic EL display device described above. Here, a transparent electrode such as ITO is generally used as the anode electrode, and the electrode resistance decreases as the temperature is increased. As described above, in the case of ITO, heat treatment at about 200 to 300 ° C. is common. Note that organic EL illumination is in the direction of increasing size, and ITO electrodes are becoming insufficient in resistance, and various alternative electrode materials are being searched for. In that case, the annealing temperature is likely to be higher than 200 to 300 ° C. However, since the base film using polyimide as described above has sufficient heat resistance, various alternative electrodes can be used. It can also handle materials.

(その他機能層の製造)
上記の例以外にも、例えば、電子ペーパーやタッチパネル等を得るために必要な各種機能層を基材フィルム10上に形成し、その後にポリイミド層2と支持材1との界面を利用して支持材1を分離して取り除き、薄肉化した積層部材とすれば、従来の物よりも薄型、軽量化を図ることができる。
(Manufacture of other functional layers)
In addition to the above examples, for example, various functional layers necessary for obtaining electronic paper, a touch panel, and the like are formed on the base film 10 and then supported using the interface between the polyimide layer 2 and the support material 1. If the material 1 is separated and removed to obtain a thin laminated member, it can be made thinner and lighter than conventional ones.

以下、試験例に基づきながら、本発明について説明する。
先ず、下記においてポリイミドを合成する際の原料モノマーや溶媒の略語、及び、実施例中の各種物性の測定方法とその条件について以下に示す。
The present invention will be described below based on test examples.
First, the abbreviations of raw material monomers and solvents used in the synthesis of polyimide and the measurement methods and conditions for various physical properties in the examples are shown below.

〔略語について〕
・DMAc:N,N−ジメチルアセトアミド
・PDA:1,4−フェニレンジアミン
・TFMB:2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル
・DADMB:4,4’−ジアミノ−2,2’−ジメチルビフェニル
・1,3−BAB:1,3−ビス(4−アミノフェノキシ)ベンゼン
・BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
・6FDA:2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物
・PMDA:ピロメリット酸二無水物
[About abbreviations]
DMAc: N, N-dimethylacetamide PDA: 1,4-phenylenediamine TFMB: 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl DADMB: 4,4′-diamino- 2,2′-dimethylbiphenyl, 1,3-BAB: 1,3-bis (4-aminophenoxy) benzene, BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 6FDA: 2 , 2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride-PMDA: pyromellitic dianhydride

〔表面粗さ(Ra)〕
ブルカー社製の原子間力顕微鏡(AFM)「Multi Mode8」を用いて表面観察をタッピングモードで行った。10μm角の視野観察を4回行い、それらの平均値を求めた。表面粗さ(Ra)は、算術平均粗さ(JIS B0601-1991)を表す。
[Surface roughness (Ra)]
Surface observation was performed in a tapping mode using an atomic force microscope (AFM) “Multi Mode 8” manufactured by Bruker. Observation of a 10 μm square field of view was performed four times, and the average value thereof was obtained. The surface roughness (Ra) represents the arithmetic average roughness (JIS B0601-1991).

〔剥離強度〕
東洋精機製作所社製ストログラフR−1を用いて、ポリイミド積層体を幅10mmの短冊状に切断したサンプルにおける支持材とポリイミド層とにおける界面について、T字剥離試験法によるピール強度を測定することにより評価した。
[Peel strength]
Using Toyo Seiki Seisakusho's Strograph R-1 to measure the peel strength by the T-peeling test method for the interface between the support and the polyimide layer in the sample obtained by cutting the polyimide laminate into a strip with a width of 10 mm. It was evaluated by.

〔透過率(%)〕
機能層を形成するためのポリイミド層からなるポリイミドフィルム(50mm×50mm)について、U4000形分光光度計を使って440nmから780nmにおける光透過率の平均値を求めた。
[Transmissivity (%)]
About the polyimide film (50 mm x 50 mm) which consists of a polyimide layer for forming a functional layer, the average value of the light transmittance in 440 nm to 780 nm was calculated | required using the U4000 type spectrophotometer.

〔ガラス転移温度Tg〕
機能層を形成するためのポリイミド層からなるポリイミドフィルムのガラス転移温度を次のようにして測定した。粘弾性アナライザ(レオメトリックサイエンスエフィー株式会社製RSA−II)を使って、10mm幅のサンプルを用いて、1Hzの振動を与えながら、室温から400℃まで10℃/分の速度で昇温した際の、損失正接(Tanδ)の極大から求めた。
[Glass transition temperature Tg]
The glass transition temperature of a polyimide film composed of a polyimide layer for forming a functional layer was measured as follows. Using a viscoelasticity analyzer (RSA-II, manufactured by Rheometric Science Effy Co., Ltd.), using a sample with a width of 10 mm and applying a 1 Hz vibration while raising the temperature from room temperature to 400 ° C. at a rate of 10 ° C./min. Of the loss tangent (Tan δ).

〔熱膨張係数(CTE)〕
機能層を形成するためのポリイミド層からなるポリイミドフィルム及び支持材について、それぞれ3mm×15mmのサンプルを切り出し、熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度(20℃/min)で30℃から260℃の温度範囲で引張り試験を行い、温度に対するサンプルの伸び量から熱膨張係数(×10-6/K)を測定した。
[Coefficient of thermal expansion (CTE)]
For polyimide film and support material consisting of polyimide layer to form functional layer, each sample of 3mm x 15mm was cut out, and constant temperature increase rate (5.0g load was applied with thermomechanical analysis (TMA) device) A tensile test was performed at a temperature range of 30 ° C. to 260 ° C. at 20 ° C./min), and the thermal expansion coefficient (× 10 −6 / K) was measured from the amount of elongation of the sample with respect to the temperature.

合成例1(ポリイミドA)
窒素気流下で、300mlのセパラブルフラスコの中で攪拌しながらPDA8.00gを溶剤DMAcに溶解させた。次いで、この溶液BPDA22.00gを加えた。その後、溶液を室温で5時間攪拌を続けて重合反応を行い、一昼夜保持した。粘稠なポリアミド酸溶液が得られ、高重合度のポリアミド酸Aが生成されていることが確認された。
Synthesis Example 1 (Polyimide A)
Under a nitrogen stream, 8.00 g of PDA was dissolved in the solvent DMAc while stirring in a 300 ml separable flask. Then 22.00 g of this solution BPDA was added. Thereafter, the solution was stirred at room temperature for 5 hours to conduct a polymerization reaction, and kept for a whole day and night. A viscous polyamic acid solution was obtained, and it was confirmed that polyamic acid A having a high polymerization degree was produced.

合成例2(ポリイミドB)
窒素気流下で、300mlのセパラブルフラスコの中で攪拌しながらTFMB12.08gを溶剤DMAcに溶解させた。次いで、この溶液にPMDA6.20gと6FDA4.21gを加えた。その後、溶液を室温で5時間攪拌を続けて重合反応を行い、一昼夜保持した。粘稠なポリアミド酸溶液が得られ、高重合度のポリアミド酸Bが生成されていることが確認された。
Synthesis Example 2 (Polyimide B)
Under a nitrogen stream, 12.08 g of TFMB was dissolved in the solvent DMAc while stirring in a 300 ml separable flask. Next, 6.20 g of PMDA and 4.21 g of 6FDA were added to this solution. Thereafter, the solution was stirred at room temperature for 5 hours to conduct a polymerization reaction, and kept for a whole day and night. A viscous polyamic acid solution was obtained, and it was confirmed that polyamic acid B having a high polymerization degree was produced.

合成例3(ポリイミドC)
窒素気流下で、300mlのセパラブルフラスコの中で攪拌しながらTFMB13.30gを溶剤DMAcに溶解させた。次いで、この溶液にPMDA9.20gを加えた。その後、溶液を室温で5時間攪拌を続けて重合反応を行い、一昼夜保持した。粘稠なポリアミド酸溶液が得られ、高重合度のポリアミド酸Cが生成されていることが確認された。
Synthesis Example 3 (Polyimide C)
Under a nitrogen stream, 13.30 g of TFMB was dissolved in the solvent DMAc while stirring in a 300 ml separable flask. Next, 9.20 g of PMDA was added to this solution. Thereafter, the solution was stirred at room temperature for 5 hours to conduct a polymerization reaction, and kept for a whole day and night. A viscous polyamic acid solution was obtained, and it was confirmed that polyamic acid C having a high polymerization degree was produced.

実施例1 [積層部材Iの作製]
厚み18μmの長尺状の電解銅箔上に、合成例1で得たポリアミド酸Aの樹脂溶液を塗布した後、130℃で加熱乾燥し溶剤を除去した。次に、160℃から360℃まで約4℃/分の昇温速度で熱処理することでイミド化し、厚み25μmのポリイミド(表面粗さRa=1.3nm、Tg=355℃)を有する銅張積層板(熱膨張係数17.5ppm/K)を得て、支持材とした。
Example 1 [Production of Laminated Member I]
After applying the polyamic acid A resin solution obtained in Synthesis Example 1 onto a long electrolytic copper foil having a thickness of 18 μm, the solvent was removed by heating at 130 ° C. Next, a copper-clad laminate having a polyimide (surface roughness Ra = 1.3 nm, Tg = 355 ° C.) having a thickness of 25 μm imidized by heat treatment from 160 ° C. to 360 ° C. at a heating rate of about 4 ° C./min. (Coefficient of thermal expansion 17.5 ppm / K) was obtained and used as a support material.

得られた銅張積層板のポリイミド面に対して、合成例2で得たポリアミド酸Bの樹脂溶液を硬化後の厚みが25μmとなるように均一に塗布した後、130℃で加熱乾燥し、樹脂溶液中の溶剤を除去した。次に、160℃から360℃まで約20℃/分の昇温速度で熱処理することでポリアミド酸をイミド化させて、機能層を形成するためのポリイミド層を備えた長尺状の基材フィルムIを得た。   After uniformly applying the polyamic acid B resin solution obtained in Synthesis Example 2 to the polyimide surface of the obtained copper-clad laminate so that the thickness after curing is 25 μm, it is dried by heating at 130 ° C., The solvent in the resin solution was removed. Next, a long base film provided with a polyimide layer for imidizing polyamic acid by heat treatment at a temperature increase rate of about 20 ° C./min from 160 ° C. to 360 ° C. to form a functional layer I was obtained.

上記で得られた長尺状の基材フィルムIについて、図1に示したロール・ツー・ロール装置を模した試験機に装着し、ロール状に巻き取られた長尺基材フィルムIを送り出しロールから長手方向に繰り出し、搬送ロールを経由して真空チャンバー内に設置されたプロセス処理部に導入させて、該プロセス処理部で長尺基材フィルムIのポリイミド層上にスパッタリング法により厚さ100nmのITOを連続処理により成膜した。次いで、所定の長さに切り出した上で、250℃でアニール処理を施してITO膜を結晶化させて、実施例1に係る試験片を完成させた。   The long base film I obtained above is mounted on a test machine simulating the roll-to-roll apparatus shown in FIG. 1, and the long base film I wound up in a roll shape is sent out. Rolled out from the roll in the longitudinal direction, introduced into a process processing section installed in a vacuum chamber via a transport roll, and 100 nm thick by sputtering on the polyimide layer of the long base film I in the process processing section. ITO was formed into a film by continuous treatment. Next, after cutting out to a predetermined length, annealing treatment was performed at 250 ° C. to crystallize the ITO film, and the test piece according to Example 1 was completed.

上記で得られた試験片について、支持材である銅張積層板とポリイミド層との界面での剥離強度を測定しながら、支持材を分離して取り除き、厚さ25μmのポリイミド層上にITOからなる透明導電層が形成された積層部材Iを得た。その際の剥離強度は8.7N/mであり、人の手で容易に剥離できる程度の値であった。また、この積層部材Iを得るにあたって使用した基材フィルムIにおけるポリイミド層について、その透過率と熱膨張係数をまとめて表1に示す。   About the test piece obtained above, while measuring the peel strength at the interface between the copper clad laminate as a support material and the polyimide layer, the support material was separated and removed, and from the ITO on the polyimide layer having a thickness of 25 μm A laminated member I having a transparent conductive layer formed was obtained. The peel strength at that time was 8.7 N / m, which was a value that could be easily peeled by a human hand. Table 1 summarizes the transmittance and thermal expansion coefficient of the polyimide layer in the base film I used for obtaining the laminated member I.

実施例2 [積層部材IIの作製]
支持材として厚さ25μmの長尺状のポリイミドフィルム(カプトンH、東レ・デュポン株式会社製:表面粗さRa=70nm、Tg=428℃、熱膨張係数28.5ppm/K)を使用し、この上に合成例2で得たポリアミド酸Bの樹脂溶液を硬化後の厚みが25μmとなるように均一に塗布し、その後、130℃で加熱乾燥することで樹脂溶液中の溶剤を除去した。次に、160℃から360℃まで約20℃/分の昇温速度で熱処理しポリアミド酸をイミド化させてポリイミド層を形成し、支持材(ポリイミドフィルム)上にポリイミド層を有する長尺状の基材フィルムIIを得た。
Example 2 [Production of Laminated Member II]
A long polyimide film (Kapton H, manufactured by Toray DuPont Co., Ltd .: surface roughness Ra = 70 nm, Tg = 428 ° C., thermal expansion coefficient 28.5 ppm / K) is used as a support material. The resin solution of polyamic acid B obtained in Synthesis Example 2 was uniformly applied so that the thickness after curing was 25 μm, and then heated and dried at 130 ° C. to remove the solvent in the resin solution. Next, heat treatment is performed at a temperature increase rate of about 20 ° C./min from 160 ° C. to 360 ° C. to imidize polyamic acid to form a polyimide layer, and a long shape having a polyimide layer on a support material (polyimide film) Base film II was obtained.

得られた基材フィルムIIを用いて、実施例1と同様にしてITO膜を成膜し、アニール処理して実施例2に係る試験片を完成させた。この試験片における支持材(ポリイミドフィルム)とポリイミド層との界面における剥離強度は130N/mであり、人の手で容易に剥離できる程度の値であった。また、この積層部材IIを得るにあたって使用した基材フィルムIIにおけるポリイミド層について、その透過率と熱膨張係数を、まとめて表1に示す。   Using the obtained base film II, an ITO film was formed in the same manner as in Example 1 and annealed to complete the test piece according to Example 2. The peel strength at the interface between the support material (polyimide film) and the polyimide layer in this test piece was 130 N / m, which was a value that could be easily peeled by human hands. Moreover, the transmittance | permeability and thermal expansion coefficient are collectively shown in Table 1 about the polyimide layer in the base film II used in obtaining this laminated member II.

実施例3 [積層部材IIIの作製]
支持材として厚さ25μmの長尺状のポリイミドフィルム(ユーピレックスS、宇部興産株式会社製:表面粗さRa=15nm、Tg=359℃、熱膨張係数12.5ppm/K)を使用し、この上に合成例3で得たポリアミド酸Cの樹脂溶液を硬化後の厚みが25μmとなるように均一に塗布した以外は実施例2と同様にして長尺状の基材フィルムIIIを得た。
Example 3 [Production of Laminated Member III]
A long polyimide film (upilex S, manufactured by Ube Industries, Ltd .: surface roughness Ra = 15 nm, Tg = 359 ° C., thermal expansion coefficient 12.5 ppm / K) is used as a support material. A long base film III was obtained in the same manner as in Example 2 except that the polyamic acid C resin solution obtained in Synthesis Example 3 was uniformly applied so that the thickness after curing was 25 μm.

得られた基材フィルムIIIを用いて、実施例1と同様にしてITO膜を成膜し、アニール処理して実施例3に係る試験片を完成させた。この試験片における支持材(ポリイミドフィルム)とポリイミド層との界面における剥離強度は53N/mであり、人の手で容易に剥離できる程度の値であった。また、積層部材IIIを得るにあたって使用した基材フィルムIIIにおけるポリイミド層について、その透過率と熱膨張係数をまとめて表1に示す。   Using the obtained base film III, an ITO film was formed in the same manner as in Example 1, and annealed to complete the test piece according to Example 3. The peel strength at the interface between the support material (polyimide film) and the polyimide layer in this test piece was 53 N / m, which was a value that could be easily peeled by human hands. Table 1 shows the transmittance and the thermal expansion coefficient of the polyimide layer in the base film III used for obtaining the laminated member III.

Figure 0006067419
Figure 0006067419

1 支持材
2 ポリイミド層
3 機能層
10 基材フィルム
11 プロセス処理部
12 送出機構
13 巻取機構
14 送り出し側のロール巻機構
15 巻き取り側のロール巻機構
20 積層部材
DESCRIPTION OF SYMBOLS 1 Support material 2 Polyimide layer 3 Functional layer 10 Base film 11 Process processing part 12 Delivery mechanism 13 Winding mechanism 14 Rolling mechanism on delivery side 15 Roll winding mechanism on winding side 20 Laminating member

Claims (13)

ロール状に巻き取られた長尺の基材フィルムをロール・ツー・ロール方式により長手方向に繰り出して成膜処理し、必要に応じてパターニング処理して、基材フィルム上に機能層を形成して積層部材を連続的に製造する方法であって、
前記基材フィルムが、支持材上にポリアミド酸溶液を塗布してイミド化させたポリイミド層を備えるものであり、該ポリイミド層側に機能層を形成した後、ポリイミド層と支持材との界面を利用して支持材を分離して取り除き、基材フィルムを薄肉化することを特徴とする積層部材の製造方法。
A long base film wound up in a roll shape is fed out in the longitudinal direction by a roll-to-roll method to form a film, and if necessary, patterned to form a functional layer on the base film. A method of continuously producing laminated members,
The base film is provided with a polyimide layer imidized by applying a polyamic acid solution on a support material, and after forming a functional layer on the polyimide layer side, an interface between the polyimide layer and the support material is formed. A method for producing a laminated member, characterized in that the support material is separated and removed by use to thin the substrate film.
前記ポリイミド層は単層又は複数層からなると共に、少なくとも前記支持材との界面が含フッ素ポリイミドにより形成されている請求項1に記載の積層部材の製造方法。   The method for producing a laminated member according to claim 1, wherein the polyimide layer is composed of a single layer or a plurality of layers, and at least an interface with the support material is formed of fluorine-containing polyimide. 前記ポリイミド層は、ガラス転移温度が300℃以上のポリイミドにより形成される請求項1又は2に記載の積層部材の製造方法。The said polyimide layer is a manufacturing method of the laminated member of Claim 1 or 2 formed with a polyimide whose glass transition temperature is 300 degreeC or more. 前記ポリイミド層が、下記構造単位を有するポリイミドにより形成される請求項1〜3のいずれかに記載の積層部材の製造方法。The manufacturing method of the laminated member in any one of Claims 1-3 in which the said polyimide layer is formed with the polyimide which has the following structural unit.
Figure 0006067419
Figure 0006067419
前記ポリイミド層は、440nmから780nmの波長領域での透過率が70%以上である請求項1〜4のいずれかに記載の積層部材の製造方法。 The polyimide layer, method for manufacturing a laminated member according to any one of claims 1 to 4 transmittance at 780nm wavelength range is 70% or more from 440 nm. 前記ポリイミド層と支持材との界面における支持材の表面は、表面粗さRaが100nm以下である請求項1〜のいずれかに記載の積層部材の製造方法。 Surface of the support at the interface between the support and the polyimide layer, method for manufacturing a laminated member according to any one of claims 1 to 5 surface roughness Ra of 100nm or less. 前記ポリイミド層と支持材との界面における支持材の表面は、ガラス転移温度が300℃以上の耐熱性ポリイミド面により形成されている請求項1〜のいずれかに記載の積層部材の製造方法。 The surface of the support at the interface between the polyimide layer and the support material, method for manufacturing a laminated member according to any one of claims 1 to 6, the glass transition temperature is formed by the 300 ° C. or more heat-resistant polyimide surface. 前記耐熱性ポリイミド面は、下記構造単位を有するポリイミドから形成されている請求項1〜7のいずれかに記載の積層部材の製造方法。
Figure 0006067419
The said heat resistant polyimide surface is a manufacturing method of the laminated member in any one of Claims 1-7 currently formed from the polyimide which has the following structural unit.
Figure 0006067419
前記ポリイミド層と支持材との界面における接着強度が1N/m以上500N/m以下である請求項1〜のいずれかに記載の積層部材の製造方法。 Method for manufacturing a laminated member according to any one of claims 1-8 bond strength at the interface is less than 1N / m or more 500 N / m between the support member and the polyimide layer. 前記ポリイミド層の熱膨張係数が25ppm/K以下であり、また、前記支持材の熱膨張係数が25ppm/K以下である請求項1〜のいずれかに記載の積層部材の製造方法。 The thermal expansion coefficient of the polyimide layer is not more than 25 ppm / K, A method for manufacturing a laminated member according to any one of claims 1-9 thermal expansion coefficient of the support material is not more than 25 ppm / K. 前記ポリイミド層の厚みが2〜100μmであると共に、前記支持材の厚みが10〜200μmであり、かつ、前記ポリイミド層の厚みは、前記支持材よりも薄いものである請求項1〜10のいずれかに記載の積層部材の製造方法。 With the thickness of the polyimide layer is 2 to 100 m, the a thickness of the support is 10 to 200 [mu] m, and the thickness of the polyimide layer can be of any claim 1-10 wherein at thinner than the support member The manufacturing method of the laminated member of crab. 前記支持材が電気導電性を有するか、又は、ポリイミド層とは反対の背面側に電気導電層を有する請求項1〜11のいずれかに記載の積層部材の製造方法。 The method for producing a laminated member according to any one of claims 1 to 11 , wherein the support material has electrical conductivity or has an electrical conductive layer on the back side opposite to the polyimide layer. 前記機能層が、電極層、発光層、ガスバリア層、接着層、薄膜トランジスタ、配線層、及び透明導電層からなる群から選択されたいずれか1種又は2種以上の組み合わせを含む層である請求項1〜12のいずれかに記載の積層部材の製造方法。 The functional layer is a layer including any one type or a combination of two or more types selected from the group consisting of an electrode layer, a light emitting layer, a gas barrier layer, an adhesive layer, a thin film transistor, a wiring layer, and a transparent conductive layer. method for manufacturing a laminated member according to any one of 1-12.
JP2013039529A 2013-02-28 2013-02-28 Method for manufacturing laminated member Active JP6067419B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013039529A JP6067419B2 (en) 2013-02-28 2013-02-28 Method for manufacturing laminated member
TW103105243A TWI604014B (en) 2013-02-28 2014-02-18 Method of fabricating laminated member
TW106115970A TWI639637B (en) 2013-02-28 2014-02-18 Method of fabricating substrate film
CN201710343270.6A CN107264003B (en) 2013-02-28 2014-02-20 Method for producing base material film
CN201410058089.7A CN104015466B (en) 2013-02-28 2014-02-20 The manufacturing method of laminated member
KR1020140021959A KR20140108136A (en) 2013-02-28 2014-02-25 Method of manufacturing laminated member
KR1020210010103A KR102392962B1 (en) 2013-02-28 2021-01-25 Method of manufacturing laminated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013039529A JP6067419B2 (en) 2013-02-28 2013-02-28 Method for manufacturing laminated member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016247978A Division JP6495229B2 (en) 2016-12-21 2016-12-21 Manufacturing method of base film

Publications (2)

Publication Number Publication Date
JP2014166722A JP2014166722A (en) 2014-09-11
JP6067419B2 true JP6067419B2 (en) 2017-01-25

Family

ID=51432603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013039529A Active JP6067419B2 (en) 2013-02-28 2013-02-28 Method for manufacturing laminated member

Country Status (4)

Country Link
JP (1) JP6067419B2 (en)
KR (2) KR20140108136A (en)
CN (2) CN107264003B (en)
TW (2) TWI639637B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234391B2 (en) * 2014-02-28 2017-11-22 新日鉄住金化学株式会社 Manufacturing method of display device and resin solution for display device
JP6254108B2 (en) 2015-01-07 2017-12-27 住友化学株式会社 Manufacturing method of organic EL panel
WO2016142850A1 (en) * 2015-03-09 2016-09-15 Fondazione Istituto Italiano Di Tecnologia A process for preparing free-standing films of conductive polymers
JP6808401B2 (en) * 2015-08-31 2021-01-06 日鉄ケミカル&マテリアル株式会社 Manufacturing method of polyimide substrate film with functional layer
JP6656861B2 (en) * 2015-09-25 2020-03-04 日鉄ケミカル&マテリアル株式会社 Laminated body for flexible device and method for manufacturing flexible device
TWI711659B (en) 2015-09-29 2020-12-01 日商日鐵化學材料股份有限公司 Manufacturing method of polyimide film
JP6937557B2 (en) 2015-09-30 2021-09-22 日鉄ケミカル&マテリアル株式会社 Method of manufacturing polyimide film
JP6706475B2 (en) * 2015-09-30 2020-06-10 日鉄ケミカル&マテリアル株式会社 Long polyimide laminate film and method for producing the same, and method for producing polyimide film with functional layer
JP2017069200A (en) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 Manufacturing method of functional layer-attached polyimide film
JP2017075078A (en) * 2015-10-16 2017-04-20 旭硝子株式会社 Glass member and manufacturing method of glass member
CN107263984B (en) * 2016-03-31 2021-01-12 日铁化学材料株式会社 Polyimide resin laminate, method for producing same, and polyimide film with functional layer
CA3026614C (en) * 2016-06-06 2021-08-03 Ncc Nano, Llc Method for performing delamination of a polymer film
JP2018027660A (en) * 2016-08-19 2018-02-22 コニカミノルタ株式会社 Functional laminate and method for production thereof
JP6990987B2 (en) * 2017-04-28 2022-01-12 日東電工株式会社 Flexible wiring circuit board, its manufacturing method and image pickup device
KR102018455B1 (en) 2017-05-24 2019-09-04 주식회사 엘지화학 A roll of polyimide film laminate and a method for producing same
CN111070832A (en) * 2018-10-18 2020-04-28 达迈科技股份有限公司 Strippable polyimide composite film
JP7280035B2 (en) * 2018-12-17 2023-05-23 日東電工株式会社 Conductive film and method for producing conductive film
KR20210110592A (en) * 2018-12-27 2021-09-08 린텍 가부시키가이샤 gas barrier laminate
KR20210110591A (en) * 2018-12-27 2021-09-08 린텍 가부시키가이샤 gas barrier laminate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741598A (en) * 1995-08-01 1998-04-21 Ube Industries, Ltd. Polyimide/metal composite sheet
JP4213616B2 (en) * 2004-03-31 2009-01-21 大日本印刷株式会社 Base film for liquid crystal panel, functional film for liquid crystal panel, method for producing functional film, and apparatus for producing functional film
US7550194B2 (en) * 2005-08-03 2009-06-23 E. I. Du Pont De Nemours And Company Low color polyimide compositions useful in optical type applications and methods and compositions relating thereto
JP2008231327A (en) 2007-03-22 2008-10-02 Ihara Chem Ind Co Ltd Polyimide having high transparency and its manufacturing method
JP5079396B2 (en) * 2007-03-30 2012-11-21 富士フイルム株式会社 Conductive substance adsorbing resin film, method for producing conductive substance adsorbing resin film, resin film with metal layer using the same, and method for producing resin film with metal layer
JP5408848B2 (en) * 2007-07-11 2014-02-05 株式会社ジャパンディスプレイ Manufacturing method of semiconductor device
WO2009107429A1 (en) * 2008-02-25 2009-09-03 日立化成デュポンマイクロシステムズ株式会社 Polyimide precursor composition, polyimide film and transparent flexible film
EP2380732B1 (en) * 2008-12-19 2019-02-06 Toyobo Co., Ltd. Laminated body, manufacturing method thereof, and laminated circuit board
JP2010202729A (en) * 2009-03-02 2010-09-16 Hitachi Chemical Dupont Microsystems Ltd Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device
JP5410895B2 (en) * 2009-09-11 2014-02-05 新日鉄住金化学株式会社 Method for producing polyimide film
JP2011181590A (en) 2010-02-26 2011-09-15 Technology Research Association For Advanced Display Materials Organic el display device and manufacturing method thereof
JP5811492B2 (en) * 2011-04-28 2015-11-11 三菱化学株式会社 Device manufacturing method
CN102504255A (en) * 2011-11-01 2012-06-20 东南大学 Soluble fluorinated polyimide material and preparation method thereof

Also Published As

Publication number Publication date
KR20140108136A (en) 2014-09-05
TW201730255A (en) 2017-09-01
CN107264003A (en) 2017-10-20
CN104015466B (en) 2018-06-05
TWI604014B (en) 2017-11-01
KR102392962B1 (en) 2022-05-02
KR20210015983A (en) 2021-02-10
CN104015466A (en) 2014-09-03
TW201439213A (en) 2014-10-16
JP2014166722A (en) 2014-09-11
TWI639637B (en) 2018-11-01
CN107264003B (en) 2021-05-04

Similar Documents

Publication Publication Date Title
JP6067419B2 (en) Method for manufacturing laminated member
KR101917559B1 (en) A process for manufacturing a flexible substrate
JP5931672B2 (en) Polyimide laminate and method for producing the same
JP6937557B2 (en) Method of manufacturing polyimide film
TWI728996B (en) Polyimide substrate film with functional layer, manufacturing method thereof, and long polyimide laminate
TWI719184B (en) Polyimide resin laminate, its manufacturing method, and polyimide film with functional layer
TWI711659B (en) Manufacturing method of polyimide film
JP6656861B2 (en) Laminated body for flexible device and method for manufacturing flexible device
JP6706475B2 (en) Long polyimide laminate film and method for producing the same, and method for producing polyimide film with functional layer
JP6495229B2 (en) Manufacturing method of base film
JP6078319B2 (en) Manufacturing method of input device, substrate with conductive film used therefor, and laminated member
JP6029499B2 (en) Manufacturing method of input device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161221

R150 Certificate of patent or registration of utility model

Ref document number: 6067419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250