[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6053110B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment Download PDF

Info

Publication number
JP6053110B2
JP6053110B2 JP2012152752A JP2012152752A JP6053110B2 JP 6053110 B2 JP6053110 B2 JP 6053110B2 JP 2012152752 A JP2012152752 A JP 2012152752A JP 2012152752 A JP2012152752 A JP 2012152752A JP 6053110 B2 JP6053110 B2 JP 6053110B2
Authority
JP
Japan
Prior art keywords
optical path
imaging
vacuum
optical system
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012152752A
Other languages
Japanese (ja)
Other versions
JP2013117066A (en
Inventor
裕利 中尾
裕利 中尾
佐藤 誠一
誠一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012152752A priority Critical patent/JP6053110B2/en
Publication of JP2013117066A publication Critical patent/JP2013117066A/en
Application granted granted Critical
Publication of JP6053110B2 publication Critical patent/JP6053110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、真空処理室の外側と真空処理室内に存する処理対象物とを光学的に結び付ける光路を形成する光路形成装置を備える真空蒸着装置に関する。 The present invention relates to a vacuum vapor deposition apparatus Ru comprising an optical path forming equipment for forming an optical path linking the processing object that exists outside the vacuum chamber of a vacuum processing chamber optically.

FPDや半導体デバイスの製造工程において、処理室内で基板表面に各種処理を行う真空処理装置が用いられる。この種の真空処理装置では、処理室内で例えば基板表面に所定のパターンで成膜する際に、成膜範囲を制限するマスクに対して基板をアライメントするために撮像装置を用いることが一般的である。特許文献1には、真空蒸着装置において、蒸発源を備えた処理室内でマスクと基板をアライメントするとき、処理室を画成する真空チャンバの隔壁の外側にCCDカメラ等の撮像手段を設け、この撮像手段により基板越しにマスクを撮像する撮像装置が開示されている。また、このような撮像装置は、処理室内に配置された部品の状態(姿勢)の観察、基板に成膜された膜の状態の観察、あるいは成膜対象物(基板等のワーク)の識別等に用いることが期待されている。   In the manufacturing process of an FPD or a semiconductor device, a vacuum processing apparatus that performs various processes on a substrate surface in a processing chamber is used. In this type of vacuum processing apparatus, when forming a film in a predetermined pattern, for example, on the surface of a substrate in a processing chamber, it is common to use an imaging device to align the substrate with a mask that limits the film formation range. is there. In Patent Document 1, when a mask and a substrate are aligned in a processing chamber provided with an evaporation source in a vacuum deposition apparatus, an imaging unit such as a CCD camera is provided outside a partition wall of a vacuum chamber that defines the processing chamber. An imaging device that images a mask through a substrate by an imaging means is disclosed. In addition, such an imaging apparatus observes the state (posture) of components arranged in a processing chamber, observes the state of a film formed on a substrate, or identifies a film formation target (a workpiece such as a substrate). It is expected to be used for

ところで、上記従来例のものは、撮像手段の撮像光学系の光軸に沿って光路がのびるため、その光軸上に存する部品や基板に形成されたアライメントマーク等の要素(以下、これらを「撮像対象物」という)しか撮像できないという問題がある。例えば、基板がシリコンウエハ等の不透明な基板である等、撮像光学系の光軸上に不透明な障害物があると、障害物で死角となる撮像対象物と撮像光学系とが光学的に結び付かないため、撮像対象物を撮像できない。   By the way, in the above conventional example, since the optical path extends along the optical axis of the imaging optical system of the imaging means, components such as components on the optical axis and elements such as alignment marks formed on the substrate (hereinafter referred to as “ There is a problem that only the “object to be imaged” can be imaged. For example, if there is an opaque obstacle on the optical axis of the imaging optical system, for example, the substrate is an opaque substrate such as a silicon wafer, the imaging object that becomes a blind spot due to the obstacle is optically connected to the imaging optical system. Since it is not attached, it is not possible to image the imaging object.

他方、真空蒸着装置において、真空チャンバの隔壁の外側に変位センサ等の変位測定手段を設け、処理室内で基板を保持した状態で、その基板表面(以下、これを「測定対象物」という)の変位、すなわち、基板表面に成膜した薄膜の膜厚を測定することが考えられるが、上記撮像装置と同様に変位測定手段の測定光学系の光軸に沿って光路がのびるため、その光軸上に障害物があると、測定対象物と測定光学系とが光学的に結び付かないため、測定対象物の膜厚を測定できない。   On the other hand, in the vacuum deposition apparatus, a displacement measuring means such as a displacement sensor is provided outside the partition wall of the vacuum chamber, and the substrate surface (hereinafter referred to as “measuring object”) in a state where the substrate is held in the processing chamber. It is conceivable to measure the displacement, that is, the film thickness of the thin film formed on the surface of the substrate. However, since the optical path extends along the optical axis of the measuring optical system of the displacement measuring means in the same manner as the imaging device, the optical axis If there is an obstacle on the top, the measurement object and the measurement optical system are not optically linked, and thus the film thickness of the measurement object cannot be measured.

このような場合に、処理室内に存する撮像対象物や測定対象物が死角とならないように、撮像手段や変位測定手段の位置を変更することが考えられる。然し、真空チャンバの隔壁の外側には例えばガス供給系等の構成部品が多数設けられているため、撮像対象物や測定対象物が死角とならないように撮像手段や変位測定手段の位置を変更できない場合がある。また、真空蒸着装置の処理室内でマスクと蒸発源との間に撮像手段や変位測定手段を配置することも考えられるが、成膜時に撮像手段や変位測定手段が蒸発源の熱の影響を受けないようにする必要があり、また成膜時に蒸発源からの蒸発材料が撮像手段に付着しないようにする必要がある。このため、成膜時に撮像手段や変位測定手段を撮像位置や測定位置から退避させる機構や遮熱する機構等が別途必要となり、装置構成が複雑化してコストアップを招くという問題がある。   In such a case, it is conceivable to change the positions of the imaging means and the displacement measuring means so that the imaging object and the measurement object existing in the processing chamber do not become blind spots. However, since many components such as a gas supply system are provided outside the partition wall of the vacuum chamber, the positions of the imaging means and the displacement measuring means cannot be changed so that the imaging object and the measurement object do not become blind spots. There is a case. It is also conceivable to place an imaging means and a displacement measuring means between the mask and the evaporation source in the processing chamber of the vacuum evaporation apparatus, but the imaging means and the displacement measuring means are affected by the heat of the evaporation source during film formation. In addition, it is necessary to prevent the evaporation material from the evaporation source from adhering to the imaging means during film formation. For this reason, a mechanism for retracting the image pickup means and the displacement measurement means from the image pickup position and the measurement position, a heat shield mechanism, and the like are separately required at the time of film formation, and there is a problem that the apparatus configuration becomes complicated and the cost increases.

特開2002−241924号公報JP 2002-241924 A

本発明は、以上の点に鑑み、真空処理室の外側と、真空処理室内に存する処理対象物とを光学的に結び付ける光路を形成できる光路形成装置を備える真空蒸着装置を提供することを課題とする。 In view of the above points, and outside of the vacuum processing chamber, to provide a vacuum vapor deposition apparatus Ru comprising an optical path forming equipment for the processing object existing in the vacuum processing chamber to form a light path linking optically Let it be an issue.

上記課題を解決するために、本発明は、真空処理室と、真空処理室内の下部に配置される蒸発源と、真空処理室の外側と前記蒸発源に対向させて真空処理室内の上部に存する処理対象物とを光学的に結び付ける光路を形成する光路形成装置とを備える真空蒸着装置であって、前記光路形成装置は、真空処理室を画成する隔壁にシール手段を介して挿設されて、真空処理室の外側から線状にのびる第1の光路を形成する基部と、前記基部の先端に連結され、前記第1の光路に対して少なくとも1回屈曲又は湾曲して処理対象物を指向する第2の光路を形成する対物部とを有し、真空処理室内で第1の光路を回転中心として前記対物部が回転自在に構成され、前記蒸発源から蒸発材料を蒸発させる前に、前記対物部を、処理対象物を指向する位置から前記蒸発源からの蒸発材料が付着し難い退避位置まで所定量回転させる制御手段を更に備えることを特徴とする。 In order to solve the above problems, the present invention resides in a vacuum processing chamber , an evaporation source disposed in a lower portion of the vacuum processing chamber, an outer side of the vacuum processing chamber, and an upper portion of the vacuum processing chamber facing the evaporation source. A vacuum vapor deposition apparatus comprising an optical path forming device for optically linking a processing object , wherein the optical path forming device is inserted into a partition wall defining a vacuum processing chamber via a sealing means. A base that forms a first optical path extending linearly from the outside of the vacuum processing chamber, and a tip of the base that is connected to the tip of the base and bends or curves at least once with respect to the first optical path to direct the object to be processed An objective unit that forms a second optical path, and the objective unit is configured to be rotatable around the first optical path in a vacuum processing chamber, and before evaporating the evaporation material from the evaporation source, Position the objective unit at the object to be processed Further comprising a control means for rotating a predetermined amount until the evaporation material is not easily retracted position attachment from al the evaporation source.

本発明によれば、第1の光路を基部により形成し、第1の光路に対して少なくとも1回屈曲又は湾曲して対象物を指向する第2の光路を対物部により形成し、第1の光路を中心として対物部を回転自在としたため、基部を回転駆動させて対物部からの第2の光路を対象物に合わせれば、真空処理室の外側と真空処理室内の対象物とを光学的に結び付けることが可能となる。   According to the present invention, the first optical path is formed by the base, the second optical path that is bent or curved at least once with respect to the first optical path and is directed to the object is formed by the objective, and the first Since the objective part is rotatable around the optical path, if the second optical path from the objective part is aligned with the object by rotating the base part, the outside of the vacuum processing chamber and the object in the vacuum processing chamber are optically connected. It becomes possible to connect.

本発明において、基部を構成するガラスロッドの端部に対物部を構成する台形プリズムを連結し、駆動手段により前記ガラスロッドを回転させることにより、前記台形プリズムを退避位置に退避可能としたことが好ましい。これにより、簡単な構成で第1及び第2の光路を形成することができる。さらに、台形プリズムにおける反射光の入射面積は、例えば光路形成装置を光ファイバーで構成する場合のその光ファイバーにおけるものに比べて広い。このため、本発明の真空蒸着装置が撮像手段を備える場合には、処理室内に存する処理対象物の撮像を広範囲にかつ精度良く行うことができる。 In the present invention it concatenates the trapezoidal prism constituting the objective portion at the end portion of the glass rod constituting the base by rotating the glass rod by driving motion means, and a retractable said trapezoidal prism to the retracted position Is preferred. Thereby, the first and second optical paths can be formed with a simple configuration. Furthermore, the incident area of the reflected light in the trapezoidal prism is wider than that in the optical fiber when the optical path forming device is configured with an optical fiber, for example. For this reason, when the vacuum evaporation apparatus of this invention is provided with an imaging means, the imaging of the process target which exists in a process chamber can be performed in a wide range and with sufficient precision.

本発明において、前記対物部は、第2の光路を複数に分岐する分岐手段を有し、この分岐手段により分岐された第2の光路の各々が、処理対象物の異なる箇所を夫々指向するように構成することができる。
In the present invention, the objective unit includes a branching unit that branches the second optical path into a plurality of parts, and each of the second optical paths branched by the branching unit is directed to a different part of the object to be processed. Can be configured.

真空処理室内に存する処理対象物を撮像する撮像手段を備える本発明の真空蒸着装置において前記撮像手段は前記隔壁の外側に配置された撮像光学系を備え、前記基部が前記撮像光学系の光軸に沿ってのびる前記第1の光路を形成し、前記光路形成装置により処理対象物からの反射光を前記撮像光学系に導くようにしたことを特徴とする。 In the vacuum vapor deposition apparatus of the present invention provided with imaging means for imaging a processing object existing in a vacuum processing chamber, the imaging means comprises an imaging optical system disposed outside the partition wall, and the base is light of the imaging optical system. The first optical path extending along an axis is formed, and reflected light from a processing target is guided to the imaging optical system by the optical path forming device.

本発明によれば、光路形成装置の基部を回転駆動させて対物部からの第2の光路を処理対象物に合わせれば、隔壁の外側に配置された撮像光学系と、真空処理室内に存する処理対象物とを光学的に結び付けることができる。即ち、処理対象物からの反射光を、第2及び第1の光路を介して撮像光学系に導くことが可能となる。その結果、撮像光学系の光軸上に存しない処理対象物を撮像することができる。そして、蒸発源から蒸発材料を蒸発させる前に、基部を回転駆動させて対物部を蒸着源からの蒸発材料が付着し難い退避位置に向けることができるため、撮像手段を撮像位置から退避させる機構等が不要となり、装置構成を簡素化でき、低コスト化を図ることができる。 According to the present invention, Together base the optical path forming unit are rotationally driven in the second optical path processing object from the objective unit, and an imaging optical system which is arranged outside the partition wall consists in the vacuum processing chamber treatment An object can be optically linked. That is, the reflected light from the processing object can be guided to the imaging optical system via the second and first optical paths. As a result, it is possible to image a processing object that does not exist on the optical axis of the imaging optical system. Then, before evaporation of the evaporation material from the evaporation source, since by rotating the base portion can be directed to the evaporation material is not easily retracted position deposition from the vapor deposition source of the objective portion, a mechanism for retracting the pickup means from the imaging position Etc. becomes unnecessary, the apparatus configuration can be simplified, and the cost can be reduced.

真空処理室内に存する処理対象物の異なる箇所を撮像する撮像手段を備える本発明の真空蒸着装置において、上記分岐手段を有前記撮像手段は前記隔壁の外側に配置された撮像光学系を更に備え、前記基部が前記撮像光学系の光軸に沿ってのびる前記第1の光路を形成し、この第1及び第2の光路を介して処理対象物の複数箇所からの反射光を前記撮像光学系に導くようにしたことを特徴とする。 In the vacuum evaporation apparatus of the present invention includes an imaging means for imaging the different parts of the processing object existing in the vacuum processing chamber, have a said branching means, said imaging means further imaging optical system disposed outside of the partition wall And the base forms the first optical path extending along the optical axis of the imaging optical system, and the reflected light from a plurality of locations on the processing object is transmitted to the imaging optical system via the first and second optical paths. It is characterized by being guided to the system.

本発明によれば、光路形成装置の基部を回転駆動させて第2の光路の各々を撮像対象物の異なる箇所に夫々指向させると、隔壁外側に配置された撮像光学系と、撮像対象物の異なる複数箇所とを光学的に結び付けることができる。従って、処理対象物の複数箇所からの反射光を、第2及び第1の光路を介して撮像光学系に導くことが可能となり、処理対象物の複数箇所を撮像することが可能となる。 According to the present invention, when the base portion of the optical path forming device is rotationally driven to direct each of the second optical paths to different portions of the imaging object, the imaging optical system disposed outside the partition wall and the imaging object Different locations can be optically linked. Therefore, it is possible to guide reflected light from a plurality of locations on the processing object to the imaging optical system via the second and first optical paths, and it is possible to image a plurality of locations on the processing object.


上記光路形成装置を備えた本発明の真空蒸着装置であって、真空処理室内に存する処理対象物の変位を測定するものにおいて、前記測定手段は前記隔壁の外側に配置された測定光学系を備え、前記基部が前記測定光学系の光軸に沿ってのびる第1の光路を形成し、前記光路形成装置により処理対象物からの反射光を前記測定光学系に導くようにしたことを特徴とする。

In the vacuum vapor deposition apparatus of the present invention provided with the above optical path forming apparatus for measuring the displacement of a processing object existing in a vacuum processing chamber, the measuring means includes a measuring optical system disposed outside the partition wall. The base portion forms a first optical path extending along the optical axis of the measurement optical system, and the reflected light from the processing object is guided to the measurement optical system by the optical path forming device. .


本発明によれば、光路形成装置の基部を回転駆動させて対物部からの第2の光路を処理対象物に合わせれば、隔壁の外側に配置された測定光学系と、真空処理室内に存する処理対象物とを光学的に結び付けることができる。即ち、処理対象物からの反射光を、第2及び第1の光路を介して測定光学系に導くことが可能となる。その結果、測定光学系の光軸上に存しない処理対象物の変位を測定することができる。そして、測定光学系の光軸上に存しない基板表面に成膜した薄膜の膜厚を測定できる。また、真空蒸着装置にて、マスクに対して基板をアライメントして基板表面に所定のパターンで成膜する場合、測定光学系の光軸上に存しない基板とマスクとの間の間隔を測定できる。真空蒸着装置に適用する場合、基部を回転駆動させて対物部を蒸着源からの蒸発材料が付着し難い退避位置に向けることができるため、変位測定装置を変位測定位置から退避させる機構等が不要となり、装置構成を簡素化でき、低コスト化を図ることができる。

According to the present invention, Together we base the optical path forming unit are rotationally driven in the second optical path processing object from the objective portion, a measurement optical system arranged on the outside of the partition, resides in the vacuum processing chamber treatment An object can be optically linked. That is, the reflected light from the object to be processed can be guided to the measurement optical system via the second and first optical paths. As a result, the displacement of the processing object that does not exist on the optical axis of the measurement optical system can be measured. Then, it is possible to measure the film thickness of the thin film deposition on the substrate surface not resides on the optical axis of the measuring optical system. In addition, when the substrate is aligned with the mask and deposited in a predetermined pattern on the surface of the substrate with a vacuum deposition apparatus, the distance between the substrate and the mask that does not exist on the optical axis of the measurement optical system can be measured. . When applied to a vacuum evaporation system, the base can be driven to rotate and the objective can be directed to a retracted position where the evaporation material from the evaporation source is difficult to adhere, eliminating the need for a mechanism to retract the displacement measuring apparatus from the displacement measuring position. Thus, the device configuration can be simplified and the cost can be reduced.

上記光路形成装置を少なくとも2つ備えた本発明の真空蒸着装置であって、真空処理室内に存する処理対象物の状態を検出するものにおいて、前記隔壁の外側に配置された投光光学系及び受光光学系を備え、一の光路形成装置の基部が前記投光光学系の光軸に沿って延びる第1の光路を形成し、他の光路形成装置の基部が前記受光光学系の光軸に沿って延びる第1の光路を形成し、前記投光光学系から投光された投光光を前記一及び他の光路形成装置を介して前記受光光学系に導くようにしたことを特徴とする。 A vacuum vapor deposition apparatus according to the present invention comprising at least two optical path forming apparatuses, wherein the light projecting optical system and the light receiving device are arranged outside the partition wall for detecting the state of a processing object existing in a vacuum processing chamber. An optical system, the base of one optical path forming device forms a first optical path extending along the optical axis of the light projecting optical system, and the base of the other optical path forming device runs along the optical axis of the light receiving optical system A first light path extending in a lengthwise direction, and the light projected from the light projecting optical system is guided to the light receiving optical system via the one and other light path forming devices.

本発明によれば、一及び他の光路形成装置の各基部を回転駆動させて対物部同士を対向させれば、投光光学系から投光された光が一の光路形成装置の対物部から出射され、この出射光が他の光路形成装置の対物部から入射して受光光学系に入射する。受光光学系への入射光の光量は、両対物部間に存する測定対象物の位置もしくは姿勢に応じて変化する。このため、両対物部間に存する測定対象物の位置、姿勢や両対物部間を移動する測定対象物の移動速度のような測定対象物の状態を検出することができる。   According to the present invention, if the respective base portions of one and other optical path forming devices are rotationally driven so that the objective portions face each other, the light projected from the light projecting optical system is emitted from the objective portion of the one optical path forming device. The emitted light is emitted from an objective part of another optical path forming device and enters a light receiving optical system. The amount of light incident on the light receiving optical system changes according to the position or orientation of the measurement object existing between both objectives. For this reason, it is possible to detect the state of the measurement object such as the position and orientation of the measurement object existing between the two object parts and the moving speed of the measurement object moving between the two object parts.

本発明の第1実施形態の光路形成装置を備えた撮像装置を示す模式図。The schematic diagram which shows the imaging device provided with the optical path formation apparatus of 1st Embodiment of this invention. 図1に示した撮像装置の一部の拡大図。FIG. 2 is an enlarged view of a part of the imaging apparatus illustrated in FIG. 1. 撮像装置の変形例を示す図。The figure which shows the modification of an imaging device. 本発明の第2実施形態の光路形成装置を備えた変位測定装置を示す模式図。The schematic diagram which shows the displacement measuring apparatus provided with the optical path formation apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の光路形成装置を備えた検出装置を示す模式図。The schematic diagram which shows the detection apparatus provided with the optical path formation apparatus of 3rd Embodiment of this invention. (a)及び(b)は、光路形成装置の変形例を示す図。(A) And (b) is a figure which shows the modification of an optical path formation apparatus. 本発明の第4実施形態の光路形成装置を備えた撮像装置を示す模式図。The schematic diagram which shows the imaging device provided with the optical path formation apparatus of 4th Embodiment of this invention. (a)及び(b)は、図7に示した撮像装置を用いたアライメント方法を説明するための図。(A) And (b) is a figure for demonstrating the alignment method using the imaging device shown in FIG.

以下、図面を参照して、処理すべき基板をシリコンウエハ(以下「ウエハ」という)Wとし、真空処理装置を、真空蒸着法にてウエハW表面に銅やアルミニウムなどの金属膜を成膜する真空蒸着装置とし、この真空蒸着装置に本発明の第1実施形態の光路形成装置を有する撮像装置を適用した場合を例として説明する。   Hereinafter, with reference to the drawings, a substrate to be processed is a silicon wafer (hereinafter referred to as “wafer”) W, and a vacuum processing apparatus forms a metal film such as copper or aluminum on the surface of the wafer W by vacuum deposition. A vacuum deposition apparatus will be described as an example in which the imaging apparatus having the optical path forming apparatus according to the first embodiment of the present invention is applied to the vacuum deposition apparatus.

図1に示すように、真空蒸着装置EM1は、真空処理室(以下「処理室」という)10を画成する筒状の真空チャンバ1を備える。真空チャンバ1には、排気管11を介して図示省略の真空ポンプが接続され、その内部を所定の圧力に減圧保持できる。真空チャンバ1の上部は、その下部に比較して小径に形成され、これにより、真空チャンバ1の側壁には水平な段差部12が形成される。真空チャンバ1内の上部空間13aには、下面に静電チャック用の電極(図示せず)を埋設したステージ2が設けられている。そして、図外のチャック用電源から電極間に所定電圧を印加し、電極間に生じる静電気力によりウエハWを吸着できる。ステージ2の上面には、(本実施形態では1本の)駆動軸31が連結され、駆動軸31の他端が、真空チャンバ1上面に設けたベローズ32を通って外部まで延出し、公知の構造のXYθステージ33に連結されている。このXYθステージ33により、駆動軸31で吊設されたステージ2が、真空下の上部空間13a内でX方向及びY方向の少なくとも一方に移動でき、また、θ方向に回転できる。なお、駆動軸31にエアーシリンダ等の駆動源を別途設け、Z方向にも移動自在(図1中、上下方向)としてもよい。   As shown in FIG. 1, the vacuum evaporation apparatus EM1 includes a cylindrical vacuum chamber 1 that defines a vacuum processing chamber (hereinafter referred to as “processing chamber”) 10. A vacuum pump (not shown) is connected to the vacuum chamber 1 via an exhaust pipe 11, and the inside of the vacuum chamber 1 can be held at a predetermined pressure. The upper portion of the vacuum chamber 1 is formed to have a smaller diameter than the lower portion thereof, whereby a horizontal step portion 12 is formed on the side wall of the vacuum chamber 1. The upper space 13a in the vacuum chamber 1 is provided with a stage 2 in which an electrostatic chuck electrode (not shown) is embedded on the lower surface. A predetermined voltage is applied between the electrodes from a chuck power source (not shown), and the wafer W can be attracted by the electrostatic force generated between the electrodes. A drive shaft 31 (one in this embodiment) is connected to the upper surface of the stage 2, and the other end of the drive shaft 31 extends to the outside through a bellows 32 provided on the upper surface of the vacuum chamber 1. The XYθ stage 33 is connected to the structure. The XYθ stage 33 allows the stage 2 suspended by the drive shaft 31 to move in at least one of the X direction and the Y direction in the upper space 13a under vacuum and to rotate in the θ direction. Note that a drive source such as an air cylinder may be separately provided on the drive shaft 31 so as to be movable in the Z direction (up and down direction in FIG. 1).

真空チャンバ1内の下部空間13bには蒸発源4がステージ2下面に対向させて配置されている。蒸発源4は、ウエハWに成膜しようとする薄膜に応じて選択される蒸発材料41が収納される坩堝42と、蒸発材料41を蒸発させるヒータや電子銃等の加熱手段43とを備える。また、ステージ2と蒸発源4との間には、ウエハWへの成膜範囲を制限する例えば平面視円形のマスクMを支持するマスク支持体5が設けられている。   In the lower space 13 b in the vacuum chamber 1, the evaporation source 4 is disposed so as to face the lower surface of the stage 2. The evaporation source 4 includes a crucible 42 in which an evaporation material 41 selected according to a thin film to be deposited on the wafer W is stored, and a heating unit 43 such as a heater or an electron gun for evaporating the evaporation material 41. Further, between the stage 2 and the evaporation source 4, there is provided a mask support 5 that supports a mask M that is circular in plan view, for example, which limits the film forming range on the wafer W.

マスク支持体5は、ウエハWと平行に配置される環状の支持板50と、この支持板50を吊持する2本の支柱51とから構成される。支持板50の中央開口52はマスクMの輪郭と略一致し、その下端周縁部にはその内方に向かって延出する延出部53が形成され、この中央開口52にマスクMを落とし込むと、マスクMが延出部53で位置決め支持される。マスクMは、ウエハWの径よりも大きい径を有し、ウエハWへの成膜範囲に応じて種々の形態とされる。また、マスクMの周縁部の所定位置には、マスクMをマスク支持体5により位置決め支持させたとき、後述する台形プリズム62bからの光路P3上に位置させて透孔Mmが形成されている。この透孔Mmは、マスクMに対してウエハWをアライメントする場合のマスク用のアライメントマークとしての役割を果たす。   The mask support 5 includes an annular support plate 50 disposed in parallel with the wafer W and two support columns 51 that suspend the support plate 50. The central opening 52 of the support plate 50 substantially coincides with the contour of the mask M, and an extending portion 53 extending inwardly is formed at the peripheral edge of the lower end thereof. When the mask M is dropped into the central opening 52, The mask M is positioned and supported by the extending portion 53. The mask M has a diameter larger than the diameter of the wafer W, and has various forms according to the film forming range on the wafer W. Further, when the mask M is positioned and supported by the mask support 5, a through hole Mm is formed at a predetermined position on the peripheral edge of the mask M so as to be positioned on an optical path P <b> 3 from a trapezoidal prism 62 b described later. The through holes Mm serve as mask alignment marks when the wafer W is aligned with the mask M.

真空蒸着装置EM1は、処理室10内に存する撮像対象物たるウエハWのアライメントマークWmを撮像する撮像装置6を備える。撮像装置6は、撮像手段61と、光路形成装置62と、真空シール手段63と、後述する駆動手段とから構成される。撮像手段61は、処理室10を画成する隔壁たる段差部12の上方(外側)に設けられ、可視光や所定波長のレーザ光等を照射する光源61aと、CCDイメージセンサ等の撮像素子61bと、光源61aから照射された光をガラスロッド62aへ導くと共に撮像対象物Wからの反射光を撮像素子61bへと導く図示省略の撮像光学系とを、筺体61cに一体に組み付けて構成される。   The vacuum deposition apparatus EM1 includes an imaging device 6 that images the alignment mark Wm of the wafer W that is an imaging target in the processing chamber 10. The imaging device 6 includes an imaging means 61, an optical path forming device 62, a vacuum sealing means 63, and a driving means described later. The imaging means 61 is provided above (outside) the stepped portion 12 that defines the processing chamber 10, and includes a light source 61 a that emits visible light, laser light having a predetermined wavelength, and the like, and an imaging element 61 b such as a CCD image sensor. And an imaging optical system (not shown) that guides the light emitted from the light source 61a to the glass rod 62a and guides the reflected light from the imaging target W to the imaging device 61b, and is integrally assembled to the housing 61c. .

光路形成装置62は、基部たるガラスロッド62aと、処理室内に突出したガラスロッド62aの下端に連結された対物部たる台形プリズム62bとから構成される。ガラスロッド62aとしては、コアとクラッドからなる2層構造のもの等、公知のものが用いられ、処理室10の外側から撮像光学系の光軸Paに沿って線状に延びる第1の光路P1を形成するように、段差部12に真空シール手段63を介して挿設されている。台形プリズム62bとしては、光学ガラス又はサファイヤ製で斜面に金属膜が溶着されているもの等、公知のものが用いられ、第1の光路P1(光軸Pa)に対して屈曲した第2の光路P2、P3を形成する。即ち、例えば、光路P1を通過した光を台形プリズム62bの一側(ガラスロッド62aと連結された側)で撮像光学系の光軸Paに対して直交する水平方向に導き、この台形プリズム62b内の光路P2を通る光を、その他側で更に光軸Paに平行で上方に導き、台形プリズム62bの他側と撮像対象物Wとの間の光路P3を形成する。本実施形態では、光路P3が透孔Mmを通って上方にのびるように台形プリズム62bの長さが定寸されている。   The optical path forming device 62 includes a glass rod 62a as a base and a trapezoidal prism 62b as an objective connected to the lower end of the glass rod 62a protruding into the processing chamber. As the glass rod 62a, a known one such as a two-layer structure composed of a core and a clad is used, and a first optical path P1 extending linearly from the outside of the processing chamber 10 along the optical axis Pa of the imaging optical system. Is inserted into the stepped portion 12 via the vacuum sealing means 63. As the trapezoidal prism 62b, a publicly known one such as optical glass or sapphire made of a metal film welded to a slope is used, and the second optical path bent with respect to the first optical path P1 (optical axis Pa). P2 and P3 are formed. That is, for example, the light that has passed through the optical path P1 is guided in the horizontal direction perpendicular to the optical axis Pa of the imaging optical system on one side of the trapezoidal prism 62b (the side connected to the glass rod 62a). The light passing through the optical path P2 is guided further on the other side in parallel with the optical axis Pa to form an optical path P3 between the other side of the trapezoidal prism 62b and the imaging object W. In the present embodiment, the length of the trapezoidal prism 62b is sized so that the optical path P3 extends upward through the through hole Mm.

真空シール手段63としては、ガラスロッド62aを回転自在に支承する公知構造のものを用いることができる。図2を参照して、真空シール手段63は、径方向に張り出すフランジを下端に有する円筒部63aと、円筒部63a内で上下方向に所定間隔を存して配置された2つの軸受け63bと、これらの軸受け63bの間に配置された永久磁石63cと、軸受け63bにより回転自在に支持される中空の回転シャフト63dとで構成される。そして、永久磁石63cにより形成した磁場によって回転シャフト63dの外表面に磁性流体のOリング(図示省略)が形成されるようになっている。また、回転シャフト63dの中空部には上記ガラスロッド62aが挿通され、回転シャフト63dとガラスロッド62aとの間はOリング63eによりシールされている。   As the vacuum sealing means 63, a known structure that rotatably supports the glass rod 62a can be used. Referring to FIG. 2, the vacuum sealing means 63 includes a cylindrical portion 63a having a radially extending flange at the lower end, and two bearings 63b arranged at predetermined intervals in the vertical direction within the cylindrical portion 63a. The permanent magnet 63c disposed between the bearings 63b and a hollow rotating shaft 63d that is rotatably supported by the bearings 63b. A magnetic fluid O-ring (not shown) is formed on the outer surface of the rotating shaft 63d by the magnetic field formed by the permanent magnet 63c. The glass rod 62a is inserted through the hollow portion of the rotating shaft 63d, and the space between the rotating shaft 63d and the glass rod 62a is sealed by an O-ring 63e.

駆動手段64は、筐体64aと、筐体64aの上面に配置されたモータ64bと、モータ64bの回転軸64cに連結された駆動ギア64dと、駆動ギア64dに連結された従動ギア64eとで構成されている。従動ギア64eには、ガラスロッド62a及び回転シャフト63cが係合している。このような構成によれば、モータ64bを回転駆動すると、回転軸64cと一体に駆動ギア64dが回転し、駆動ギア64dの回転力が従動ギア64eに伝達して回転することで、光軸Paを中心としてガラスロッド62a及び回転シャフト63cが所定量だけ回転する。   The driving means 64 includes a housing 64a, a motor 64b disposed on the upper surface of the housing 64a, a driving gear 64d connected to the rotating shaft 64c of the motor 64b, and a driven gear 64e connected to the driving gear 64d. It is configured. A glass rod 62a and a rotating shaft 63c are engaged with the driven gear 64e. According to such a configuration, when the motor 64b is rotationally driven, the drive gear 64d rotates integrally with the rotary shaft 64c, and the rotational force of the drive gear 64d is transmitted to the driven gear 64e to rotate, whereby the optical axis Pa. The glass rod 62a and the rotating shaft 63c rotate by a predetermined amount around the center.

筐体64aの上面には上記撮像手段61が配置されており、撮像手段61直下の筐体64a上壁には透孔64fが形成されている。そして、この透孔64fの内部にガラスロッド62aの上端が位置するように真空シール手段63及び駆動手段64が組み付けられている。これによれば、ガラスロッド62aが回転しても、撮像手段61から発せられた光をガラスロッド62aに導くことができると共にガラスロッド62aの上端から出射された光を撮像手段61の撮像光学系に導くことができる。   The imaging means 61 is disposed on the upper surface of the casing 64a, and a through hole 64f is formed in the upper wall of the casing 64a immediately below the imaging means 61. And the vacuum seal means 63 and the drive means 64 are assembled | attached so that the upper end of the glass rod 62a may be located inside this through-hole 64f. According to this, even if the glass rod 62a rotates, the light emitted from the imaging means 61 can be guided to the glass rod 62a, and the light emitted from the upper end of the glass rod 62a can be used as the imaging optical system of the imaging means 61. Can lead to.

尚、上記駆動手段64に代えて、図3に示す駆動手段640を用いてもよい。駆動手段640は、上記従動ギア64eよりも高さの高い従動ギア641を備え、この従動ギア641の上部が筐体64aの上壁を貫通するようにしている。従動ギア641の上部には凹部641aが形成され、この凹部641aに撮像手段61の下部を嵌め込むことで、ガラスロッド62aに対して撮像手段61が位置決めされる。これによれば、従動ギア641が回転することで、光軸Paを回転中心としてガラスロッド62a、回転シャフト62c及び撮像手段61が所定量だけ回転する。凹部641aの下方には、凹部641aよりも小径の凹部641bが形成され、この凹部641bの内部にガラスロッド62aの上端を位置させることで、撮像手段61からの光をガラスロッド62aに導くことができると共にガラスロッド62aからの光を撮像手段61の撮像光学系に導くことができる。   Instead of the driving unit 64, a driving unit 640 shown in FIG. 3 may be used. The driving means 640 includes a driven gear 641 having a height higher than that of the driven gear 64e, and the upper portion of the driven gear 641 passes through the upper wall of the housing 64a. A concave portion 641a is formed in the upper portion of the driven gear 641, and the imaging means 61 is positioned with respect to the glass rod 62a by fitting the lower portion of the imaging means 61 into the concave portion 641a. According to this, when the driven gear 641 rotates, the glass rod 62a, the rotating shaft 62c, and the imaging means 61 rotate by a predetermined amount around the optical axis Pa as the rotation center. A recessed portion 641b having a smaller diameter than the recessed portion 641a is formed below the recessed portion 641a. By positioning the upper end of the glass rod 62a inside the recessed portion 641b, the light from the imaging means 61 can be guided to the glass rod 62a. In addition, the light from the glass rod 62a can be guided to the imaging optical system of the imaging means 61.

尚、上記駆動ギア及び従動ギアを用いる代わりに、ベルトを用いてモータ回転軸と回転シャフトとを連結し、モータを回転駆動させて光軸Paを回転中心としてガラスロッド62aを回転させるようにしてもよい。   Instead of using the drive gear and the driven gear, a motor rotating shaft and a rotating shaft are connected using a belt, and the motor is driven to rotate to rotate the glass rod 62a around the optical axis Pa as the center of rotation. Also good.

撮像素子61bには画像処理手段7が付設され、画像処理手段7にて処理した画像データが制御部Cに入力されるようになっている。制御部Cは、マイクロコンピュータ、記憶素子やシーケンサ等を備えた公知のものであり、光源61a、撮像素子61b、撮像光学系、モータ64b、XYθステージ33、加熱手段43等の作動をも統括制御できるようになっている。以下、本実施形態の撮像装置6を用いたマスクMに対するウエハWのアライメントを説明する。   The image sensor 61b is provided with an image processing means 7, and image data processed by the image processing means 7 is input to the control unit C. The control unit C is a known unit including a microcomputer, a storage element, a sequencer, and the like, and comprehensively controls the operations of the light source 61a, the imaging element 61b, the imaging optical system, the motor 64b, the XYθ stage 33, the heating means 43, and the like. It can be done. Hereinafter, alignment of the wafer W with respect to the mask M using the imaging device 6 of the present embodiment will be described.

真空チャンバ1を真空引きして所定圧力まで減圧した状態で、図外の真空搬送ロボットによりマスクMを搬送し、マスク支持体5の支持板50の中央開口52にマスクMをセットする。マスクMにはアライメントマークMmたる透孔が周方向に180度間隔で形成されている。次に、図外の真空搬送ロボットによりウエハWを搬送し、ステージ2にウエハWを、その成膜面を下側にして吸着させる。この場合、ウエハWの成膜面の外周縁部には、マスクMのアライメントマークMmより小径(例えばφ0.5mm)のアライメントマークWmが周方向に180度間隔で設けられている。   In a state where the vacuum chamber 1 is evacuated and depressurized to a predetermined pressure, the mask M is transferred by a vacuum transfer robot (not shown), and the mask M is set in the central opening 52 of the support plate 50 of the mask support 5. In the mask M, through-holes that are alignment marks Mm are formed at intervals of 180 degrees in the circumferential direction. Next, the wafer W is transferred by a vacuum transfer robot (not shown), and the wafer W is attracted to the stage 2 with its film formation surface facing downward. In this case, alignment marks Wm having a smaller diameter (for example, φ0.5 mm) than the alignment mark Mm of the mask M are provided on the outer peripheral edge portion of the film formation surface of the wafer W at intervals of 180 degrees in the circumferential direction.

ウエハWを吸着した後、モータ64bを駆動してガラスロッド62aを回転駆動させ、台形プリズム62bの先端を、ウエハWのアライメントマークWmの下方に位置させる、つまり、台形プリズム62bからの光路P3をウエハWのアライメントマークWmに合わせる(撮像位置)。そして、光源61aから光を照射すると、光路P1、P2、P3を経てウエハWに対して照射される。ウエハWからの反射光は、光路P3、P2、P1を経て撮像手段61の撮像光学系に導かれ、撮像光学系により撮像素子61bの受光面に結像される。その結果、撮像手段61の撮像光学系の光軸Pa上に存しないウエハWのアライメントマークWmがマスクM越しに撮像される。撮像手段61により撮像された画像は画像処理手段7に送られ、画像処理手段7により画像処理してマスクMに対するウエハWのずれ量が検出される。検出されたずれ量は制御部Cに入力され、入力されたずれ量に基づいてXYθステージ33の移動量が算出され、ステージ33をX方向及びY方向の少なくとも一方に移動させ、または、θ方向に回転させることでウエハWの姿勢を変更してアライメントされる。   After adsorbing the wafer W, the motor 64b is driven to rotate the glass rod 62a so that the tip of the trapezoidal prism 62b is positioned below the alignment mark Wm of the wafer W, that is, the optical path P3 from the trapezoidal prism 62b is set. Align with the alignment mark Wm on the wafer W (imaging position). When light is irradiated from the light source 61a, the light is irradiated onto the wafer W through the optical paths P1, P2, and P3. The reflected light from the wafer W is guided to the imaging optical system of the imaging means 61 through the optical paths P3, P2, and P1, and formed on the light receiving surface of the imaging element 61b by the imaging optical system. As a result, the alignment mark Wm of the wafer W that does not exist on the optical axis Pa of the imaging optical system of the imaging means 61 is imaged through the mask M. The image picked up by the image pickup means 61 is sent to the image processing means 7, and the image processing means 7 performs image processing to detect the shift amount of the wafer W with respect to the mask M. The detected shift amount is input to the control unit C, and the movement amount of the XYθ stage 33 is calculated based on the input shift amount, and the stage 33 is moved in at least one of the X direction and the Y direction, or the θ direction. , The orientation of the wafer W is changed and alignment is performed.

アライメントが終了すると、ガラスロッド62bを所定量(例えば180度)回転駆動させて、台形プリズム62bの先端を、図1において二点鎖線で示すように、蒸発源4からの蒸発材料が付着し難い真空チャンバ1側壁近傍に位置させる(退避位置)。そして、加熱手段43を作動させて坩堝42内の蒸発材料41が蒸発され、ウエハWに所定のパターンで成膜される。   When the alignment is completed, the glass rod 62b is rotated by a predetermined amount (for example, 180 degrees), and the tip of the trapezoidal prism 62b hardly adheres to the evaporation material from the evaporation source 4 as indicated by a two-dot chain line in FIG. It is located near the side wall of the vacuum chamber 1 (retracted position). Then, the heating means 43 is operated to evaporate the evaporation material 41 in the crucible 42 and form a film on the wafer W in a predetermined pattern.

以上説明したように、本実施形態の撮像装置によれば、アライメントマークWmの撮像に必要な光路を、ガラスロッド62aと台形プリズム62bとで形成し、第1の光路P1を回転中心として台形プリズム62bを回転自在としたため、ガラスロッド62aを回転駆動させて台形プリズム62bからの光路P3をアライメントマークWmに向ければ、処理室10外側の撮像手段61と処理室10内のアライメントマークWmとを光学的に結び付ける光路P1〜P3が形成される。即ち、アライメントマークWmからの反射光を光路P1〜P3を介して撮像手段61の撮像光学系に導くことが可能となる。その結果、撮像手段61の撮像光学系の光軸Pa上に存しないウエハWのアライメントマークWmを撮像することができる。しかも、成膜処理前にガラスロッド62aを回転させて台形プリズム62bを退避させることができるため、蒸発源4から蒸発した材料が台形プリズム62bの先端に付着、堆積し難くなり、台形プリズム62bの先端が直ぐに塞がれて、撮像手段61によりアライメントマークWmを撮像できなくなるといった不具合は生じ難い。このため、成膜時に遮熱や撮像手段への蒸発材料の付着を防止するための機構や部品を必要とせず、装置構成を簡素化できるだけでなく、部品点数の増加を防止でき、CCDカメラ等の低廉な撮像手段61を用いることができることと相俟って低コストを図ることができる。   As described above, according to the imaging apparatus of the present embodiment, the optical path necessary for imaging the alignment mark Wm is formed by the glass rod 62a and the trapezoidal prism 62b, and the trapezoidal prism with the first optical path P1 as the rotation center. Since the glass rod 62a is driven to rotate so that the optical path P3 from the trapezoidal prism 62b is directed to the alignment mark Wm, the image pickup means 61 outside the processing chamber 10 and the alignment mark Wm in the processing chamber 10 are optically driven. Optical paths P1 to P3 are formed. In other words, the reflected light from the alignment mark Wm can be guided to the imaging optical system of the imaging means 61 via the optical paths P1 to P3. As a result, the alignment mark Wm of the wafer W that does not exist on the optical axis Pa of the imaging optical system of the imaging means 61 can be imaged. In addition, since the trapezoidal prism 62b can be retracted by rotating the glass rod 62a before the film forming process, the material evaporated from the evaporation source 4 becomes difficult to adhere to and accumulate on the tip of the trapezoidal prism 62b. It is difficult to cause a problem that the tip is closed immediately and the alignment mark Wm cannot be imaged by the imaging unit 61. For this reason, there is no need for a mechanism or parts for preventing heat shield or evaporation material from adhering to the imaging means during film formation, not only simplifying the apparatus configuration but also preventing an increase in the number of parts, CCD cameras, etc. In combination with the fact that the inexpensive imaging means 61 can be used, the cost can be reduced.

また、本実施形態において、光路形成装置62をガラスロッド62aとこのガラスロッド62aの端部に連結された台形プリズム62bとから構成したため、簡単な構成で光路形成装置62を実現できる。ところで、光路形成装置62を光ファイバーケーブルで構成することも可能である。この場合、例えばφ0.125mmの光ファイバー素線を複数本結束して光路を形成するため、光ファイバーケーブル62の断面のうち光ファイバー素線の断面以外は死角となる。この死角よりも大幅に大きい撮像対象物を撮像する場合や光ファイバー素線の断面内の小さい撮像対象物を撮像する場合には、光ファイバーケーブル62を用いて撮像対象物を精度良く撮像することが可能となるが、上記φ0.5mmのアライメントマークWmを撮像して0.5μmの精度でアライメントを行う場合に適用するのは好ましくない。一方、台形プリズム62bにおける反射光の入射面積は、上記光ファイバーケーブルにおける反射光の入射面積よりも広く、かつ、上記死角が生じないため、アライメントマークWmを精度良く撮像することができる。   In the present embodiment, since the optical path forming device 62 is composed of the glass rod 62a and the trapezoidal prism 62b connected to the end of the glass rod 62a, the optical path forming device 62 can be realized with a simple configuration. By the way, the optical path forming device 62 can be constituted by an optical fiber cable. In this case, for example, a plurality of optical fiber strands having a diameter of 0.125 mm are bundled to form an optical path, and therefore, the cross section of the optical fiber cable 62 other than the cross section of the optical fiber strand becomes a blind spot. When imaging an imaging object that is significantly larger than the blind spot or when imaging an imaging object that is small in the cross section of the optical fiber, it is possible to accurately image the imaging object using the optical fiber cable 62. However, it is not preferable to apply this method when imaging the alignment mark Wm having a diameter of 0.5 mm and performing alignment with an accuracy of 0.5 μm. On the other hand, the incident area of the reflected light in the trapezoidal prism 62b is larger than the incident area of the reflected light in the optical fiber cable, and the blind spot does not occur, so that the alignment mark Wm can be accurately imaged.

次に、処理すべき基板をウエハWとし、真空処理装置を上記真空蒸着装置とし、この真空蒸着装置に本発明の第2実施形態の光路形成装置を有する変位測定装置を適用した場合を例として説明する。   Next, the case where the substrate to be processed is the wafer W, the vacuum processing apparatus is the above vacuum vapor deposition apparatus, and the displacement measuring apparatus having the optical path forming apparatus of the second embodiment of the present invention is applied to this vacuum vapor deposition apparatus as an example. explain.

図4に示す真空蒸着装置EM2は、撮像装置6に代えて変位測定装置8を備える点で上記真空蒸着装置EM1と相違する。変位測定装置8は、変位測定手段81と、光路形成装置62と、真空シール手段63と、駆動手段64とから構成される。光路形成装置62、真空シール手段63及び駆動手段64は、上記撮像装置6のものと同じである。ガラスロッド62aの回転駆動量に応じて、図4において実線で示す如く光路P3が透光部たる透孔Mmを通ってウエハWの下面Waまで延びるように台形プリズム62bの長さが定寸されている。   A vacuum vapor deposition apparatus EM2 shown in FIG. 4 is different from the vacuum vapor deposition apparatus EM1 in that a displacement measuring device 8 is provided instead of the imaging device 6. The displacement measuring device 8 includes a displacement measuring unit 81, an optical path forming device 62, a vacuum sealing unit 63, and a driving unit 64. The optical path forming device 62, the vacuum sealing means 63, and the driving means 64 are the same as those of the imaging device 6. According to the rotational driving amount of the glass rod 62a, the length of the trapezoidal prism 62b is sized so that the optical path P3 extends to the lower surface Wa of the wafer W through the through hole Mm as a light transmitting portion as shown by a solid line in FIG. ing.

変位測定手段81は、処理室10を画成する段差部12の上方に設けられ、光源81aと、変位センサ81bと、光源81aから照射された光をガラスロッド62aへと導くと共に測定対象物Wからの反射光を変位センサ81bへと導く図示省略の測定光学系とを、筐体81cに一体に組み付けて構成される。変位センサ81bとしては、例えば分光干渉式の変位センサ等の公知のものを用いることができるため、ここではその詳細な説明を省略する。図中、Paは、測定光学系の光軸を示す。   The displacement measuring means 81 is provided above the stepped portion 12 that defines the processing chamber 10, and guides the light emitted from the light source 81a, the displacement sensor 81b, and the light source 81a to the glass rod 62a and the measurement object W. A measurement optical system (not shown) that guides reflected light from the sensor to the displacement sensor 81b is integrally assembled with the housing 81c. As the displacement sensor 81b, for example, a known one such as a spectral interference type displacement sensor can be used, and therefore, detailed description thereof is omitted here. In the figure, Pa represents the optical axis of the measurement optical system.

変位センサ81bには信号処理手段9が付設され、変位センサ81bの測定結果を保存し、保存した測定結果からウエハWとマスクMの夫々の表面位置(下面位置)を求め、求めた各表面位置に基づきウエハWとマスクMとの間の間隔を求め、この間隔が制御部Cに入力されるようになっている。さらに、信号処理手段9は、求めたウエハWの表面位置に基づき、ウエハWの表面に成膜した薄膜の膜厚を求めることができ、求めた膜厚が制御部Cに入力されるようになっている。制御部Cは、マイクロコンピュータ、記憶素子やシーケンサ等を備えた公知のものであり、光源81a、変位センサ81b、測定光学系、モータ64b、XYθステージ33、加熱手段43等の作動をも統括制御できるようになっている。以下、本実施形態の変位測定装置8を用いたマスクMとウエハWとの間の間隔測定方法及びウエハW表面に成膜した薄膜の膜厚測定方法を説明する。   A signal processing means 9 is attached to the displacement sensor 81b, the measurement result of the displacement sensor 81b is stored, the respective surface positions (lower surface positions) of the wafer W and the mask M are obtained from the stored measurement results, and the obtained surface positions are obtained. The distance between the wafer W and the mask M is obtained based on the above, and this distance is input to the control unit C. Further, the signal processing means 9 can obtain the film thickness of the thin film formed on the surface of the wafer W based on the obtained surface position of the wafer W so that the obtained film thickness is input to the control unit C. It has become. The control unit C is a known unit including a microcomputer, a storage element, a sequencer, and the like, and comprehensively controls operations of the light source 81a, the displacement sensor 81b, the measurement optical system, the motor 64b, the XYθ stage 33, the heating means 43, and the like. It can be done. Hereinafter, a method for measuring the distance between the mask M and the wafer W and a method for measuring the thickness of the thin film formed on the surface of the wafer W using the displacement measuring apparatus 8 of the present embodiment will be described.

上記アライメントと同様に、減圧された真空チャンバ1内にマスクMを搬送し、マスク支持体5にセットする。また、真空チャンバ1内にウエハWを搬送し、ステージ2上にウエハWを吸着する。ウエハWを吸着した後、ガラスロッド62aを回転駆動させて、図4において実線で示すように、台形プリズム62bの先端(出入射端)をマスクMの透光部Mmの下方に位置させる(測定位置)、つまり、台形プリズム62bからの光路P3を透光部Mmを介してウエハWの下面Waに合わせる。そして、変位測定手段81から発せられた光は、光路P1、P2、P3を経てマスクMの透光部Mmに向けて照射される。照射された光は、透光部Mmを介してウエハWの下面Waで反射すると共に、透光部Mm周辺のマスクMの下面Maでも反射する。これらの反射光は、光路P3、P2、P1を経て変位測定手段81に導かれる。両反射光の位相差に基づいて、ウエハWの下面Waの位置とマスクMの下面Maの位置とが測定される。   Similar to the alignment described above, the mask M is transported into the vacuum chamber 1 whose pressure has been reduced, and is set on the mask support 5. In addition, the wafer W is transferred into the vacuum chamber 1 and is attracted onto the stage 2. After adsorbing the wafer W, the glass rod 62a is rotated and the tip (exit / incident end) of the trapezoidal prism 62b is positioned below the translucent part Mm of the mask M as shown by the solid line in FIG. Position), that is, the optical path P3 from the trapezoidal prism 62b is aligned with the lower surface Wa of the wafer W through the translucent portion Mm. And the light emitted from the displacement measuring means 81 is irradiated toward the translucent part Mm of the mask M through the optical paths P1, P2, and P3. The irradiated light is reflected by the lower surface Wa of the wafer W through the light transmitting part Mm and also reflected by the lower surface Ma of the mask M around the light transmitting part Mm. These reflected lights are guided to the displacement measuring means 81 via the optical paths P3, P2, and P1. Based on the phase difference between the two reflected lights, the position of the lower surface Wa of the wafer W and the position of the lower surface Ma of the mask M are measured.

そして、信号処理手段9において、上記測定されたウエハWの下面Waの位置からマスクMの下面Maの位置までの距離を算出し、算出した距離から既知のマスクMの厚みを減算する。これにより、ウエハWとマスクMとの間の間隔を求めることができる。このように求めた間隔に応じて、ステージ33をZ方向に駆動させてもよい。   Then, the signal processing means 9 calculates the distance from the measured position of the lower surface Wa of the wafer W to the position of the lower surface Ma of the mask M, and subtracts the known thickness of the mask M from the calculated distance. Thereby, the space | interval between the wafer W and the mask M can be calculated | required. The stage 33 may be driven in the Z direction according to the interval thus obtained.

間隔の測定が終了すると、ガラスロッド62bを所定量(例えば180度)回転駆動させて、台形プリズム62bの先端を、図4において二点鎖線で示すように、蒸発源4からの蒸発材料が付着し難い真空チャンバ1側壁近傍に位置させる(退避位置)。そして、加熱手段43を作動させて坩堝42内の蒸発材料41が蒸発され、ウエハWに所定のパターンで成膜される。   When the interval measurement is completed, the glass rod 62b is rotated by a predetermined amount (for example, 180 degrees), and the tip of the trapezoidal prism 62b is attached to the evaporation material from the evaporation source 4 as indicated by a two-dot chain line in FIG. It is located in the vicinity of the side wall of the vacuum chamber 1 which is difficult to perform (retract position). Then, the heating means 43 is operated to evaporate the evaporation material 41 in the crucible 42 and form a film on the wafer W in a predetermined pattern.

所定時間成膜した後、ガラスロッド62bを回転駆動させて上記測定位置に再び移動させ、上述した方法によりウェハ下面Waの位置を再び測定する。そして、信号処理手段9において上記間隔測定時に測定されたウェハ下面Waの位置との差分を算出することで、ウェハ表面に成膜した薄膜の膜厚を求めることができる。   After the film formation for a predetermined time, the glass rod 62b is rotated and moved again to the measurement position, and the position of the wafer lower surface Wa is measured again by the method described above. Then, by calculating the difference from the position of the wafer lower surface Wa measured at the time of the interval measurement in the signal processing means 9, the film thickness of the thin film formed on the wafer surface can be obtained.

以上説明したように、本実施形態の変位測定装置によれば、変位測定手段81による変位測定に必要な光路を、ガラスロッド62aと台形プリズム62bとで形成し、第1の光路P1を回転中心として台形プリズム62bを回転自在としたため、ガラスロッド62aを回転駆動させて台形プリズム62bからの光路P3をウエハW及びマスクMに向ければ、処理室10外側の変位測定手段81と処理室10内のウエハW及びマスクMとを光学的に結び付ける光路P1〜P3が形成される。即ち、ウエハW及びマスクMからの反射光を光路P1〜P3を介して変位測定手段81の測定光学系に導くことが可能となる。その結果、変位測定手段81の測定光学系の光軸Pa上に存しないウエハW及びマスクMの位置を測定でき、ウエハWとマスクMとの間の間隔やウエハW表面に成膜した薄膜の膜厚を求めることができる。しかも、上記撮像装置と同様、台形プリズム62bの先端が直ぐに塞がれて、変位測定手段81により位置測定できなくなるといった不具合は生じ難い。このため、成膜時に遮熱や変位測定手段81への蒸発材料の付着を防止するための機構や部品を必要とせず、装置構成を簡素化できるだけでなく、部品点数の増加を防止でき、低コストを図ることができる。   As described above, according to the displacement measuring apparatus of the present embodiment, the optical path necessary for the displacement measurement by the displacement measuring means 81 is formed by the glass rod 62a and the trapezoidal prism 62b, and the first optical path P1 is the rotation center. Since the trapezoidal prism 62b is rotatable, if the glass rod 62a is rotated and the optical path P3 from the trapezoidal prism 62b is directed to the wafer W and the mask M, the displacement measuring means 81 outside the processing chamber 10 and the inside of the processing chamber 10 are Optical paths P1 to P3 that optically connect the wafer W and the mask M are formed. That is, the reflected light from the wafer W and the mask M can be guided to the measuring optical system of the displacement measuring means 81 via the optical paths P1 to P3. As a result, the positions of the wafer W and the mask M which do not exist on the optical axis Pa of the measurement optical system of the displacement measuring means 81 can be measured, and the distance between the wafer W and the mask M and the thin film formed on the surface of the wafer W can be measured. The film thickness can be determined. In addition, as with the above-described imaging device, the tip of the trapezoidal prism 62b is closed immediately, and the displacement measuring unit 81 cannot measure the position. For this reason, it is not necessary to provide a mechanism or parts for preventing heat shielding or evaporation material from adhering to the displacement measuring means 81 at the time of film formation, not only simplify the apparatus configuration, but also prevent an increase in the number of parts. Cost can be reduced.

次に、図5を参照して、真空処理装置に本発明の第3実施形態の光路形成装置を有する検出装置を適用した場合を例として説明する。真空処理装置EM3は、検出装置9を備える点と、光路形成装置62を構成する台形プリズムが直角台形プリズム62cである点とで上記真空蒸着装置EM1、EM2と相違する。   Next, with reference to FIG. 5, a case where the detection apparatus having the optical path forming apparatus according to the third embodiment of the present invention is applied to a vacuum processing apparatus will be described as an example. The vacuum processing apparatus EM3 is different from the vacuum deposition apparatuses EM1 and EM2 in that the detection apparatus 9 is provided and the trapezoidal prism constituting the optical path forming apparatus 62 is a right-angled trapezoidal prism 62c.

検出装置9は、真空チャンバ1の隔壁12外側に配置された投光手段9a及び受光手段9bと、投光手段9a及び受光手段9bの夫々に対応して設けられた光路形成装置62、真空シール手段63及び図示省略の上記駆動手段とを備える。   The detection device 9 includes a light projecting unit 9a and a light receiving unit 9b arranged outside the partition wall 12 of the vacuum chamber 1, an optical path forming device 62 provided corresponding to each of the light projecting unit 9a and the light receiving unit 9b, a vacuum seal Means 63 and the drive means (not shown).

投光手段9aは、図示省略の光源及び投光光学系を備え、一の(図中左側の)光路形成装置62のガラスロッド62aが投光光学系の光軸Paに沿って線状にのびる第1の光路P11を形成する。また、受光手段9bは、図示省略の受光光学系を備え、他の(図中右側の)光路形成装置62のガラスロッド62aが受光光学系の光軸Paに沿って線状にのびる第1の光路P14を形成する。   The light projecting means 9a includes a light source and a light projecting optical system (not shown), and a glass rod 62a of one optical path forming device 62 (on the left side in the figure) extends linearly along the optical axis Pa of the light projecting optical system. A first optical path P11 is formed. The light receiving means 9b includes a light receiving optical system (not shown), and a glass rod 62a of another optical path forming device 62 (on the right side in the drawing) extends linearly along the optical axis Pa of the light receiving optical system. An optical path P14 is formed.

各光路形成装置62の直角台形プリズム62cは、ガラスロッド62aと連結された斜面に金属膜が溶着されている。一の光路形成装置62の直角台形プリズム62cは、第1の光路P11(光軸Pa)に対して1回屈曲した第2光路P12を形成する。同様に、他の光路形成装置62の直角台形プリズム62cは、第1の光路P14(光軸Pa)に対して1回屈曲した第2光路P13を形成する。そして、駆動手段64を用いて台形プリズム62cの金属膜が溶着されていない直交面(第2光路P12、13に対して直交する面)を相互に対向させると、光路P11を通過した光が一の(投光手段9a側の)台形プリズム62cの斜面で光路P11に対して直交する水平方向の光路P12に導かれ、この光路P12と同一線上にある他の(受光手段9b側の)台形プリズム62cの光路P13に更に導かれ、他の台形プリズム62cの斜面で光路P13に対して直交して上方にのびる光路P14に導かれ、受光光学系に導かれる。このとき、対向させた台形プリズム62cの直交面の間に配置されたウエハW等の検出対象物の姿勢等の状態によって、受光光学系に導かれる光量が変化する。また、両斜面間を検出対象物が移動する場合、その移動によっても受光光学系に導かれる光量が変化する。   In the right-angle trapezoidal prism 62c of each optical path forming device 62, a metal film is welded to a slope connected to the glass rod 62a. The right-angle trapezoidal prism 62c of one optical path forming device 62 forms a second optical path P12 that is bent once with respect to the first optical path P11 (optical axis Pa). Similarly, the right trapezoidal prism 62c of the other optical path forming device 62 forms the second optical path P13 bent once with respect to the first optical path P14 (optical axis Pa). When the orthogonal surfaces (surfaces orthogonal to the second optical paths P12 and 13) on which the metal film of the trapezoidal prism 62c is not welded using the driving means 64, the light passing through the optical path P11 is one. Other trapezoidal prisms (on the light receiving means 9b side) that are guided to the horizontal optical path P12 orthogonal to the optical path P11 at the slope of the trapezoidal prism 62c (on the light projecting means 9a side). The light is further guided to the optical path P13 of 62c, guided to the optical path P14 extending upward perpendicularly to the optical path P13 on the slope of the other trapezoidal prism 62c, and guided to the light receiving optical system. At this time, the amount of light guided to the light receiving optical system varies depending on the state of the detection object such as the wafer W arranged between the orthogonal surfaces of the opposed trapezoidal prisms 62c. Further, when the detection object moves between both slopes, the amount of light guided to the light receiving optical system also changes due to the movement.

受光手段9bには図示省略の信号処理手段が付設され、受光手段9bにより受光した光量を保存し、保存した光量から検出対象物Wの位置、姿勢、移動速度等の状態を検出し、検出した状態が図示省略の制御部に入力されるようになっている。   The light receiving means 9b is provided with a signal processing means (not shown), stores the amount of light received by the light receiving means 9b, detects the position, posture, movement speed, etc. of the detection object W from the stored light quantity and detects it. The state is input to a control unit (not shown).

ところで、上記第1実施形態のように、対物部62bにて1本の第2の光路P2,P3を形成する場合、第2の光路上に遮光部材が存すると、その遮光部材の先にある撮像対象物を撮像することができない。例えば、図7に示すように、シリコンウエハWの上面にアライメントマークWmが設けられている場合、シリコンウエハWを下方から撮像した場合、このシリコンウエハWが遮光部材となってアライメントマークWmを撮像できない。以下、真空処理装置を真空蒸着装置とし、この真空蒸着装置に本発明の第4実施形態の光路形成装置を有する撮像装置を適用した場合を例として説明する。   By the way, when forming one second optical path P2 and P3 in the objective part 62b as in the first embodiment, if there is a light shielding member on the second optical path, it is at the tip of the light shielding member. The imaging object cannot be imaged. For example, as shown in FIG. 7, when the alignment mark Wm is provided on the upper surface of the silicon wafer W, when the silicon wafer W is imaged from below, the silicon wafer W serves as a light shielding member to image the alignment mark Wm. Can not. Hereinafter, the case where the vacuum processing apparatus is a vacuum deposition apparatus and the imaging apparatus having the optical path forming apparatus according to the fourth embodiment of the present invention is applied to the vacuum deposition apparatus will be described as an example.

図7に示すように、真空蒸着装置EM4は、処理室10aを画成する筒状の真空チャンバ1aを備え、この真空チャンバ1aの上部には、下面に図示省略の静電チャック用の電極を埋設したステージ2が設けられている。ステージ2にはその厚さ方向に貫通する透孔21が形成され、この透孔21の下部にアライメントマークWmが位置するようにウエハWがステージ2に保持されている。また、上記第1実施形態と同様に、ステージ2と対向してマスクMがマスク支持体5により支持されている。   As shown in FIG. 7, the vacuum deposition apparatus EM4 includes a cylindrical vacuum chamber 1a that defines a processing chamber 10a, and an electrode for an electrostatic chuck (not shown) is provided on the lower surface of the vacuum chamber 1a. A buried stage 2 is provided. The stage 2 is formed with a through hole 21 penetrating in the thickness direction, and the wafer W is held on the stage 2 so that the alignment mark Wm is positioned below the through hole 21. Similarly to the first embodiment, the mask M is supported by the mask support 5 so as to face the stage 2.

撮像手段61は、光源61aと、撮像素子61bたるCCDイメージセンサと、撮像素子61bの下方に設けられた図示省略の撮像光学系たるテレセントリックレンズとで構成される。図中、Paは、撮像光学系の光軸を示す。   The imaging means 61 includes a light source 61a, a CCD image sensor that is an imaging element 61b, and a telecentric lens that is an imaging optical system (not shown) provided below the imaging element 61b. In the figure, Pa indicates the optical axis of the imaging optical system.

光路形成装置65は、基部たるガラスロッド65aと、処理室10a内に突出したガラスロッド65aの下端に連結された対物部65bとから構成される。対物部65bは、枠体66と、この枠体66の内部に所定の位置関係で配置された複数のミラー66a〜66gとで構成され、第1の光路P11,P12(光軸Pa)に対して屈曲した第2の光路P21,P22を形成する。枠体66は、ガラスロッド65aに連結される基端部67と、この基端部67から上下二股状に分岐してのびる一対の先端部68,69とで構成される。   The optical path forming device 65 includes a glass rod 65a serving as a base and an objective unit 65b connected to the lower end of the glass rod 65a protruding into the processing chamber 10a. The objective part 65b is composed of a frame 66 and a plurality of mirrors 66a to 66g arranged in a predetermined positional relationship inside the frame 66, with respect to the first optical paths P11 and P12 (optical axis Pa). The bent second optical paths P21 and P22 are formed. The frame body 66 includes a base end portion 67 connected to the glass rod 65a and a pair of front end portions 68 and 69 extending from the base end portion 67 in a bifurcated manner.

上記構成によれば、光路P11,P12を通過した光を基端部67に設けられたミラー66aで撮像光学系の光軸Paに対して直交する水平方向に導き、この水平方向にのびる光路P21aを通る光をミラー66bにより上方に導いて光路P21bを形成する一方で、光路P22aを通る光をミラー66cにより下方に導いて光路P21bを形成する。これらのミラー66b,66cは、分岐手段を構成する。そして、光路P21bを通る光をミラー66dにより水平方向に導き光路P21cを形成し、この光路P21cを通る光をミラー66eにより下方に導き、上側の先端部68と撮像対象物Wとの間の光路P21dを形成する。また、光路P22bを通る光をミラー66fにより水平方向に導き光路P22cを形成し、この光路P22cを通る光をミラー66gにより上方に導き、下側の先端部69と撮像対象物Mとの間の光路P22dを形成する。本実施形態では、CCDイメージセンサ61bを、その左側視野にアライメントマークWmの画像を表示すると同時に、右側視野にアライメントマークMmを表示するように構成している。このため、撮像光学系から撮像対象物Wm,Mmまでの距離が同じ(即ち、ワークディスタンスが同じ)となるように、ミラー66a〜66gが配置されている。以下、上記撮像装置を用いたマスクMに対するウエハWのアライメントを説明する。   According to the above configuration, the light passing through the optical paths P11 and P12 is guided to the horizontal direction orthogonal to the optical axis Pa of the imaging optical system by the mirror 66a provided at the base end portion 67, and the optical path P21a extending in the horizontal direction. The light passing through is guided upward by the mirror 66b to form the optical path P21b, while the light passing through the optical path P22a is guided downward by the mirror 66c to form the optical path P21b. These mirrors 66b and 66c constitute branching means. Then, the light passing through the optical path P21b is guided horizontally by the mirror 66d to form the optical path P21c, and the light passing through the optical path P21c is guided downward by the mirror 66e, and the optical path between the upper end portion 68 and the imaging object W is guided. P21d is formed. Further, the light passing through the optical path P22b is guided horizontally by the mirror 66f to form the optical path P22c, and the light passing through the optical path P22c is guided upward by the mirror 66g, so that the space between the lower end portion 69 and the imaging object M is reduced. An optical path P22d is formed. In the present embodiment, the CCD image sensor 61b is configured to display the image of the alignment mark Wm in the left visual field and simultaneously display the alignment mark Mm in the right visual field. For this reason, the mirrors 66a to 66g are arranged so that the distance from the imaging optical system to the imaging objects Wm and Mm is the same (that is, the work distance is the same). Hereinafter, the alignment of the wafer W with respect to the mask M using the imaging apparatus will be described.

上記第1実施形態と同様に、マスク支持体5によりマスクMを支持すると共に、ステージ2下面にウエハWを吸着する。ここで、上記第1実施形態とは異なり、ウエハWのアライメントマークWmは、ウエハW上面に形成されている。次いで、モータ64bを駆動してガラスロッド65aを回転駆動させ、対物部65bの先端部68からの光路21dをウエハWのアライメントマークWmに指向させると共に、対物部65bの先端部69からの光路22dをマスクMのアライメントマークMmに指向させる(撮像位置)。   As in the first embodiment, the mask M is supported by the mask support 5 and the wafer W is attracted to the lower surface of the stage 2. Here, unlike the first embodiment, the alignment mark Wm of the wafer W is formed on the upper surface of the wafer W. Next, the motor 64b is driven to rotate the glass rod 65a to direct the optical path 21d from the tip 68 of the objective 65b to the alignment mark Wm of the wafer W and to the optical path 22d from the tip 69 of the objective 65b. Is directed toward the alignment mark Mm of the mask M (imaging position).

そして、光源61aから光を照射すると、第1光路P11及び第2光路P21a〜P21d(以下「P21」と略す)を経た光が、ウエハWの上面に照射される。ウエハWからの反射光は、第2光路P21及び第1光路P11を経て、撮像光学系に導かれ、撮像光学系により撮像素子61bの受光面の一側(図中左側)に結像される。これと共に、第1光路P12及び第2光路P22a〜P22d(以下「P22」と略する)を経た光が、マスクMに照射される。マスクMからの反射光は、第2光路P22及び第1光路P12を経て、撮像光学系に導かれ、撮像光学系により撮像素子61bの受光面の他側(図中右側)に結像される。その結果、撮像手段61の撮像光学系の光軸Pa上に存しない撮像対象物の複数箇所、即ち、アライメントマークWm,Mmが撮像される。撮像手段61により撮像された画像は画像処理手段7に送られ、画像処理手段7により画像処理してマスクMに対するウエハWのずれ量が検出される。上記第1実施形態と同様に、検出されたずれ量は制御部Cに入力され、XYθステージ33の移動量が算出され、ステージ33をX方向及びY方向の少なくとも一方に移動させ、または、θ方向に回転させることでウエハWの姿勢を変更してアライメントされる。   When light is emitted from the light source 61a, light that has passed through the first optical path P11 and the second optical paths P21a to P21d (hereinafter abbreviated as “P21”) is irradiated onto the upper surface of the wafer W. The reflected light from the wafer W is guided to the imaging optical system via the second optical path P21 and the first optical path P11, and is imaged on one side (left side in the drawing) of the imaging element 61b by the imaging optical system. . At the same time, the light having passed through the first optical path P12 and the second optical paths P22a to P22d (hereinafter abbreviated as “P22”) is irradiated onto the mask M. The reflected light from the mask M is guided to the imaging optical system through the second optical path P22 and the first optical path P12, and is imaged on the other side (right side in the drawing) of the imaging element 61b by the imaging optical system. . As a result, a plurality of locations on the imaging target that do not exist on the optical axis Pa of the imaging optical system of the imaging means 61, that is, the alignment marks Wm and Mm are imaged. The image picked up by the image pickup means 61 is sent to the image processing means 7, and the image processing means 7 performs image processing to detect the shift amount of the wafer W with respect to the mask M. As in the first embodiment, the detected deviation amount is input to the control unit C, the movement amount of the XYθ stage 33 is calculated, the stage 33 is moved in at least one of the X direction and the Y direction, or θ By rotating in the direction, the orientation of the wafer W is changed and alignment is performed.

ここで、本実施形態では、複数箇所を撮像しているため、以下のように撮像手段61bの左側視野と右側視野との位置ずれ量を考慮してずれ量を検出する。即ち、図8(a)に示すように、予めキャリブレーション用のマーク(例えば、透明基板に形成されたアライメントマーク)を、光路P11,光路P21を介して上側から撮像して上記左側視野に表示すると共に、光路P12,P22を介して下側から撮像して上記右側視野に表示する。左側視野に表示したマークの重心の座標(X1,Y1,θ1)及び右側視野に表示したマークの重心の座標(X2,Y2,θ2)を相対座標として求め、求めた各重心座標を制御部Cに記憶しておく。そして、図8(b)に示すように、実際のアライメント時に、撮像手段61bの左側視野に表示したアライメントマークWmの重心の座標(X1’,Y1’,θ1’)及び右側視野に表示したアライメントマークMmの重心の座標(X2’,Y2’,θ2’)を求める。そして、以下の式により、両アライメントマークWm,Mmのずれ量(ΔX,ΔY,Δθ)を求める。尚、両マークWm,Mmのずれ量の算出方法は、この方法に限らず、他の公知の方法を用いることができる。
(ΔX,ΔY,Δθ)={(X1,Y1,θ1)−(X1’,Y1’,θ1’)}
−{(X2,Y2,θ2)−(X2’,Y2’,θ2’)}
Here, in the present embodiment, since a plurality of locations are imaged, the displacement amount is detected in consideration of the displacement amount between the left visual field and the right visual field of the imaging means 61b as follows. That is, as shown in FIG. 8A, a calibration mark (for example, an alignment mark formed on a transparent substrate) is imaged from the upper side through the optical path P11 and the optical path P21 and displayed in the left visual field. At the same time, images are taken from below via the optical paths P12 and P22 and displayed in the right field of view. The coordinates (X1, Y1, θ1) of the center of gravity of the mark displayed in the left field of view and the coordinates (X2, Y2, θ2) of the center of gravity of the mark displayed in the right field of view are obtained as relative coordinates, and the obtained center of gravity coordinates are determined by the control unit C. Remember it. Then, as shown in FIG. 8B, during actual alignment, the coordinates (X1 ′, Y1 ′, θ1 ′) of the center of gravity of the alignment mark Wm displayed in the left visual field of the imaging means 61b and the alignment displayed in the right visual field. The coordinates (X2 ′, Y2 ′, θ2 ′) of the center of gravity of the mark Mm are obtained. Then, the shift amounts (ΔX, ΔY, Δθ) of both alignment marks Wm, Mm are obtained by the following equations. Note that the method of calculating the deviation amount between the marks Wm and Mm is not limited to this method, and other known methods can be used.
(ΔX, ΔY, Δθ) = {(X1, Y1, θ1) − (X1 ′, Y1 ′, θ1 ′)}
− {(X2, Y2, θ2) − (X2 ′, Y2 ′, θ2 ′)}

以上説明したように、本実施形態の撮像装置によれば、第2の光路を複数(本実施形態では2つ)に分岐し、この分岐した第2の光路の各々を異なるアライメントマークWm,Mmに夫々指向させたため、処理室10a外側に配置された撮像手段61と、処理室10a内の複数のアライメントマークWm,Mmとを光学的に結び付けることができる。従って、これら複数のアライメントマークWm,Mmからの反射光を、第2及び第1の光路P21,22,11,12を介して撮像手段61に導くことが可能となり、撮像対象物W,Mの複数箇所Wm,Mmを撮像することが可能となる。尚、撮像素子61bを2つ設け、そのうちの一方にアライメントマークWmを表示し、他方にアライメントマークMmを表示することもできるが、本実施形態の如く1つの撮像素子61bの視野を分割することにより、部品点数を少なくでき、装置コストを低減できる。また、対物部の分岐手段を含むミラーの位置を適宜設定することで、撮像対象物の同一平面に存する複数箇所を撮像することもできる。   As described above, according to the imaging apparatus of the present embodiment, the second optical path is branched into a plurality (two in the present embodiment), and each of the branched second optical paths is set to different alignment marks Wm, Mm. Therefore, the imaging means 61 disposed outside the processing chamber 10a and the plurality of alignment marks Wm and Mm in the processing chamber 10a can be optically linked. Accordingly, the reflected light from the plurality of alignment marks Wm, Mm can be guided to the imaging means 61 via the second and first optical paths P21, 22, 11, 12, and the imaging objects W, M A plurality of locations Wm and Mm can be imaged. Two imaging elements 61b are provided, and one of them can display the alignment mark Wm and the other can display the alignment mark Mm. However, as in this embodiment, the field of view of one imaging element 61b is divided. As a result, the number of parts can be reduced and the device cost can be reduced. Further, by appropriately setting the position of the mirror including the branching means of the objective unit, it is possible to image a plurality of locations existing on the same plane of the imaging target.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、ガラスロッド62a先端に断面視台形又は直角台形の台形プリズム62b又は直角台形プリズム62cを連結してなる光路形成装置62を例に説明したが、これに限定されるものではない。例えば、反射鏡を設置して光路を形成することもできる。例えば、台形プリズムに代えて他のガラスロッドを水平に設置して、ガラスロッド62aからの光を反射鏡で屈曲させて他のガラスロッドに導き、他のガラスロッドからの光を反射鏡で上方に導くようにしてもよい。例えば、台形プリズムに代えて、一端側が基板WのアライメントマークWmを指向し、その他端側がガラスロッド62aの下端を指向するように湾曲させた光ファイバーを配置して用いてもよい。また、例えば、図6(a)に示すように、ガラスロッド62aの先端に断面視で1組の対辺が平行でない四角形プリズム62cを連結して、光軸Paに対して1回屈曲した光路P4を形成するようにしてもよい。また、例えば、図6(b)に示すように、ガラスロッド62a内の第1光路P1と台形プリズム62b内の第2光路P2とがなす角が鈍角となるように、ガラスロッド62aの先端に台形プリズム62bを連結してもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above-described embodiment, the optical path forming device 62 in which the trapezoidal prism 62b or the trapezoidal prism 62c having the trapezoidal shape or the right-angled trapezoidal shape is connected to the tip of the glass rod 62a has been described as an example. For example, a reflecting mirror can be installed to form an optical path. For example, in place of the trapezoidal prism, another glass rod is installed horizontally, the light from the glass rod 62a is bent by the reflecting mirror and guided to the other glass rod, and the light from the other glass rod is moved upward by the reflecting mirror. You may make it lead to. For example, instead of the trapezoidal prism, an optical fiber that is curved so that one end side is directed to the alignment mark Wm of the substrate W and the other end side is directed to the lower end of the glass rod 62a may be used. Further, for example, as shown in FIG. 6A, a pair of rectangular prisms 62c whose opposite sides are not parallel in a sectional view are connected to the tip of the glass rod 62a, and the optical path P4 is bent once with respect to the optical axis Pa. May be formed. Further, for example, as shown in FIG. 6B, the tip of the glass rod 62a is arranged so that the angle formed by the first optical path P1 in the glass rod 62a and the second optical path P2 in the trapezoidal prism 62b becomes an obtuse angle. A trapezoidal prism 62b may be connected.

上記実施形態では、光源61aを有する撮像手段61を用いているが、ランプヒータを内蔵する等、真空処理前から真空チャンバ内で一定以上の明度がある場合には、光源61aは省略することもできる。また、上記実施形態では、アライメントマークWmを撮像しているが、撮像対象物はこれに限定されず、例えばウエハに付されたロット番号やバーコードを撮像することができる。   In the above embodiment, the imaging means 61 having the light source 61a is used, but the light source 61a may be omitted when there is a certain level of brightness in the vacuum chamber before the vacuum processing, such as by incorporating a lamp heater. it can. Moreover, in the said embodiment, although the alignment mark Wm is imaged, an imaging target object is not limited to this, For example, the lot number and barcode which were attached | subjected to the wafer can be imaged.

上記実施形態では、真空蒸発装置に本発明の光路形成装置を具備する撮像装置や変位測定装置を適用した場合を例に説明したが、スパッタリング装置、CVD装置やエッチング装置等に本発明は適用できる。例えば、エッチング装置に変位測定装置を適用し、この変位測定手段によりウエハ下面Waの変位を測定すれば、ウエハ表面に形成された薄膜のエッチング後の残膜を測定することができる。   In the above embodiment, the case where the imaging device or the displacement measuring device including the optical path forming device of the present invention is applied to the vacuum evaporation device has been described as an example. However, the present invention can be applied to a sputtering device, a CVD device, an etching device, or the like. . For example, if a displacement measuring device is applied to the etching apparatus and the displacement of the wafer lower surface Wa is measured by this displacement measuring means, the remaining film after etching of the thin film formed on the wafer surface can be measured.

1…真空チャンバ(処理室)、6…撮像装置、8…変位測定装置、9…検出装置、61…CCDカメラ(撮像手段)、62…光路形成装置、62a…ガラスロッド(基部)、62b、62c…台形プリズム(対物部)、63…真空シール手段、66b,66c…ミラー(分岐手段)、81…変位センサ、Pa…光軸、P1,P11,P12…第1の光路、P2,P3,P21(P21a〜P21d),P22(P22a〜P22d)…第2の光路、P11〜P14…光路、Wm…アライメントマーク(撮像対象物)、Mm…アライメントマーク(撮像対象物)。   DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber (processing chamber), 6 ... Imaging device, 8 ... Displacement measuring device, 9 ... Detection device, 61 ... CCD camera (imaging means), 62 ... Optical path forming device, 62a ... Glass rod (base), 62b, 62c ... Trapezoidal prism (objective part), 63 ... Vacuum sealing means, 66b, 66c ... Mirror (branching means), 81 ... Displacement sensor, Pa ... Optical axis, P1, P11, P12 ... First optical path, P2, P3 P21 (P21a to P21d), P22 (P22a to P22d) ... second optical path, P11 to P14 ... optical path, Wm ... alignment mark (imaging object), Mm ... alignment mark (imaging object).

Claims (7)

真空処理室と、真空処理室内の下部に配置される蒸発源と、真空処理室の外側と前記蒸発源に対向させて真空処理室内の上部に存する処理対象物とを光学的に結び付ける光路を形成する光路形成装置とを備える真空蒸着装置であって、
前記光路形成装置は、真空処理室を画成する隔壁にシール手段を介して挿設されて、真空処理室の外側から線状にのびる第1の光路を形成する基部と、前記基部の先端に連結され、前記第1の光路に対して少なくとも1回屈曲又は湾曲して処理対象物を指向する第2の光路を形成する対物部とを有し、真空処理室内で第1の光路を回転中心として前記対物部が回転自在に構成され
前記蒸発源から蒸発材料を蒸発させる前に、前記対物部を、処理対象物を指向する位置から前記蒸発源からの蒸発材料が付着し難い退避位置まで所定量回転させる制御手段を更に備えることを特徴とする真空蒸着装置。
Forms a vacuum processing chamber, an evaporation source disposed in the lower part of the vacuum processing chamber, and an optical path for optically connecting the outer side of the vacuum processing chamber and the processing object existing in the upper portion of the vacuum processing chamber facing the evaporation source. A vacuum vapor deposition device comprising an optical path forming device ,
The optical path forming device is inserted into a partition wall defining a vacuum processing chamber via a sealing means, and forms a first optical path extending linearly from the outside of the vacuum processing chamber, and a tip of the base portion. And an objective unit that forms a second optical path that is at least once bent or curved with respect to the first optical path and directs the object to be processed , and the first optical path is the center of rotation in the vacuum processing chamber. The objective unit is configured to be freely rotatable ,
Before evaporating the evaporation material from the evaporation source, the objective unit further includes a control means for rotating the objective unit by a predetermined amount from a position directed to the object to be processed to a retreat position where the evaporation material from the evaporation source is difficult to adhere. A vacuum deposition device characterized.
前記基部を構成するガラスロッドの端部に前記対物部を構成する台形プリズムを連結し、駆動手段により前記ガラスロッドを回転させることにより、前記台形プリズムを退避位置に退避可能としたことを特徴とする請求項1記載の真空蒸着装置。 Wherein connecting the trapezoidal prism constituting the objective portion at the end portion of the glass rod constituting the base by rotating the glass rod by driving motion means, and a retractable said trapezoidal prism to the retracted position The vacuum evaporation apparatus according to claim 1. 前記対物部は、第2の光路を複数に分岐する分岐手段を有し、この分岐手段により分岐された第2の光路の各々が、処理対象物の異なる箇所を夫々指向するように構成したことを特徴とする請求項1記載の真空蒸着装置。 The objective unit has branching means for branching the second optical path into a plurality of parts, and each of the second optical paths branched by the branching means is configured to point to different portions of the processing object. The vacuum deposition apparatus according to claim 1. 請求項1または2記載の真空蒸着装置であって、真空処理室内に存する処理対象物を撮像する撮像手段を備えるものにおいて、
前記撮像手段は前記隔壁の外側に配置された撮像光学系を備え、前記基部が前記撮像光学系の光軸に沿ってのびる前記第1の光路を形成し、前記光路形成装置により処理対象物からの反射光を前記撮像光学系に導くようにしたことを特徴とする真空蒸着装置。
The vacuum deposition apparatus according to claim 1 or 2, comprising an imaging means for imaging a processing object existing in a vacuum processing chamber.
It said imaging means includes an imaging optical system disposed outside of said partition wall, from the base to form a first optical path extending along the optical axis of the imaging optical system, the processing object by the optical path forming unit A vacuum deposition apparatus characterized in that the reflected light is guided to the imaging optical system.
請求項3記載の真空蒸着装置であって、真空処理室内に存する処理対象物の異なる箇所を夫々撮像する撮像手段を備えるものにおいて、
前記撮像手段は前記隔壁の外側に配置された撮像光学系を備え、前記基部が前記撮像光学系の光軸に沿ってのびる前記第1の光路を形成し、第1及び第2の光路を介して処理対象物の異なる箇所からの反射光を前記撮像光学系に導くようにしたことを特徴とする真空蒸着装置。
The vacuum vapor deposition apparatus according to claim 3, wherein the apparatus includes imaging means for imaging different portions of the processing object existing in the vacuum processing chamber.
The imaging means includes an imaging optical system disposed outside the partition, and the base portion forms the first optical path extending along the optical axis of the imaging optical system, and passes through the first and second optical paths. A vacuum deposition apparatus characterized in that reflected light from different parts of the processing object is guided to the imaging optical system.
請求項1または2記載の真空蒸着装置であって、真空処理室内に存する処理対象物の変位を測定する測定手段を備えるものにおいて、
前記測定手段は前記隔壁の外側に配置された測定光学系を備え、前記基部が前記測定光学系の光軸に沿ってのびる第1の光路を形成し、前記光路形成装置により処理対象物からの反射光を前記測定光学系に導くようにしたことを特徴とする真空蒸着装置。
The vacuum deposition apparatus according to claim 1 or 2, comprising a measuring means for measuring a displacement of a processing object existing in the vacuum processing chamber.
Said measuring means comprises a measuring optical system which is disposed outside the partition wall, the base forms a first optical path extending along the optical axis of the measurement optical system, from the processing object by the optical path forming unit A vacuum vapor deposition apparatus characterized in that reflected light is guided to the measurement optical system.
請求項1または2記載の真空蒸着装置であって、前記光路形成装置を少なくとも2つ備え、真空処理室内に存する処理対象物の状態を検出する検出手段を備えるものにおいて、
前記検出手段は前記隔壁の外側に配置された投光光学系及び受光光学系を備え、一の光路形成装置の基部が前記投光光学系の光軸に沿って延びる第1の光路を形成し、他の光路形成装置の基部が前記受光光学系の光軸に沿って延びる第1の光路を形成し、前記投光光学系から投光された投光光を前記一及び他の光路形成装置を介して前記受光光学系に導くようにしたことを特徴とする真空蒸着装置。
A vacuum evaporation apparatus according to claim 1 or 2, e least two Bei said optical path forming unit, in which comprises a detecting means for detecting the state of the processing object existing in the vacuum processing chamber,
The detection means includes a light projecting optical system and a light receiving optical system disposed outside the partition, and a base of one optical path forming device forms a first optical path extending along the optical axis of the light projecting optical system. The base part of the other optical path forming device forms a first optical path extending along the optical axis of the light receiving optical system, and the projected light projected from the projecting optical system is used as the first and other optical path forming devices. A vacuum vapor deposition apparatus characterized in that it is guided to the light receiving optical system through a vacuum .
JP2012152752A 2011-07-07 2012-07-06 Vacuum deposition equipment Active JP6053110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152752A JP6053110B2 (en) 2011-07-07 2012-07-06 Vacuum deposition equipment

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011150725 2011-07-07
JP2011150725 2011-07-07
JP2011241712 2011-11-02
JP2011241712 2011-11-02
JP2012152752A JP6053110B2 (en) 2011-07-07 2012-07-06 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2013117066A JP2013117066A (en) 2013-06-13
JP6053110B2 true JP6053110B2 (en) 2016-12-27

Family

ID=48711815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152752A Active JP6053110B2 (en) 2011-07-07 2012-07-06 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP6053110B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102076569B1 (en) * 2013-07-01 2020-02-13 에이지씨 가부시키가이샤 Separation origin production device and method
JP6352014B2 (en) * 2014-03-19 2018-07-04 東京応化工業株式会社 Thickness measuring instrument
CN109891618B (en) * 2017-09-21 2021-02-26 应用材料公司 Apparatus for imaging in a vacuum chamber, system for vacuum processing a substrate, and method for imaging at least one object in a vacuum chamber
KR102049668B1 (en) 2018-05-28 2019-11-27 캐논 톡키 가부시키가이샤 Film formation apparatus
CN111270200A (en) * 2018-12-05 2020-06-12 合肥欣奕华智能机器有限公司 Evaporation equipment and alignment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109435A (en) * 1992-03-13 1994-04-19 Hitachi Ltd Surface displacement meter
JPH0926525A (en) * 1995-07-13 1997-01-28 Sumitomo Electric Ind Ltd Optical module
JPH1035600A (en) * 1996-07-25 1998-02-10 Nec Eng Ltd Vacuum chamber
JP3816424B2 (en) * 2002-07-24 2006-08-30 日本航空電子工業株式会社 Physical vapor deposition system
US8730212B2 (en) * 2009-08-21 2014-05-20 Microsoft Corporation Illuminator for touch- and object-sensitive display

Also Published As

Publication number Publication date
JP2013117066A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
JP6053110B2 (en) Vacuum deposition equipment
JP6042564B2 (en) Apparatus and method for aligning substrates
JP5440801B2 (en) Reference sphere detection device, reference sphere position detection device, and three-dimensional coordinate measurement device
JP4493272B2 (en) Backside alignment system and method
US7075621B2 (en) Alignment method
WO2010047378A1 (en) Charged particle beam apparatus
US20130201488A1 (en) Three-dimensional shape measuring apparatus
TWI292033B (en)
US20100142757A1 (en) Method And Device Using Rotating Printing Arm To Project Or View Image Across A Workpiece
JP7498563B2 (en) Detection of workpiece position, orientation, and scale using retroreflective surfaces
JP2013001947A (en) Alignment device
EP3021073A2 (en) Surface inspection apparatus and method, and manufacturing method for oled displays
JP5775533B2 (en) System and method for picking up and placing a chip die
CN103926797B (en) A kind of double-sided overlay system and method for lithographic equipment
JP2014092489A (en) Inspection device and inspection method
WO2015145864A1 (en) Position displacement detection method, position displacement detection device, drawing device, and substrate inspection device
JP2007095881A (en) Alignment device and visual inspection equipment
JP4284765B2 (en) Robot hand position measuring device
JP2008039427A (en) Measuring method of depth of minute hole
JP5222091B2 (en) Charged particle beam equipment
JP3304556B2 (en) Method and apparatus for measuring eccentricity of aspherical lens
US20150155137A1 (en) Method for measuring inclination of beam, drawing method, drawing apparatus, and method of manufacturing object
JP2000164680A (en) Position adjusting device for wafer
JP4025049B2 (en) Gap adjustment device
TWI546884B (en) Method for determining the position of an axis of rotation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6053110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250