[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6051038B2 - Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery - Google Patents

Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP6051038B2
JP6051038B2 JP2012282849A JP2012282849A JP6051038B2 JP 6051038 B2 JP6051038 B2 JP 6051038B2 JP 2012282849 A JP2012282849 A JP 2012282849A JP 2012282849 A JP2012282849 A JP 2012282849A JP 6051038 B2 JP6051038 B2 JP 6051038B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
lithium
foil
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012282849A
Other languages
Japanese (ja)
Other versions
JP2014127333A (en
Inventor
貴史 鈴木
貴史 鈴木
茂紀 中西
茂紀 中西
祺 崔
祺 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2012282849A priority Critical patent/JP6051038B2/en
Publication of JP2014127333A publication Critical patent/JP2014127333A/en
Application granted granted Critical
Publication of JP6051038B2 publication Critical patent/JP6051038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池の正極集電体用箔とその製造方法、及び、リチウムイオン二次電池に関し、ハイレート特性に優れるリチウムイオン二次電池に関する。 The present invention relates to a foil for a positive electrode current collector of a lithium ion secondary battery, a method for producing the same , and a lithium ion secondary battery, and relates to a lithium ion secondary battery excellent in high rate characteristics.

リチウムイオン二次電池は、そのエネルギー密度の高さから現在、携帯電話やノート型パーソナルコンピュータ、さらにビデオカメラといった用途に広く適用されている。これら用途に向けたリチウムイオン二次電池は、正極活物質にコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)を、負極にグラファイトを用いているのが一般的である。
こうした高性能二次電池を自動車のようにより大きな電力を必要とする分野に適用する場合、放電と充電とを迅速に行なうことのできる急速充放電特性が要求される。
ところが、急速充放電を行うには、電流値を大きくすることが必要である。しかしながら、現状のリチウムイオン二次電池では大きな電流(ハイレート)で充放電を行うと、電池の電圧が急速に低下するのに伴って電池容量(初期電池容量維持率)の低下が著しくなる。
Lithium ion secondary batteries are currently widely used in applications such as mobile phones, notebook personal computers, and video cameras because of their high energy density. In general, lithium ion secondary batteries for these applications use lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ) as a positive electrode active material and graphite as a negative electrode.
When such a high-performance secondary battery is applied to a field requiring a larger amount of electric power, such as an automobile, a rapid charge / discharge characteristic capable of quickly discharging and charging is required.
However, it is necessary to increase the current value in order to perform rapid charge / discharge. However, in current lithium ion secondary batteries, when charging / discharging is performed at a large current (high rate), the battery capacity (initial battery capacity maintenance rate) decreases remarkably as the battery voltage rapidly decreases.

そこで特許文献1は、イオン透過性を有する化合物にリチウムイオンの導電を分担させ、電子導電性の炭素微粒子に電子導電を分担させる正極集電体構造にすることを提案している。
また、特許文献2は、正極集電体用箔(以下、正極箔ということがある)に穿孔加工を行うことで電極抵抗を下げ、ハイレートにおける急速充放電を可能にできることを述べている。
Therefore, Patent Document 1 proposes a positive electrode current collector structure in which lithium ion conductivity is shared by a compound having ion permeability and electronic conductivity is shared by electron conductive carbon fine particles.
Patent Document 2 describes that perforation processing is performed on a positive electrode current collector foil (hereinafter also referred to as positive electrode foil) to reduce electrode resistance and enable rapid charge / discharge at a high rate.

特開2007−226969号公報JP 2007-226969 A 特開2008−311171号公報JP 2008-31171 A

ところが、特許文献1の提案は、イオン透過性を有する化合物及び炭素微粒子を塗布して正極集電体に皮膜を形成する必要があり、リチウムイオン二次電池の製造コストを押し上げる。また、特許文献2のように正極箔を穿孔すると箔の強度が著しく低下するために、電池製造の際に正極箔が破断するおそれがある。
本発明は、このような課題に基づいてなされたもので、コストの上昇及び正極集電体の強度の低下を抑えつつ急速充放電特性を向上でき、また、高い生産性が得られるリチウムイオン二次電池の正極集電体用箔を提供することを目的とする。
また本発明は、前記正極集電体用箔を備えることで、急速充放電特性に優れるリチウムイオン二次電池を提供することを目的とする。
However, the proposal of Patent Document 1 requires that a film having an ion permeability and carbon fine particles be applied to form a film on the positive electrode current collector, which increases the manufacturing cost of the lithium ion secondary battery. In addition, when the positive foil is perforated as in Patent Document 2, the strength of the foil is remarkably reduced, and thus the positive foil may be broken during battery production.
The present invention has been made based on such a problem, and is capable of improving the rapid charge / discharge characteristics while suppressing an increase in cost and a decrease in the strength of the positive electrode current collector, and is capable of improving the productivity. It aims at providing the foil for positive electrode collectors of a secondary battery.
Moreover, an object of this invention is to provide the lithium ion secondary battery which is excellent in a quick charge / discharge characteristic by providing the said foil for positive electrode collectors.

上述したようにリチウムイオン二次電池は充・放電レートが大きい(ハイレート)程電池の電圧が急速に低下し、電池容量が小さくなる。これは電池の内部抵抗が主な原因と解される。そこで本発明者は、正極活物質と正極集電体の間の電気抵抗を下げることを検討した。その結果、正極集電体として、正極活物質が接する面にその活物質粒子を収容する為のピットを形成したアルミニウム合金箔を用いれば、ハイレートの放電を行なっても電圧の低下が抑えられ、高い容量維持率が得られること、また、このアルミニウム合金箔に適切な量のZnを含有させれば、そのピットを形成するためのエッチング工程を効率良く行うことができ、正極集電体の生産性が向上することを見出した。
本発明により、ハイレートの放電を行なっても電圧の低下が抑えられ、高い容量維持率が得られる理由は明らかとなっていない。しかるに、正極箔の表面が粗面化処理されることで、正極活物質と正極箔の接触面積が増え、正極活物質と正極集電体の界面接触抵抗が小さくなり、電池の内部抵抗が低下することがその理由と本発明者は推察している。
本発明は、以上の知見に基づいてなされたものであり、以下の構成を有する。
As described above, in the lithium ion secondary battery, the higher the charge / discharge rate (higher rate), the faster the battery voltage decreases and the battery capacity decreases. This is understood to be mainly caused by the internal resistance of the battery. Therefore, the present inventor studied to lower the electrical resistance between the positive electrode active material and the positive electrode current collector. As a result, as the positive electrode current collector, if an aluminum alloy foil having pits for accommodating the active material particles is formed on the surface in contact with the positive electrode active material, a decrease in voltage can be suppressed even when high rate discharge is performed. A high capacity retention rate can be obtained, and if an appropriate amount of Zn is contained in the aluminum alloy foil, the etching process for forming the pits can be performed efficiently, and the production of a positive electrode current collector is achieved. It was found that the performance is improved.
According to the present invention, it is not clear why the voltage drop is suppressed even when high-rate discharge is performed and a high capacity retention rate is obtained. However, by roughening the surface of the positive electrode foil, the contact area between the positive electrode active material and the positive electrode foil increases, the interface contact resistance between the positive electrode active material and the positive electrode current collector decreases, and the internal resistance of the battery decreases. The inventor speculates that this is the reason.
This invention is made | formed based on the above knowledge, and has the following structures.

本発明のリチウムイオン二次電池の正極集電体用箔は、Znを0.1〜1.5質量%、Siを0.03〜0.07質量%、Feを0.08〜0.11質量%含有し、残部不可避不純物とAlからなる厚さ10〜50μmのアルミニウム合金箔からなり、粒径0.3〜3μmのリン酸鉄リチウム、粒径3〜20μmのマンガン酸リチウム、粒径3〜30μmのコバルト酸リチウム、粒径10〜15μmのコバルト酸・マンガン酸・ニッケル酸リチウムの1種または2種以上からなる粒子状の正極活物質を収容する為のクレーター状のエッチングピットが表面に形成され、前記エッチングピットが直径0.3〜3μmの大きさで、10 個/mm 以上10 個/mm 以下の密度で存在し、直径3μmを超える前記エッチングピットの密度が10個/mm 以下であることを特徴とする。
本発明において、粒子状の正極活物質が収容されるエッチングピットを箔の表面に形成するのは、正極活物質と正極箔の接触面積をより増大できるからである。なお、ここでいう収容とは、形成されたエッチングピットの全てに正極活物質が収容されることを要求しておらず、一部のエッチングピットに正極活物質が収容されていればよい。また、粒子状の正極活物質の全体がエッチングピットに収容される必要はなく、正極活物質が部分的にエッチングピットに収容される場合を、本発明は包含する。
The foil for the positive electrode current collector of the lithium ion secondary battery of the present invention has 0.1 to 1.5% by mass of Zn, 0.03 to 0.07% by mass of Si, and 0.08 to 0.11 of Fe. It is made of an aluminum alloy foil having a thickness of 10 to 50 μm, the balance being inevitable impurities and Al. The lithium iron phosphate having a particle size of 0.3 to 3 μm, the lithium manganate having a particle size of 3 to 20 μm, and a particle size of 3 Crater-like etching pits for accommodating a positive electrode active material in the form of one or more of lithium cobaltate having a particle size of ˜30 μm and cobalt acid / manganese acid / lithium nickelate having a particle size of 10 to 15 μm on the surface The etching pits are formed with a diameter of 0.3 to 3 μm and present at a density of 10 3 pieces / mm 2 or more and 10 5 pieces / mm 2 or less, and the density of the etching pits exceeding 3 μm in diameter is 10 It is characterized by being not more than pieces / mm 2 .
In the present invention, the etching pit in which the particulate positive electrode active material is accommodated is formed on the surface of the foil because the contact area between the positive electrode active material and the positive electrode foil can be further increased. The term “accommodation” here does not require that the positive electrode active material be accommodated in all of the formed etching pits, and it is sufficient that the positive electrode active material is accommodated in some of the etching pits. Further, the present invention includes the case where the entire particulate positive electrode active material does not need to be accommodated in the etching pits and the positive electrode active material is partially accommodated in the etching pits.

本発明に係るリチウムイオン二次電池の正極集電体用箔の製造方法は、Znを0.1〜1.5質量%、Siを0.03〜0.07質量%、Feを0.08〜0.11質量%含有し、残部不可避不純物とAlからなる厚さ10〜50μmのアルミニウム合金箔に、アルカリ性溶液の表面処理を施すことにより、粒径0.3〜3μmのリン酸鉄リチウム、粒径3〜20μmのマンガン酸リチウム、粒径3〜30μmのコバルト酸リチウム、粒径10〜15μmのコバルト酸・マンガン酸・ニッケル酸リチウムの1種または2種以上からなる粒子状の正極活物質を収容する為のクレーター状のエッチングピットを前記アルミニウム合金箔の表面に形成するリチウムイオン二次電池の正極集電体用アルミニウム合金箔の製造方法であって、前記アルカリ性溶液の表面処理を施すことにより、前記エッチングピットを直径0.3〜3μmの大きさで、10 個/mm 以上10 個/mm 以下の密度で存在させ、直径3μmを超える前記ピットの密度を10個/mm 以下とすることを特徴とする。 The manufacturing method of the foil for positive electrode collectors of the lithium ion secondary battery which concerns on this invention is 0.1-1.5 mass% of Zn, 0.03-0.07 mass% of Si, and 0.08 of Fe. By subjecting an aluminum alloy foil having a thickness of 10 to 50 μm, which contains 0.11% by mass and the remainder of inevitable impurities and Al, to a surface treatment with an alkaline solution, lithium iron phosphate having a particle size of 0.3 to 3 μm, Particulate positive electrode active material comprising one or more of lithium manganate having a particle size of 3 to 20 μm, lithium cobaltate having a particle size of 3 to 30 μm, and cobalt acid, manganate and lithium nickelate having a particle size of 10 to 15 μm A method for producing an aluminum alloy foil for a positive electrode current collector of a lithium ion secondary battery, in which crater-like etching pits for containing the aluminum alloy foil are formed on the surface of the aluminum alloy foil, By applying a surface treatment to the solution, the etching pits having a diameter of 0.3 to 3 μm are present at a density of 10 3 pieces / mm 2 or more and 10 5 pieces / mm 2 or less, and the pits having a diameter exceeding 3 μm. The density is 10 pieces / mm 2 or less.

本発明のハイレート放電特性に優れたリチウムイオン二次電池は、正極集電体と正極活物質と導電材とバインダと希釈剤を有する正極と、負極集電体と負極活物質と導電材とバインダとを有する負極と、備え、前記正極集電体は、請求項1に記載の正極集電体用箔からなることを特徴とする。
本発明のハイレート放電特性に優れたリチウムイオン二次電池において、前記正極活物質がリン酸鉄リチウムであり、前記導電材がアセチレンブラックであり、前記バインダがポリビニリデンフルオライドであり、前記希釈剤がN−メチル−2−ピロリドンであり、前記負極集電体が銅箔、前記負極活物質がメソカーボンマイクロビーズであることが好ましい。
The lithium ion secondary battery excellent in high rate discharge characteristics of the present invention includes a positive electrode current collector, a positive electrode active material , a conductive material, a binder , a positive electrode having a diluent , a negative electrode current collector, a negative electrode active material , a conductive material, and a binder. The positive electrode current collector is made of the foil for positive electrode current collector according to claim 1.
In the lithium ion secondary battery excellent in high rate discharge characteristics of the present invention, the positive electrode active material is lithium iron phosphate, the conductive material is acetylene black, the binder is polyvinylidene fluoride, and the diluent Is N-methyl-2-pyrrolidone, the negative electrode current collector is preferably a copper foil, and the negative electrode active material is preferably mesocarbon microbeads.

本発明によれば、表面に0.3〜3μmの大きさで、10 個/mm 以上10 個/mm 以下の密度でエッチングピットを存在させ、直径3μmを超えるエッチングピットの密度を10個/mm 以下に規定した亜鉛含有アルミニウム合金箔により正極集電体を構成することで、コストの上昇及び正極集電体の強度の低下を抑えながら、急速充放電特性を向上できる。
また、アルミニウム合金箔が亜鉛を含有しているため、アルミニウム合金箔にアルカリ性溶液を用いる表面エッチング処理によってピットを形成する場合に、この表面処理時のエッチング速度が速くなり、正極集電体の生産性を著しく向上できる。
これは、アルミニウム合金箔からエッチング液中に溶け出した亜鉛が、箔表面に再析出して、エッチングピットの核生成を促進する効果があるためと推察される。
According to the present invention , etching pits are present on the surface with a size of 0.3 to 3 μm and a density of 10 3 pieces / mm 2 or more and 10 5 pieces / mm 2 or less, and the density of etching pits exceeding 3 μm in diameter is increased. By configuring the positive electrode current collector with a zinc-containing aluminum alloy foil specified to 10 pieces / mm 2 or less , rapid charge / discharge characteristics can be improved while suppressing an increase in cost and a decrease in strength of the positive electrode current collector.
In addition, since aluminum alloy foil contains zinc, when pits are formed by surface etching treatment using an alkaline solution on aluminum alloy foil, the etching rate during this surface treatment is increased, and positive electrode current collectors are produced. Can significantly improve the performance.
This is presumably because zinc dissolved in the etching solution from the aluminum alloy foil reprecipitates on the foil surface and promotes nucleation of etching pits.

本発明に係るリチウムイオン二次電池の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the lithium ion secondary battery which concerns on this invention. 同実施形態における正極を模式的に示す図であり、図2(a)はピットが形成された正極集電体を示す断面図、図2(b)は正極活物質が塗布された正極集電体を示す断面図である。It is a figure which shows the positive electrode in the embodiment typically, FIG. 2 (a) is sectional drawing which shows the positive electrode electrical power collector in which the pit was formed, FIG.2 (b) is positive electrode current collection with which the positive electrode active material was apply | coated. It is sectional drawing which shows a body. 同実施形態における正極を模式的に示し、図3(a)はクレータが形成された正極集電体を示す断面図、図3(b)は正極活物質が積層された正極集電体を示す断面図である。FIG. 3A schematically shows a positive electrode in the embodiment, FIG. 3A is a cross-sectional view showing a positive electrode current collector on which a crater is formed, and FIG. 3B shows a positive electrode current collector on which a positive electrode active material is laminated. It is sectional drawing.

以下、添付図面に示す実施形態に基づいてこの発明を詳細に説明する。
図1に示すように、本実施形態のリチウムイオン二次電池10は、正極1と負極2とがセパレータ3を介して積層されることにより形成される電極群4を備える。この電極群4は積層されるタイプの他に、正極1と負極2とがセパレータ3を介して捲回される構成でもよい。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
As shown in FIG. 1, the lithium ion secondary battery 10 of this embodiment includes an electrode group 4 formed by laminating a positive electrode 1 and a negative electrode 2 with a separator 3 interposed therebetween. In addition to the stacked type, the electrode group 4 may have a configuration in which the positive electrode 1 and the negative electrode 2 are wound through a separator 3.

<正極>
正極1は正極集電体(正極集電体用箔)1aと正極合剤層1bを備える。
正極集電体1aは、亜鉛を含有するアルミニウム合金箔(亜鉛含有アルミニウム合金箔)からなり、図2に示すように、その表面に多数のピット1dが形成されている。
正極集電体1aが亜鉛含有アルミニウム合金箔によって構成されていることにより、当該合金箔にアルカリ性溶液を用いる表面エッチング処理を施してピット1dを形成する場合に、表面処理時のエッチング速度が速くなり、正極集電体1aの生産性を著しく向上することができる。
<Positive electrode>
The positive electrode 1 includes a positive electrode current collector (positive electrode current collector foil) 1a and a positive electrode mixture layer 1b.
The positive electrode current collector 1a is made of an aluminum alloy foil containing zinc (zinc-containing aluminum alloy foil), and a large number of pits 1d are formed on the surface thereof as shown in FIG.
Since the positive electrode current collector 1a is composed of a zinc-containing aluminum alloy foil, the surface etching treatment using an alkaline solution is performed on the alloy foil to form the pit 1d, so that the etching rate during the surface treatment is increased. The productivity of the positive electrode current collector 1a can be significantly improved.

亜鉛含有アルミニウム合金箔は、Znの含有量が0.1〜1.5質量%であり、残部がAlと不可避不純物からなる組成であることが好ましい。
亜鉛含有アルミニウム合金箔の亜鉛含有量が0.1質量%より少ないと、エッチング速度を向上させる効果が十分に得られない。また、亜鉛含有量が1.5質量%を超えると、エッチングピットの核生成サイトが多すぎてしまい、ピット1dの密度は上昇するが、ピット径は小さくなる。その結果、後述するようにピット1d内に正極活物質1cを十分に収容することができなくなる。このため、亜鉛含有アルミニウム合金箔の亜鉛含有量は0.1質量%以上、1.5質量%以下であることが好ましい。
The zinc-containing aluminum alloy foil preferably has a Zn content of 0.1 to 1.5% by mass, and the balance is composed of Al and inevitable impurities.
When the zinc content of the zinc-containing aluminum alloy foil is less than 0.1% by mass, the effect of improving the etching rate cannot be sufficiently obtained. On the other hand, if the zinc content exceeds 1.5% by mass, there are too many etching pit nucleation sites, and the density of pits 1d increases, but the pit diameter decreases. As a result, as described later, the positive electrode active material 1c cannot be sufficiently accommodated in the pits 1d. For this reason, it is preferable that zinc content of a zinc containing aluminum alloy foil is 0.1 to 1.5 mass%.

亜鉛含有アルミニウム合金箔の厚さは、10〜50μmの範囲であることが好ましい。厚みが10μm未満であると、強度不足な上に、後述するアルカリ性溶液のエッチング表面処理により合金箔が破断する可能性があり、また、厚みが50μmを超えると電池内部の体積に占める正極集電体1aの割合が増加し、電池容量が低下するからである。この亜鉛含有アルミニウム合金箔は、12〜30μmの範囲の厚みを有していることがさらに好ましい。なお、正極1は、正極集電体1aとその両面の正極合剤層1bとを含めて50〜300μm程度の厚さを有する。   The thickness of the zinc-containing aluminum alloy foil is preferably in the range of 10 to 50 μm. If the thickness is less than 10 μm, the strength may be insufficient, and the alloy foil may be broken by etching surface treatment of an alkaline solution described later. If the thickness exceeds 50 μm, the positive electrode current collector occupies the volume inside the battery This is because the proportion of the body 1a increases and the battery capacity decreases. More preferably, the zinc-containing aluminum alloy foil has a thickness in the range of 12 to 30 μm. In addition, the positive electrode 1 has a thickness of about 50 to 300 μm including the positive electrode current collector 1a and the positive electrode mixture layers 1b on both sides thereof.

正極集電体1aは、表面がアルカリ性溶液のエッチング表面処理等により粗面化されている。粗面化するのは、正極合剤層1bに含まれる正極活物質との界面接触抵抗を低下させるためである。粗面化の内容は、正極活物質との接触面積を増加させるという目的を見据え、正極活物質との兼ね合いで決定される。つまり、正極活物質は種類により粒径が異なるので、この種類(粒径)に応じて粗面化すればよい。図2(b)に示すように、粒子状の正極活物質1cを収容できる複数のピット1dを形成することが、粗面化の例として掲げられる。図2(b)の場合、理想的には、周囲が隙間なく正極活物質1cの全体がピット1dに収容されることで、正極集電体1aと正極活物質1cの接触面積が増加し、両者間の界面接触抵抗を低下させることができる。ただし前述したように、本発明は、形成された全てのピットに正極活物質が収容されること、また、粒子状の正極活物質の全体がピットに収容されること、を必須の要件とするものではない。   The surface of the positive electrode current collector 1a is roughened by etching surface treatment of an alkaline solution or the like. The reason for roughening the surface is to reduce the interface contact resistance with the positive electrode active material contained in the positive electrode mixture layer 1b. The content of the roughening is determined in view of the purpose of increasing the contact area with the positive electrode active material in consideration of the positive electrode active material. That is, since the positive electrode active material has a different particle size depending on the type, the surface may be roughened according to the type (particle size). As shown in FIG. 2B, forming a plurality of pits 1d that can accommodate the particulate positive electrode active material 1c is listed as an example of roughening. In the case of FIG. 2B, ideally, the contact area between the positive electrode current collector 1a and the positive electrode active material 1c is increased because the entire positive electrode active material 1c is accommodated in the pits 1d without any gap. The interface contact resistance between the two can be reduced. However, as described above, the present invention requires that the positive electrode active material is accommodated in all formed pits, and that the entire particulate positive electrode active material is accommodated in the pits. It is not a thing.

この実施形態は、正極活物質1cの粒径が正極集電体1aの厚みより相当程度大きい場合には適用できないものの、粒径が数μm程度のリン酸鉄リチウムを正極活物質とする場合には有効である。その場合のピット1dは以下に従って作製するのが好ましい。   This embodiment is not applicable when the particle diameter of the positive electrode active material 1c is considerably larger than the thickness of the positive electrode current collector 1a, but when lithium iron phosphate having a particle diameter of about several μm is used as the positive electrode active material. Is valid. In this case, the pit 1d is preferably produced according to the following.

ピット径(直径):0.3〜3μm
ピット径が0.3μm未満であると正極活物質1cの粒径に対しピット径が小さすぎるために、ピット1dに正極活物質1cを収容することができなくなるので、界面接触抵抗の低下が小さくなる。したがって、電池の内部抵抗が低下せず電池のハイレート放電特性が殆ど向上しない。
ピット径が3μmを超えると局所的に周囲より厚みが薄いために強度が低い部分が生ずることになり、アルミニウム箔の強度が低下し、破断が生じる恐れがある。
Pit diameter (diameter): 0.3 to 3 μm
If the pit diameter is less than 0.3 μm, the pit diameter is too small with respect to the particle diameter of the positive electrode active material 1c, so that the positive electrode active material 1c cannot be accommodated in the pit 1d. Become. Therefore, the internal resistance of the battery does not decrease and the high rate discharge characteristics of the battery are hardly improved.
If the pit diameter exceeds 3 μm, the thickness is locally thinner than the surrounding area, resulting in a low strength portion, which may reduce the strength of the aluminum foil and cause breakage.

ピット密度(直径0.3〜3μm):10個/mm〜10個/mm
ピット密度が10個/mm未満であると正極集電体1aと正極活物質1cの接触面積の増加が小さくなり界面接触抵抗の低下が小さくなる。したがって、電池の内部抵抗が低下せず電池のハイレート放電特性が殆ど向上しない。
ピット密度が10個/mmを超えると、隣接するピット1dが重なってしまい、その結果、箔表面が平滑になるおそれがある。
直径3μmを超えるピット1dの密度:10個/mm以下
エッチングにより形成された粗大なピット1d(欠陥)の許容密度を規定するものである。欠陥がこの密度を超えると、ハイレート放電特性に悪影響が表れる恐れがある。
Pit density (diameter: 0.3 to 3 μm): 10 3 pieces / mm 2 to 10 5 pieces / mm 2
When the pit density is less than 10 3 pieces / mm 2 , the increase in the contact area between the positive electrode current collector 1a and the positive electrode active material 1c is reduced, and the decrease in the interface contact resistance is reduced. Therefore, the internal resistance of the battery does not decrease and the high rate discharge characteristics of the battery are hardly improved.
If the pit density exceeds 10 5 pieces / mm 2 , the adjacent pits 1d overlap, and as a result, the foil surface may become smooth.
Density of pits 1d exceeding 3 μm in diameter: 10 pieces / mm 2 or less This defines the allowable density of coarse pits 1d (defects) formed by etching. If the defects exceed this density, the high rate discharge characteristics may be adversely affected.

なお、ピット1dは粗面化処理の1つの形態に過ぎないので、本発明のピットを得るための粗面化処理は図2に示すようなピット1dを形成するための処理に限らない。例えば、図3に示すように、クレーター状ピット1eを正極集電体1aの表面に形成する処理が粗面化処理であっても良い。
このクレーター状ピット1eは、径の大きな正極活物質1cに適合する。即ち、正極活物質1cの表面の一部がクレーター1eの内表面と接して収容されることで、正極集電体1aと正極活物質1cの接触面積を増加させ得る。この形態は、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)のようにリン酸リチウムよりも粒径の大きな正極活物質1cに適合できる。
Since the pit 1d is only one form of the roughening process, the roughening process for obtaining the pit of the present invention is not limited to the process for forming the pit 1d as shown in FIG. For example, as shown in FIG. 3, the process of forming the crater-like pit 1e on the surface of the positive electrode current collector 1a may be a roughening process.
The crater-like pit 1e is suitable for the positive electrode active material 1c having a large diameter. That is, part of the surface of the positive electrode active material 1c is accommodated in contact with the inner surface of the crater 1e, so that the contact area between the positive electrode current collector 1a and the positive electrode active material 1c can be increased. This form can be adapted to the positive electrode active material 1c having a particle diameter larger than that of lithium phosphate such as lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMn 2 O 4 ).

亜鉛含有アルミニウム合金箔は、通常、圧延により作製されるので、作製されたままの亜鉛含有アルミニウム合金箔は表面が平坦である。本実施形態では、表面が平坦な亜鉛含有アルミニウム合金箔に、アルカリ性溶液を用いる表面エッチング処理を施して粗面化する。これにより、この合金箔に、前述の適正なピット径及びピット密度でピット1dを効率良く形成することができ、正極集電体1aを生産性良く製造することができる。
アルミニウム合金箔の表面にピットを形成するアルカリ性溶液は、一例として20%濃度の水酸化ナトリウム水溶液を用いることができる。アルカリ性溶液の液温度を例えば35℃、浸漬時間2分の条件にてエッチング処理することでピットを形成できる。なお、アルカリ性溶液の液温度、浸漬時間は適宜変更しても良い。
Since the zinc-containing aluminum alloy foil is usually produced by rolling, the as-prepared zinc-containing aluminum alloy foil has a flat surface. In this embodiment, the zinc-containing aluminum alloy foil having a flat surface is subjected to surface etching treatment using an alkaline solution to be roughened. Thereby, pits 1d can be efficiently formed on the alloy foil with the above-mentioned appropriate pit diameter and pit density, and the positive electrode current collector 1a can be manufactured with high productivity.
As an example of the alkaline solution for forming pits on the surface of the aluminum alloy foil, a 20% aqueous sodium hydroxide solution can be used. Pits can be formed by performing an etching process under the conditions of the alkaline solution temperature of, for example, 35 ° C. and an immersion time of 2 minutes. In addition, you may change suitably the liquid temperature and immersion time of an alkaline solution.

次に、正極合剤層1bは、主成分である正極活物質1cに、導電材、バインダ及び希釈剤を混練してペースト状にし、正極集電体1aの表裏両面に塗布して形成することができる。
正極活物質1cとしては、公知の材料、例えばリチウム含有金属酸化物、リチウム含有金属リン酸化合物またはリチウム含有化合物を用いることができる。リチウム含有金属酸化物としては、LiCoO、Li(CoMnNi)O、LiMnOが挙げられ、リチウム含有金属リン酸化合物としては、LiFePO、LiMnPO、LiFe1−xMnPO4、LiCoPOが挙げられ、リチウム含有化合物としては、LiTi(PO、LiFeOが挙げられる。この中では、電気化学特性、安全性やコスト面で、LiFePO(リン酸鉄リチウム)、LiMnO(マンガン酸リチウム)、LiCoO(コバルト酸リチウム)、Li(CoMnNi)O(コバルト酸・マンガン酸・ニッケル酸リチウム)の一種又は二種以上を用いることが好ましい。これらの好ましい正極活物質1cの粒径は概ね以下の通りである。正極集電体1aの粗面化処理は、以下の粒径を念頭において施される。
Next, the positive electrode mixture layer 1b is formed by kneading a conductive material, a binder, and a diluent into the positive electrode active material 1c, which is the main component, to form a paste, and applying it to both the front and back surfaces of the positive electrode current collector 1a. Can do.
As the positive electrode active material 1c, a known material such as a lithium-containing metal oxide, a lithium-containing metal phosphate compound, or a lithium-containing compound can be used. As the lithium-containing metal oxide, LiCoO 2, Li (Co x Mn y Ni z) O 2, Li 2 MnO 4 , and examples of the lithium-containing metal phosphate compound, LiFePO 4, LiMnPO 4, LiFe 1-x Mn x PO 4 and LiCoPO 4 are exemplified, and examples of the lithium-containing compound include LiTi 2 (PO 4 ) 3 and LiFeO 2 . Among them, LiFePO 4 (lithium iron phosphate), Li 2 MnO 4 (lithium manganate), LiCoO 2 (lithium cobaltate), Li (Co x M n y Ni z ) in terms of electrochemical characteristics, safety and cost. It is preferable to use one or more of O 2 (cobalt acid / manganate / lithium nickelate). The particle diameters of these preferable positive electrode active materials 1c are generally as follows. The roughening treatment of the positive electrode current collector 1a is performed with the following particle size in mind.

リン酸鉄リチウム:0.3〜3μm
マンガン酸リチウム:3〜20μm
コバルト酸リチウム:3〜30μm
コバルト酸・マンガン酸・ニッケル酸リチウム:10〜15μm
バインダ、希釈剤は、公知の材料を用いればよい。
Lithium iron phosphate: 0.3-3 μm
Lithium manganate: 3 to 20 μm
Lithium cobaltate: 3-30 μm
Cobalt acid / manganate / lithium nickelate: 10-15 μm
A known material may be used for the binder and the diluent.

<負極>
負極2は負極集電体2aと負極合剤層2bを備える。
負極集電体2aとしては、電気化学的性質、箔状への加工性やコスト面から、銅箔が用いられている。ただし、他の材料からなる金属箔を負極集電体2aに用いることを本発明は妨げない。また、LiTi12(チタン酸リチウム)を負極とした場合にも、本発明の正極集電体用箔を用いることは可能である。
負極集電体2aの厚みは10〜50μmと、正極集電体1aと同じでよい。また、負極集電体2aと、その両面の負極合剤層2bとを含めた負極2の厚みも50〜300μmと、正極1と同じでよい。
<Negative electrode>
The negative electrode 2 includes a negative electrode current collector 2a and a negative electrode mixture layer 2b.
As the negative electrode current collector 2a, a copper foil is used in view of electrochemical properties, processability to a foil shape, and cost. However, the present invention does not prevent the use of a metal foil made of another material for the negative electrode current collector 2a. Further, even when the Li 4 Ti 5 O 12 (lithium titanate) as the negative electrode, it is possible to use a positive electrode current collector foil of the present invention.
The thickness of the negative electrode current collector 2a may be 10 to 50 μm, which is the same as that of the positive electrode current collector 1a. Moreover, the thickness of the negative electrode 2 including the negative electrode current collector 2a and the negative electrode mixture layer 2b on both surfaces thereof may be 50 to 300 μm, which is the same as the positive electrode 1.

次に、負極合剤層2bは、主成分である負極活物質とともに、導電材、バインダ及び希釈剤を混練してペースト状にし、負極集電体2aの両面に塗布して形成することができる。
負極活物質としては、リチウムイオンの吸蔵・放出が可能な公知の材料、例えば、炭素材、チタン酸リチウム、リチウム−アルミニウム合金、シリコン系またはスズ系リチウム合金を用いることができる。この中で、リチウムイオンの吸蔵・放出量が多く、不可逆容量が小さい炭素材を用いることが好ましい。炭素材としては、アセチレンブラック、ケッチェンブラック、気相法炭素繊維、グラファイト(黒鉛)を好適に用いることができる。
Next, the negative electrode mixture layer 2b can be formed by kneading a conductive material, a binder, and a diluent together with a negative electrode active material as a main component into a paste and applying the paste to both surfaces of the negative electrode current collector 2a. .
As the negative electrode active material, a known material capable of occluding and releasing lithium ions, for example, a carbon material, lithium titanate, lithium-aluminum alloy, silicon-based or tin-based lithium alloy can be used. Among these, it is preferable to use a carbon material having a large amount of occlusion / release of lithium ions and a small irreversible capacity. As the carbon material, acetylene black, ketjen black, vapor grown carbon fiber, and graphite (graphite) can be suitably used.

<セパレータ>
正極1と負極2の間に設けられるセパレータ3は、微細な孔が無数に存在する例えばポリプロピレン或いはポリエチレン樹脂フィルムから構成され、正極1と負極2との間を電気的に絶縁するが、リチウムイオンLiは自由に通過することができる。
<Separator>
The separator 3 provided between the positive electrode 1 and the negative electrode 2 is made of, for example, a polypropylene or polyethylene resin film having countless fine holes and electrically insulates the positive electrode 1 and the negative electrode 2 from each other. Li + can pass freely.

<電解液>
正極1、負極2及びセパレータ3からなる電極群4が浸漬される電解液としては、リチウム塩を含む非水電解液またはイオン伝導ポリマーを用いることが好ましい。
リチウム塩を含む非水電解液における非水電解質の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)が挙げられる。
また、非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム(LiPF)、ホウ四フッ化リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiSOCF)が挙げられる。
<Electrolyte>
As an electrolytic solution in which the electrode group 4 including the positive electrode 1, the negative electrode 2, and the separator 3 is immersed, it is preferable to use a nonaqueous electrolytic solution or an ion conductive polymer containing a lithium salt.
Examples of the nonaqueous solvent for the nonaqueous electrolyte in the nonaqueous electrolyte containing a lithium salt include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Can be mentioned.
Examples of the lithium salt that can be dissolved in the non-aqueous solvent include lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), and lithium trifluoromethanesulfonate (LiSO 3 CF 4 ).

以上の構成を備える電極群4は、封口される電池ケースの内部で電解液に浸漬され(いずれも図示が省略)、正極1及び負極2がそれぞれ端子に電気的に接続されて、リチウムイオン二次電池10を構成する。   The electrode group 4 having the above configuration is immersed in an electrolyte solution inside a battery case to be sealed (both are not shown), and the positive electrode 1 and the negative electrode 2 are electrically connected to terminals, respectively. The secondary battery 10 is configured.

以下本発明をより具体的な実施例に基づいて説明する。
<アルミニウム合金箔のエッチング速度の検討>
表1に示す組成の各種亜鉛含有アルミニウム合金箔(実験例1〜実験例4)を作製した。これらの合金箔を35℃のエッチング液(商品名「メックアルマット AR−1210」、メック株式会社製)に150秒浸漬させて表面エッチング処理を行い、表面を粗面化した。この表面エッチング処理時のエッチング速度を、粗面化前後での単位面積当たりの重量減少を測定することで評価した。その結果を表1に示す。
Hereinafter, the present invention will be described based on more specific examples.
<Examination of etching rate of aluminum alloy foil>
Various zinc-containing aluminum alloy foils (Experimental Examples 1 to 4) having the compositions shown in Table 1 were prepared. These alloy foils were immersed in an etching solution (trade name “MEC ALMAT AR-1210”, manufactured by MEC Co., Ltd.) at 35 ° C. for 150 seconds to perform surface etching treatment, thereby roughening the surface. The etching rate during this surface etching treatment was evaluated by measuring the weight loss per unit area before and after roughening. The results are shown in Table 1.

Figure 0006051038
Figure 0006051038

表1に示すように、亜鉛を含有するアルミニウム合金箔(実験例1、2、4)は、亜鉛含有量の少ないアルミニウム合金箔(実験例3)に比べてエッチング速度が速くなっており、実験例3のアルミニウム合金箔で、他のアルミニウム合金箔(実験例1、2、4)と同様のエッチング量を得るにはより長い処理時間が必要になる。このことから、亜鉛を含有するアルミニウム合金箔を用いることにより、亜鉛を含有しない合金箔を用いるのに比べて正極集電体の生産性を大幅に向上できることがわかった。
なお、ここでアルミニウム合金箔に形成されるピットの径は、アルミニウム合金箔の亜鉛含有量に依存して小径となり、亜鉛含有量が1.5質量%を超えるアルミニウム合金箔(実験例4)に形成されたピット径はリン酸鉄リチウム粒子の径(1μm)よりも小さくなっていると思われる。
As shown in Table 1, the aluminum alloy foil containing zinc (Experimental Examples 1, 2, and 4) has an etching rate higher than that of the aluminum alloy foil having less zinc content (Experimental Example 3). With the aluminum alloy foil of Example 3, a longer processing time is required to obtain the same etching amount as other aluminum alloy foils (Experimental Examples 1, 2, and 4). From this, it was found that the productivity of the positive electrode current collector can be greatly improved by using the aluminum alloy foil containing zinc as compared with the case of using the alloy foil not containing zinc.
Here, the diameter of the pits formed in the aluminum alloy foil becomes a small diameter depending on the zinc content of the aluminum alloy foil, and the aluminum alloy foil (Experimental Example 4) having a zinc content exceeding 1.5 mass%. The pit diameter formed seems to be smaller than the diameter (1 μm) of the lithium iron phosphate particles.

<電池の放電容量の検討>
実験例1〜実験例4の亜鉛含有アルミニウム合金箔を粗面化して得た正極箔を正極集電体として正極を作製するとともに、負極を作製した。正極および負極の作製方法は以下の通りである。
[正極]
以下に示す正極活物質、導電材、バインダ及び希釈剤からなる正極スラリーを厚み50μmになるように正極箔上に塗布して、正極を得た。
正極活物質 リン酸鉄リチウム(平均粒径: 1μm)
導電材 アセチレンブラック(AB)
バインダ ポリビニリデンフルオライド(PVDF)
希釈剤 N−メチル−2−ピロリドン(NMP)
各成分の配合比(重量比) 正極活物質:AB:PVDF=85:8:7
<Examination of battery discharge capacity>
A positive electrode was prepared using the positive electrode foil obtained by roughening the zinc-containing aluminum alloy foil of Experimental Examples 1 to 4, and a negative electrode was prepared. The method for producing the positive electrode and the negative electrode is as follows.
[Positive electrode]
A positive electrode slurry composed of a positive electrode active material, a conductive material, a binder, and a diluent shown below was applied on the positive electrode foil so as to have a thickness of 50 μm to obtain a positive electrode.
Positive electrode active material Lithium iron phosphate (average particle size: 1 μm)
Conductive material Acetylene Black (AB)
Binder Polyvinylidene fluoride (PVDF)
Diluent N-methyl-2-pyrrolidone (NMP)
Mixing ratio of each component (weight ratio) Positive electrode active material: AB: PVDF = 85: 8: 7

[負極]
以下に示す負極活物質と、正極と同じ導電材、バインダ及び希釈剤とからなる負極スラリーを厚み40μmになるように銅箔(厚さ 10μm)上に塗布して、負極を得た。
負極活物質 メソカーボンマイクロビーズ(MCMB)
各成分の配合比(質量比) MCMB:AB:PVDF=93:2:5
以上のようにして作製した正極および負極をセパレータとともに組み込み、電解液を含浸させてリチウムイオン二次電池を作製した(実験例電池1〜実験例電池4)。
[Negative electrode]
A negative electrode slurry composed of the following negative electrode active material and the same conductive material, binder and diluent as the positive electrode was applied onto a copper foil (thickness 10 μm) to a thickness of 40 μm to obtain a negative electrode.
Negative electrode active material Mesocarbon microbeads (MCMB)
Compounding ratio (mass ratio) of each component MCMB: AB: PVDF = 93: 2: 5
The positive electrode and the negative electrode produced as described above were assembled together with a separator, and impregnated with an electrolytic solution to produce lithium ion secondary batteries (Experimental Battery 1 to Experimental Battery 4).

作製したリチウムイオン二次電池を用いてハイレート放電負荷特性を測定した。
測定の条件は以下の通りである。そして、各電流で放電した際の実験例電池3の放電容量を1として、その他の電池(実験例電池1、2、4)の放電容量を求めた。その結果を表2に示す。
High-rate discharge load characteristics were measured using the produced lithium ion secondary battery.
The measurement conditions are as follows. Then, assuming that the discharge capacity of the experimental example battery 3 when discharged at each current was 1, the discharge capacities of the other batteries (experimental example batteries 1, 2, 4) were obtained. The results are shown in Table 2.

充電 CC−CV:0.2C−4.0V 8hr.
放電 CC:0.2C、1C、5C、10C、15C(E.V=2.0V)
Cの定義:電池の定格容量値から計算され、1Cはある容量を有する電池を定電流で放電した際に、1時間で放電が終了する電流値を指す。例えば、15Cは1Cの15倍の電流値を意味する。
CC(Constant Current(定電流)):定電流で充電・放電することを示す。
CC−CV(Constant Current - Constant Voltage(定電流・定電圧)):電池の充電時に用いられる。最初に一定の電流で充電し、規定の電圧に達した後はその電圧を維持する為に電流値を下げながら充電する方法。「0.2C−4.0V 8hr.」は、最初に0.2Cで充電を開始し、電圧が4.0Vに達した時点から徐々に電流値を下げていき、充電開始から8時間後に充電を完了するということを示す。
Charging CC-CV: 0.2C-4.0V 8hr.
Discharge CC: 0.2C, 1C, 5C, 10C, 15C (E.V = 2.0V)
Definition of C: Calculated from the rated capacity value of the battery, 1C indicates a current value at which discharge is completed in one hour when a battery having a certain capacity is discharged at a constant current. For example, 15C means a current value 15 times that of 1C.
CC (Constant Current): Indicates that charging / discharging is performed at a constant current.
CC-CV (Constant Current-Constant Voltage): Used when charging the battery. A method of charging with a constant current first, and after reaching a specified voltage, charging while lowering the current value to maintain that voltage. "0.2C-4.0V 8hr." Starts charging at 0.2C first, gradually decreases the current value from the point when the voltage reaches 4.0V, and charging 8 hours after the start of charging Indicates that you want to complete.

Figure 0006051038
Figure 0006051038

表2に示すように、正極箔の亜鉛含有量が0.1〜1.5質量%の実験例電池1、2は、正極箔の亜鉛含有量が0.1質量%未満の実験例電池3に比べて、粗面化処理時のエッチング速度が速い特徴を有していると同時に放電容量も同等以上の値が得られている。
実験例電池1〜3では、正極集電体の表面にリン酸鉄リチウム粒子(正極活物質)と略同じサイズのピットが形成されているため、図2(b)のようにピット内にリン酸鉄リチウム粒子が収容され、正極集電体のリン酸鉄リチウム粒子との接触面積が大きくなっているものと推測される。そのために、正極活物質と正極集電体の界面接触抵抗が低下し、ハイレート放電時でも電圧の低下が抑えられ、高い放電容量を維持できるものと解される。
As shown in Table 2, experimental batteries 1 and 2 having a positive electrode foil with a zinc content of 0.1 to 1.5% by mass are an experimental battery 3 with a positive electrode foil having a zinc content of less than 0.1% by mass. Compared to the above, the etching rate at the time of the roughening treatment is characterized by a high etching speed, and at the same time, the discharge capacity is equivalent or higher.
In Experimental Examples Batteries 1 to 3, pits having substantially the same size as the lithium iron phosphate particles (positive electrode active material) are formed on the surface of the positive electrode current collector. Therefore, as shown in FIG. It is presumed that the lithium iron oxide particles are accommodated and the contact area of the positive electrode current collector with the lithium iron phosphate particles is increased. Therefore, it is understood that the interface contact resistance between the positive electrode active material and the positive electrode current collector is reduced, the voltage drop is suppressed even during high-rate discharge, and a high discharge capacity can be maintained.

これに対して、正極集電体の亜鉛含有量が1.5質量%を超える実験例電池4は、実験例電池1〜3に比べて放電容量が小さく、特に電流が大きくなるほど、その放電容量が大きく下回る。
これは、正極集電体の表面に形成されているピットがリン酸鉄リチウム粒子よりも小径であるため、ピット内にリン酸鉄リチウム粒子が十分に収容されないことが影響しているためと考えられる。
以上の結果から、正極集電体の亜鉛含有量は0.1〜1.5質量%の範囲が好ましいことがわかった。
On the other hand, the experimental battery 4 in which the zinc content of the positive electrode current collector exceeds 1.5% by mass has a smaller discharge capacity than the experimental batteries 1 to 3, and in particular, the larger the current, the higher the discharge capacity. Is significantly below.
This is thought to be because the pits formed on the surface of the positive electrode current collector are smaller in diameter than the lithium iron phosphate particles, so that the lithium iron phosphate particles are not sufficiently accommodated in the pits. It is done.
From the above results, it was found that the zinc content of the positive electrode current collector is preferably in the range of 0.1 to 1.5% by mass.

1…正極、1a…正極集電体(正極集電体用箔)、1b…正極合剤層、1c…正極活物質、1d…ピット、1e…クレーター状ピット、2…負極、2a…負極集電体、2b…負極合剤層、3…セパレータ、4…電極群、10…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 1a ... Positive electrode collector (foil for positive electrode collectors), 1b ... Positive electrode mixture layer, 1c ... Positive electrode active material, 1d ... Pit, 1e ... Crater-like pit, 2 ... Negative electrode, 2a ... Negative electrode collector Electrical body, 2b ... negative electrode mixture layer, 3 ... separator, 4 ... electrode group, 10 ... lithium ion secondary battery.

Claims (4)

Znを0.1〜1.5質量%、Siを0.03〜0.07質量%、Feを0.08〜0.11質量%含有し、残部不可避不純物とAlからなる厚さ10〜50μmのアルミニウム合金箔からなり、
粒径0.3〜3μmのリン酸鉄リチウム、粒径3〜20μmのマンガン酸リチウム、粒径3〜30μmのコバルト酸リチウム、粒径10〜15μmのコバルト酸・マンガン酸・ニッケル酸リチウムの1種または2種以上からなる粒子状の正極活物質を収容する為のクレーター状のエッチングピットが表面に形成され、前記エッチングピットが直径0.3〜3μmの大きさで、10 個/mm 以上10 個/mm 以下の密度で存在し、直径3μmを超える前記エッチングピットの密度が10個/mm 以下であることを特徴とする、リチウムイオン二次電池の正極集電体用箔。
Thickness of 10 to 50 μm containing 0.1 to 1.5% by mass of Zn, 0.03 to 0.07% by mass of Si, 0.08 to 0.11% by mass of Fe, and the balance of inevitable impurities and Al Made of aluminum alloy foil,
1 of lithium iron phosphate having a particle size of 0.3 to 3 μm, lithium manganate having a particle size of 3 to 20 μm, lithium cobaltate having a particle size of 3 to 30 μm, cobalt acid / manganese acid / lithium nickelate having a particle size of 10 to 15 μm A crater-like etching pit for accommodating a particulate positive electrode active material composed of seeds or two or more kinds is formed on the surface, and the etching pit has a diameter of 0.3 to 3 μm and is 10 3 / mm 2. The foil for a positive electrode current collector of a lithium ion secondary battery, characterized in that the density of the etching pits present at a density of 10 5 pieces / mm 2 or less and a diameter exceeding 3 μm is 10 pieces / mm 2 or less. .
Znを0.1〜1.5質量%、Siを0.03〜0.07質量%、Feを0.08〜0.11質量%含有し、残部不可避不純物とAlからなる厚さ10〜50μmのアルミニウム合金箔に、アルカリ性溶液の表面処理を施すことにより、Thickness of 10 to 50 μm containing 0.1 to 1.5% by mass of Zn, 0.03 to 0.07% by mass of Si, 0.08 to 0.11% by mass of Fe, and the balance of inevitable impurities and Al By subjecting the aluminum alloy foil to a surface treatment with an alkaline solution,
粒径0.3〜3μmのリン酸鉄リチウム、粒径3〜20μmのマンガン酸リチウム、粒径3〜30μmのコバルト酸リチウム、粒径10〜15μmのコバルト酸・マンガン酸・ニッケル酸リチウムの1種または2種以上からなる粒子状の正極活物質を収容する為のクレーター状のエッチングピットを前記アルミニウム合金箔の表面に形成するリチウムイオン二次電池の正極集電体用アルミニウム合金箔の製造方法であって、1 of lithium iron phosphate having a particle size of 0.3 to 3 μm, lithium manganate having a particle size of 3 to 20 μm, lithium cobaltate having a particle size of 3 to 30 μm, cobalt acid / manganese acid / lithium nickelate having a particle size of 10 to 15 μm Method for producing aluminum alloy foil for positive electrode current collector of lithium ion secondary battery, wherein crater-like etching pits for accommodating particulate or two or more kinds of particulate positive electrode active materials are formed on the surface of said aluminum alloy foil Because
前記アルカリ性溶液の表面処理を施すことにより、前記エッチングピットを直径0.3〜3μmの大きさで、10By performing a surface treatment of the alkaline solution, the etching pits have a diameter of 0.3 to 3 μm and a size of 10 3 個/mmPiece / mm 2 以上1010 or more 5 個/mmPiece / mm 2 以下の密度で存在させ、直径3μmを超える前記エッチングピットの密度を10個/mmThe density of the etching pit exceeding 3 μm in diameter is 10 / mm. 2 以下とすることを特徴とするリチウムイオン二次電池の正極集電体用箔の製造方法。The manufacturing method of the foil for positive electrode collectors of a lithium ion secondary battery characterized by the following.
正極集電体と正極活物質と導電材とバインダと希釈剤を有する正極と、負極集電体と負極活物質と導電材とバインダとを有する負極と、備え、前記正極集電体は、請求項1に記載の正極集電体用箔からなることを特徴とするハイレート放電特性に優れたリチウムイオン二次電池。 A positive electrode current collector, a positive electrode active material , a conductive material , a positive electrode having a binder, and a diluent ; a negative electrode current collector, a negative electrode active material , a conductive material, and a negative electrode having a binder; and the positive electrode current collector comprises: A lithium ion secondary battery excellent in high- rate discharge characteristics, comprising the positive electrode current collector foil according to Item 1. 前記正極活物質がリン酸鉄リチウムであり、前記導電材がアセチレンブラックであり、前記バインダがポリビニリデンフルオライドであり、前記希釈剤がN−メチル−2−ピロリドンであり、前記負極集電体が銅箔であり、前記負極活物質がメソカーボンマイクロビーズであることを特徴とする請求項3に記載のハイレート放電特性に優れたリチウムイオン二次電池。The positive electrode active material is lithium iron phosphate, the conductive material is acetylene black, the binder is polyvinylidene fluoride, the diluent is N-methyl-2-pyrrolidone, and the negative electrode current collector The lithium ion secondary battery excellent in high-rate discharge characteristics according to claim 3, wherein is a copper foil and the negative electrode active material is mesocarbon microbeads.
JP2012282849A 2012-12-26 2012-12-26 Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Expired - Fee Related JP6051038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282849A JP6051038B2 (en) 2012-12-26 2012-12-26 Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012282849A JP6051038B2 (en) 2012-12-26 2012-12-26 Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014127333A JP2014127333A (en) 2014-07-07
JP6051038B2 true JP6051038B2 (en) 2016-12-21

Family

ID=51406672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282849A Expired - Fee Related JP6051038B2 (en) 2012-12-26 2012-12-26 Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6051038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115633A1 (en) * 2020-10-26 2022-04-29 Saft Electrode based on lithium manganese iron phosphate for lithium-ion electrochemical element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102275363B1 (en) * 2014-10-01 2021-07-09 에스케이이노베이션 주식회사 Current collector for electrode of secondary battery
DE102017201233A1 (en) 2017-01-26 2018-07-26 Robert Bosch Gmbh Process for producing an electrode laminate for a solid-state battery
JP6447652B2 (en) * 2017-03-28 2019-01-09 Tdk株式会社 Current collector for lithium secondary battery and lithium secondary battery
CN110405318A (en) * 2018-04-26 2019-11-05 天津大学 A kind of CMT increasing material manufacturing method improving Tensile Properties of Aluminum Alloy
WO2024079948A1 (en) * 2022-10-13 2024-04-18 東洋アルミニウム株式会社 Aluminum foil and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246030A (en) * 2001-02-20 2002-08-30 Sanyo Electric Co Ltd Lithium secondary battery
JP4435194B2 (en) * 2007-03-27 2010-03-17 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP5663184B2 (en) * 2010-03-30 2015-02-04 東洋アルミニウム株式会社 Aluminum through foil and method for producing the same
WO2012114502A1 (en) * 2011-02-25 2012-08-30 日立ビークルエナジー株式会社 Positive electrode for lithium-ion rechargeable batteries, lithium-ion rechargeable battery, and battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3115633A1 (en) * 2020-10-26 2022-04-29 Saft Electrode based on lithium manganese iron phosphate for lithium-ion electrochemical element
WO2022090267A1 (en) * 2020-10-26 2022-05-05 Saft Lithium manganese iron phosphate-based electrode for an electrochemical lithium ion element

Also Published As

Publication number Publication date
JP2014127333A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6305263B2 (en) Non-aqueous electrolyte battery, battery pack, battery pack and car
JP5224020B2 (en) Lithium secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US10637048B2 (en) Silicon anode materials
JP2015011969A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP5945401B2 (en) Method for producing positive electrode current collector foil of lithium ion secondary battery
JP2014120404A (en) Secondary battery
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5620499B2 (en) Non-aqueous electrolyte battery
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof
JPWO2013042421A1 (en) Secondary battery
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
CN110476288B (en) Nonaqueous electrolyte storage element and method for manufacturing same
JP2013197052A (en) Lithium ion power storage device
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP5945148B2 (en) Aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery using the same
JP2014017209A (en) Method for manufacturing lithium ion secondary battery
JP2016058169A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US20230163357A1 (en) Electrolyte, secondary battery, battery module, battery pack, and power consuming device
US20230402585A1 (en) Lithium-ion battery including anode-free cells
JP2019160614A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6051038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees