[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6066715B2 - Liquid seal vibration isolator - Google Patents

Liquid seal vibration isolator Download PDF

Info

Publication number
JP6066715B2
JP6066715B2 JP2012280161A JP2012280161A JP6066715B2 JP 6066715 B2 JP6066715 B2 JP 6066715B2 JP 2012280161 A JP2012280161 A JP 2012280161A JP 2012280161 A JP2012280161 A JP 2012280161A JP 6066715 B2 JP6066715 B2 JP 6066715B2
Authority
JP
Japan
Prior art keywords
liquid chamber
orifice
opening
partition member
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012280161A
Other languages
Japanese (ja)
Other versions
JP2014122685A (en
Inventor
行信 平野
行信 平野
佐鳥 和俊
和俊 佐鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2012280161A priority Critical patent/JP6066715B2/en
Priority to CN201310712374.1A priority patent/CN103883667B/en
Publication of JP2014122685A publication Critical patent/JP2014122685A/en
Application granted granted Critical
Publication of JP6066715B2 publication Critical patent/JP6066715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

この発明は、自動車用エンジンマウント等に使用される液封防振装置に係り、特に、内圧吸収用の弾性仕切部材を利用して共振を発生させることにより動特性を向上させたものに関する。
The present invention relates to a liquid seal vibration isolator used for an engine mount for automobiles and the like, and more particularly, to an apparatus having improved dynamic characteristics by generating resonance using an elastic partition member for absorbing internal pressure.

液室を仕切部材で主液室と副液室に区画し、この仕切部材に設けた第1オリフィスの液柱共振により低周波大振幅振動に対して高減衰とし、仕切部材に設けた弾性仕切部材により高周波小振幅振動を吸収するとともに、弾性仕切部材の周囲に設けた間隙を主液室と副液室に連通させて第2オリフィスとし、この第2オリフィスを弾性仕切部材で開閉するようにしたものがある(特許文献1参照)。 The liquid chamber is divided into a main liquid chamber and a sub liquid chamber by a partition member, and an elastic partition provided in the partition member is provided with high attenuation against low-frequency large-amplitude vibration by liquid column resonance of the first orifice provided in the partition member. The member absorbs high-frequency small-amplitude vibrations, and a gap provided around the elastic partition member communicates with the main liquid chamber and the sub liquid chamber to form a second orifice, and the second orifice is opened and closed by the elastic partition member. (See Patent Document 1).

このような従来例に係る仕切部材の構造例を図14に示す。主液室112と副液室113を仕切る仕切部材111に第1オリフィス114を設け、主液室112と副液室113を連通して低周波大振幅振動時に液柱共振(第1共振)を発生させて高減衰を実現するようにするとともに、
主液室112の内圧変動を吸収するための弾性仕切部材130を設け、弾性仕切部材130の中央部に設けた受圧部131を中央開口121により主液室112に臨ませ、中央開口147により副液室113に臨ませてある。
An example of the structure of the partition member according to such a conventional example is shown in FIG. A first orifice 114 is provided in a partition member 111 that partitions the main liquid chamber 112 and the sub liquid chamber 113, and the main liquid chamber 112 and the sub liquid chamber 113 communicate with each other to perform liquid column resonance (first resonance) during low frequency large amplitude vibration. To achieve high attenuation,
An elastic partition member 130 for absorbing the internal pressure fluctuation of the main liquid chamber 112 is provided, and the pressure receiving portion 131 provided at the central portion of the elastic partition member 130 faces the main liquid chamber 112 through the central opening 121, and the sub opening through the central opening 147. It faces the liquid chamber 113.

また、弾性仕切部材130に受圧部131の周囲を囲む第3液室137を設け、この第3液室137を第1オリフィス114の第1の開口124近傍にて短絡通路170で連通させ、かつ第3液室137の下方を副液室113に臨ませ、受圧部131の下部に設けたバルブ部135で開閉するようにしてある。
このようにすると、第3液室137における作動液の流動により液柱共振(第2共振)が発生するので、第3液室137を利用した第2オリフィスを形成することができる。
そのうえ、第2オリフィスの主液室112側開口として第1の開口124を利用するので、第2オリフィス専用に特別の開口を形成する必要がなく、かつ弾性仕切部材130の振動を利用してバルブ部135を開閉するため、特別なバルブ機構を省略することができる。
The elastic partition member 130 is provided with a third liquid chamber 137 surrounding the pressure receiving portion 131, and the third liquid chamber 137 is communicated with the short-circuit passage 170 in the vicinity of the first opening 124 of the first orifice 114, and The lower part of the third liquid chamber 137 faces the auxiliary liquid chamber 113 and is opened and closed by a valve part 135 provided at the lower part of the pressure receiving part 131.
In this case, liquid column resonance (second resonance) is generated by the flow of the working fluid in the third liquid chamber 137, so that the second orifice using the third liquid chamber 137 can be formed.
In addition, since the first opening 124 is used as the opening of the second orifice on the side of the main liquid chamber 112, it is not necessary to form a special opening exclusively for the second orifice, and the valve utilizing the vibration of the elastic partition member 130 is used. Since the part 135 is opened and closed, a special valve mechanism can be omitted.

特開2011−241926号公報JP 2011-241926 A

ところで、上記構造の場合、第2オリフィスは弾性仕切部材に形成される第3液室137を第1オリフィス114と短絡する構造であり、しかも第1の開口124近傍に短絡させる必要があるため、第2オリフィスの主液室112側開口位置を自由に形成することができない。第2オリフィスの長さを変化させれば、第2共振の周波数をコントロールできるが、第2オリフィスの開口位置が決まっているため、このように長さを自由に変化させることは困難である。
さらに、第2オリフィスは第1オリフィス114と一部を共通化することにより、第1オリフィス114の影響を受けやすくなる。例えば、第1オリフィス114の共振周波数よりも第2オリフィスの共振周波数が高い場合、第2オリフィスの共振時には、第1オリフィス114は目詰まり状態となって作動液が停滞している。このため、第2オリフィスの作動液は、主液室112側の開口部である第1の開口124近傍で第1オリフィス114の停滞した作動液により流動抵抗を受け、期待通りに作動液が流動せず、本来の目的とするような第2共振を発生することができない場合があるので、第2共振を正確かつ微細にコントロールできるようにすることが求められる。
そこで本願は、このような課題の解決を目的とする。

By the way, in the case of the above structure, the second orifice has a structure in which the third liquid chamber 137 formed in the elastic partition member is short-circuited with the first orifice 114, and it is necessary to short-circuit in the vicinity of the first opening 124. The opening position of the second orifice on the main liquid chamber 112 side cannot be freely formed. If the length of the second orifice is changed, the frequency of the second resonance can be controlled. However, since the opening position of the second orifice is determined, it is difficult to freely change the length in this way.
Furthermore, the second orifice is easily affected by the first orifice 114 by sharing a part with the first orifice 114. For example, when the resonance frequency of the second orifice is higher than the resonance frequency of the first orifice 114, when the second orifice resonates, the first orifice 114 is clogged and the working fluid is stagnant. Therefore, the hydraulic fluid in the second orifice is subjected to flow resistance by the hydraulic fluid stagnated in the first orifice 114 in the vicinity of the first opening 124 that is the opening on the main liquid chamber 112 side, and the hydraulic fluid flows as expected. Therefore, there is a case where the second resonance as originally intended cannot be generated. Therefore, it is required to control the second resonance accurately and finely.
Therefore, the present application aims to solve such problems.

上記課題を解決するため本願の液封防振装置に係る請求項1に記載した発明は、
振動源側へ取付けられる第1の取付部材(1)と、振動被伝達側へ取付けられる第2の取付部材(2)と、これらの間に設けられる弾性本体部(3)を備え、この弾性本体部を壁の一部とする液室を形成し、この液室内を仕切部材(11)にて主液室(12)と副液室(13)とに区画するとともに、これら主液室と副液室間を所定の入力振動で第1共振を生じる第1オリフィス(14)で連通し、かつ仕切部材の少なくとも一部に主液室の内圧変化を吸収するべく弾性変形する弾性仕切部材(30)を設け、
前記仕切部材(11)に前記主液室(12)と副液室(13)を連通し、前記第1オリフィス(14)の第1共振と異なる周波数で第2共振する第2オリフィス(50)を設け、この第2オリフィス(50)を前記弾性仕切部材(30)の一部で開閉するとともに、
前記仕切部材(11)は、前記第1オリフィス(14)を外周部に備え、かつその主液室(12)側の開口である第1の開口(24)を備え、
前記第2オリフィス(50)は、前記第1オリフィス(14)と分離して別に形成され、かつその主液室側開口である第2の開口(25)が、前記第1の開口(24)と別に形成されているとともに
前記仕切部材(11)は、前記弾性仕切部材(30)と、この弾性仕切部材(30)を嵌合する枠部材(40)と、前記弾性仕切部材(30)を前記枠部材(40)へ固定するカバー部材(20)とを備え、
前記弾性仕切部材(30)は中央部の受圧部(31)と、この外周部に設けられる支持バネ部(32)と、を備え、
前記枠部材(40)は、外周部にて外周壁(42)と内周壁(43)の間に形成される環状溝(41)と、
内周壁(43)の内側にて前記弾性仕切部材(30)の外周部を支持する支持壁(44)と、
支持壁(44)の内側に開口して前記副液室(13)に連通するとともに前記受圧部(31)にて開閉される中央開口部(47)を備え、
前記第2オリフィス(50)は、一端を前記第2の開口(25)に連通し、他端を前記中央開口部(47)に連通して、前記内周壁(43)と受圧部(31)の間に第3液室(37)が形成されていることを特徴とする。
In order to solve the above problems, the invention described in claim 1 relating to the liquid seal vibration isolator of the present application is
A first attachment member (1) attached to the vibration source side, a second attachment member (2) attached to the vibration transmitted side, and an elastic main body (3) provided therebetween are provided. A liquid chamber having a body portion as a part of a wall is formed, and the liquid chamber is partitioned into a main liquid chamber (12) and a sub liquid chamber (13) by a partition member (11), and the main liquid chamber An elastic partition member that communicates between the sub-liquid chambers with a first orifice (14) that generates a first resonance with a predetermined input vibration, and that is elastically deformed so as to absorb a change in the internal pressure of the main liquid chamber in at least part of the partition member 30)
A second orifice (50) communicating with the partition member (11) through the main liquid chamber (12) and the sub liquid chamber (13) and resonating at a frequency different from the first resonance of the first orifice (14). And opening and closing the second orifice (50) by a part of the elastic partition member (30),
The partition member (11) includes the first orifice (14) on the outer peripheral portion, and a first opening (24) that is an opening on the main liquid chamber (12) side,
The second orifice (50) is formed separately from the first orifice (14), and the second opening (25), which is the main liquid chamber side opening, is formed in the first opening (24). and with are formed separately,
The partition member (11) includes the elastic partition member (30), a frame member (40) for fitting the elastic partition member (30), and the elastic partition member (30) to the frame member (40). A cover member (20) for fixing,
The elastic partition member (30) includes a central pressure receiving portion (31) and a support spring portion (32) provided on the outer peripheral portion,
The frame member (40) has an annular groove (41) formed between the outer peripheral wall (42) and the inner peripheral wall (43) at the outer peripheral portion;
A support wall (44) that supports the outer peripheral portion of the elastic partition member (30) inside the inner peripheral wall (43);
A central opening (47) that opens to the inside of the support wall (44) and communicates with the auxiliary liquid chamber (13) and that is opened and closed by the pressure receiving portion (31);
The second orifice (50) has one end communicating with the second opening (25) and the other end communicating with the central opening (47), and the inner peripheral wall (43) and the pressure receiving portion (31). A third liquid chamber (37) is formed between the two.

請求項に記載した発明は、上記請求項1において、
前記弾性仕切部材(30)には、前記受圧部(31)の外周を囲むリング状溝(33)が形成され、このリング状溝(33)が前記第3液室(37)を構成することを特徴とする。
The invention described in claim 2, Oite to the claim 1,
The elastic partition member (30) is formed with a ring-shaped groove (33) surrounding the outer periphery of the pressure receiving portion (31), and the ring-shaped groove (33) constitutes the third liquid chamber (37). It is characterized by.

請求項に記載した発明は、上記請求項において、
前記受圧部(31)の外周面全周には、前記リング状溝(33)に向かって開放された環状凹部(36)が形成され、この環状凹部(36)が前記第3液室(37)の一部をなすことを特徴とする。
The invention described in claim 3 is the above-mentioned claim 2 ,
An annular recess (36) opened toward the ring-shaped groove (33) is formed on the entire outer peripheral surface of the pressure receiving portion (31), and the annular recess (36) is formed in the third liquid chamber (37). ).

請求項に記載した発明は、上記請求項2又は3において、
前記弾性仕切部材(30)は、前記受圧部(31)の周囲に間隔をもって囲む周壁(34)を一体に備え、
この周壁(34)と前記受圧部(31)の間に前記リング状溝(33)を形成するとともに、周壁(34)の一部に切り欠き部(38)を設け、リング状溝(33)を周壁(34)の外方空間と連通させたことを特徴とする。
The invention described in claim 4 is the above-described claim 2 or 3 ,
The elastic partition member (30) is integrally provided with a peripheral wall (34) surrounding the pressure receiving portion (31) with a space therebetween,
The ring-shaped groove (33) is formed between the peripheral wall (34) and the pressure-receiving portion (31), and a notch (38) is provided in a part of the peripheral wall (34) to form the ring-shaped groove (33). Is communicated with the outer space of the peripheral wall (34).

請求項記載した発明は、上記請求項において、
前記内周壁(43)の前記切り欠き部(38)と連続する位置に切り欠き部(48)を設け、
この切り欠き部(48)を前記第2の開口(25)と第3液室(37)へ連通させたことを特徴とする。
The invention described in claim 5 is the above invention according to claim 4 ,
A notch (48) is provided at a position continuous with the notch (38) of the inner peripheral wall (43);
The notch (48) is communicated with the second opening (25) and the third liquid chamber (37).

請求項1の発明によれば、第1オリフィス(14)と別の独立した第2オリフィス(50)を設けるとともに、この第2オリフィス(50)を第1オリフィス(14)と分離して別に形成し、かつ主液室(12)側の開口である第2の開口(25)を第1の開口(24)と別に設けたので、第2オリフィス(50)を第1オリフィス(14)に影響されずに設けることができ、オリフィス長等を最適にすることができ、第2オリフィス(50)の形成における自由度が大きくなる。
しかも、第2オリフィス(50)の開口部を第1オリフィス(14)の第1の開口(24)と別にしたので、第1オリフィス(14)による第1共振の影響を排除できるので、第2共振の周波数コントロールを微細にすることができる。
また、受圧部(31)と内周壁(43)の間に第3液室(37)を形成したので、この第3液室(37)を利用して第2オリフィス(50)を容易に形成できる。」
According to the first aspect of the present invention, the second orifice (50) is provided separately from the first orifice (14), and the second orifice (50) is formed separately from the first orifice (14). In addition, since the second opening (25), which is the opening on the main liquid chamber (12) side, is provided separately from the first opening (24), the second orifice (50) affects the first orifice (14). The orifice length can be optimized, and the degree of freedom in forming the second orifice (50) is increased.
In addition, since the opening of the second orifice (50) is separated from the first opening (24) of the first orifice (14), the influence of the first resonance caused by the first orifice (14) can be eliminated. The frequency control of resonance can be made fine.
Further, since the third liquid chamber (37) is formed between the pressure receiving portion (31) and the inner peripheral wall (43), the second orifice (50) can be easily formed using the third liquid chamber (37). it can. "

請求項の発明によれば、受圧部(31)の周囲を囲むリング状溝(33)を設けたので、このリング状溝(33)を利用して第3液室(37)を容易に形成できる。 According to the invention of claim 2 , since the ring-shaped groove (33) surrounding the periphery of the pressure receiving portion (31) is provided, the third liquid chamber (37) can be easily formed using the ring-shaped groove (33). Can be formed.

請求項の発明によれば、受圧部(31)の外周面に環状凹部(36)を設けたので、環状凹部(36)の空間を第3液室(37)に含めることができ、第3液室(37)の容量を大きくすることができる。 According to the invention of claim 3 , since the annular recess (36) is provided on the outer peripheral surface of the pressure receiving portion (31), the space of the annular recess (36) can be included in the third liquid chamber (37). The capacity of the three liquid chamber (37) can be increased.

請求項の発明によれば、リング状溝(33)の外側を囲む周壁(34)を設け、この一部に切り欠き部(38)を設けることにより、切り欠き部(38)を通してリング状溝(33)を周壁(34)の外方空間へ容易に接続できる。 According to the invention of claim 4 , the peripheral wall (34) surrounding the outside of the ring-shaped groove (33) is provided, and the notch (38) is provided in a part of the ring-shaped groove (33), whereby the ring-shaped groove is formed through the notch (38). The groove (33) can be easily connected to the outer space of the peripheral wall (34).

請求項の発明によれば、内周壁(43)の一部に切り欠き部(48)を設け、これを切り欠き部(38)と接続することにより切り欠き部(48)による空間を第2の開口(25)及び第3液室(37)と連通させることにより、切り欠き部(48)を第2オリフィス(50)の一部とすることができ、第2オリフィス(50)を容易に形成することができる。
According to the invention of claim 5, the notch (48) is provided in a part of the inner peripheral wall (43), and this is connected to the notch (38) to thereby reduce the space by the notch (48). By connecting the two openings (25) and the third liquid chamber (37), the notch (48) can be a part of the second orifice (50), and the second orifice (50) can be easily formed. Can be formed.

第1実施例に係るエンジンマウントの断面図Sectional view of the engine mount according to the first embodiment 第1実施例に係る仕切部材の平面図The top view of the partition member which concerns on 1st Example 図2の3−3線断面図3-3 sectional view of FIG. 第1実施例に係る構成各部を斜視図にした仕切部材の分解斜視図The exploded perspective view of the partition member which made each component part concerning a 1st example a perspective view 第1実施例に係る構成各部を断面にした仕切部材の分解断面図The exploded sectional view of the partition member which made each section the composition concerning the 1st example into a section 第1実施例に係る弾性仕切部材の底面図Bottom view of the elastic partition member according to the first embodiment 第1実施例に係る枠部材の平面図The top view of the frame member concerning the 1st example 第1実施例に係る作用の説明図Explanatory drawing of the effect | action which concerns on 1st Example 本願の動特性グラフDynamic characteristic graph of this application 第2実施例に係る図8のAと同様部位の断面図Sectional drawing of the site | part similar to A of FIG. 8 which concerns on 2nd Example. 第3実施例に係る同上図Same as above for the third embodiment 第4実施例に係る同上図Same as above for the fourth embodiment 第5実施例に係る同上図Same as above for the fifth embodiment 従来例に係る図3と同様部位の断面図Sectional view of the same portion as FIG. 3 according to the conventional example

以下、図面に基づいて、3気筒エンジンを搭載した自動車のエンジンマウントとして構成された一実施例を説明する。まず、図1〜9により第1実施例を説明する。図1はこのエンジンマウントの中心線CL(主たる振動の入力方向であるZ方向と平行)に沿う断面図、図2は仕切部材の平面図、図3は図2の3−3線に沿う断面図、図4は仕切部材の分解斜視図、図5は仕切部材の分解断面図、図6は弾性仕切部材の底面図、図7は枠部材の平面図、図8は作用の説明図、図9は動特性のグラフである。 Hereinafter, an embodiment configured as an engine mount of an automobile equipped with a three-cylinder engine will be described based on the drawings. First, a first embodiment will be described with reference to FIGS. 1 is a cross-sectional view taken along the center line CL (parallel to the Z direction, which is the main vibration input direction), FIG. 2 is a plan view of the partition member, and FIG. 3 is a cross-sectional view taken along the line 3-3 in FIG. 4 is an exploded perspective view of the partition member, FIG. 5 is an exploded sectional view of the partition member, FIG. 6 is a bottom view of the elastic partition member, FIG. 7 is a plan view of the frame member, and FIG. 9 is a graph of dynamic characteristics.

なお、以下の説明において、液封防振装置及びその各部の上下とは図1の図示状態を基準とし、仕切部材については主液室側を上、副液室側を下とする。
また、本願において低周波数域とは15Hz未満の領域をいい、これより周波数の高い15〜50Hz程度の領域を中周波数域、50Hzより高い周波数域を高周波数域というものとする。この低周波数域において、5Hz近傍の領域を走行時にサスペンションから入る振動域とし、中周波数域において15Hz近傍をアイドル振動域とする。
In the following description, the liquid seal vibration isolator and the upper and lower portions thereof are based on the state shown in FIG. 1, and the partition member has the main liquid chamber side up and the sub liquid chamber side down.
Moreover, in this application, a low frequency area means the area | region below 15 Hz, and let the area | region of about 15-50 Hz whose frequency is higher than this be a middle frequency area, and let a frequency area higher than 50 Hz be a high frequency area. In this low frequency region, a region near 5 Hz is a vibration region that enters from the suspension during traveling, and a region near 15 Hz is an idle vibration region in the medium frequency region.

さらに、入力振動の振幅が±0.1mm以下を小振幅、±0.1mm超〜±1.0mm未満程度を中振幅、±1.0mm以上〜±2.0mm以下程度を大振幅、±2.0mmを超えるものを過大振幅ということにする。但し、周波数域の周波数区分及び振幅の大小区分は、エンジンの仕様等により定まる便宜的なものであって、使用対象のエンジンや車両毎に適宜定められる。 Further, the amplitude of the input vibration is ± 0.1 mm or less, small amplitude, more than ± 0.1 mm to less than ± 1.0 mm, medium amplitude, ± 1.0 mm to ± 2.0 mm or less, large amplitude, ± 2 Those exceeding 0.0 mm are called excessive amplitude. However, the frequency division of the frequency range and the magnitude division of the amplitude are for convenience determined by the engine specifications and the like, and are appropriately determined for each engine or vehicle to be used.

また、エンジンマウントへ荷重が加わり主液室を加圧する振動を正圧側の振動もしくはプラス(+)振動、逆方向の振動を負圧側の振動もしくはマイナス(−)振動ということにする。 Further, the vibration that applies a load to the engine mount and pressurizes the main liquid chamber is referred to as positive pressure vibration or positive (+) vibration, and the reverse vibration is referred to as negative pressure vibration or negative (−) vibration.

図1において、このエンジンマウントは振動発生源側であるエンジン側へ取付けられる第1の取付部材1と、振動被伝達側である車体側へ取付けられる第2の取付部材2と、これらを連結して一体的に設けられる弾性本体部3を備える。弾性本体部3は公知のゴム等からなる適宜弾性材料から構成される略円錐状の部材であり、この円錐状部4の頂部に第1の取付部材1が埋設一体化されている。 In FIG. 1, this engine mount is connected to a first attachment member 1 attached to the engine side which is the vibration generation source side, and a second attachment member 2 attached to the vehicle body side which is the vibration transmission side. And an elastic main body 3 provided integrally therewith. The elastic main body 3 is a substantially conical member made of an appropriate elastic material made of a known rubber or the like, and the first mounting member 1 is embedded and integrated at the top of the conical portion 4.

円錐状部4の内側表面5は後述する液室に臨む内壁面をなす。円錐状部4の裾部周囲はフランジ6をなし、このフランジ6から下方部分はさらに下方へ延びて内張部7をなしている。フランジ6は第2の取付部材2の一部を構成して円筒状をなす側壁部8のフランジ9上へ一体化され、かつ内張部7は側壁部8の内面を覆っている。 The inner surface 5 of the conical portion 4 forms an inner wall surface facing a liquid chamber described later. The periphery of the bottom of the conical portion 4 forms a flange 6, and the lower portion extends further downward from the flange 6 to form a lining 7. The flange 6 constitutes a part of the second mounting member 2 and is integrated on the flange 9 of the cylindrical side wall portion 8, and the lining portion 7 covers the inner surface of the side wall portion 8.

弾性本体部3の内側は下方へ開放された空間をなし、この開放部はダイアフラム10で覆われ、これらによって内側に液室を形成する。この液室内は仕切部材11により弾性本体部3側の主液室12とダイアフラム10側の副液室13に区画され、両液室は仕切部材11の外周部に形成された、低周波大振幅振動を吸収するための第1オリフィス14によって連通される。液室内には水等公知の非圧縮性作動液が充填されている。 The inside of the elastic main body 3 forms a space opened downward, and this open part is covered with a diaphragm 10, thereby forming a liquid chamber inside. This liquid chamber is partitioned by a partition member 11 into a main liquid chamber 12 on the elastic main body 3 side and a sub liquid chamber 13 on the diaphragm 10 side, and both liquid chambers are formed on the outer periphery of the partition member 11 and have a low frequency and large amplitude. Communicated by a first orifice 14 for absorbing vibration. The liquid chamber is filled with a known incompressible hydraulic fluid such as water.

第1オリフィス14は入力振動が所定の低周波数(例えば、約15Hz程度)のとき液柱共振(第1共振)を生じるようにチューニングされている。
主たる振動の入力方向Zは、第1の取付部材1からその軸心線であってエンジンマウントの中心線CLと平行に主液室12内へ向かい、仕切部材11の主液室12に臨む表面と略直交している。
The first orifice 14 is tuned to generate a liquid column resonance (first resonance) when the input vibration has a predetermined low frequency (for example, about 15 Hz).
The main vibration input direction Z is the surface of the partition member 11 facing the main liquid chamber 12 from the first mounting member 1 toward the main liquid chamber 12, which is the axial center line of the first mounting member 1 and parallel to the center line CL of the engine mount. It is almost orthogonal.

以下、仕切部材11の詳細構造を説明する。
図2〜5に示すように、仕切部材11は、カバー部材20と、ゴム等の適宜弾性材料からなる弾性仕切部材30と、これを支持する略カップ状の枠部材40との3部材で構成されている。すなわち、枠部材40に弾性仕切部材30を上方から嵌合し、さらにその上にカバー部材20を被せ、ビス等の結合部材29(図2)でカバー部材20と枠部材40を締結等で結合することにより、3部材が一体化された仕切部材11が構成されている。
Hereinafter, the detailed structure of the partition member 11 will be described.
As shown in FIGS. 2 to 5, the partition member 11 includes three members: a cover member 20, an elastic partition member 30 made of an appropriate elastic material such as rubber, and a substantially cup-shaped frame member 40 that supports the partition member 11. Has been. That is, the elastic partition member 30 is fitted to the frame member 40 from above, and the cover member 20 is further covered thereon, and the cover member 20 and the frame member 40 are coupled by fastening or the like with a coupling member 29 (FIG. 2) such as a screw. By doing so, the partition member 11 in which the three members are integrated is configured.

なお、図4はカバー部材20、弾性仕切部材30及び枠部材40を分解してそれぞれを斜視図で示したものであり、図中のABCが、カバー部材20、弾性仕切部材30及び枠部材40をそれぞれ斜め下方から示す斜視図であり、Dは枠部材40を斜め上方から示す斜視図である。 4 is an exploded perspective view of the cover member 20, the elastic partition member 30, and the frame member 40. ABC in the figure is the cover member 20, the elastic partition member 30, and the frame member 40. Is a perspective view showing the frame member 40 obliquely from below, and D is a perspective view showing the frame member 40 obliquely from above.

カバー部材20は弾性仕切部材30上に被せられ、枠部材40の開口部を覆う蓋として機能する。
カバー部材20の中央部にはカバー部材の中央開口部21が形成され、その周囲は段部22となっている。段部22はその外周側部分である外周部23(図3参照)より一段低くなっている。段部22と外周部23は同心のリング状をなして内外に配置され、カバー部材20の径方向にて、段部22が外周部23の内側に位置している。
The cover member 20 is placed on the elastic partition member 30 and functions as a lid that covers the opening of the frame member 40.
A central opening 21 of the cover member is formed in the central portion of the cover member 20, and the periphery thereof is a stepped portion 22. The step portion 22 is one step lower than the outer peripheral portion 23 (see FIG. 3) which is the outer peripheral side portion. The step portion 22 and the outer peripheral portion 23 are arranged inside and outside in a concentric ring shape, and the step portion 22 is located inside the outer peripheral portion 23 in the radial direction of the cover member 20.

外周部23には第1オリフィス14における主液室12側の開口である第1の開口24が設けられている。また、この第1の開口24近傍かつその内側となる段部22に第2の開口25が設けられている。第2の開口25は後述する第2オリフィス50における主液室12側の開口をなしている。第2オリフィス50は、アイドル振動の周波数(例えば、約20Hz程度)にて第2共振するようにチューニングされている。 The outer peripheral portion 23 is provided with a first opening 24 that is an opening on the main liquid chamber 12 side in the first orifice 14. Further, a second opening 25 is provided in the step portion 22 near and inside the first opening 24. The second opening 25 is an opening on the main liquid chamber 12 side in a second orifice 50 described later. The second orifice 50 is tuned to resonate at a frequency of idle vibration (for example, about 20 Hz).

図2〜5に示すように、弾性仕切部材30はゴム等の適宜弾性部材からなる平面視円形で仕切部材11の中心線CL方向における厚みに近い比較的厚肉のブロック状をなす部材である。この弾性仕切部材30の中央部は、主液室12の液圧を受ける受圧部31をなし、その周囲部分は薄肉の支持バネ部32をなす。 As shown in FIGS. 2 to 5, the elastic partition member 30 is a member having a relatively thick block shape close to the thickness in the direction of the center line CL of the partition member 11 in a circular shape in plan view made of an appropriate elastic member such as rubber. . The central part of the elastic partition member 30 forms a pressure receiving part 31 that receives the hydraulic pressure of the main liquid chamber 12, and the surrounding part forms a thin support spring part 32.

受圧部31はカバー部材20の中央開口部21を通して主液室12に臨み、弾性本体部3の弾性変形に伴う主液室12の内圧変化を受けて、支持バネ部32を弾性変形させることによりこの内圧変化を吸収するための部分であり、十分な肉厚を有し、想定される大振幅振動以下の振動入力では容易に弾性変形しない程度の高剛性になっている。
受圧部31の上面は略平坦面状をなし、下面側は周囲をバルブ部35に囲まれて上方へ凸に凹入した凹部をなしている。
The pressure receiving portion 31 faces the main liquid chamber 12 through the central opening 21 of the cover member 20, receives the change in the internal pressure of the main liquid chamber 12 accompanying the elastic deformation of the elastic main body portion 3, and elastically deforms the support spring portion 32. It is a part for absorbing this change in internal pressure, has a sufficient thickness, and has a high rigidity that does not easily elastically deform when vibration input is less than the assumed large amplitude vibration.
The upper surface of the pressure receiving portion 31 has a substantially flat surface shape, and the lower surface side has a concave portion that is surrounded by the valve portion 35 and protrudes upward.

支持バネ部32は、受圧部31の周囲を下面側から彫り込んでリング状溝33を形成することによりその残肉部として形成され、薄肉で容易に弾性変形するようになっており、受圧部31が主液室12の液圧変化に応じて上下動することを許容し、かつ受圧部31が上下動するとき所定のバネにより弾性変形して主液室12の液圧変化を吸収できる。支持バネ部32と受圧部31の上面はほぼ面一になっている。 The support spring portion 32 is formed as a remaining portion by carving the periphery of the pressure receiving portion 31 from the lower surface side to form a ring-shaped groove 33, and is thin and easily elastically deformed. Is allowed to move up and down according to a change in the liquid pressure in the main liquid chamber 12 and can be elastically deformed by a predetermined spring when the pressure receiving portion 31 moves up and down to absorb the change in the liquid pressure in the main liquid chamber 12. The upper surfaces of the support spring part 32 and the pressure receiving part 31 are substantially flush.

リング状溝33は、受圧部31の周囲を環状に囲みかつ下方へ開放された溝である。このリング状溝33を挟んで外周側に周壁34が設けられている。周壁34は支持バネ部32の外周部から連続して下方へ延び、リング状溝33の周囲を囲む環状壁をなすとともに、枠部材40に対する弾性仕切部材30の固定部をなしている。
なお、周壁34の上端部は支持バネ部32の上端部よりも上方へ突出しており、支持バネ部32及び受圧部31は一段低くなって、主液室12へ臨んでいる。
The ring-shaped groove 33 is a groove that surrounds the pressure receiving portion 31 in an annular shape and is opened downward. A peripheral wall 34 is provided on the outer peripheral side across the ring-shaped groove 33. The peripheral wall 34 continuously extends downward from the outer peripheral portion of the support spring portion 32, forms an annular wall surrounding the ring-shaped groove 33, and serves as a fixing portion of the elastic partition member 30 with respect to the frame member 40.
The upper end portion of the peripheral wall 34 protrudes upward from the upper end portion of the support spring portion 32, and the support spring portion 32 and the pressure receiving portion 31 are lowered by one step and face the main liquid chamber 12.

図3〜5に示すように、受圧部31の下部外周でリング状溝33に臨む部分はバルブ部35をなしている。バルブ部35は、受圧部31が下方へ移動して、その下面35aが枠部材40の底部46におけるバルブシート部46aへ密接することにより、枠部材40の底部46中央に形成されている中央開口部47と第3液室37との連通部を閉じるようになっている(以下、単に中央開口部47を閉じるという)。 As shown in FIGS. 3 to 5, a portion facing the ring-shaped groove 33 on the lower outer periphery of the pressure receiving portion 31 forms a valve portion 35. The valve portion 35 has a central opening formed at the center of the bottom portion 46 of the frame member 40 when the pressure receiving portion 31 moves downward and its lower surface 35a comes into close contact with the valve seat portion 46a at the bottom portion 46 of the frame member 40. The communication part between the part 47 and the third liquid chamber 37 is closed (hereinafter simply referred to as closing the central opening 47).

また、バルブ部35の下面35aが底部46のバルブシート部46aから離れると、バルブ部35が中央開口部47と第3液室37との連通部を開く(以下、単に中央開口部47を開くという)状態になる。バルブシート部46aは下面35aの押し当て部をなし、下面35aは略水平の平坦面になっている。
なお、中央開口部47の開閉は、後述する第2オリフィスの開閉でもある。
Further, when the lower surface 35a of the valve portion 35 is separated from the valve seat portion 46a of the bottom portion 46, the valve portion 35 opens the communication portion between the central opening 47 and the third liquid chamber 37 (hereinafter simply opening the central opening 47). State). The valve seat portion 46a serves as a pressing portion for the lower surface 35a, and the lower surface 35a is a substantially horizontal flat surface.
The opening / closing of the central opening 47 is also an opening / closing of a second orifice described later.

バルブ部35は、過大振幅振動を含む大振幅振動以上の振動入力時に中央開口部47を閉じ、小振幅振動及び中振幅振動では中央開口部47を開いた状態に維持するように設定されている。具体的には、振動が入力しない中立状態におけるバルブ部35の下面35aと底部46のバルブシート部46aとの間隙を、例えば、1.6mm程度とし、サスペンション振動のような±1.0mm以上の大振幅振動が入力したとき閉じ、アイドル振動や一般走行中における振動のような、±0.1mm以下程度の小振幅振動が入力したときは、ある程度の間隙を維持して開いているように設定する。 The valve unit 35 is set to close the central opening 47 when a vibration greater than a large amplitude vibration including an excessive amplitude vibration is input, and to keep the central opening 47 open in a small amplitude vibration and a medium amplitude vibration. . Specifically, the gap between the lower surface 35a of the valve portion 35 and the valve seat portion 46a of the bottom portion 46 in a neutral state where no vibration is input is, for example, about 1.6 mm, and is ± 1.0 mm or more as in suspension vibration. Closes when a large amplitude vibration is input, and is set to be open with a certain gap when a small amplitude vibration of about ± 0.1 mm or less is input, such as idle vibration or vibration during general running To do.

リング状溝33に臨む受圧部31の下部外周部はバルブ部35をなし、受圧部31の外周面31aは、周壁34を支持するための支持壁44と平行する垂直面になっている。 The lower outer peripheral portion of the pressure receiving portion 31 facing the ring-shaped groove 33 forms a valve portion 35, and the outer peripheral surface 31 a of the pressure receiving portion 31 is a vertical surface parallel to the support wall 44 for supporting the peripheral wall 34.

リング状溝33により、受圧部31の周囲全周を囲む環状空間からなる第3液室37が形成されている。
この第3液室37は、主液室12及び副液室13を第1及び第2の液室としたとき、これらに続く3番目の液室を意味する。
第3液室37には作動液が満たされ、バルブ部35が中央開口部47を開閉することにより、副液室13と連通又は遮断される。
The ring-shaped groove 33 forms a third liquid chamber 37 formed of an annular space surrounding the entire circumference of the pressure receiving portion 31.
The third liquid chamber 37 means a third liquid chamber following the first liquid chamber 12 and the sub liquid chamber 13 as the first and second liquid chambers.
The third liquid chamber 37 is filled with hydraulic fluid, and the valve portion 35 opens or closes the central opening 47 to communicate with or shut off the sub liquid chamber 13.

弾性仕切部材30の底面図である図6に示すように、周壁34は周方向の一部が切り欠かれており、この切り欠き部38にてリング状溝33が周壁34の径方向外側における切り欠き空間48a(詳細後述)と連通しているため、切り欠き空間48aと第3液室37が連通している。また、切り欠き部38と反対側における周壁34の外周部には回り止め用の位置決め突起39が一体に形成されている。 As shown in FIG. 6, which is a bottom view of the elastic partition member 30, the circumferential wall 34 is partially cut away in the circumferential direction, and the ring-shaped groove 33 is formed on the radially outer side of the circumferential wall 34 by the cutout portion 38. Since the notch space 48a (described later in detail) communicates, the notch space 48a and the third liquid chamber 37 communicate with each other. A positioning projection 39 for preventing rotation is integrally formed on the outer peripheral portion of the peripheral wall 34 on the side opposite to the notch 38.

図3に示すように、切り欠き空間48aは第2の開口25を介して主液室12と連通し、切り欠き空間48aの内部には作動液が満たされている。したがって、バルブ部35が底部46から離れた中央開口部47を開いた状態では、切り欠き空間48aが中央開口部47を介して副液室13と連通するため、主液室12の作動液は、第2の開口25、切り欠き空間48a、第3液室37、中央開口部47を介して副液室13との間を矢示する流線のように流動する。 As shown in FIG. 3, the notch space 48a communicates with the main liquid chamber 12 through the second opening 25, and the inside of the notch space 48a is filled with hydraulic fluid. Therefore, in the state where the valve opening 35 opens the central opening 47 away from the bottom 46, the notch space 48 a communicates with the auxiliary liquid chamber 13 through the central opening 47, so that the hydraulic fluid in the main liquid chamber 12 is The fluid flows like a streamline between the second opening 25, the notch space 48 a, the third liquid chamber 37, and the central opening 47 and the sub liquid chamber 13.

この第2の開口25−切り欠き空間48a−第3液室37−中央開口部47からなる作動液の流動経路が第2オリフィス50を構成し、この第2オリフィス50を流れる作動液により所定の周波数にて液柱共振を発生する。これを第1オリフィス14による第1共振に対して第2共振ということにする。なお、図中における第2オリフィス50は便宜的に流線にて指示するものとする(他の図も同様)。 The flow path of the hydraulic fluid including the second opening 25, the notch space 48a, the third liquid chamber 37, and the central opening 47 constitutes the second orifice 50, and the hydraulic fluid flowing through the second orifice 50 has a predetermined flow. A liquid column resonance is generated at a frequency. This is referred to as a second resonance with respect to the first resonance caused by the first orifice 14. In addition, the 2nd orifice 50 in a figure shall indicate with a streamline for convenience (other figures are also the same).

第2共振の共振周波数は、第2オリフィス50の通路断面積や長さにより自由に設定でき、本実施形態ではアイドル振動の周波数に設定されている。
第2オリフィス50がアイドル振動の周波数にて第2共振することにより、アイドル振動の伝達を減少させるようになっている。この意味において第2オリフィス50はアイドルオリフィスでもある。
The resonance frequency of the second resonance can be freely set according to the passage cross-sectional area and length of the second orifice 50, and is set to the frequency of idle vibration in this embodiment.
The second orifice 50 resonates at the idling vibration frequency to reduce the transmission of idling vibration. In this sense, the second orifice 50 is also an idle orifice.

図3〜5及び7等に示すように、枠部材40は、軽合金等の金属や樹脂等の適宜剛性材料で構成され、外周部に上向きに開放された環状溝41が外周壁42とこれに対向する内周壁43の間に形成され、カバー部材20とともに第1オリフィス14を構成する。
内周壁43の内側には間隔をもって環状の支持壁44が形成され、この支持壁44と内周壁43との間に上方に開放された支持溝45が環状に形成されている。
As shown in FIGS. 3 to 5 and 7, the frame member 40 is made of a suitably rigid material such as a metal such as a light alloy or a resin, and an annular groove 41 opened upward at the outer peripheral portion is provided with the outer peripheral wall 42 and this. The first orifice 14 is formed with the cover member 20.
An annular support wall 44 is formed inside the inner peripheral wall 43 with an interval, and a support groove 45 opened upward is formed between the support wall 44 and the inner peripheral wall 43 in an annular shape.

支持溝45には周壁34が嵌合されるようになっており、支持溝45の深さは周壁34の高さ(外周部における軸方向寸法)よりも若干浅くなっている。
支持壁44の上端は、ほぼ支持バネ部32の厚さ程度だけ内周壁43の上端部内周側に形成された段部43aよりも低くなっている。段部43aは内周壁43の内側に連続して形成される比較的幅広の部分である。
A peripheral wall 34 is fitted into the support groove 45, and the depth of the support groove 45 is slightly shallower than the height of the peripheral wall 34 (the axial dimension at the outer peripheral portion).
The upper end of the support wall 44 is lower than the stepped portion 43 a formed on the inner peripheral side of the upper end portion of the inner peripheral wall 43 by about the thickness of the support spring portion 32. The stepped portion 43 a is a relatively wide portion formed continuously inside the inner peripheral wall 43.

支持壁44より内側は底部46をなし、外周側より一段低く形成され、中央部には枠部材側の中央開口部47が設けられている。底部46の上面で中央開口部47の周囲部分はバルブシート部46aをなす。
バルブシート部46aはバルブ部35の下面35aが押し当てられる被押し当て面であり、略平坦な面として形成され、略垂直方向(Z方向と平行)からバルブ部35の下面35aが押し当てられる。
The inner side of the support wall 44 forms a bottom 46 and is formed one step lower than the outer peripheral side, and a central opening 47 on the frame member side is provided at the center. A peripheral portion of the central opening 47 on the upper surface of the bottom portion 46 forms a valve seat portion 46a.
The valve seat portion 46a is a pressed surface against which the lower surface 35a of the valve portion 35 is pressed, is formed as a substantially flat surface, and the lower surface 35a of the valve portion 35 is pressed from a substantially vertical direction (parallel to the Z direction). .

図7に示すように、支持壁44と段部43aは周方向にて一部が切り欠かれ、この切り欠き部48によって形成される切り欠き空間48aが支持壁44の内周側と連通する。切り欠き空間48aの底部は枠部材40の底部46である。
切り欠き部48の略反対側となる支持溝45に臨む段部43aの内周壁には位置決め溝49が形成されている。この位置決め溝49は支持溝45から段部43aの肉厚内へ彫り込まれるように形成され、上方及び支持溝45内へ開放されている。
As shown in FIG. 7, the support wall 44 and the stepped portion 43 a are partially cut away in the circumferential direction, and the cutout space 48 a formed by the cutout portion 48 communicates with the inner peripheral side of the support wall 44. . The bottom of the cutout space 48 a is the bottom 46 of the frame member 40.
A positioning groove 49 is formed on the inner peripheral wall of the stepped portion 43a facing the support groove 45 on the substantially opposite side of the notch 48. The positioning groove 49 is formed so as to be carved into the thickness of the stepped portion 43 a from the support groove 45, and is opened upward and into the support groove 45.

位置決め溝49には、弾性仕切部材30の位置決め突起39(図6)が嵌合することにより、弾性仕切部材30が枠部材40に対して回り止めされる。 When the positioning protrusions 39 (FIG. 6) of the elastic partition member 30 are fitted into the positioning groove 49, the elastic partition member 30 is prevented from rotating with respect to the frame member 40.

環状溝41は全周に形成されず、周方向両端部は外周壁42と内周壁43間を部分的につなぐ連結部40aにて分離されている。連結部40aを挟む環状溝41の周方向両端部のうち、一方の端部は副液室側の開口41aを介して副液室13と連通している。副液室側の開口41aは図4に示すように、環状溝41の底部から、その内側に形成される枠部材40の底部46にかけて、径方向内側へ入り込むように形成されている。 The annular groove 41 is not formed on the entire circumference, and both end portions in the circumferential direction are separated by a connecting portion 40 a that partially connects the outer peripheral wall 42 and the inner peripheral wall 43. One of the circumferential ends of the annular groove 41 sandwiching the connecting portion 40a communicates with the auxiliary liquid chamber 13 through the opening 41a on the auxiliary liquid chamber side. As shown in FIG. 4, the sub liquid chamber side opening 41 a is formed so as to enter the radially inner side from the bottom of the annular groove 41 to the bottom 46 of the frame member 40 formed inside thereof.

この仕切部材11を組立てるには、図4及び5に示すように、弾性仕切部材30を枠部材40の上に乗せ、周壁34を支持溝45へ嵌合し、さらに弾性仕切部材30の上にカバー部材20を被せ、結合部材29(図2)でカバー部材20を枠部材40へ結合する。これにより、図2及び3に示すように、これらの3部材が一体化された仕切部材11が組立てられる。 4 and 5, the partition member 11 is assembled by placing the elastic partition member 30 on the frame member 40, fitting the peripheral wall 34 into the support groove 45, and further on the elastic partition member 30. The cover member 20 is covered, and the cover member 20 is coupled to the frame member 40 by the coupling member 29 (FIG. 2). Thereby, as shown in FIGS. 2 and 3, the partition member 11 in which these three members are integrated is assembled.

この組立状態では、図3に示すように、カバー部材20の外周部23が外周壁42と内周壁43の上端面に重なり、カバー部材20の段部22が内周壁43の上部内周側に嵌合し、枠部材40の段部43aに重なる。 In this assembled state, as shown in FIG. 3, the outer peripheral portion 23 of the cover member 20 overlaps the upper end surfaces of the outer peripheral wall 42 and the inner peripheral wall 43, and the step portion 22 of the cover member 20 faces the upper inner peripheral side of the inner peripheral wall 43. It fits and overlaps the step 43a of the frame member 40.

また、環状溝41は上方をカバー部材20の外周部23で閉じられて第1オリフィス14を形成する。環状溝41の周方向一端部に第1の開口24が重なり、他端部には他方の開口41a(図4参照)が設けられているため、この第1オリフィス14は、第1の開口24で主液室12と連通し、他方の開口41aで副液室13と連通している。 Further, the annular groove 41 is closed at the upper part by the outer peripheral portion 23 of the cover member 20 to form the first orifice 14. Since the first opening 24 overlaps one end in the circumferential direction of the annular groove 41 and the other opening 41a (see FIG. 4) is provided at the other end, the first orifice 14 is provided with the first opening 24. Communicates with the main liquid chamber 12 and communicates with the auxiliary liquid chamber 13 through the other opening 41a.

受圧部31はカバー部材20の中央開口部21で主液室12へ臨み、枠部材40の中央開口部47で副液室13へ臨んでいる。
バルブ部35は支持壁44の内周側に位置し、下面35aがバルブシート部46aから離れて中央開口部47を開いている。
The pressure receiving portion 31 faces the main liquid chamber 12 through the central opening 21 of the cover member 20 and faces the sub liquid chamber 13 through the central opening 47 of the frame member 40.
The valve portion 35 is located on the inner peripheral side of the support wall 44, and the lower surface 35 a is separated from the valve seat portion 46 a and opens the central opening 47.

さらに、位置決め突起39が位置決め溝49へ嵌合することにより、枠部材40に対して位置決めされた弾性仕切部材30は、その切り欠き部38が枠部材40の切り欠き部48に接続することによって、第3液室37が切り欠き空間48aと連通し、第2オリフィス50を形成する。この状態で第2オリフィス50は第2の開口25を介して主液室12へ連通し、バルブ部35とバルブシート部46aとの間隙を通して副液室13へ連通している。 Further, when the positioning projection 39 is fitted into the positioning groove 49, the elastic partition member 30 positioned with respect to the frame member 40 is connected by the notch 38 to the notch 48 of the frame member 40. The third liquid chamber 37 communicates with the notch space 48a to form the second orifice 50. In this state, the second orifice 50 communicates with the main liquid chamber 12 through the second opening 25 and communicates with the sub liquid chamber 13 through the gap between the valve portion 35 and the valve seat portion 46a.

なお、支持溝45へ嵌合されている弾性仕切部材30の周壁34は、上端をカバー部材20の段部22で押さえられることにより固定され、支持バネ部32は支持壁44の上端部で支持される。
このとき、周壁34の高さ寸法を支持溝45の深さよりも若干大きくして締め代を設けてあるため、カバー部材20の取付けにより周壁34を圧縮する。この圧縮量は周壁34の高さと支持溝45の深さを調整することにより変化させて締め代調整できる。同時に支持バネ部32の支持壁44による支持の強さを調整して支持バネ部32のバネを調整できる。
The peripheral wall 34 of the elastic partition member 30 fitted into the support groove 45 is fixed by pressing the upper end thereof by the step portion 22 of the cover member 20, and the support spring portion 32 is supported by the upper end portion of the support wall 44. Is done.
At this time, since the height dimension of the peripheral wall 34 is slightly larger than the depth of the support groove 45 and a fastening margin is provided, the peripheral wall 34 is compressed by attaching the cover member 20. The amount of compression can be adjusted by adjusting the height of the peripheral wall 34 and the depth of the support groove 45 to adjust the tightening allowance. At the same time, the strength of the support spring 44 by the support wall 44 can be adjusted to adjust the spring of the support spring 32.

次に、図8により本実施例の作用を説明する。図8は図3の断面において、左側のバルブ部35及びその周囲部分を拡大して示す断面図であり、Aは中立位置、Bは大振幅以上のプラス振動入力時における中央開口部47が閉じられた状態をそれぞれ示す。 Next, the operation of this embodiment will be described with reference to FIG. FIG. 8 is an enlarged cross-sectional view of the left valve portion 35 and its peripheral portion in the cross section of FIG. 3, where A is a neutral position and B is closed at the central opening 47 when a positive vibration having a large amplitude or more is input. Each state is shown.

まず、バルブ部35が図8のAに示す中立位置にある状態において、第1の取付部材1から低周波大振幅振動が入力すると、プラス振動のとき、受圧部31が大きな内圧で下方へ押されるため、支持バネ部32を弾性変形させて下方へ移動し、図8のBに示すように、バルブ部35の下面35aが底部46のバルブシート部46aへ押しつけられて、中央開口部47を閉じる。 First, in the state where the valve portion 35 is in the neutral position shown in FIG. 8A, when low frequency large amplitude vibration is input from the first mounting member 1, the pressure receiving portion 31 is pushed downward with a large internal pressure during positive vibration. Therefore, the support spring portion 32 is elastically deformed and moved downward, and the lower surface 35a of the valve portion 35 is pressed against the valve seat portion 46a of the bottom portion 46 as shown in FIG. close up.

この状態では、第2オリフィス50が中央開口部47において副液室13側を閉じられるため、第2オリフィス50における作動液の流動は生じない。また、受圧部31は底部46側へ押しつけられたままとなる。
このため、作動液は第1オリフィス14を流れて第1共振を発生させる。この第1共振により動特性は高減衰になり、低周波大振幅振動を吸収する。
In this state, the second orifice 50 is closed on the side of the secondary liquid chamber 13 at the central opening 47, so that the hydraulic fluid does not flow through the second orifice 50. Further, the pressure receiving portion 31 remains pressed toward the bottom 46 side.
For this reason, the hydraulic fluid flows through the first orifice 14 to generate the first resonance. Due to the first resonance, the dynamic characteristic is highly attenuated and absorbs the low frequency large amplitude vibration.

なお、マイナス振動では、受圧部31が主液室12側すなわち図の上方へ移動し、図8のAに示す状態に戻り、中央開口部47が開くため、作動液は副液室13から第2オリフィス50を通って主液室12へ移動する。 In the negative vibration, the pressure receiving portion 31 moves to the main liquid chamber 12 side, that is, upward in the figure, returns to the state shown in FIG. 8A, and the central opening 47 is opened. It moves to the main liquid chamber 12 through the two orifices 50.

しかし、第2オリフィス50のチューニング周波数(第2共振周波数)は、第1共振周波数よりも高いため、第2オリフィス50において液柱共振を発生せずに、速やかに副液室13から主液室12へ流れる。
また、第1オリフィス14は、第2オリフィス50よりも流動抵抗が大きくなるため、第1オリフィス14へも作動液が流動せず、第1オリフィス14における液柱共振も発生しない。
However, since the tuning frequency (second resonance frequency) of the second orifice 50 is higher than the first resonance frequency, liquid column resonance does not occur in the second orifice 50, and the main liquid chamber 13 can be promptly moved from the sub liquid chamber 13. It flows to 12.
Further, since the flow resistance of the first orifice 14 is larger than that of the second orifice 50, the working fluid does not flow to the first orifice 14, and no liquid column resonance occurs in the first orifice 14.

その後、入力振動が周波数の高いアイドル振動になると、中周波中振幅もしくは小振幅振動のため、受圧部31のそれほど上下動は大きくなく、プラス振動並びにマイナス振動のいずれでも、バルブ部35が底部46から離れて図8のAに示す状態(すなわち中央開口部47を開いた状態)になり、作動液は第2オリフィス50を通って流動する。
このとき、第1オリフィス14はアイドル振動の周波数で目詰まりしているため、作動液は第2オリフィス50のみを通って第2共振を発生し、アイドル振動を吸収する。
Thereafter, when the input vibration becomes an idle vibration with a high frequency, the pressure receiving portion 31 does not move so much in the middle frequency due to the medium amplitude vibration or the small amplitude vibration, and the valve portion 35 is in the bottom 46 in both the positive vibration and the negative vibration. 8, the state shown in FIG. 8A (that is, the state where the central opening 47 is opened) is reached, and the working fluid flows through the second orifice 50.
At this time, since the first orifice 14 is clogged at the frequency of the idle vibration, the hydraulic fluid passes through only the second orifice 50 to generate the second resonance and absorb the idle vibration.

さらに入力振動の周波数が高くなって高周波小振幅振動になると、受圧部31はプラス振動並びにマイナス振動のいずれでも図8のAにおける状態を維持するが、第1オリフィス14及び第2オリフィス50は共に目詰まり状態となり、第1オリフィス14及び第2オリフィス50を通した作動液の流動が生じない。
このため、受圧部31は支持バネ部32を弾性変形させて上下動することにより、主液室12の内圧変動を吸収する。
When the frequency of the input vibration is further increased to become high frequency and small amplitude vibration, the pressure receiving unit 31 maintains the state in FIG. 8A in both positive vibration and negative vibration, but both the first orifice 14 and the second orifice 50 are in the same state. The clogged state occurs, and the flow of hydraulic fluid through the first orifice 14 and the second orifice 50 does not occur.
For this reason, the pressure receiving part 31 absorbs fluctuations in the internal pressure of the main liquid chamber 12 by elastically deforming the support spring part 32 and moving up and down.

なお、過大振幅振動の入力時には、プラス振動のとき図8のBに示す状態となり、第1オリフィス14を通して主液室12から副液室13へ作動液が流動する。
その後マイナス振動に転じると、主液室12は急速に拡大して一時的に負圧状態になる。
しかし、この負圧により、受圧部31は上方へ吸引移動されるため、図8のAに示す状態となり、中央開口部47が開かれる。これにより、副液室13の作動液は、第2オリフィス50を通って迅速に主液室12へ流入し、主液室12の負圧を急速に解消する。
このため、過大振幅振動入力時において、主液室12が一時的に負圧になることによって生じる気泡の破裂に伴う異音を発生するキャビテーション現象を抑制することができる。
When an excessive amplitude vibration is input, the state shown in FIG. 8B occurs when the positive vibration occurs, and the working fluid flows from the main liquid chamber 12 to the sub liquid chamber 13 through the first orifice 14.
Thereafter, when the vibration is changed to minus vibration, the main liquid chamber 12 rapidly expands and temporarily becomes a negative pressure state.
However, because the negative pressure causes the pressure receiving portion 31 to be sucked and moved upward, the state shown in A of FIG. 8 is obtained, and the central opening 47 is opened. As a result, the hydraulic fluid in the auxiliary liquid chamber 13 quickly flows into the main liquid chamber 12 through the second orifice 50, and the negative pressure in the main liquid chamber 12 is quickly eliminated.
For this reason, at the time of excessive amplitude vibration input, it is possible to suppress a cavitation phenomenon that generates an abnormal sound due to the bursting of bubbles caused by temporary negative pressure in the main liquid chamber 12.

図9はこのエンジンマウントにおける動特性を示すグラフであり、縦軸に減衰、横軸に入力振動周波数を示した減衰特性図である。この減衰特性曲線は、山形をなし、そのピーク部分が共振の発生を示し、ピークにおける周波数が共振周波数となる。
ベースの特性曲線は、図14に示した従来例に係るものであり、第2オリフィスを第1オリフィスと、その主液室側開口近傍にて短絡させたものである。
FIG. 9 is a graph showing the dynamic characteristics of the engine mount, and is a damping characteristic diagram in which the vertical axis indicates attenuation and the horizontal axis indicates input vibration frequency. This attenuation characteristic curve has a mountain shape, the peak portion indicates the occurrence of resonance, and the frequency at the peak is the resonance frequency.
The characteristic curve of the base is related to the conventional example shown in FIG. 14, and the second orifice is short-circuited with the first orifice in the vicinity of the main liquid chamber side opening.

本発明1の特性曲線は、図3において実線で示す第1オリフィス14の主液室側開口である第1の開口24内側かつ近傍に、第2オリフィス50の主液室側開口である第2の開口25を開口させた例である。
この場合、第2オリフィス50は最短となり、共振周波数は、例えば、ベースの20Hzに対して約22Hzと高くなる。
The characteristic curve of the first aspect of the present invention is a second curve that is the main liquid chamber side opening of the second orifice 50 inside and in the vicinity of the first opening 24 that is the main liquid chamber side opening of the first orifice 14 indicated by a solid line in FIG. This is an example in which the opening 25 is opened.
In this case, the second orifice 50 is the shortest, and the resonance frequency is, for example, about 22 Hz higher than the base 20 Hz.

本発明2の特性曲線は、第2の開口25の位置を、図2において仮想線で示す第2の開口25Aとしたものであり、本発明1に対して周方向へ略45°程度ずらした例である。
すなわち、第2の開口25を図2の仮想線25Aで示すように、切り欠き部38の位置から周方向へ例えば約45°程度ずらすことで容易に長くすることができる。
ただし、切り欠き部48は移動した第2の開口25Aへ連通するように、周方向へ拡幅するか、延長路51を形成する。この延長路51は、切り欠き部48と第2の開口25Aを連通するように段部43aを周方向へ形成された溝である。
The characteristic curve of the present invention 2 is such that the position of the second opening 25 is the second opening 25A indicated by the phantom line in FIG. 2, and is shifted by about 45 ° in the circumferential direction with respect to the present invention 1. It is an example.
That is, the second opening 25 can be easily elongated by shifting the position of the notch 38 from the position of the notch 38 in the circumferential direction by about 45 °, for example, as indicated by a virtual line 25A in FIG.
However, the notch 48 widens in the circumferential direction or forms an extension path 51 so as to communicate with the moved second opening 25A. The extension path 51 is a groove in which a stepped portion 43a is formed in the circumferential direction so as to communicate the notch portion 48 and the second opening 25A.

このように第2の開口25を周方向へずらすことは、第1の開口24の内側となる段部22上を利用するため、自由度が大きくなる。しかも、延長路51によって第2オリフィス50のオリフィス長が長くなり、共振周波数は、例えば、ベースの20Hzに対して約18Hzと低くなる。このように、第2オリフィス50のオリフィス長を長くすると、第2共振の共振周波数を低くするように調整できる。 Since shifting the second opening 25 in the circumferential direction in this manner uses the step 22 on the inner side of the first opening 24, the degree of freedom increases. In addition, the length of the orifice of the second orifice 50 is increased by the extension path 51, and the resonance frequency is, for example, about 18 Hz lower than 20 Hz of the base. Thus, when the orifice length of the second orifice 50 is increased, the resonance frequency of the second resonance can be adjusted to be lowered.

本発明3の特性曲線は、第2の開口25の位置を、図2において仮想線で示す第2の開口25Bとして周方向へ略90°程度ずらした例である。
第2の開口25の開口位置を周方向へずらす程度は自由であり、第2オリフィス50のオリフィス長が所望のものになるようにすればよい。図中の第2の開口25Bは約90°程度ずらし、この開口位置に応じてより長い延長路52が延長路51を延長して形成されている。このようにすると、第2オリフィス50のオリフィス長がさらに長くなるため、共振周波数は、例えば、ベースの20Hzに対して約16Hzとさらに低くなる。
The characteristic curve of the third aspect of the present invention is an example in which the position of the second opening 25 is shifted by approximately 90 ° in the circumferential direction as the second opening 25B indicated by a virtual line in FIG.
The degree to which the opening position of the second opening 25 is shifted in the circumferential direction is arbitrary, and the orifice length of the second orifice 50 may be set to a desired one. The second opening 25B in the figure is shifted by about 90 °, and a longer extension path 52 is formed by extending the extension path 51 in accordance with the opening position. In this case, since the orifice length of the second orifice 50 is further increased, the resonance frequency is further reduced to, for example, about 16 Hz with respect to 20 Hz of the base.

すなわち、第2共振の共振周波数コントロールは、第2オリフィス50の長さを長短に調整することで自由に行うことができ、第2オリフィス50を第1オリフィス14と独立させたことにより、第2共振の共振周波数コントロールにおける自由度が高くなる。
しかも、第2の開口25は、第1の開口24に対して周方向任意位置へ形成できるから、第2の開口25の設置に関する自由度が高くなるとともに、第2オリフィス50のオリフィス長を自由に調整できるようになる。
特に、第2の開口25を第1の開口24の内側に設けることにより、第2オリフィス50を短くして第2共振周波数をより高くすることが容易になる。
That is, the resonance frequency control of the second resonance can be freely performed by adjusting the length of the second orifice 50 to be longer or shorter. By making the second orifice 50 independent of the first orifice 14, The degree of freedom in resonance resonance frequency control is increased.
In addition, since the second opening 25 can be formed at any position in the circumferential direction with respect to the first opening 24, the degree of freedom regarding the installation of the second opening 25 is increased, and the orifice length of the second orifice 50 is free. Can be adjusted.
In particular, by providing the second opening 25 inside the first opening 24, it is easy to shorten the second orifice 50 and increase the second resonance frequency.

また、第1オリフィス14と一部を共通化させないため、第2共振時に目詰まりしている第1オリフィス14により作動液の流動を阻害されることなく、正確に第2共振を発生させることができ、第2共振における共振周波数を精細にコントロールすることができる。
このように、第2オリフィス50を第1オリフィス14と別に設けることにより、第2オリフィス50による第2共振の共振周波数を正確にコントロールできるようになる。
Further, since the first orifice 14 is not partially shared, the second resonance can be accurately generated without hindering the flow of the hydraulic fluid by the first orifice 14 clogged at the time of the second resonance. The resonance frequency in the second resonance can be finely controlled.
Thus, by providing the second orifice 50 separately from the first orifice 14, the resonance frequency of the second resonance by the second orifice 50 can be accurately controlled.

このため、弾性仕切部材30の受圧部31周囲に環状の第2オリフィス50を形成する形式において、第2オリフィス50が第1オリフィス14の内側に近接して配置されるにもかかわらず、第1オリフィス14の影響を受けずに第2共振における共振周波数を精細にコントロールすることができるようになり、かつ第2オリフィス50の調整における自由度が大きくなる。 Therefore, in the form in which the annular second orifice 50 is formed around the pressure receiving portion 31 of the elastic partition member 30, the first orifice 50 is disposed close to the inside of the first orifice 14. The resonance frequency in the second resonance can be finely controlled without being affected by the orifice 14, and the degree of freedom in adjusting the second orifice 50 is increased.

そのうえ、受圧部31と内周壁43の間に第3液室37を形成したので、この第3液室37を利用して第2オリフィス50を容易に形成できる。
しかも、受圧部31の周囲を囲むリング状溝33を設けることにより、このリング状溝33を利用して第3液室37を容易に形成できる。
In addition, since the third liquid chamber 37 is formed between the pressure receiving portion 31 and the inner peripheral wall 43, the second orifice 50 can be easily formed using the third liquid chamber 37.
In addition, by providing the ring-shaped groove 33 surrounding the pressure receiving portion 31, the third liquid chamber 37 can be easily formed using the ring-shaped groove 33.

また、リング状溝33の外側を囲む周壁34を設け、この一部に切り欠き部38を設けることにより、切り欠き部38を通してリング状溝33を周壁34の外方空間へ容易に接続できる。 Further, by providing the peripheral wall 34 surrounding the outer side of the ring-shaped groove 33 and providing the cutout portion 38 at a part thereof, the ring-shaped groove 33 can be easily connected to the outer space of the peripheral wall 34 through the cutout portion 38.

さらに、内周壁43の一部に切り欠き部48を設け、これを切り欠き部38と接続することにより切り欠き部48による空間を第2の開口25及び第3液室37と連通させることにより、切り欠き部48を第2オリフィス50の一部とすることができ、第2オリフィス50を容易に形成することができる。 Further, a notch 48 is provided in a part of the inner peripheral wall 43 and is connected to the notch 38 so that the space by the notch 48 is communicated with the second opening 25 and the third liquid chamber 37. The notch 48 can be a part of the second orifice 50, and the second orifice 50 can be easily formed.

また、エンジンマウントとして構成し、第2共振をアイドル振動域で発生するようにチューニングしたので、特別にアイドルオリフィス及びその開閉機構を設けることなく、従来の弾性仕切部材を利用して第2オリフィスを設けることにより第2共振を実現できるとともにアイドル振動を有効に遮断できる。 In addition, since it is configured as an engine mount and tuned so that the second resonance is generated in the idle vibration region, the second orifice can be made using a conventional elastic partition member without specially providing an idle orifice and its opening / closing mechanism. By providing, the second resonance can be realized and the idle vibration can be effectively cut off.

さらにまた、受圧部31が厚肉の高剛性構造をなし、想定される大振幅振動以下の振動入力では容易に弾性変形しないようになっているため、弾性仕切部材30において主液室12の内圧変化を吸収するためのバネ部を支持バネ部32に限定でき、内圧吸収のためのバネを正確にコントロールできる。また、受圧部31は第2オリフィス50の開閉弁として機能するが、この際における開閉を正確にすることができる。 Furthermore, since the pressure receiving portion 31 has a thick and highly rigid structure and is not easily elastically deformed by a vibration input equal to or less than the assumed large amplitude vibration, the internal pressure of the main liquid chamber 12 in the elastic partition member 30 can be reduced. The spring portion for absorbing the change can be limited to the support spring portion 32, and the spring for absorbing the internal pressure can be accurately controlled. Moreover, although the pressure receiving part 31 functions as an on-off valve for the second orifice 50, the opening and closing at this time can be made accurate.

次に、バルブ部35の構造を変更した別実施例を説明する。なお、以下の各例は、それぞれ図8のAにおいて、バルブ部35又はその近傍部を変更したものである。これらはいずれも、第1実施例と共通部分には共通の符号を用い、重複部分の説明を原則として省略する。 Next, another embodiment in which the structure of the valve portion 35 is changed will be described. Each example below is obtained by changing the valve portion 35 or its vicinity in FIG. 8A. In any case, the same reference numerals are used for the parts common to the first embodiment, and the explanation of the overlapping parts is omitted in principle.

図10は、第2実施例に係り、リング状溝33に臨む受圧部31の外周部側面に環状凹部36を設けた例である。この環状凹部36は、図10の断面にて受圧部31の径方向内側へ凹入し、受圧部31の側部全周に環状をなしている。また、リング状溝33へ向かって開放されており、この環状凹部36とリング状溝33により、受圧部31の周囲全周を囲む環状空間からなる第3液室37が形成されている。 FIG. 10 relates to the second embodiment and is an example in which an annular recess 36 is provided on the outer peripheral side surface of the pressure receiving portion 31 facing the ring-shaped groove 33. The annular recess 36 is recessed inward in the radial direction of the pressure receiving portion 31 in the cross section of FIG. 10, and has an annular shape around the side portion of the pressure receiving portion 31. The ring-shaped groove 33 is opened toward the ring-shaped groove 33, and the annular liquid recess 37 and the ring-shaped groove 33 form a third liquid chamber 37 formed of an annular space surrounding the entire circumference of the pressure receiving portion 31.

環状凹部36の下方にはバルブ部35が形成されている。バルブ部35は外側方へ突出する環状凸部として形成されている。
このように、受圧部31の外周面に環状凹部36を設けると、環状凹部36の空間を第3液室37に含めることができ、第3液室37の容量を大きくすることができる。
A valve portion 35 is formed below the annular recess 36. The valve part 35 is formed as an annular convex part protruding outward.
Thus, when the annular recess 36 is provided on the outer peripheral surface of the pressure receiving portion 31, the space of the annular recess 36 can be included in the third liquid chamber 37, and the capacity of the third liquid chamber 37 can be increased.

この第3液室37は、主液室12及び副液室13を第1及び第2の液室としたとき、これらに続く3番目の液室を意味する。
第3液室37には作動液が満たされ、バルブ部35が中央開口部47を開閉することにより、副液室13と連通又は遮断される。
The third liquid chamber 37 means a third liquid chamber following the first liquid chamber 12 and the sub liquid chamber 13 as the first and second liquid chambers.
The third liquid chamber 37 is filled with hydraulic fluid, and the valve portion 35 opens or closes the central opening 47 to communicate with or shut off the sub liquid chamber 13.

図11は、第3実施例に係り、受圧部31の中央部を最も薄肉の可動膜部31bとし、外周部を厚肉とし、バルブ部35を受圧部31の外周下部にて外側方へ突出させ、支持壁44の内壁44aへ若干離して位置させたものである。
このようにすると、受圧部31が主液室12の内圧を受けると、可動膜部31bが最も大きく下方へ変形するため、バルブ部35は外側方へ押し出され、仮想線で示すように、内壁44aへ押し当てられる。
これにより、第2オリフィス50が閉じられるとともに、バルブ部35は受圧部31の変形量に応じて、受圧部31のバネを非線形的に増大させることができる。
FIG. 11 relates to the third embodiment, wherein the central portion of the pressure receiving portion 31 is the thinnest movable film portion 31b, the outer peripheral portion is thick, and the valve portion 35 protrudes outward at the lower peripheral portion of the pressure receiving portion 31. The support wall 44 is positioned slightly away from the inner wall 44a.
In this case, when the pressure receiving part 31 receives the internal pressure of the main liquid chamber 12, the movable film part 31b is deformed downward most, so that the valve part 35 is pushed outward and the inner wall as shown by a virtual line. 44a.
Thereby, the second orifice 50 is closed, and the valve portion 35 can increase the spring of the pressure receiving portion 31 in a non-linear manner according to the deformation amount of the pressure receiving portion 31.

図12は、第4実施例に係り、図11と同様に可動膜部31bを設けるとともに、バルブ部35を下方へ突出させたものであり、受圧部31が下方へ移動すると、バルブ部35の下面がバルブシート部46aへ押し当てられて第2オリフィス50を閉じるとともに、バルブ部35が突起状をなすため、受圧部31がさらに下方へ移動すると、バルブシート部46aにより圧縮され、図11と同様に、受圧部31の移動量に応じて受圧部31のバネを変化させることができる。 FIG. 12 relates to the fourth embodiment, in which the movable film portion 31b is provided in the same manner as in FIG. 11, and the valve portion 35 is protruded downward. When the pressure receiving portion 31 moves downward, the valve portion 35 of FIG. Since the lower surface is pressed against the valve seat portion 46a to close the second orifice 50 and the valve portion 35 has a projection shape, when the pressure receiving portion 31 moves further downward, it is compressed by the valve seat portion 46a. Similarly, the spring of the pressure receiving portion 31 can be changed according to the movement amount of the pressure receiving portion 31.

図13は、第5実施例に係り、図12におけるバルブ部35と同一構造のバルブ部35を用いるが、側方にて底部46側へ押し当てられるようにしたものである。
図13のAは、バルブ部35の移動する上下方向と斜交するよう斜面部60を設けたものであり、Aは斜面部60を外周側、Bは内周側にそれぞれ設けた例である。
FIG. 13 relates to the fifth embodiment, and uses a valve portion 35 having the same structure as the valve portion 35 in FIG. 12, but is pressed to the bottom 46 side on the side.
13A shows an example in which a slope portion 60 is provided so as to obliquely intersect with the vertical direction in which the valve portion 35 moves. A is an example in which the slope portion 60 is provided on the outer peripheral side, and B is provided on the inner peripheral side. .

このように、斜面部60を設けると、受圧部31が下方へ移動したとき、バルブ部35の角部が斜面部60と接触することにより第2オリフィス50を閉じるとともに、受圧部31がさらに下方へ移動すると、バルブ部35と斜面部60の接触量が大きくなり、バルブ部35の圧縮量が増大するため、図11と同様に、受圧部31の移動量に応じて受圧部31のバネを変化させることができる。 As described above, when the inclined surface portion 60 is provided, when the pressure receiving portion 31 moves downward, the corner portion of the valve portion 35 comes into contact with the inclined surface portion 60 to close the second orifice 50, and the pressure receiving portion 31 further moves downward. Since the amount of contact between the valve portion 35 and the slope portion 60 increases and the amount of compression of the valve portion 35 increases, the spring of the pressure receiving portion 31 is moved according to the amount of movement of the pressure receiving portion 31 as in FIG. Can be changed.

なお、このように斜面部60を設けることで、受圧部31のバネを変化させる構成は、他の形式のバルブ部35にも応用でき、例えば、図11のバルブ部35を斜面部60へ押し当てるようにしてもよい。
また、図5や図10に示す厚肉の受圧部31に対して適用してもよい。この場合、図5や図10のバルブ部35を斜面部60へ押し当てるようにすると、受圧部31のバネ変化を期待できないが、主液室12側の液圧に押されたバルブ部35が斜面部60へ強く押し当てられるため、閉弁時の密着を高めることができる。
In addition, the structure which changes the spring of the pressure receiving part 31 by providing the slope part 60 in this way can be applied also to the valve part 35 of another type, for example, the valve part 35 of FIG. You may make it hit.
Moreover, you may apply with respect to the thick pressure-receiving part 31 shown in FIG.5 and FIG.10. In this case, if the valve portion 35 of FIGS. 5 and 10 is pressed against the slope portion 60, the spring change of the pressure receiving portion 31 cannot be expected, but the valve portion 35 pushed by the liquid pressure on the main liquid chamber 12 side Since it is strongly pressed against the slope part 60, the close_contact | adherence at the time of valve closing can be improved.

なお、本願発明は上記各実施例に限定されず、種々に変形等が可能であり、例えば、本願発明をエンジンマウント以外のサスペンションマウントなど、各種の車両用液封防振装置に適用できる。また、第2の開口25を、主液室に臨む少なくとも1以上の開口、すなわち1又は複数の開口で形成することができる。このようにすると、第2の開口25における形状の自由度が大きくすることができ、形成場所に応じて最適形状にすることができる。
さらに、第2の開口25位置は、第1の開口24の内側位置に限定されるものではなく、例えば、第1の開口24と周方向へ並んで配置したり、第1の開口24よりも外側へ配置することもできる。
The present invention is not limited to the above embodiments, and various modifications can be made. For example, the present invention can be applied to various vehicle liquid seal vibration isolator such as a suspension mount other than an engine mount. Further, the second opening 25 can be formed by at least one opening facing the main liquid chamber, that is, one or a plurality of openings. If it does in this way, the freedom degree of the shape in the 2nd opening 25 can be enlarged, and it can be set as the optimal shape according to a formation place.
Further, the position of the second opening 25 is not limited to the position inside the first opening 24, and for example, it is arranged side by side in the circumferential direction with the first opening 24, or more than the first opening 24. It can also be arranged outside.

1:第1の取付部材、2:第2の取付部材、3:弾性本体部、11:仕切部材、12:主液室、13:副液室、14:第1オリフィス、20:カバー部材、24:第1の開口、25:第2の開口、30:弾性仕切部材、31:受圧部、33:リング状溝、35:バルブ部、36:環状凹部、37:第3液室、38:切り欠き部、40:枠部材、43a:段部、44:支持壁、48:切り欠き部、48a:切り欠き空間、50:第2オリフィス 1: first mounting member, 2: second mounting member, 3: elastic body, 11: partition member, 12: main liquid chamber, 13: sub liquid chamber, 14: first orifice, 20: cover member, 24: 1st opening, 25: 2nd opening, 30: Elastic partition member, 31: Pressure receiving part, 33: Ring-shaped groove, 35: Valve part, 36: Annular recessed part, 37: 3rd liquid chamber, 38: Notch, 40: frame member, 43a: step, 44: support wall, 48: notch, 48a: notch space, 50: second orifice

Claims (5)

振動源側へ取付けられる第1の取付部材(1)と、振動被伝達側へ取付けられる第2の取付部材(2)と、これらの間に設けられる弾性本体部(3)を備え、この弾性本体部を壁の一部とする液室を形成し、この液室内を仕切部材(11)にて主液室(12)と副液室(13)とに区画するとともに、これら主液室と副液室間を所定の入力振動で第1共振を生じる第1オリフィス(14)で連通し、かつ仕切部材の少なくとも一部に主液室の内圧変化を吸収するべく弾性変形する弾性仕切部材(30)を設け、
前記仕切部材(11)に前記主液室(12)と副液室(13)を連通し、前記第1オリフィス(14)の第1共振と異なる周波数で第2共振する第2オリフィス(50)を設け、この第2オリフィス(50)を前記弾性仕切部材(30)の一部で開閉するとともに、
前記仕切部材(11)は、前記第1オリフィス(14)を外周部に備え、かつその主液室(12)側の開口である第1の開口(24)を備え、
前記第2オリフィス(50)は、前記第1オリフィス(14)と分離して別に形成され、かつその主液室側開口である第2の開口(25)が、前記第1の開口(24)と別に形成されているとともに
前記仕切部材(11)は、前記弾性仕切部材(30)と、この弾性仕切部材(30)を嵌合する枠部材(40)と、前記弾性仕切部材(30)を前記枠部材(40)へ固定するカバー部材(20)とを備え、
前記弾性仕切部材(30)は中央部の受圧部(31)と、この外周部に設けられる支持バネ部(32)と、を備え、
前記枠部材(40)は、外周部にて外周壁(42)と内周壁(43)の間に形成される環状溝(41)と、
内周壁(43)の内側にて前記弾性仕切部材(30)の外周部を支持する支持壁(44)と、
支持壁(44)の内側に開口して前記副液室(13)に連通するとともに前記受圧部(31)にて開閉される中央開口部(47)を備え、
前記第2オリフィス(50)は、一端を前記第2の開口(25)に連通し、他端を前記中央開口部(47)に連通して、前記内周壁(43)と受圧部(31)の間に第3液室(37)が形成されていることを特徴とする液封防振装置。
A first attachment member (1) attached to the vibration source side, a second attachment member (2) attached to the vibration transmitted side, and an elastic main body (3) provided therebetween are provided. A liquid chamber having a body portion as a part of a wall is formed, and the liquid chamber is partitioned into a main liquid chamber (12) and a sub liquid chamber (13) by a partition member (11), and the main liquid chamber An elastic partition member that communicates between the sub-liquid chambers with a first orifice (14) that generates a first resonance with a predetermined input vibration, and that is elastically deformed so as to absorb a change in the internal pressure of the main liquid chamber in at least part of the partition member 30)
A second orifice (50) communicating with the partition member (11) through the main liquid chamber (12) and the sub liquid chamber (13) and resonating at a frequency different from the first resonance of the first orifice (14). And opening and closing the second orifice (50) by a part of the elastic partition member (30),
The partition member (11) includes the first orifice (14) on the outer peripheral portion, and a first opening (24) that is an opening on the main liquid chamber (12) side,
The second orifice (50) is formed separately from the first orifice (14), and the second opening (25), which is the main liquid chamber side opening, is formed in the first opening (24). and with are formed separately,
The partition member (11) includes the elastic partition member (30), a frame member (40) for fitting the elastic partition member (30), and the elastic partition member (30) to the frame member (40). A cover member (20) for fixing,
The elastic partition member (30) includes a central pressure receiving portion (31) and a support spring portion (32) provided on the outer peripheral portion,
The frame member (40) has an annular groove (41) formed between the outer peripheral wall (42) and the inner peripheral wall (43) at the outer peripheral portion;
A support wall (44) that supports the outer peripheral portion of the elastic partition member (30) inside the inner peripheral wall (43);
A central opening (47) that opens to the inside of the support wall (44) and communicates with the auxiliary liquid chamber (13) and that is opened and closed by the pressure receiving portion (31);
The second orifice (50) has one end communicating with the second opening (25) and the other end communicating with the central opening (47), and the inner peripheral wall (43) and the pressure receiving portion (31). A liquid seal vibration isolator having a third liquid chamber (37) formed therebetween.
前記弾性仕切部材(30)には、前記受圧部(31)の外周を囲むリング状溝(33)が形成され、このリング状溝(33)が前記第3液室(37)を構成することを特徴とする請求項1に記載した液封防振装置。 The elastic partition member (30) is formed with a ring-shaped groove (33) surrounding the outer periphery of the pressure receiving portion (31), and the ring-shaped groove (33) constitutes the third liquid chamber (37). The liquid seal vibration isolator according to claim 1 . 前記受圧部(31)の外周面全周には、前記リング状溝(33)に向かって開放された環状凹部(36)が形成され、この環状凹部(36)が前記第3液室(37)の一部をなすことを特徴とする請求項2に記載した液封防振装置。 An annular recess (36) opened toward the ring-shaped groove (33) is formed on the entire outer peripheral surface of the pressure receiving portion (31), and the annular recess (36) is formed in the third liquid chamber (37). The liquid seal vibration isolator according to claim 2 , which is a part of 前記弾性仕切部材(30)は、前記受圧部(31)の周囲に間隔をもって囲む周壁(34)を一体に備え、この周壁(34)と前記受圧部(31)の間に前記リング状溝(33)を形成するとともに、周壁(34)の一部に切り欠き部(38)を設け、リング状溝(33)を周壁(34)の外方空間と連通させたことを特徴とする請求項2又は3に記載した液封防振装置。 The elastic partition member (30) is integrally provided with a peripheral wall (34) surrounding the pressure receiving portion (31) with a space therebetween, and the ring-shaped groove (between the peripheral wall (34) and the pressure receiving portion (31) is provided. 33) and a notch (38) is provided in a part of the peripheral wall (34) so that the ring-shaped groove (33) communicates with the outer space of the peripheral wall (34). Liquid seal vibration isolator described in 2 or 3 . 前記内周壁(43)の前記切り欠き部(38)と連続する位置に切り欠き部(48)を設け、
この切り欠き部(48)を前記第2の開口(25)と第3液室(37)へ連通させたことを特徴とする請求項4に記載した液封防振装置。
A notch (48) is provided at a position continuous with the notch (38) of the inner peripheral wall (43);
The liquid seal vibration isolator according to claim 4 , wherein the notch (48) communicates with the second opening (25) and the third liquid chamber (37) .
JP2012280161A 2012-12-21 2012-12-21 Liquid seal vibration isolator Active JP6066715B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012280161A JP6066715B2 (en) 2012-12-21 2012-12-21 Liquid seal vibration isolator
CN201310712374.1A CN103883667B (en) 2012-12-21 2013-12-20 Liquid-sealed antivibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012280161A JP6066715B2 (en) 2012-12-21 2012-12-21 Liquid seal vibration isolator

Publications (2)

Publication Number Publication Date
JP2014122685A JP2014122685A (en) 2014-07-03
JP6066715B2 true JP6066715B2 (en) 2017-01-25

Family

ID=50952727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012280161A Active JP6066715B2 (en) 2012-12-21 2012-12-21 Liquid seal vibration isolator

Country Status (2)

Country Link
JP (1) JP6066715B2 (en)
CN (1) CN103883667B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388438B2 (en) * 2014-10-20 2018-09-12 株式会社ブリヂストン Vibration isolator
JP6279497B2 (en) * 2015-01-28 2018-02-14 株式会社ブリヂストン Vibration isolator
DE112019003332T5 (en) * 2018-08-24 2021-03-18 Sumitomo Riko Company Limited FLUID-FILLED VIBRATION DAMPING DEVICE
CN111255851B (en) * 2019-11-28 2021-06-22 浙江零跑科技有限公司 Air suspension structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191542U (en) * 1985-05-22 1986-11-28
JPH0723742B2 (en) * 1985-09-07 1995-03-15 株式会社ブリヂストン Anti-vibration device
JP3407465B2 (en) * 1995-03-31 2003-05-19 株式会社豊田中央研究所 Liquid filled type vibration damping device
JP5291537B2 (en) * 2009-05-26 2013-09-18 株式会社ブリヂストン Vibration isolator
JP5414567B2 (en) * 2010-02-19 2014-02-12 株式会社ブリヂストン Vibration isolator
DE112011100692T5 (en) * 2010-02-25 2013-01-17 Honda Motor Co., Ltd. Liquid-tight vibration isolation device
JP5530816B2 (en) * 2010-06-08 2014-06-25 東海ゴム工業株式会社 Fluid filled vibration isolator
JP5766513B2 (en) * 2011-05-31 2015-08-19 山下ゴム株式会社 Liquid seal vibration isolator

Also Published As

Publication number Publication date
CN103883667A (en) 2014-06-25
CN103883667B (en) 2017-05-31
JP2014122685A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP4103008B2 (en) Fluid filled vibration isolator
US8807545B2 (en) Liquid-sealed antivibration device
JP5882125B2 (en) Liquid-filled vibration isolator
JP4842086B2 (en) Fluid filled vibration isolator
JP4275791B2 (en) Liquid seal mount
JP2011149492A (en) Liquid sealed vibration control device
JP5801134B2 (en) Liquid-filled vibration isolator
JP5919129B2 (en) Vibration isolator
JP4348553B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JP2012172832A (en) Liquid-sealed type vibration control device
JP5882124B2 (en) Liquid-filled vibration isolator
JP6066715B2 (en) Liquid seal vibration isolator
JP2016176513A (en) Fluid sealed type vibration-proof device
JP2007278399A (en) Vibration control device
JP6240482B2 (en) Fluid filled vibration isolator
JP7326121B2 (en) Anti-vibration device
JP5431982B2 (en) Liquid-filled vibration isolator
JP7350629B2 (en) Vibration isolator
JP2010031988A (en) Fluid-sealed vibration control device
WO2016175273A1 (en) Vibration-damping device
JP5668231B2 (en) Liquid-filled vibration isolator
JP6962869B2 (en) Anti-vibration device
WO2014021110A1 (en) Vibration damping device
JP5108704B2 (en) Fluid filled engine mount
JP5893482B2 (en) Liquid-filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250