[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6046041B2 - Devices, systems, and methods for neuromodulation therapy evaluation and feedback - Google Patents

Devices, systems, and methods for neuromodulation therapy evaluation and feedback Download PDF

Info

Publication number
JP6046041B2
JP6046041B2 JP2013536748A JP2013536748A JP6046041B2 JP 6046041 B2 JP6046041 B2 JP 6046041B2 JP 2013536748 A JP2013536748 A JP 2013536748A JP 2013536748 A JP2013536748 A JP 2013536748A JP 6046041 B2 JP6046041 B2 JP 6046041B2
Authority
JP
Japan
Prior art keywords
treatment
impedance
temperature
predetermined
energy delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013536748A
Other languages
Japanese (ja)
Other versions
JP2013544130A (en
Inventor
ソウミャ バラクール
ソウミャ バラクール
ロバート ジェイ ビートル
ロバート ジェイ ビートル
ポール フリードリックス
ポール フリードリックス
ディヴィッド ハーツフェルド
ディヴィッド ハーツフェルド
アンドリュー ウー
アンドリュー ウー
デニス ザリンス
デニス ザリンス
マーク エス リョン
マーク エス リョン
Original Assignee
メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ
メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ, メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ filed Critical メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ
Publication of JP2013544130A publication Critical patent/JP2013544130A/en
Application granted granted Critical
Publication of JP6046041B2 publication Critical patent/JP6046041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/10Power sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00075Motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • A61B2018/00648Sensing and controlling the application of energy with feedback, i.e. closed loop control using more than one sensed parameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00672Sensing and controlling the application of energy using a threshold value lower
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00863Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0093Heating or cooling appliances for medical or therapeutic treatment of the human body programmed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F2007/126Devices for heating or cooling internal body cavities for invasive application, e.g. for introducing into blood vessels

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Cardiology (AREA)
  • Thermal Sciences (AREA)
  • Vascular Medicine (AREA)
  • Surgical Instruments (AREA)

Description

関連出願への相互参照
本願は、以下の係属中の出願に基づく優先権を主張するものである。
CROSS REFERENCE TO RELATED APPLICATION This application claims priority from the following pending applications:

(a)2010年10月25日に出願された米国特許仮出願第61/406,531号   (A) US Provisional Patent Application No. 61 / 406,531 filed on Oct. 25, 2010

(b)2011年8月26日に出願された米国特許仮出願第61/528,108号   (B) US Provisional Patent Application No. 61 / 528,108 filed on August 26, 2011

(c)2011年8月26日に出願された米国特許仮出願第61/528,091号   (C) US Provisional Application No. 61 / 528,091 filed on August 26, 2011

(d)2011年8月29日に出願された米国特許仮出願第61/528,684号   (D) US Provisional Patent Application No. 61 / 528,684, filed August 29, 2011

本明細書中、上記の出願全体を全て参考のため援用する。さらに、出願中に開示されかつ参考のため援用される実施形態の構成要素および特徴を本願中に開示および請求される多様な構成要素および特徴と組み合わせることができる。   In this specification, all of the above applications are incorporated by reference. Further, the components and features of the embodiments disclosed in the application and incorporated by reference may be combined with the various components and features disclosed and claimed herein.

本開示は、神経変調療法に関し、より詳細には、神経変調療法を提供するデバイスのオペレータに評価及びフィードバックを提供するためのデバイス、システム、及び方法に関する。   The present disclosure relates to neuromodulation therapy, and more particularly to devices, systems, and methods for providing evaluation and feedback to an operator of a device that provides neuromodulation therapy.

交感神経系(SNS)は、典型的にストレス応答に関連する主として不随意の身体制御系である。SNSの線維は、ヒトの身体のほとんどすべての器官系における組織を神経支配し、瞳孔径、腸運動、及び尿量のような特徴に影響を及ぼす可能性がある。こうしたレギュレーションは、ホメオスタシスを維持する又は環境因子への迅速な応答のために身体を準備するのに適応的な有用性を有することができる。SNSの慢性の活性化は、しかしながら、多くの疾患状態の進行を後押しすることがある共通の不適応応答である。高血圧症の複雑な病態生理学、容量過負荷の状態(心不全のような)、及び進行性腎疾患の原因でありうるものとして、特に腎SNSの過度の活性化が実験的にヒトで識別されている。例えば、放射性トレーサ希釈は、本態性高血圧症の患者において増加した腎ノルエピネフリン(NE)スピルオーバー率を実証した。   The sympathetic nervous system (SNS) is a largely involuntary body control system typically associated with stress responses. SNS fibers innervate tissues in almost every organ system of the human body and can affect features such as pupil diameter, bowel motility, and urine output. Such regulation can have an adaptive utility in maintaining homeostasis or preparing the body for a rapid response to environmental factors. Chronic activation of SNS, however, is a common maladaptive response that can drive the progression of many disease states. In particular, excessive activation of the renal SNS has been experimentally identified in humans as a possible cause of the complex pathophysiology of hypertension, conditions of volume overload (such as heart failure), and progressive kidney disease Yes. For example, radiotracer dilution demonstrated increased renal norepinephrine (NE) spillover rates in patients with essential hypertension.

心腎交感神経の亢進は、特に心不全の患者に目立つことがある。例えば、心臓及び腎臓から血漿への過大なNE溢流がこれらの患者でしばしば見受けられる。高められたSNS活性化は、通常、慢性腎疾患と末期腎疾患との両方を特徴付ける。末期腎疾患の患者では、平均を上回るNE血漿レベルが心血管疾患及び幾つかの死因の前兆となることが実証されている。これはまた、糖尿病又は造影剤腎症に悩む患者にも当てはまる。証拠は、疾患のある腎臓が起源である知覚求心性信号が、高められた中枢交感神経流出を開始させ及び持続させる主因であることを示唆する。   Increased cardiorenal sympathetic nerves may be particularly noticeable in patients with heart failure. For example, excessive NE overflow from the heart and kidneys to plasma is often seen in these patients. Increased SNS activation usually characterizes both chronic kidney disease and end-stage renal disease. In patients with end-stage renal disease, NE plasma levels above average have been demonstrated to be predictive of cardiovascular disease and several causes of death. This is also true for patients suffering from diabetes or contrast nephropathy. Evidence suggests that sensory afferent signals originating from diseased kidneys are the primary cause of initiating and sustaining increased central sympathetic outflow.

腎臓を神経支配する交感神経は、血管、傍糸球体装置、及び尿細管で終端する。腎交感神経の刺激は、増加したレニン分泌、増加したナトリウム(Na+)再吸収、及び腎血流の減少を引き起こすことがある。腎機能のこれらの神経調節構成要素は、高められた交感神経緊張によって特徴付けられる疾患状態においてかなり刺激され、高血圧患者の血圧増加に寄与しうる。腎交感神経の遠心性刺激の結果としての腎血流及び糸球体濾過率の減少は、心腎症候群(すなわち、慢性心不全の進行性合併症としての腎機能障害)における腎機能の損失の礎となりうる。腎交感神経の遠心性刺激の結果を妨げる薬理学的戦略は、中枢作用性交感神経遮断薬、ベータ遮断薬(レニン分泌を減らすことを意図される)、アンギオテンシン変換酵素阻害薬及び受容体拮抗薬(レニン分泌の結果としてのアンギオテンシンII及びアルドステロン活性化をブロックすることを意図される)、及び利尿薬(腎交感神経を介するナトリウム及び水分貯留に拮抗することを意図される)を含む。これらの薬理学的戦略は、しかしながら、限られた有効性、コンプライアンス問題、副作用、及び他のものを含む著しい制限を有する。したがって、代替治療戦略への強い公衆衛生要求が存在する。 Sympathetic nerves that innervate the kidney terminate in blood vessels, paraglomerular devices, and tubules. Renal sympathetic nerve stimulation can cause increased renin secretion, increased sodium (Na + ) reabsorption, and decreased renal blood flow. These neuromodulatory components of renal function are significantly stimulated in disease states characterized by increased sympathetic tone and can contribute to increased blood pressure in hypertensive patients. Reduction in renal blood flow and glomerular filtration rate as a result of efferent stimulation of the renal sympathetic nerve is the cornerstone of loss of renal function in cardiorenal syndrome (ie, renal dysfunction as a progressive complication of chronic heart failure) sell. Pharmacological strategies that prevent the consequences of efferent stimulation of the renal sympathetic nerve include centrally acting sympathetic blockers, beta blockers (intended to reduce renin secretion), angiotensin converting enzyme inhibitors and receptor antagonists. (Intended to block angiotensin II and aldosterone activation as a result of renin secretion), and diuretics (intended to antagonize sodium and water retention via renal sympathetic nerves). These pharmacological strategies, however, have significant limitations including limited effectiveness, compliance issues, side effects, and others. Therefore, there are strong public health requirements for alternative treatment strategies.

本開示の多くの態様は、以下の図面を参照してよりよく理解することができる。図中の構成要素は、必ずしも縮尺で描かれていない。すなわち、本開示の原理を明瞭に例証することに重点をおく。   Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the figures are not necessarily drawn to scale. That is, an emphasis is placed on clearly illustrating the principles of the present disclosure.

本技術の一実施形態に従って構成される腎神経変調システムを例証する図である。1 illustrates a renal neuromodulation system configured in accordance with one embodiment of the present technology. FIG. 本技術の一実施形態に係るカテーテル装置で腎神経を変調することを例証する図である。FIG. 6 illustrates modulation of renal nerves with a catheter device according to an embodiment of the present technology. 本技術の一実施形態に係る図1のシステムと併せて用いられてもよいエネルギー送達アルゴリズムを描いているグラフである。2 is a graph depicting an energy delivery algorithm that may be used in conjunction with the system of FIG. 1 according to one embodiment of the present technology. 本技術の実施形態に係る治療を評価するためのアルゴリズムを例証するブロック図である。FIG. 3 is a block diagram illustrating an algorithm for evaluating treatment according to an embodiment of the present technology. 本技術の実施形態に係る治療を評価するためのアルゴリズムを例証するブロック図である。FIG. 3 is a block diagram illustrating an algorithm for evaluating treatment according to an embodiment of the present technology. 本技術の一実施形態に係る高温条件の発生時にオペレータ・フィードバックを提供するためのアルゴリズムを例証するブロック図である。FIG. 3 is a block diagram illustrating an algorithm for providing operator feedback upon occurrence of a high temperature condition according to an embodiment of the present technology. 本技術の一実施形態に係る高インピーダンス条件の発生時にオペレータ・フィードバックを提供するためのアルゴリズムを例証するブロック図である。FIG. 3 is a block diagram illustrating an algorithm for providing operator feedback upon occurrence of a high impedance condition according to an embodiment of the present technology. 本技術の一実施形態に係る高い度合いの血管収縮の発生時にオペレータ・フィードバックを提供するためのアルゴリズムを例証するブロック図である。2 is a block diagram illustrating an algorithm for providing operator feedback upon the occurrence of a high degree of vasoconstriction according to one embodiment of the present technology. FIG. 本技術の一実施形態に係る異常な心拍条件の発生時にオペレータ・フィードバックを提供するためのアルゴリズムを例証するブロック図である。FIG. 3 is a block diagram illustrating an algorithm for providing operator feedback upon occurrence of an abnormal heart rate condition according to an embodiment of the present technology. 本技術の一実施形態に係る低血流条件の発生時にオペレータ・フィードバックを提供するためのアルゴリズムを例証するブロック図である。FIG. 3 is a block diagram illustrating an algorithm for providing operator feedback when a low blood flow condition occurs according to an embodiment of the present technology. 本技術の態様に従って構成される代表的な発生器ディスプレイ画面を例証するスクリーンショットである。2 is a screenshot illustrating an exemplary generator display screen configured in accordance with aspects of the present technology. 本技術の態様に従って構成される代表的な発生器ディスプレイ画面を例証するスクリーンショットである。2 is a screenshot illustrating an exemplary generator display screen configured in accordance with aspects of the present technology. 交感神経系(SNS)の概念図であり、且つ脳がSNSを介して身体とどのようにして通信するかを示す図である。It is a conceptual diagram of a sympathetic nervous system (SNS), and is a figure which shows how a brain communicates with a body via SNS. 左腎動脈を取り囲む腎神経叢を形成するように左腎を神経支配する神経の拡大解剖図である。FIG. 3 is an enlarged anatomical view of nerves that innervate the left kidney so as to form a renal plexus surrounding the left renal artery. 脳と腎臓との間の神経遠心性及び求心性通信を描くヒトの身体の解剖図である。1 is an anatomical view of a human body depicting neurocentrifugal and afferent communication between the brain and kidney. 脳と腎臓との間の神経遠心性及び求心性通信を描く概念図である。1 is a conceptual diagram depicting neurocentrifugal and afferent communication between brain and kidney. FIG. ヒトの動脈血管構造の解剖図である。FIG. 3 is an anatomical diagram of human arterial vasculature. ヒトの静脈血管構造の解剖図である。FIG. 3 is an anatomical diagram of human venous vasculature.

本技術は、一般に、電気及び/又は熱により誘起される腎神経変調(すなわち、腎臓を神経支配する神経線維を不活性にする又は非アクティブにする又は他の方法で機能を完全に又は部分的に低下させる)のような処置を行う臨床医又は他の専門家に有用な評価及びフィードバックを提供するためのデバイス、システム、及び方法に向けられる。一実施形態では、例えば、フィードバックは、完了した治療、特に、治療が技術的に成功した可能性の評価に関係する。幾つかの実施形態では、治療の過程で監視される1つ又は複数のパラメータ(温度、インピーダンス、血管収縮、心拍、血流、及び/又は患者の動きに関係したパラメータのような)が、定義された基準に基づいて分析されてもよい。この分析に基づいて、治療による技術的成功の可能性に基づく治療のアクセプタビリティ又はアクセプタビリティの欠如についての指標がオペレータに提供されてもよい。   The technology generally provides renal and neuronal modulation induced by electricity and / or heat (ie, deactivates or deactivates nerve fibers that innervate the kidney, or otherwise fully or partially functions. To devices, systems, and methods for providing useful assessment and feedback to clinicians or other professionals performing procedures such as In one embodiment, for example, the feedback relates to a completed treatment, in particular an assessment of the likelihood that the treatment was technically successful. In some embodiments, one or more parameters (such as parameters related to temperature, impedance, vasoconstriction, heart rate, blood flow, and / or patient movement) monitored during the course of treatment are defined. May be analyzed based on established criteria. Based on this analysis, an indication may be provided to the operator about the acceptability or lack of acceptability of the treatment based on the likelihood of technical success with the treatment.

他の実施形態では、所定の及び/又は計算された閾値を超過する温度又はインピーダンスに関連する監視される値又は所定の及び/又は計算された範囲外であると判定される値に起因して異常終了した処置のような完了することに失敗した治療に関するフィードバック及び/又は指示がオペレータに提供されてもよい。こうした実施形態では、不完了の治療の過程で監視される1つ又は複数のパラメータ(温度、インピーダンス、及び/又は患者の動きに関係したパラメータのような)が、定義された基準に基づいて分析されてもよい。この分析に基づいて、治療デバイスが不注意で動かされた可能性があるかどうかを評価するために治療部位が画像化されるべきかどうか、又は治療で付加的な試みが行われてもよいかどうかなどのような付加的な指示又はフィードバックがオペレータに提供されてもよい。   In other embodiments, due to a monitored value associated with temperature or impedance exceeding a predetermined and / or calculated threshold or a value determined to be outside the predetermined and / or calculated range. Feedback and / or instructions regarding the therapy that failed to complete, such as an abnormally terminated procedure, may be provided to the operator. In such embodiments, one or more parameters (such as parameters related to temperature, impedance, and / or patient movement) that are monitored during incomplete treatment are analyzed based on defined criteria. May be. Based on this analysis, whether the treatment site should be imaged to assess whether the treatment device may have been inadvertently moved, or additional treatment may be attempted. Additional instructions or feedback, such as whether or not, may be provided to the operator.

本技術の幾つかの実施形態の具体的な詳細が図1〜図14Bを参照して以下で説明される。実施形態の多くは、神経変調療法を評価するためのデバイス、システム、及び方法に関して以下で説明されるが、本明細書で説明されるものに加えて他の用途及び他の実施形態も本技術の範囲内である。さらに、本技術の幾つかの他の実施形態は、本明細書で説明されるものとは異なる構成、構成要素、又は処置を有することができる。当業者は、したがって、本技術は付加的な要素を伴う他の実施形態を有することができ、又は本技術は図1〜図14Bを参照して以下で示され及び説明される特徴のうちの幾つかを伴わない他の実施形態を有することができることを適宜理解するであろう。   Specific details of some embodiments of the technology are described below with reference to FIGS. Although many of the embodiments are described below with respect to devices, systems, and methods for evaluating neuromodulation therapy, other applications and other embodiments in addition to those described herein are also described in the present technology. Is within the range. Furthermore, some other embodiments of the present technology may have different configurations, components, or procedures than those described herein. Those skilled in the art may therefore have other embodiments with additional elements, or the techniques may be among the features shown and described below with reference to FIGS. It will be appreciated as appropriate that other embodiments without some may be present.

「遠位」及び「近位」という用語は、以下の説明では、治療している臨床医に対する位置又は方向に関して用いられる。「遠位」又は「遠位に」は、臨床医から遠い位置又は臨床医から離れる方向である。「近位」及び「近位に」は、臨床医に近い位置又は臨床医に向かう方向である。   The terms “distal” and “proximal” are used in the following description with respect to position or orientation relative to the treating clinician. “Distal” or “distal” is a position far from or away from the clinician. “Proximal” and “proximal” are positions close to or toward the clinician.

I.腎神経変調
腎神経変調は、腎臓を神経支配する神経の部分的又は完全な機能喪失又は他の有効な撹乱である。特に、腎神経変調は、腎臓を神経支配する神経性線維(すなわち、遠心性及び/又は求心性神経線維)に沿った神経通信を抑制する、減少させる、及び/又はブロックすることを含む。こうした機能喪失は、長期(例えば、恒久的、又は数ヶ月、数年、又は数十年の期間にわたる)となることがあり、又は短期(例えば、数分、数時間、数日、又は数週間の期間にわたる)となることがある。腎神経変調は、増加した全交感神経活性によって特徴付けられる幾つかの臨床的条件、特に、高血圧症、心不全、急性心筋梗塞、代謝症候群、インスリン抵抗性、糖尿病、左心室肥大、慢性腎疾患、及び末期腎疾患のような中枢交感神経過刺激、心不全における不適切な体液鬱滞、心腎症候群、及び突然死に関連する条件を効果的に治療することが期待される。求心性神経信号の減少は、交感神経緊張/駆動の全身的減少に寄与し、腎神経変調は、全身性交感神経過活性又は亢進に関連する幾つかの条件を治療するのに有用となることが期待される。腎神経変調は、交感神経によって神経支配される種々の器官及び身体構造に潜在的に役立つ可能性がある。例えば、中枢交感神経駆動の減少は、代謝症候群及びII型糖尿病の患者を苦しめるインスリン抵抗性を低下させる可能性がある。さらに、骨粗鬆症は、交感神経により活性化されることがあり、腎神経変調に付随する交感神経駆動のダウンレギュレーションから恩恵を受ける可能性がある。関係する患者解剖学及び生理学のより詳細な説明が以下のセクションIVで提供される。
I. Renal nerve modulation Renal nerve modulation is a partial or complete loss of function or other effective disturbance of the nerves that innervate the kidney. In particular, renal neuromodulation includes inhibiting, reducing, and / or blocking neural communication along neural fibers that innervate the kidney (ie, efferent and / or afferent nerve fibers). Such loss of function can be long-term (eg, permanent or over a period of months, years, or decades), or short-term (eg, minutes, hours, days, or weeks). Over a period of time). Renal neuromodulation is associated with several clinical conditions characterized by increased total sympathetic activity, in particular hypertension, heart failure, acute myocardial infarction, metabolic syndrome, insulin resistance, diabetes, left ventricular hypertrophy, chronic kidney disease, It is expected to effectively treat conditions associated with central sympathetic hyperstimulation such as end-stage renal disease, inappropriate fluid retention in heart failure, cardiorenal syndrome, and sudden death. Decreased afferent nerve signals contribute to a systemic decrease in sympathetic tone / drive, and renal neuromodulation may be useful in treating several conditions associated with systemic sympathetic overactivity or enhancement There is expected. Renal neuromodulation can potentially serve various organs and body structures innervated by sympathetic nerves. For example, a decrease in central sympathetic drive may reduce insulin resistance that afflicts patients with metabolic syndrome and type II diabetes. In addition, osteoporosis can be activated by sympathetic nerves and can benefit from sympathetic drive down-regulation associated with renal neuromodulation. A more detailed description of the relevant patient anatomy and physiology is provided in Section IV below.

腎臓を神経支配するも神経経路のような神経経路を部分的に又は完全に機能喪失させるために種々の技術を用いることができる。エネルギー送達要素(単数又は複数)による組織へのエネルギー(例えば、電気エネルギー、熱エネルギー)の意図的な適用は、腎動脈の局部的な領域及び腎動脈の外膜内に密接に位置する又は隣接する腎神経叢RPの隣接する領域上に1つ又は複数の所望の熱的加熱効果を誘起することができる。熱的加熱効果の意図的な適用は、腎神経叢RPのすべて又は一部に沿って神経変調を達成することができる。   Various techniques can be used to innervate the kidney but partially or completely lose function of neural pathways such as neural pathways. Intentional application of energy (eg, electrical energy, thermal energy) to tissue by the energy delivery element (s) is closely located or adjacent to the local area of the renal artery and the adventitia of the renal artery One or more desired thermal heating effects can be induced on adjacent regions of the renal plexus RP. Intentional application of the thermal heating effect can achieve neuromodulation along all or part of the renal plexus RP.

熱的加熱効果は、熱アブレーションと非アブレーティブ熱変質又は損傷(例えば、持続的加熱及び/又は抵抗加熱を介する)との両方を含むことができる。所望の熱的加熱効果は、標的神経性線維の温度を、非アブレーティブ熱変質を達成する所望の閾値よりも上に、又はアブレーティブ熱変質を達成するより高い温度よりも上に上昇させることを含んでもよい。例えば、目標温度は、非アブレーティブ熱変質では体温(例えば、およそ37℃)を上回るが約45℃未満とすることができ、又は目標温度は、アブレーティブ熱変質では約45℃以上とすることができる。   Thermal heating effects can include both thermal ablation and non-ablative thermal alteration or damage (eg, via continuous heating and / or resistance heating). The desired thermal heating effect includes raising the temperature of the target neural fiber above a desired threshold that achieves non-ablative thermal alteration, or above a higher temperature that achieves ablative thermal alteration. But you can. For example, the target temperature may be above body temperature (eg, approximately 37 ° C.) for non-ablative thermal alteration but less than about 45 ° C., or the target temperature may be about 45 ° C. or higher for ablative thermal alteration. .

より詳細には、約37℃の体温を超えるが約45℃の温度を下回る熱エネルギー(熱)への暴露は、標的神経性線維の又は標的線維を灌流する血管構造の適度な加熱を介して熱変質を誘起する可能性がある。血管構造が影響を受ける場合には、標的神経性線維は灌流を阻まれ、結果的に神経組織の壊死が生じる。例えば、これは、線維又は構造における非アブレーティブ熱変質を誘起する可能性がある。約45℃の温度を上回る又は約60℃を上回る熱への暴露は、線維又は構造の実質的加熱を介して熱変質を誘起する可能性がある。例えば、こうしたより高い温度は、標的神経性線維又は血管構造を熱的にアブレートする可能性がある。或る患者では、標的神経性線維又は血管構造を熱的にアブレートするが約90℃未満、又は約85℃未満、又は約80℃未満、及び/又は約75℃未満である温度を達成することが望ましい場合がある。熱的神経変調を誘起するのに使用される熱暴露のタイプに関係なく、腎交感神経活性(「RSNA」)の低下が期待される。関係する患者解剖学及び生理学のより詳細な説明が以下のセクションIVで提供される。   More specifically, exposure to thermal energy (heat) above a body temperature of about 37 ° C. but below a temperature of about 45 ° C. is through moderate heating of the target neural fibers or the vascular structures that perfuse the target fibers. There is a possibility of inducing thermal alteration. If the vasculature is affected, the target nerve fibers are blocked from perfusion, resulting in necrosis of the neural tissue. For example, this can induce non-ablative thermal alteration in the fiber or structure. Exposure to heat above about 45 ° C. or above about 60 ° C. can induce thermal alteration through substantial heating of the fiber or structure. For example, such higher temperatures can thermally ablate target neural fibers or vascular structures. In some patients, thermally ablating the target neural fiber or vasculature but achieving a temperature that is less than about 90 ° C, or less than about 85 ° C, or less than about 80 ° C, and / or less than about 75 ° C May be desirable. Regardless of the type of thermal exposure used to induce thermal neuromodulation, a decrease in renal sympathetic nerve activity (“RSNA”) is expected. A more detailed description of the relevant patient anatomy and physiology is provided in Section IV below.

II.腎神経変調のためのシステム及び方法
図1は、本技術の一実施形態に従って構成される腎神経変調システム10(「システム10」)を例証する。システム10は、エネルギー源又はエネルギー発生器26に作動可能に結合される血管内治療デバイス12を含む。図1に示された実施形態では、治療デバイス12(例えば、カテーテル)は、近位部18と、近位部18の近位領域におけるハンドル組立体34と、近位部18に対して遠位に延びる遠位部20とを有する細長いシャフト16を含む。治療デバイス12は、シャフト16の遠位部20に又はこの付近にエネルギー送達要素24(例えば、電極)を含む治療組立体又は治療区域22をさらに含む。例証された実施形態では、第2のエネルギー送達要素24は、本明細書で開示されるシステム及び方法を1つ又は複数のエネルギー送達要素24を有する治療デバイスと共に用いることができることを示すために破線で例証される。さらに、エネルギー送達要素24が2つだけ示されているが、治療デバイス12は、付加的なエネルギー送達要素24を含んでいてもよいことが理解されるであろう。
II. System and Method for Renal Nerve Modulation FIG. 1 illustrates a renal nerve modulation system 10 (“System 10”) configured in accordance with one embodiment of the present technology. System 10 includes an endovascular treatment device 12 operably coupled to an energy source or energy generator 26. In the embodiment shown in FIG. 1, the treatment device 12 (eg, a catheter) is distal to the proximal portion 18, a handle assembly 34 in the proximal region of the proximal portion 18, and the proximal portion 18. And an elongate shaft 16 having a distal portion 20 extending therethrough. The treatment device 12 further includes a treatment assembly or treatment area 22 that includes an energy delivery element 24 (eg, an electrode) at or near the distal portion 20 of the shaft 16. In the illustrated embodiment, the second energy delivery element 24 is broken to indicate that the systems and methods disclosed herein can be used with a treatment device having one or more energy delivery elements 24. Illustrated in. Furthermore, although only two energy delivery elements 24 are shown, it will be appreciated that the treatment device 12 may include additional energy delivery elements 24.

エネルギー発生器26(例えば、RFエネルギー発生器)は、エネルギー送達要素24を介して標的治療部位に送達するための選択された形態及び大きさのエネルギーを発生させるように構成される。エネルギー発生器26は、ケーブル28を介して治療デバイス12に電気的に結合することができる。少なくとも1つの供給ワイヤ(図示せず)が細長いシャフト16に沿って又は細長いシャフト16の中の管腔を通してエネルギー送達要素24に通じ、治療エネルギーをエネルギー送達要素24に伝送する。オペレータが、限定はされないが電力送達を含むエネルギー発生器の種々の作動特徴を開始する、終了する、及び随意的に調節できるようにするために、フットペダル32のような制御機構がエネルギー発生器26に接続され(例えば、空気圧で接続され又は電気的に接続され)てもよい。エネルギー発生器26は、自動制御アルゴリズム30を介して及び/又は臨床医の制御の下で治療エネルギーを送達するように構成することができる。さらに、システム10のプロセッサ上で1つ又は複数の評価/フィードバック・アルゴリズム31が実行されてもよい。こうした評価/フィードバック・アルゴリズム31は、治療動作と併せて実行されるときに、例えばシステム10に関連するディスプレイ33を介して、システム10のユーザにフィードバックを提供してもよい。フィードバック又は評価は、システム10のオペレータが所与の治療の成功を判定する及び/又は起こりうる失敗条件を評価することを可能にしてもよい。このフィードバックは、したがって、オペレータが治療を行うときに成功の可能性をどのようにして増加させるかを学習するのを助けるのに有用な場合がある。適切な制御アルゴリズム30及び評価/フィードバック・アルゴリズム31に関するさらなる詳細が、図3〜図10Bを参照して以下で説明される。   The energy generator 26 (eg, RF energy generator) is configured to generate a selected form and size of energy for delivery to the target treatment site via the energy delivery element 24. The energy generator 26 can be electrically coupled to the treatment device 12 via a cable 28. At least one supply wire (not shown) communicates energy delivery element 24 along or through a lumen in elongated shaft 16 to transmit therapeutic energy to energy delivery element 24. A control mechanism, such as a foot pedal 32, is provided to enable the operator to initiate, terminate, and optionally adjust various operating features of the energy generator, including but not limited to power delivery. 26 (eg, pneumatically connected or electrically connected). The energy generator 26 can be configured to deliver therapeutic energy via an automatic control algorithm 30 and / or under the control of a clinician. Further, one or more evaluation / feedback algorithms 31 may be executed on the processor of the system 10. Such an evaluation / feedback algorithm 31 may provide feedback to the user of the system 10 when executed in conjunction with a therapy operation, for example, via the display 33 associated with the system 10. Feedback or evaluation may allow an operator of system 10 to determine the success of a given treatment and / or evaluate possible failure conditions. This feedback may therefore be useful to help the operator learn how to increase the likelihood of success when performing treatment. Further details regarding a suitable control algorithm 30 and evaluation / feedback algorithm 31 are described below with reference to FIGS. 3-10B.

幾つかの実施形態では、システム10は、エネルギー送達要素24を介してモノポーラ電界の送達を提供するように構成されてもよい。こうした実施形態では、中性又は分散型電極38がエネルギー発生器26に電気的に接続され、且つ患者の外側に貼り付けられてもよい(図2に示すように)。さらに、1つ又は複数の温度センサ(例えば、熱電対、サーミスタなど)、インピーダンスセンサ、圧力センサ、光センサ、流れセンサ、化学センサ、又は他のセンサのような1つ又は複数のセンサ(図示せず)がエネルギー送達要素24の近傍又は内部におかれ、且つ供給ワイヤ(図示せず)のうちの1つ又は複数に接続されてもよい。例えば、全部で2つの供給ワイヤが含まれてもよく、この場合、両方のワイヤがセンサからの信号を伝送することができ、1つのワイヤが二役をこなすことができ、エネルギーをエネルギー送達要素24に運ぶこともできる可能性がある。代替的に、両方のワイヤがエネルギーをエネルギー送達要素24に伝送することができる可能性がある。   In some embodiments, the system 10 may be configured to provide delivery of a monopolar electric field via the energy delivery element 24. In such embodiments, a neutral or distributed electrode 38 may be electrically connected to the energy generator 26 and affixed to the outside of the patient (as shown in FIG. 2). In addition, one or more sensors (eg, thermocouples, thermistors, etc.), impedance sensors, pressure sensors, optical sensors, flow sensors, chemical sensors, or other sensors (not shown). May be in the vicinity of or within the energy delivery element 24 and connected to one or more of the supply wires (not shown). For example, a total of two supply wires may be included, where both wires can transmit signals from the sensor, one wire can serve a dual role, and energy is delivered to the energy delivery element. 24 could also be carried. Alternatively, both wires may be able to transmit energy to the energy delivery element 24.

複数のエネルギー送達要素24を含む実施形態では、エネルギー送達要素24は、電力を独立して、同時、選択的、又は順次のいずれかで送達してもよく(すなわち、モノポーラの様式で用いられてもよい)、及び/又は要素のあらゆる所望の組合せ間で電力を送達してもよい(すなわち、バイポーラの様式で用いられてもよい)。さらに、臨床医は、随意的に、所望に応じて腎動脈内に高度にカスタマイズされた損傷部(単数又は複数)を形成するために、電力送達のためにどのエネルギー送達要素(単数又は複数)24が用いられるかを選ぶことを許されてもよい。   In embodiments including multiple energy delivery elements 24, the energy delivery element 24 may deliver power independently, either simultaneously, selectively, or sequentially (ie, used in a monopolar fashion). And / or power may be delivered between any desired combination of elements (ie, may be used in a bipolar fashion). In addition, the clinician optionally chooses which energy delivery element (s) for power delivery to form a highly customized lesion (s) in the renal artery as desired. It may be allowed to choose whether 24 is used.

システム10が実装されるコンピューティング・デバイスは、中央処理装置、メモリ、入力デバイス(例えば、キーボード及びポインティング・デバイス)、出力デバイス(例えば、ディスプレイデバイス)、及び記憶装置(例えば、ディスクドライバ)を含んでもよい。出力デバイスは、エネルギー送達要素24への電力を制御するために及び/又はエネルギー送達要素24又はあらゆる関連するセンサから信号を得るために治療デバイス12と通信する(例えば、ケーブル28を介して)ように構成されてもよい。ディスプレイデバイスは、電力レベル若しくは音声、視覚、又は他の指標のようなセンサデータの指標を提供するように構成されてもよく、又は、情報を別のデバイスに通信するように構成されてもよい。   Computing devices in which system 10 is implemented include a central processing unit, memory, input devices (eg, keyboard and pointing device), output devices (eg, display devices), and storage devices (eg, disk drivers). But you can. The output device communicates with the treatment device 12 to control power to the energy delivery element 24 and / or to obtain a signal from the energy delivery element 24 or any associated sensor (eg, via cable 28). May be configured. The display device may be configured to provide an indicator of sensor data, such as power level or audio, visual, or other indicator, or may be configured to communicate information to another device. .

メモリ及び記憶装置は、命令を収容するコンピュータ可読媒体を意味するオブジェクト・パーミッション・エンフォースメント・システムを実装するコンピュータで実行可能な命令でエンコードされてもよいコンピュータ可読媒体である。さらに、命令、データ構造、及びメッセージ構造は、通信リンク上の信号のようなデータ伝送媒体を介して格納され又は伝送されてもよく、且つ暗号化されてもよい。インターネット、ローカル・エリア・ネットワーク、広域ネットワーク、ポイント・ツー・ポイントのダイヤルアップ接続、携帯電話ネットワークなどのような種々の通信リンクが用いられてもよい。   Memory and storage are computer-readable media that may be encoded with computer-executable instructions that implement an object permission enforcement system, which means a computer-readable medium that contains instructions. Further, the instructions, data structures, and message structures may be stored or transmitted via a data transmission medium such as a signal on a communication link and may be encrypted. Various communication links may be used such as the Internet, a local area network, a wide area network, a point-to-point dial-up connection, a cellular phone network, and the like.

システム10の幾つかの実施形態は、パーソナルコンピュータ、サーバコンピュータ、ハンドヘルド又はラップトップデバイス、マルチプロセッサシステム、マイクロプロセッサベースのシステム、プログラム可能消費者電子装置、デジタルカメラ、ネットワークPC、ミニコンピュータ、メインフレームコンピュータを含む種々のオペレーティング環境、上記のシステム又はデバイスのうちのいずれかを含むコンピューティング環境などで実装され及びこれらと共に用いられてもよい。   Some embodiments of system 10 include personal computers, server computers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, digital cameras, network PCs, minicomputers, mainframes It may be implemented and used in conjunction with various operating environments including computers, computing environments including any of the systems or devices described above.

システム10は、1つ又は複数のコンピュータ又は他のデバイスによって実行されるプログラムモジュールのようなコンピュータで実行可能な命令の一般的なコンテキストで説明されてもよい。一般に、プログラムモジュールは、特定のタスクを実行する又は特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、構成要素、データ構造などを含む。典型的に、プログラムモジュールの機能は、種々の実施形態において所望に応じて組み合わされ又は分散されてもよい。   System 10 may be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.

図2(及び図12を参照すると)は、システム10の一実施形態で腎神経を変調することを例証する。治療デバイス12は、大腿動脈(例証される)、上腕動脈、橈骨動脈、又は腋窩動脈における経皮アクセス部位からそれぞれの腎動脈RA内の標的治療部位までのような血管内経路を通して腎神経叢RPへのアクセスを提供する。例証されるように、シャフト16の近位部18の区域は、患者の外側に露出される。血管内経路の外部から(例えば、ハンドル組立体34を介して)シャフト16の近位部18を操作することによって、臨床医は、しばしば蛇行する血管内経路を通してシャフト16を前進させ、シャフトの遠位部20を遠隔的に操作し又は始動させてもよい。画像誘導、例えば、コンピュータ断層撮影法(CT)、蛍光透視法、血管内超音波法(IVUS)、光干渉断層撮影法(OCT)、又は別の適切な誘導モダリティ、又はこの組合せが、臨床医の操作を支援するのに用いられてもよい。さらに、幾つかの実施形態では、画像誘導構成要素(例えば、IVUS、OCT)は、治療デバイス12自体の中に組み込まれてもよい。エネルギー送達要素24と組織との間の近接性、位置合わせ、及び接触がそれぞれの腎動脈内で確立されると、エネルギー送達要素24によるエネルギー発生器26から組織へのエネルギーの意図的な適用は、腎動脈の局部的な領域及び腎動脈の外膜内に密接に位置する、これに隣接する、又はこの近傍にある腎神経叢RPの隣接する領域上に、1つ又は複数の所望の神経変調効果を誘起する。エネルギーの意図的な適用は、腎神経叢RPのすべて又は一部に沿って神経変調を達成する可能性がある。   FIG. 2 (and with reference to FIG. 12) illustrates modulating the renal nerve in one embodiment of the system 10. The treatment device 12 passes through the intravascular pathway from the percutaneous access site in the femoral artery (illustrated), brachial artery, radial artery, or axillary artery to the target treatment site in the respective renal artery RA. Provide access to. As illustrated, the area of the proximal portion 18 of the shaft 16 is exposed outside the patient. By manipulating the proximal portion 18 of the shaft 16 from outside the intravascular pathway (eg, via the handle assembly 34), the clinician advances the shaft 16 through the often serpentine intravascular pathway and disengages the shaft. The positioning portion 20 may be remotely operated or started. Image guidance, such as computed tomography (CT), fluoroscopy, intravascular ultrasound (IVUS), optical coherence tomography (OCT), or another suitable guidance modality, or a combination thereof, may be provided to the clinician. It may be used to support the operation of Further, in some embodiments, image guidance components (eg, IVUS, OCT) may be incorporated within the treatment device 12 itself. Once proximity, alignment, and contact between the energy delivery element 24 and the tissue are established within each renal artery, the intentional application of energy from the energy generator 26 to the tissue by the energy delivery element 24 is One or more desired nerves on an adjacent region of the renal plexus RP that is closely located, adjacent to, or close to a local region of the renal artery and the adventitia of the renal artery Induces a modulation effect. Intentional application of energy may achieve neuromodulation along all or part of the renal plexus RP.

神経変調効果は、一般に、少なくとも部分的に、電力、時間、エネルギー送達要素(単数又は複数)24と血管壁との間の接触、及び血管を通した血流の関数である。神経変調効果は、除神経、熱アブレーション、及び非アブレーティブ熱変質又は損傷(例えば、持続的加熱及び/又は抵抗加熱を介する)を含んでもよい。所望の熱的加熱効果は、標的神経性線維の温度を、非アブレーティブ熱変質を達成する所望の閾値よりも上に、又はアブレーティブ熱変質を達成するより高い温度よりも上に上昇させることを含んでもよい。例えば、目標温度は、非アブレーティブ熱変質では体温(例えば、およそ37℃)を上回るが約45℃未満であってもよく、又は目標温度は、アブレーティブ熱変質では約45℃以上であってもよい。所望の非熱的神経変調効果は、神経において伝送される電気信号を変えることを含んでもよい。   The neuromodulation effect is generally at least partially a function of power, time, contact between the energy delivery element (s) 24 and the vessel wall, and blood flow through the vessel. Neuromodulating effects may include denervation, thermal ablation, and non-ablative thermal alteration or damage (eg, via continuous and / or resistance heating). The desired thermal heating effect includes raising the temperature of the target neural fiber above a desired threshold that achieves non-ablative thermal alteration, or above a higher temperature that achieves ablative thermal alteration. But you can. For example, the target temperature may be above body temperature (eg, approximately 37 ° C.) for non-ablative thermal alteration but less than about 45 ° C., or the target temperature may be about 45 ° C. or higher for ablative thermal alteration. . The desired non-thermal neuromodulation effect may include altering the electrical signal transmitted in the nerve.

III.腎神経変調療法の評価
A.概要
一実装では、システム10を用いて施される治療は、エネルギーを、1つ又は複数のエネルギー送達要素(例えば、電極)を通して腎動脈の内壁に所定の時間量(例えば、120秒)にわたって送達することを構成する。所望の適用範囲を達成するために左腎動脈と右腎動脈との両方において複数の治療(例えば、4〜6)が施されてもよい。治療の技術目的は、例えば、組織を少なくとも約3mmの深さに神経を損傷させることになる温度(例えば、約65℃)に加熱することであってもよい。処置の臨床的目的は、典型的に、交感神経緊張の低減をもたらすために十分な数の腎神経(腎交感神経叢の遠心性又は求心性神経のいずれか)を神経変調する(例えば、損傷させる)ことである。治療の技術目的が達成される(例えば、組織が約3mmの深さに約65℃に加熱される)場合、腎神経組織の損傷部が形成される確率は高い。技術的に成功した治療の数が多くなると、十分な割合の腎神経を変調する確率が高くなり、したがって臨床的成功の確率が高くなる。
III. Evaluation of renal neuromodulation therapy Overview In one implementation, a treatment administered using the system 10 delivers energy over a predetermined amount of time (eg, 120 seconds) through one or more energy delivery elements (eg, electrodes) to the inner wall of the renal artery. Configure to do. Multiple treatments (eg, 4-6) may be given in both the left and right renal arteries to achieve the desired coverage. The technical objective of the treatment may be, for example, to heat the tissue to a temperature that will damage the nerve to a depth of at least about 3 mm (eg, about 65 ° C.). The clinical purpose of the treatment typically neuromodulates (eg, damage) a sufficient number of renal nerves (either efferent or afferent nerves of the renal sympathetic plexus) to result in a reduction in sympathetic tone. To make it happen. If the therapeutic technical objective is achieved (eg, when the tissue is heated to about 65 ° C. to a depth of about 3 mm), the probability of a lesion in the renal nerve tissue being formed is high. As the number of technically successful treatments increases, the probability of modulating a sufficient percentage of renal nerves increases and therefore the probability of clinical success increases.

治療の全体を通して、治療が成功しない場合の可能性を示す多数の状態が存在する場合がある。或る実施形態では、これらの状態の指標に基づいて、システム10の動作が止められ又は修正される場合がある。例えば、或る指標は、結果的にエネルギー送達の停止をもたらす可能性があり、例えばディスプレイ33上に適切なメッセージが表示されてもよい。結果的に表示メッセージ及び/又は治療プロトコルの停止又は修正をもたらす可能性がある因子は、容認される又は期待される閾値外及び/又は所定の又は計算された場合の範囲外のインピーダンス、血流、及び/又は温度測定値又は変化の指標を含むがこれらに限定されない。メッセージは、患者条件(例えば、異常な患者条件)のタイプ、容認される又は期待される閾値外にあるパラメータのタイプ及び/又は値、臨床医に対して提案されるアクションの指標、又はエネルギー送達が止まっているという指標のような情報を示すことができる。しかしながら、期待されない又は異常な測定値が観測されなければ、結果的に完了した治療をもたらす指定された持続時間にわたってプログラムされたプロフィールに従って標的部位にエネルギーが送達され続けてもよい。治療の完了後に、エネルギー送達が止められ、治療の完了を示すメッセージが表示されてもよい。   Throughout the treatment, there may be a number of conditions that indicate the likelihood that the treatment will not be successful. In some embodiments, the operation of system 10 may be stopped or modified based on these status indicators. For example, certain indicators may result in a stoppage of energy delivery, and an appropriate message may be displayed on the display 33, for example. Factors that may result in display messages and / or treatment protocol cessation or correction include acceptable or expected out-of-threshold values and / or out-of-range impedance, blood flow, as determined or calculated And / or temperature measurements or indicators of change, but not limited to. The message may include the type of patient condition (eg, abnormal patient condition), the type and / or value of a parameter that is outside of acceptable or expected thresholds, an indication of action suggested to the clinician, or energy delivery It can show information like an indicator that is stopped. However, if unexpected or abnormal measurements are not observed, energy may continue to be delivered to the target site according to a programmed profile over a specified duration resulting in a completed treatment. After the treatment is complete, energy delivery may be stopped and a message indicating the completion of the treatment may be displayed.

しかしながら、異常な患者条件の指標の開始なしに治療を完了することができるのに、治療が技術的に成功した確率を変える(例えば、減少させる)イベント又はイベントの組合せが発生することがある。例えば、エネルギーを送達する電極が動き、又は不注意に電極と腎動脈の壁との間の不十分な接触状態におかれて、結果的に不十分な損傷部深さ又は温度が生じる可能性がある。したがって、異常な患者条件の指標なしに治療が完了するときであっても、治療の技術的成功を評価することが難しい場合がある。同様に、システム10によって異常な患者条件の指標が報告される場合がある限りは、異常な患者条件(期待される範囲外にある温度及び/又はインピーダンス値のような)の原因を理解することが難しい場合がある。   However, an event or combination of events may occur that alters (eg, reduces) the probability that a therapy is technically successful, even though the therapy can be completed without the onset of abnormal patient condition indications. For example, an electrode delivering energy may move or inadvertently be placed in inadequate contact between the electrode and the wall of the renal artery, resulting in inadequate lesion depth or temperature There is. Thus, it may be difficult to assess the technical success of a treatment, even when the treatment is complete without an indication of abnormal patient conditions. Similarly, to understand the cause of abnormal patient conditions (such as temperature and / or impedance values outside the expected range) as long as the system 10 may report an indication of abnormal patient conditions May be difficult.

上述のように、発生器26と共に提供される1つ又は複数の構成要素のようなシステム10のプロセッサベースの構成要素上で実行される1つ又は複数の評価/フィードバック・アルゴリズム31が提供されてもよい。このような実装では、1つ又は複数の評価/フィードバック・アルゴリズム31は、所与の治療を評価する際に用いることができる及び/又は或るタイプの異常な患者条件の有意性及びこうした条件の発生をどのようにして減少させるかを学習する際に用いることができる有意義なフィードバックをユーザに提供することができてもよい。例えば、特定のパラメータ(例えば、インピーダンス又は温度値)が、治療を期待通りに進ませなかった又は治療が期待通りに進まなかったことを示す場合、(幾つかの場合に)結果として技術的に不成功の治療をもたらす可能性がある場合、システム10は、臨床医に警告するために(例えば、ディスプレイ33を介して)フィードバックを提供することができる。臨床医への警告は、治療の不成功の単純な通知から治療中に治療の特定のパラメータ(例えば、インピーダンス値(単数又は複数)、患者内のエネルギー送達要素24の位置など)がその後の治療で修正されるべきであるという推奨までの範囲に及ぶことができる。システム10は、完了した治療サイクルから適宜学習し、有効性を改善するためにこうした学習に基づいてその後の治療パラメータを修正することができる。1つ又は複数の評価/フィードバック・アルゴリズム31の測定値の網羅的でない例は、指定された時間にわたる温度の変化(単数又は複数)、最高温度、最高平均温度、最低温度、所定の又は計算された温度に対する所定の又は計算された時間における温度、指定された時間にわたる平均温度、最大血流、最小血流、所定の又は計算された血流に対する所定の又は計算された時間における血流、経時的な平均血流、最大インピーダンス、最小インピーダンス、所定の又は計算されたインピーダンスに対する所定の又は計算された時間におけるインピーダンス、指定された時間にわたるインピーダンスの変化、又は指定された時間にわたる温度の変化に対するインピーダンスの変化に関係した測定値を含むことを考慮してもよい。測定値は、1つ又は複数の所定の時間、時間の範囲、計算された時間、及び/又は測定されるイベントが起こるときの又は起こるときに対する時間でとられてもよい。上記のリストは、異なる測定値の多数の例を単に提供するものであり、他の適切な測定値が用いられてもよいことが理解されるであろう。   As described above, one or more evaluation / feedback algorithms 31 are provided that are executed on processor-based components of system 10, such as one or more components provided with generator 26. Also good. In such an implementation, one or more evaluation / feedback algorithms 31 can be used in evaluating a given treatment and / or the significance of certain types of abnormal patient conditions and the It may be possible to provide the user with meaningful feedback that can be used in learning how to reduce the occurrence. For example, if a particular parameter (eg, impedance or temperature value) indicates that the treatment did not proceed as expected or the treatment did not proceed as expected, in some cases as a result technically If there is a possibility of resulting in unsuccessful treatment, the system 10 can provide feedback (eg, via the display 33) to alert the clinician. The alert to the clinician is from simple notification of treatment failure to the treatment specific parameters during treatment (eg, impedance value (s), position of energy delivery element 24 within the patient, etc.) Can range up to the recommendation that it should be corrected. The system 10 can learn from the completed treatment cycle accordingly and modify subsequent treatment parameters based on such learning to improve effectiveness. Non-exhaustive examples of one or more evaluation / feedback algorithm 31 measurements include temperature change (s) over a specified time, maximum temperature, maximum average temperature, minimum temperature, predetermined or calculated Temperature at a given or calculated time for a given temperature, average temperature over a specified time, maximum blood flow, minimum blood flow, blood flow at a given or calculated time for a given or calculated blood flow, over time Average blood flow, maximum impedance, minimum impedance, impedance at a given or calculated time for a given or calculated impedance, impedance change over a specified time, or impedance to temperature change over a specified time It may be considered to include measurements related to changes in The measured value may be taken in one or more predetermined times, a time range, a calculated time, and / or a time when the measured event occurs or when it occurs. It will be appreciated that the above list merely provides a number of examples of different measurements, and other suitable measurements may be used.

B.適用されるエネルギーの制御
標的組織に療法を送達するための本明細書で開示される治療により、エネルギーが標的神経構造に制御された方法で送達されることが有益な場合がある。エネルギーの制御された送達は、血管壁への望ましくないエネルギー送達又は熱的影響を低減させながら熱的治療ゾーンが腎筋膜の中に延びることを可能にするであろう。エネルギーの制御された送達はまた、結果的に、より一貫した、予測可能な、及び効率的な全治療をもたらす可能性がある。したがって、発生器26は、望ましくは、エネルギー送達デバイスへの電力及びエネルギーの送達を制御するためのアルゴリズム30(図1参照)を実行するための命令と共にメモリ構成要素を含むプロセッサを含む。その代表的な実施形態が図3に描かれるアルゴリズム30は、発生器26に結合されるプロセッサによる実行のための従来のコンピュータプログラムとして実装されてもよい。ステップ・バイ・ステップ命令を用いる臨床医はまた、アルゴリズム30を手動で実施してもよい。
B. Controlling applied energy With the treatments disclosed herein for delivering therapy to a target tissue, it may be beneficial for energy to be delivered to the target neural structure in a controlled manner. Controlled delivery of energy will allow the thermal treatment zone to extend into the renal fascia while reducing undesirable energy delivery or thermal effects to the vessel wall. Controlled delivery of energy can also result in a more consistent, predictable and efficient overall treatment. Accordingly, generator 26 desirably includes a processor that includes a memory component with instructions for executing algorithm 30 (see FIG. 1) for controlling power and energy delivery to the energy delivery device. The algorithm 30 whose exemplary embodiment is depicted in FIG. 3 may be implemented as a conventional computer program for execution by a processor coupled to the generator 26. Clinicians using step-by-step instructions may also implement algorithm 30 manually.

アルゴリズムに従って監視される動作パラメータは、例えば、温度、時間、インピーダンス、電力、血流、流速、体積流量、血圧、心拍などを含んでもよい。温度の不連続な値が、電力又はエネルギー送達における変化をトリガするのに用いられてもよい。例えば、温度の高い値(例えば、85℃)は、組織乾燥を示す可能性があり、この場合、アルゴリズムは、標的又は非標的組織への望ましくない熱的影響を防ぐために電力及びエネルギー送達を減少させ又は止める可能性がある。加えて又は代替的に、時間は、非標的組織への望ましくない熱変質を防ぐのに用いられてもよい。各治療に関して、電力の不定の送達を防ぐために設定時間(例えば、2分)が確認される。   The operating parameters monitored according to the algorithm may include, for example, temperature, time, impedance, power, blood flow, flow rate, volume flow, blood pressure, heart rate, and the like. Discontinuous values of temperature may be used to trigger changes in power or energy delivery. For example, high values of temperature (eg, 85 ° C.) can indicate tissue desiccation, in which case the algorithm reduces power and energy delivery to prevent undesirable thermal effects on target or non-target tissues. There is a possibility of causing or stopping. In addition or alternatively, time may be used to prevent unwanted thermal alteration to non-target tissue. For each treatment, a set time (eg, 2 minutes) is confirmed to prevent indefinite delivery of power.

インピーダンスは、組織変化を測定するのに用いられてもよい。インピーダンスは治療部位の電気特性を示す。熱誘導性の実施形態では、治療部位に電界が印加されるときに、電流の流れに対する組織細胞の抵抗性が低下するのでインピーダンスが減少するであろう。多すぎるエネルギーが印加される場合、電極付近で組織乾燥又は凝固が発生する可能性があり、これは細胞が水分貯留を失う及び/又は電極表面積が減少する(例えば、凝塊の蓄積を介して)際にインピーダンスを増加させることになる。したがって、組織インピーダンスの増加は、標的又は非標的組織への望ましくない熱変質を示す又はこの前兆となる場合がある。他の実施形態では、インピーダンス値は、エネルギー送達要素(単数又は複数)24と組織との接触を評価するのに用いられてもよい。複数の電極構成では(例えば、エネルギー送達要素(単数又は複数)24が2つ以上の電極を含むとき)、個々の電極のインピーダンス値間の比較的小さい差異が組織との良好な接触を示す場合がある。単一の電極構成では、安定した値が良好な接触を示す場合がある。したがって、1つ又は複数の電極からのインピーダンス情報が、下流のモニタに提供されてもよく、これは次に、エネルギー送達要素(単数又は複数)24が組織と接触する品質に関係した指標を臨床医に提供してもよい。   Impedance may be used to measure tissue changes. Impedance indicates the electrical characteristics of the treatment site. In a thermally inductive embodiment, when an electric field is applied to the treatment site, the impedance will decrease as the tissue cell becomes less resistant to current flow. If too much energy is applied, tissue desiccation or coagulation can occur near the electrode, which can cause cells to lose water retention and / or reduce electrode surface area (eg, via clot accumulation). ) Will increase the impedance. Thus, an increase in tissue impedance may indicate or be a precursor to undesirable thermal alteration to target or non-target tissue. In other embodiments, the impedance value may be used to assess contact between the energy delivery element (s) 24 and the tissue. For multiple electrode configurations (eg, when the energy delivery element (s) 24 include more than one electrode), where a relatively small difference between the impedance values of the individual electrodes indicates good contact with tissue There is. With a single electrode configuration, a stable value may indicate good contact. Thus, impedance information from one or more electrodes may be provided to a downstream monitor, which in turn provides an indication of the quality-related indication that the energy delivery element (s) 24 are in contact with the tissue. May be provided to a physician.

加えて又は代替的に、電力は、療法の送達を制御する際に監視するのに効果的なパラメータである。電力は電圧及び電流の関数である。アルゴリズム30は、所望の電力を達成するように電圧及び/又は電流を調整してもよい。   In addition or alternatively, power is an effective parameter to monitor in controlling therapy delivery. Power is a function of voltage and current. The algorithm 30 may adjust the voltage and / or current to achieve the desired power.

上述のパラメータの派生物(例えば、変化率)がまた、電力又はエネルギー送達における変化をトリガするのに用いられてもよい。例えば、温度の変化率は、突然の温度上昇が検出されるイベントにおいて電力出力が低減されるように監視できる可能性がある。同様に、インピーダンスの変化率は、インピーダンスの突然の上昇が検出されるイベントにおいて電力出力が低減されるように監視できる可能性がある。   Derivatives of the above parameters (eg, rate of change) may also be used to trigger changes in power or energy delivery. For example, the rate of change of temperature may be monitored such that the power output is reduced in the event that a sudden temperature rise is detected. Similarly, the rate of change of impedance may be monitored such that the power output is reduced in the event that a sudden increase in impedance is detected.

図3で見られるように、臨床医が治療を開始するとき(例えば、図1で例証されるフットペダル32を介して)、制御アルゴリズム30は、その電力出力を第1の時間期間t1(例えば、15秒)にわたって第1の電力レベルP1(例えば、5ワット)に徐々に調節する発生器26への命令を含む。第1の時間期間中の電力増加は概して直線的である。結果として、発生器26は、その電力出力をP1/t1の概して一定の割合で増加させる。代替的に、電力増加は、可変の増加率を伴う非線形(例えば、指数関数的又は放物線状)であってもよい。P1及びt1が達成されると、アルゴリズムは、新しい時間t2まで所定の時間期間t2−t1(例えば、3秒)にわたってP1に保持されてもよい。t2で、電力が所定の時間期間t3−t2(例えば、1秒)にわたってP2に所定の増分(例えば、1ワット)だけ増加させられる。所定の時間期間にわたる約1ワットの所定の増分のこの電力立ち上げは、最大電力PMAXが達成される又は或る他の条件が満たされるまで続いてもよい。一実施形態では、PMAXは8ワットである。別の実施形態では、PMAXは10ワットである。随意的に、電力は、所望の時間期間にわたって又は所望の全治療時間まで(例えば、約120秒まで)最大電力PMAXに維持されてもよい。 As seen in FIG. 3, when the clinician initiates treatment (eg, via the foot pedal 32 illustrated in FIG. 1), the control algorithm 30 sets its power output to the first time period t 1 ( For example, to the generator 26 that gradually adjusts to a first power level P 1 (eg, 5 Watts) over 15 seconds). The power increase during the first time period is generally linear. As a result, generator 26 increases its power output at a generally constant rate of P 1 / t 1 . Alternatively, the power increase may be non-linear (eg, exponential or parabolic) with a variable rate of increase. Once P 1 and t 1 are achieved, the algorithm may be held at P 1 for a predetermined time period t 2 -t 1 (eg, 3 seconds) until a new time t 2 . At t 2 , power is increased to P 2 by a predetermined increment (eg, 1 watt) over a predetermined time period t 3 -t 2 (eg, 1 second). This power ramp-up in a predetermined increment of about 1 watt over a predetermined time period may continue until the maximum power P MAX is achieved or some other condition is met. In one embodiment, P MAX is 8 watts. In another embodiment, P MAX is 10 watts. Optionally, the power may be maintained at a maximum power P MAX for a desired time period or up to a desired total treatment time (eg, up to about 120 seconds).

図3では、アルゴリズム30は、電力制御アルゴリズムを例証的に含む。しかしながら、アルゴリズム30は、代替的に、温度制御アルゴリズムを含んでもよいことを理解されたい。例えば、電力は、所望の持続時間(又は幾つかの持続時間)にわたって所望の温度(又は幾つかの温度)が得られるまで徐々に増加させられてもよい。別の実施形態では、組み合わされた電力制御及び温度制御アルゴリズムが提供されてもよい。   In FIG. 3, algorithm 30 illustratively includes a power control algorithm. However, it should be understood that the algorithm 30 may alternatively include a temperature control algorithm. For example, the power may be gradually increased until a desired temperature (or several temperatures) is obtained over a desired duration (or several durations). In another embodiment, a combined power control and temperature control algorithm may be provided.

述べたように、アルゴリズム30は、或る動作パラメータ(例えば、温度、時間、インピーダンス、電力、流速、体積流量、血圧、心拍など)の監視を含む。動作パラメータは連続的に又は周期的に監視されてもよい。アルゴリズム30は、パラメータが個々に又は組み合わされて所定のパラメータプロフィールによって設定される範囲内に入るかどうかを判定するために、監視されるパラメータを所定のパラメータプロフィールに対して確認する。監視されるパラメータが所定のパラメータプロフィールによって設定される範囲内に入る場合、治療は命令された電力出力で続行してもよい。監視されるパラメータが所定のパラメータプロフィールによって設定される範囲外にある場合、アルゴリズム30は、命令された電力出力を適宜調節する。例えば、目標温度(例えば、65℃)が達成される場合、電力送達は全治療時間(例えば、120秒)が経過するまで一定に保たれる。第1の温度閾値(例えば、70℃)が達成され又は超過される場合、電力は目標温度が達成されるまで所定の増分(例えば、0.5ワット、1.0ワットなど)で低減される。第2の電力閾値(例えば、85℃)が達成され又は超過されて、望ましくない条件を示す場合、電力送達が終了されてもよい。システムは、オペレータに或る条件を警告するために種々の可聴警報及び視覚警報を備えてもよい。   As stated, the algorithm 30 includes monitoring certain operating parameters (eg, temperature, time, impedance, power, flow rate, volume flow, blood pressure, heart rate, etc.). The operating parameters may be monitored continuously or periodically. The algorithm 30 checks the monitored parameter against the predetermined parameter profile to determine whether the parameters are individually or combined and fall within the range set by the predetermined parameter profile. If the monitored parameter falls within the range set by the predetermined parameter profile, treatment may continue at the commanded power output. If the monitored parameter is outside the range set by the predetermined parameter profile, the algorithm 30 adjusts the commanded power output accordingly. For example, if a target temperature (eg, 65 ° C.) is achieved, power delivery will remain constant until the entire treatment time (eg, 120 seconds) has elapsed. If the first temperature threshold (eg, 70 ° C.) is achieved or exceeded, the power is reduced in predetermined increments (eg, 0.5 watts, 1.0 watts, etc.) until the target temperature is achieved. . If a second power threshold (eg, 85 ° C.) is achieved or exceeded, indicating an undesirable condition, power delivery may be terminated. The system may include various audible and visual alerts to alert an operator of certain conditions.

以下は、アルゴリズム30が命令された電力出力をその下で調節し、及び/又は終了/中止する場合があるイベントの網羅的でないリストである。   The following is a non-exhaustive list of events that the algorithm 30 may adjust and / or terminate / stop the commanded power output below.

(1)測定される温度が最高温度閾値(例えば、約70から約85℃まで)を超過する。   (1) The measured temperature exceeds a maximum temperature threshold (eg, from about 70 to about 85 ° C.).

(2)測定される温度から導出される平均温度が平均温度閾値(例えば、約65℃)を超過する。   (2) The average temperature derived from the measured temperature exceeds an average temperature threshold (eg, about 65 ° C.).

(3)測定される温度の変化率が変化率閾値を超過する。   (3) The rate of change of the measured temperature exceeds the rate of change threshold.

(4)発生器26がゼロでない出力を有する状態で或る時間期間にわたる温度上昇が最低温度変化閾値を下回る。エネルギー送達要素(単数又は複数)24と動脈壁との間の乏しい接触がこうした条件を引き起こす可能性がある。   (4) The temperature rise over a period of time with the generator 26 having a non-zero output falls below the minimum temperature change threshold. Poor contact between the energy delivery element (s) 24 and the arterial wall can cause these conditions.

(5)測定されるインピーダンスがインピーダンス閾値(例えば、<20オーム又は>500オーム)を超過する又はこの範囲外にある。   (5) The impedance being measured exceeds or is outside the impedance threshold (eg, <20 ohms or> 500 ohms).

(6)測定されるインピーダンスが相対閾値を超過する(例えば、インピーダンスが開始値又はベースライン値から減少し、次いでこのベースライン値よりも上に上昇する)   (6) The measured impedance exceeds a relative threshold (eg, the impedance decreases from a starting value or baseline value and then rises above this baseline value)

(7)測定される電力が電力閾値を超過する(例えば、>8ワット又は>10ワット)。   (7) The measured power exceeds the power threshold (eg,> 8 watts or> 10 watts).

(8)測定される電力送達持続時間が時間閾値を超過する(例えば、>120秒)。   (8) The measured power delivery duration exceeds the time threshold (eg,> 120 seconds).

有利なことに、本技術に係る腎神経変調療法中に送達される最大電力の大きさは、例えば、心臓組織アブレーション(例えば、約15ワットよりも大きい、約30ワットよりも大きい電力レベルなど)を達成するために電気生理学的治療で使用される電力レベルに比べて比較的低くてもよい(例えば、約15ワット未満、約10ワット未満、約8ワット未満など)。こうした腎神経変調療法を達成するのに比較的低い電力レベルが使用されてもよいので、電力送達中にエネルギー送達要素及び/又は非標的組織を所望の温度に又はこれ以下に(例えば約50℃に又はこれ以下に、例えば、約45℃に又はこれ以下に)維持するのに必要とされる血管内注入液注入流量及び/又は総体積はまた、例えば、電気生理学的治療で用いられるより高い電力レベル(例えば、約15ワットを上回る電力レベル)で必要とされる可能性があるよりも比較的低くてもよい。強制冷却が用いられる幾つかの実施形態では、血管内注入液注入流量及び/又は総体積の相対的減少は、有利なことに、より高い電力レベル、したがって、それに対応してより高い注入液速度/体積の使用が禁忌であったであろう、より高リスクの患者群(例えば、心臓疾患、心不全、腎機能不全及び/又は真性糖尿病の患者)における血管内注入液の使用を容易にする可能性がある。   Advantageously, the magnitude of the maximum power delivered during renal neuromodulation therapy according to the present technology is, for example, cardiac tissue ablation (eg, a power level greater than about 15 watts, greater than about 30 watts, etc.). May be relatively low compared to the power level used in electrophysiological therapy to achieve (eg, less than about 15 watts, less than about 10 watts, less than about 8 watts, etc.). Since relatively low power levels may be used to achieve such renal neuromodulation therapy, the energy delivery element and / or non-target tissue may be brought to or below a desired temperature (eg, about 50 ° C.) during power delivery. The intravascular infusion flow rate and / or total volume required to maintain at or below, eg, at or below about 45 ° C. is also higher than that used, for example, in electrophysiological therapy It may be relatively lower than may be required at power levels (eg, power levels above about 15 watts). In some embodiments where forced cooling is used, the relative reduction in intravascular infusate infusion flow rate and / or total volume advantageously has a higher power level, and therefore a correspondingly higher infusate rate. Can facilitate the use of intravascular infusions in higher risk patient groups (eg, patients with heart disease, heart failure, renal dysfunction and / or diabetes mellitus) where the use of / volume would have been contraindicated There is sex.

C.治療の技術的評価
図4は、本技術の一実施形態に従って構成される治療アルゴリズム80のブロック図である。アルゴリズム80は、治療におけるイベントを評価し、治療の技術的成功確率を判定し、システム10(又は別の適切な治療システム)のオペレータにフィードバックを提供するために適宜メッセージを表示するように構成される。治療が最適状態には及ばない所定の技術的成功確率を有すると判定される場合、治療が期待通りに進まなかったことを示すメッセージが表示されてもよい。代替的実装は、治療を1〜5のスケールの成功確率のような成功確率の幾つかの範囲に分類することができる。同様に、或る実装では、アルゴリズム80は、治療が高い成功確率カテゴリ、非常に低い成功確率カテゴリ、又はその間のどこかに属するかを評価することができる。
C. Technical Evaluation of Treatment FIG. 4 is a block diagram of a treatment algorithm 80 configured in accordance with one embodiment of the present technology. The algorithm 80 is configured to evaluate events in the treatment, determine the technical success probability of the treatment, and display appropriate messages to provide feedback to the operator of the system 10 (or another suitable treatment system). The If it is determined that the treatment has a predetermined technical success probability that is not sub-optimal, a message may be displayed indicating that the treatment did not proceed as expected. Alternative implementations can classify treatments into several ranges of success probabilities, such as success probabilities on the scale of 1-5. Similarly, in some implementations, the algorithm 80 can evaluate whether the treatment belongs to a high success probability category, a very low probability of success category, or somewhere in between.

治療を特徴付ける、且つ治療を評価する際にアルゴリズム80によって用いられてもよい変数は、時間(すなわち、治療の持続時間)、電力、温度変化、最高温度、平均温度、血流、温度又はインピーダンスの標準偏差、インピーダンスの変化、若しくはこれらの又は他の変数の組合せを含むがこれらに限定されない。例えば、幾つかの又はすべての変数は、治療データ82としてアルゴリズム80に提供されてもよい。アルゴリズム80のこの一般化された描写では、治療データ80は、カスケードの又は一連の異なるカテゴリ又は度合いの基準84に基づいて評価されてもよい。基準84のうちの1つに照らした治療データ82の好ましい評価は、結果的に治療が容認可能であった又は成功したことを示すメッセージの表示をもたらしてもよい(ブロック86)。治療データ82が基準84に照らして容認可能であることを見出せなければ、結果的に治療データが次の評価基準84に下げられてもよい。   Variables that characterize the treatment and that may be used by the algorithm 80 in evaluating the treatment are time (ie, duration of treatment), power, temperature change, maximum temperature, average temperature, blood flow, temperature, or impedance. Including but not limited to standard deviation, impedance change, or a combination of these or other variables. For example, some or all variables may be provided to the algorithm 80 as treatment data 82. In this generalized depiction of algorithm 80, treatment data 80 may be evaluated based on a cascade or series of different categories or degrees of criteria 84. A favorable evaluation of treatment data 82 in light of one of criteria 84 may result in the display of a message indicating that the treatment was acceptable or successful (block 86). If treatment data 82 is not found acceptable against criteria 84, the treatment data may eventually be lowered to the next assessment criteria 84.

図示された実施形態では、すべての基準84に照らして治療データが容認可能であることを見出せなければ、結果的に図示された分析及びスコア付けステップ88のような付加的な評価が行われてもよい。分析及びスコア付けステップの出力(例えば、スコア90)が評価されてもよい(ブロック92)。この評価92に基づいて、治療は容認可能であるとみなされ、対応する画面が表示され(ブロック86)、又は容認可能ではないとみなされ、治療が期待通りに進まなかったことを示す画面94が表示されてもよい。さらなる実施形態では、アルゴリズム80は、治療が期待通りに進まなかったという指標に応答して自動アクション(例えば、エネルギー源に供給される電力レベルの自動減少)を含むことができる。   In the illustrated embodiment, additional treatments such as the illustrated analysis and scoring step 88 are performed if the treatment data is not found acceptable against all criteria 84. Also good. The output of the analysis and scoring step (eg, score 90) may be evaluated (block 92). Based on this assessment 92, the treatment is deemed acceptable and a corresponding screen is displayed (block 86) or considered unacceptable and a screen 94 indicating that the treatment did not proceed as expected. May be displayed. In a further embodiment, the algorithm 80 may include an automatic action (eg, an automatic decrease in the power level supplied to the energy source) in response to an indication that the therapy did not proceed as expected.

図4は治療評価アルゴリズムの一般化及び簡略化した実装を描いているが、図5は、治療評価アルゴリズム100の一実施形態のより詳細な例を描いている。治療評価アルゴリズム100は、治療の完了後に計算されてもよく(ブロック102)、これは120秒の長さ(図示されるように)又は幾つかの他の適切な持続時間であってもよく、治療の過程で導出されるデータ及び/又は測定値を用いてもよい。   While FIG. 4 depicts a generalized and simplified implementation of a treatment evaluation algorithm, FIG. 5 depicts a more detailed example of one embodiment of the treatment evaluation algorithm 100. The treatment evaluation algorithm 100 may be calculated after completion of the treatment (block 102), which may be 120 seconds long (as shown) or some other suitable duration, Data and / or measurements derived during the course of treatment may be used.

図示された実施形態では、電極が血管壁との一貫した接触状態にないときに、理想には及ばない治療が発生する確率がおそらく最も高いと考えられる。したがって、フローチャートの決定ブロック104、106、108、及び110は、異なる基準と関連付けられ、治療完了の過程で観測された又は測定されたデータ102に基づいて所定の範囲外(すなわち、高い成功確率を有さない)の1つ又は複数の基準を有すると思われる治療をふるい落とす。図示された実施形態では、決定ブロック104、106、108、及び110でふるい落とされない治療は、治療をさらに評価するために線形判別分析(LDA)112に入る。他の実施形態では、図示されたLDAの代わりに他の適切な分析を行ってもよい。各ステップに割り当てられる値(すなわち、それぞれの基準による評価)と、LDAで用いられる係数114は、幾つかの治療から収集されたデータ及び/又は動物実験から得られた経験から導出することができる。   In the illustrated embodiment, when the electrodes are not in consistent contact with the vessel wall, it is likely that sub-ideal treatment will most likely occur. Accordingly, the decision blocks 104, 106, 108, and 110 of the flowchart are associated with different criteria and are outside of a predetermined range (i.e., a high success probability based on data 102 observed or measured in the course of treatment completion. Screen treatments that appear to have one or more criteria (not). In the illustrated embodiment, treatments that are not screened at decision blocks 104, 106, 108, and 110 enter a linear discriminant analysis (LDA) 112 to further evaluate the treatment. In other embodiments, other suitable analyzes may be performed instead of the illustrated LDA. The value assigned to each step (ie assessment according to the respective criteria) and the coefficient 114 used in the LDA can be derived from data collected from several treatments and / or experience obtained from animal experiments. .

図示された実施形態では、第1の決定ブロック104は、最初の15秒での平均温度の変化が14℃よりも大きいか否かを確認することによってエネルギー送達への最初の温度応答を評価する。一実装では、平均温度は、短い時間量(例えば、3秒)にわたる平均を指し、これは、拍動性の血流によって引き起こされる高頻度での大きい変動を本質的にフィルタする。おそらく理解されるように、治療電極の温度上昇は、組織から電極への熱伝達の結果である。電極が血管壁と十分に接触していない場合、その周りを流れる血液中にエネルギーが送達され、電極の温度がそれだけ増加しない。これを念頭において、最初の15秒での平均温度の変化が例えば14℃よりも大きい場合、この最初の温度応答は、少なくとも治療の開始時の、十分な電極接触、接触力、及び/又は血流量を示す可能性があり、治療の残りにわたって治療が期待通りに進まなかったという指標に直面しない場合、治療が最適には及ばなかった又は技術的に不成功であった高い確率は存在しない。したがって、決定ブロック104での肯定応答により、結果的に「治療完了」メッセージ120が表示される。しかしながら、最初の15秒での平均温度の変化が例えば14℃未満である又はこれに等しい場合、この最初の温度応答は、電極が血管壁との十分な接触を有さなかったかもしれないことを示す可能性がある。したがって、決定ブロック104での否定応答により、結果的にさらなる評価のために基準106に進む。   In the illustrated embodiment, the first decision block 104 evaluates the initial temperature response to energy delivery by ascertaining whether the average temperature change in the first 15 seconds is greater than 14 ° C. . In one implementation, average temperature refers to an average over a short amount of time (eg, 3 seconds), which inherently filters out large and frequent fluctuations caused by pulsatile blood flow. As is probably understood, the temperature increase of the treatment electrode is the result of heat transfer from the tissue to the electrode. If the electrode is not in full contact with the vessel wall, energy is delivered into the blood flowing around it and the temperature of the electrode does not increase that much. With this in mind, if the change in average temperature in the first 15 seconds is greater than, for example, 14 ° C., this initial temperature response is at least sufficient electrode contact, contact force, and / or blood at the start of treatment. There is no high probability that the treatment was suboptimal or technically unsuccessful if it does not face the indication that the treatment did not proceed as expected over the remainder of the treatment, which may indicate flow. Accordingly, an affirmative response at decision block 104 results in a “treatment complete” message 120 being displayed. However, if the average temperature change in the first 15 seconds is, for example, less than or equal to 14 ° C., this initial temperature response may indicate that the electrode did not have sufficient contact with the vessel wall. May indicate. Accordingly, a negative response at decision block 104 results in advancing to criteria 106 for further evaluation.

決定ブロック106で、最高平均温度が例えば56℃よりも高いか否かを確認することによって最も熱い温度が評価される。閾値レベル(例えば、56℃)を上回る温度上昇は、持続時間に関係なく技術的成功を可能にするのに十分である場合がある。したがって、閾値を上回る温度は、決定ブロック104で最初の温度上昇が十分な接触を示さなかったという事実にもかかわらず成功した損傷部形成を示すのに十分なものである場合がある。例えば、電極は最初に十分な接触を有さなかったかもしれないが、次いで、電極の中の温度センサ読取値が56℃を上回るように血管壁を加熱するのに少なくとも十分な時間にわたって接触がなされた可能性がある。決定ブロック106での肯定的結果により、結果的に「治療完了」メッセージ120が表示される。しかしながら、決定ブロック106での否定的結果は、最高平均温度が十分に上昇しなかったことを示す。アルゴリズム100は、したがって、さらなる評価のために決定ブロック108に進む。   At decision block 106, the hottest temperature is evaluated by ascertaining whether the maximum average temperature is greater than, for example, 56 ° C. A temperature increase above a threshold level (eg, 56 ° C.) may be sufficient to allow technical success regardless of duration. Thus, the temperature above the threshold may be sufficient to indicate successful lesion formation despite the fact that the initial temperature rise at decision block 104 did not indicate sufficient contact. For example, the electrode may not have had sufficient contact initially, but then contact has been made for at least sufficient time to heat the vessel wall such that the temperature sensor reading in the electrode is above 56 ° C. It may have been made. A positive result at decision block 106 results in a “treatment complete” message 120 being displayed. However, a negative result at decision block 106 indicates that the maximum average temperature did not rise sufficiently. The algorithm 100 therefore proceeds to decision block 108 for further evaluation.

決定ブロック108で、電力がその最大量で持続されるときの期間中に平均温度が評価される(すなわち、平均計算から立ち上げ期間が排除される)。一実施形態では、この評価は、45秒から120秒までの期間中に平均リアルタイム温度が53℃を上回るかどうかを判定することからなる。このように、この基準は、温度が或る持続時間にわたって閾値を上回ったか否かの判定を確認する。決定ブロック108が肯定的判定をもたらす場合、最初の温度応答及び最高平均温度が技術的成功を示すのに不十分であった(すなわち、決定ブロック104及び106で不合格であった)という事実にもかかわらず、最後の75秒間の平均温度は十分な時間にわたる十分な接触を示す。例えば、十分な損傷部が作製されたのに、電極から熱を引き出す高い血流が存在するため、電極で測定された最高平均温度が56℃を超えなかった可能性がある。したがって、決定ブロック108での肯定的結果により、「治療完了」メッセージ120が表示される。しかしながら、決定ブロック108での否定的結果は、持続した電力段における平均リアルタイム温度が十分ではなかったことを示し、アルゴリズム100は治療のさらなる評価のために決定ブロック110に進む。   At decision block 108, the average temperature is evaluated during the period when power is sustained at that maximum amount (ie, the startup period is excluded from the average calculation). In one embodiment, this evaluation consists of determining whether the average real-time temperature is above 53 ° C. during a period of 45 seconds to 120 seconds. Thus, this criterion confirms the determination of whether the temperature has exceeded a threshold for a certain duration. If decision block 108 yields a positive determination, the fact that the initial temperature response and the highest average temperature were insufficient to indicate technical success (ie, failed decision blocks 104 and 106) Nevertheless, the average temperature for the last 75 seconds indicates sufficient contact for a sufficient time. For example, the maximum average temperature measured at the electrode may not have exceeded 56 ° C. because sufficient damage has been created, but there is a high blood flow that draws heat from the electrode. Accordingly, a positive result at decision block 108 causes a “treatment complete” message 120 to be displayed. However, a negative result at decision block 108 indicates that the average real-time temperature at the sustained power stage was not sufficient and the algorithm 100 proceeds to decision block 110 for further evaluation of treatment.

決定ブロック110で、所定の期間中(例えば、45秒〜114秒)のインピーダンスの変化の割合が最初のインピーダンスの所定の値(例えば、14%)よりも大きいか否かを確認することによってインピーダンスの変化が評価される。最初のインピーダンスは、この期間の前のインピーダンス測定において起こりうる読み違い(例えば、造影剤注入に起因する)をなくすために治療の開始直後の(例えば、6秒での)インピーダンスとして判定される。おそらく理解されるように、無線周波数(RF)電流への組織のインピーダンスは、組織が十分に加熱されて乾燥するまで組織温度の増加に伴い減少し、組織が十分に加熱されて乾燥した時点でそのインピーダンスは上昇し始める。したがって、組織インピーダンスの減少は、組織温度の上昇を示すことができる。持続した電力段にわたるリアルタイムインピーダンスの変化割合は、以下のように計算されてもよい。

Figure 0006046041
決定ブロック110が肯定的判定をもたらす場合、前の3つの決定ブロックが十分な温度上昇があったことを示さなかった(すなわち、決定ブロック104、106、及び108で不合格であった)という事実にもかかわらず、インピーダンスの変化は、組織が十分に加熱されたが電極の中の温度センサが十分に上昇しなかったことを示すことができる可能性がある。例えば、非常に高い血流は、組織が加熱された場合であっても電極温度を比較的低いままにする可能性がある。したがって、決定ブロック110での肯定的結果により、結果的に「治療完了」メッセージ120が表示される。しかしながら、決定ブロック110での否定的結果により、結果的にアルゴリズム100がLDA112を行うことに進む。 At decision block 110, the impedance is determined by checking whether the rate of change in impedance during a predetermined period (eg, 45 seconds to 114 seconds) is greater than a predetermined value (eg, 14%) of the initial impedance. Changes are evaluated. The initial impedance is determined as the impedance immediately after the start of treatment (eg, at 6 seconds) to eliminate possible misreading (eg, due to contrast agent injection) in impedance measurements prior to this period. As is probably understood, the tissue impedance to radio frequency (RF) current decreases with increasing tissue temperature until the tissue is sufficiently heated and dry, and when the tissue is fully heated and dried. Its impedance begins to rise. Thus, a decrease in tissue impedance can indicate an increase in tissue temperature. The rate of change of real-time impedance over a sustained power stage may be calculated as follows:
Figure 0006046041
If decision block 110 provides a positive determination, the fact that the previous three decision blocks did not indicate that there was a sufficient temperature rise (ie, failed decision blocks 104, 106, and 108) Nevertheless, a change in impedance may be able to indicate that the tissue has been heated sufficiently but the temperature sensor in the electrode has not risen sufficiently. For example, very high blood flow can leave the electrode temperature relatively low even when the tissue is heated. Thus, a positive result at decision block 110 results in a “treatment complete” message 120 being displayed. However, a negative result at decision block 110 results in algorithm 100 proceeding to perform LDA 112.

LDA112で、各イベントに関する重要性の格付けと共にイベントの組合せが評価される。図示された実施形態では、例えば、決定ブロック104、106、108、110で評価される基準はLDA112に含まれる。加えて、この実装では、3つの付加的な基準、すなわち、(1)平均温度の標準偏差(呼吸によって引き起こされるスライドする動きの度合いの指標を提供することができる)、(2)リアルタイム温度の標準偏差(変化する血流及び/又は接触力及び/又は間欠的接触の指標を提供することができる)、及び(3)治療の終了時の平均インピーダンスの調節された変化(インピーダンスの変化をさらに特徴付け、組織の温度変化の指標を提供することができる)が含まれてもよい。この分析が、変数の組合せが技術的成功の減少に対して顕著な影響を有すると判定する場合(例えば、決定ブロック122でLDAスコア<0)、「期待されない治療」メッセージ124が表示される。他の方法では、「治療完了」メッセージ120が表示される。   At LDA 112, the combination of events is evaluated along with an importance rating for each event. In the illustrated embodiment, for example, criteria evaluated at decision blocks 104, 106, 108, 110 are included in LDA 112. In addition, this implementation provides three additional criteria: (1) standard deviation of mean temperature (can provide an indication of the degree of sliding movement caused by breathing), (2) real-time temperature Standard deviation (which can provide an indication of changing blood flow and / or contact force and / or intermittent contact), and (3) a controlled change in average impedance at the end of treatment Characterization, which can provide an indication of tissue temperature change). If this analysis determines that the combination of variables has a significant impact on reducing technical success (eg, LDA score <0 at decision block 122), an “expected treatment” message 124 is displayed. In another method, a “treatment complete” message 120 is displayed.

上記で説明された種々のパラメータは、アルゴリズム100の一実施形態に関連する単なる代表的な例であり、これらのパラメータのうちの1つ又は複数は他の実施形態において変化してもよいことが理解されるであろう。さらに、治療の特定の部分に関して上記で説明された特異的な値は、他の実施形態において、例えば、異なるデバイス構成、電極構成、治療プロトコルなどに基づいて修正され/変化されてもよい。   The various parameters described above are merely representative examples associated with one embodiment of algorithm 100, and one or more of these parameters may vary in other embodiments. Will be understood. Furthermore, the specific values described above for a particular portion of therapy may be modified / changed in other embodiments based on, for example, different device configurations, electrode configurations, therapy protocols, and the like.

上記で説明されたように、アルゴリズム100は、治療を評価し、及び治療が完了すること、又は代替的に、治療が期待通りに進まなかったことを示すメッセージを表示するように構成される。治療の評価を記述するメッセージに基づいて、臨床医(又は自動化技術を用いるシステム)は、次いで、さらなる治療が必要な場合があるかどうか及び/又は1つ又は複数のパラメータがその後の治療で修正されるべきか否かを決定することができる。上記で説明された例では、例えば、アルゴリズム100は、治療が最適には及ばなかった場合の判定を助けるために、電極と血管壁との間の乏しい接触に概して関係した多くの状況を評価してもよい。例えば、患者が呼吸して動脈が動く際に電極が前後にスライドするときに、患者が動くときに電極が変位されるときに、カテーテルが不注意に動かされるときに、カテーテルが電極と血管壁との間に十分な接触又は接触力を適用するのに必要とされる度合いに偏向されないときに、及び/又は電極が不確実な位置におかれるときに、乏しい接触が生じる可能性がある。さらに、上記で説明されたように、特定のパラメータ又はパラメータの組が最適には及ばない治療に寄与した又はこれを結果的にもたらした可能性がある場合、システム10(図1)は、その後の治療中に1つ又は複数の治療パラメータを修正するように臨床医に警告するためにフィードバックを提供することができる。治療のこうした評価及びフィードバックは、より良好な接触を得るべくそれらの位置決め技術を改善する及び技術的に不成功の治療の頻度を減らすために臨床医の学習を助けることが期待される。   As described above, the algorithm 100 is configured to evaluate the treatment and display a message indicating that the treatment is complete, or alternatively that the treatment did not proceed as expected. Based on the message describing the assessment of the treatment, the clinician (or system using automated technology) can then determine whether further treatment may be required and / or one or more parameters modified in subsequent treatments. It can be decided whether or not to be done. In the example described above, for example, the algorithm 100 evaluates a number of situations that are generally associated with poor contact between the electrode and the vessel wall to help determine when treatment is not optimal. May be. For example, when the electrode is slid back and forth when the patient is breathing and the artery is moving, when the electrode is displaced when the patient is moved, the catheter is inadvertently moved and when the catheter is inadvertently moved, Poor contact can occur when not being deflected to the extent necessary to apply sufficient contact or contact force between and / or when the electrode is placed in an uncertain position. Further, as explained above, if a particular parameter or set of parameters may have contributed to or resulted in a suboptimal treatment, the system 10 (FIG. 1) may then Feedback may be provided to alert the clinician to modify one or more treatment parameters during treatment. These assessments and feedback of treatment are expected to help clinicians learn to improve their positioning techniques to obtain better contact and reduce the frequency of technically unsuccessful treatments.

D.高温条件に関係したフィードバック
上記のことは、治療の技術的成功の一般化された評価を説明するが、システム10(図1)のオペレータにとって有用な場合がある別の形態のフィードバックは、特定のタイプの患者又は治療条件に関係したフィードバックである。例えば、システム10は、高温条件に関係したメッセージを生成してもよい。特に、治療中にエネルギーが送達されている間、組織温度が指定されたレベルよりも上に増加する可能性がある。電極の中に又は付近に位置決めされる温度センサ(例えば、熱電対、サーミスタなど)は、電極の温度の指標、ある程度は組織温度の指標を提供する。電極は、エネルギーが組織に送達される際に直接加熱されない。代わりに、組織が加熱され、電極及び電極の中の温度センサに熱が伝導される。一実装では、システム10は、リアルタイム温度が所定の最高温度(例えば、85℃)よりも上に上昇する場合にエネルギー送達をやめてもよい。このようなイベントでは、システムは、高温条件を示すメッセージを生成してもよい。しかしながら、状況に応じて、臨床医による異なるアクションが適切な場合がある。
D. Feedback related to high temperature conditions While the above describes a generalized assessment of the technical success of a therapy, another form of feedback that may be useful to the operator of the system 10 (FIG. 1) is Feedback related to the type of patient or treatment condition. For example, the system 10 may generate a message related to a high temperature condition. In particular, tissue temperature can increase above a specified level while energy is delivered during treatment. A temperature sensor (eg, thermocouple, thermistor, etc.) positioned in or near the electrode provides an indication of the temperature of the electrode, and in part, an indication of tissue temperature. The electrode is not heated directly as energy is delivered to the tissue. Instead, the tissue is heated and heat is conducted to the electrode and the temperature sensor in the electrode. In one implementation, the system 10 may cease energy delivery when the real time temperature rises above a predetermined maximum temperature (eg, 85 ° C.). In such an event, the system may generate a message indicating a high temperature condition. However, depending on the situation, different actions by the clinician may be appropriate.

組織が熱くなりすぎる場合、確立された温度閾値を超過することがある。高い組織温度の影響は、動脈の急性収縮又は動脈壁の突出が生じる可能性があるということである。これは、高温の発生が認められてメッセージが生成された後に直ちに又は短い時間内(例えば、約50秒〜約100秒で起こることがある)。このような出来事では、臨床医は、別の治療を開始する前に収縮又は突出に気をつけるために治療部位を画像化するように指示されてもよい。   If the tissue becomes too hot, an established temperature threshold may be exceeded. The effect of high tissue temperature is that acute contraction of the artery or protrusion of the arterial wall can occur. This may occur immediately or within a short period of time after the occurrence of a high temperature is observed and a message is generated (eg, it may occur from about 50 seconds to about 100 seconds). In such an event, the clinician may be instructed to image the treatment site to watch for contractions or protrusions before initiating another treatment.

図6は、例えば、本技術の一実施形態に係る高温条件が検出されるときにオペレータ・フィードバックを提供するためのアルゴリズム150を例証するブロック図である。一実装では、アルゴリズム150は、高温条件に応答して実行され(ブロック152)、高温条件が突然の不安定性を含んだ状況に関与したか又はしなかったかを判定するために治療からのデータを評価する(決定ブロック154)。突然の不安定性は、例えば、患者又はカテーテルが突然に移動して、電極が血管壁の中に強く押される(すなわち、接触力が増加する)ことによって引き起こされることがあり、これはまた別の場所への移動を伴う可能性がある。決定ブロック154で突然の不安定性が検出されないイベントでは、高温が検出されているという指標及び部位が損傷されているか否かを判定するために治療部位を画像化する指示のような第1のメッセージが表示されてもよい(ブロック156)。決定ブロック154で突然の不安定性が検出されるイベントでは、高温の発生を示すこと及び治療部位を画像化するように臨床医に指示することに加えて電極がそのオリジナル部位から動かされた可能性があることを示してもよい代替メッセージが表示されてもよい(ブロック158)。こうしたフィードバックは、前のイメージと比較するように臨床医に促し、オリジナル部位又は電極が動かされた部位のいずれかにおいて再び治療することを回避させてもよい。   FIG. 6 is a block diagram illustrating an algorithm 150 for providing operator feedback, for example, when a high temperature condition is detected according to one embodiment of the present technology. In one implementation, the algorithm 150 is executed in response to a high temperature condition (block 152) and uses data from the treatment to determine if the high temperature condition involved or did not involve a situation involving sudden instability. Evaluate (decision block 154). Sudden instability can be caused, for example, by sudden movement of the patient or catheter and the electrode being pushed strongly into the vessel wall (ie, increasing contact force) May involve travel to location. In an event where a sudden instability is not detected at decision block 154, a first message such as an indication that a high temperature has been detected and an instruction to image the treatment site to determine whether the site is damaged May be displayed (block 156). In the event that sudden instability is detected at decision block 154, in addition to indicating the occurrence of a high temperature and instructing the clinician to image the treatment site, the electrode may have been moved from its original site An alternative message may be displayed that may indicate that there is (block 158). Such feedback may prompt the clinician to compare with the previous image and avoid retreating either at the original site or at the site where the electrode has been moved.

E.高インピーダンスに関係したフィードバック
高温と同様に、或る状況では、システム10(図1)は、高インピーダンスの発生に関係したメッセージを生成してもよい。おそらく理解されるように、治療電極から身体を通して分散型戻り電極に流れるRF電流へのインピーダンスは、治療電極と接触している組織の特徴の指標を提供することができる。例えば、腎動脈中の血液の流れの中に位置決めされる電極は、血管壁に接触する電極よりも低いインピーダンスを測定する可能性がある。さらに、組織温度が上昇するのに伴い、そのインピーダンスが減少する。しかしながら、組織が熱くなりすぎる場合、これは乾燥する可能性があり、そのインピーダンスが増加する可能性がある。治療中に組織が徐々に加熱されるのに伴い、インピーダンスが減少することが予期される。インピーダンスの顕著な上昇は、組織乾燥又は電極移動のような望ましくない状況の結果である可能性がある。或る実装では、システム10は、リアルタイムインピーダンスの上昇が開始インピーダンスからのインピーダンスの所定の最大変化を上回る場合にエネルギー送達をやめるように構成されてもよい。
E. Feedback Related to High Impedance Similar to high temperatures, in some situations, system 10 (FIG. 1) may generate a message related to the occurrence of high impedance. As will be appreciated, the impedance from the treatment electrode to the RF current flowing through the body to the distributed return electrode can provide an indication of the characteristics of the tissue in contact with the treatment electrode. For example, an electrode positioned in the blood flow in the renal artery may measure a lower impedance than an electrode that contacts the vessel wall. Furthermore, as the tissue temperature increases, its impedance decreases. However, if the tissue gets too hot, it can dry out and its impedance can increase. It is expected that the impedance will decrease as the tissue is gradually heated during treatment. A significant increase in impedance can be the result of undesirable conditions such as tissue drying or electrode movement. In some implementations, the system 10 may be configured to stop energy delivery when the increase in real-time impedance exceeds a predetermined maximum change in impedance from the starting impedance.

図7は、例えば、本技術の一実施形態に係る高インピーダンス条件の発生時にオペレータ・フィードバックを提供するためのアルゴリズム170を例証するブロック図である。図示された実施形態では、アルゴリズム170は、治療からのデータを評価し、高インピーダンス・イベントの検出(ブロック172)が、(a)組織温度が高く、乾燥が起こった可能性がある状況、(b)電極が動かされた状況、又は(c)血管壁との乏しい電極接触が存在した又は電極接触が存在しなかった状況に関与した可能性があるかを判定する。アルゴリズム170は、もしあれば、これらの3つの状況のうちのどれが起こったかを判定するためにデータを評価し、3つのメッセージ174、176、又は178のうちの1つを適宜表示する。   FIG. 7 is a block diagram illustrating an algorithm 170 for providing operator feedback upon occurrence of a high impedance condition, for example, according to one embodiment of the present technology. In the illustrated embodiment, the algorithm 170 evaluates the data from the treatment and the detection of the high impedance event (block 172) is: (a) a situation where the tissue temperature is high and desiccation may have occurred ( Determine whether it may have been involved in a situation where b) the electrode was moved, or (c) a poor or no electrode contact with the vessel wall. The algorithm 170 evaluates the data to determine which of these three situations, if any, and displays one of the three messages 174, 176, or 178 as appropriate.

アルゴリズム170の一実施形態によれば、高インピーダンスを検出すると(ブロック172)、治療中の最高平均温度が評価される(決定ブロック180)。この温度が或る閾値を上回る(例えば、60℃以上である)場合、高インピーダンスは、結果的に乾燥を生じる高い組織温度によるものである可能性がある。このイベントでは、臨床医に収縮又は突出を確認するように(すなわち、治療部位を画像化するように)及び同じ場所で再び治療することを回避するように指示するメッセージ174が表示されてもよい。逆に、温度が閾値を下回る(例えば、60℃を下回る)場合、アルゴリズム170は決定ブロック182に進む。   According to one embodiment of algorithm 170, upon detecting a high impedance (block 172), the highest average temperature during treatment is evaluated (decision block 180). If this temperature is above a certain threshold (eg, 60 ° C. or higher), the high impedance may be due to the high tissue temperature that results in desiccation. At this event, a message 174 may be displayed instructing the clinician to confirm the contraction or protrusion (ie, to image the treatment site) and avoid treating again at the same location. . Conversely, if the temperature is below a threshold (eg, below 60 ° C.), the algorithm 170 proceeds to decision block 182.

図示された実施形態では、決定ブロック182で、アルゴリズム170は、電力が比較的低いときに治療の初期に(例えば、エネルギー送達の最初の20秒で)高インピーダンス・イベントが起こったか否かを評価する。yesの場合、組織温度が高かった可能性は低く、電極が最初に乏しい接触を有し又は接触を有さず、その後、インピーダンスをジャンプさせる、より良好な接触が確立された可能性がより高い。このイベントでは、より良好な接触を確立することを試みる及び同じ部位で治療を繰り返すように臨床医に指示するメッセージ176が表示されてもよい。しかしながら、治療の後期に(例えば、20秒以上経過後に)イベントが起こる場合、アルゴリズム170は決定ブロック184に進む。   In the illustrated embodiment, at decision block 182, the algorithm 170 evaluates whether a high impedance event occurred early in therapy (eg, during the first 20 seconds of energy delivery) when power is relatively low. To do. If yes, the tissue temperature is unlikely to be high and the electrode has a poor contact or no contact first, and then a better contact is more likely established that causes the impedance to jump . In this event, a message 176 may be displayed instructing the clinician to attempt to establish better contact and repeat the treatment at the same site. However, if the event occurs later in the treatment (eg, after 20 seconds or more), the algorithm 170 proceeds to decision block 184.

決定ブロック184で、アルゴリズム170は、治療中にいつ高インピーダンス・イベントが発生したかを評価する。例えば、所定の時間期間(例えば、45秒)後にイベントが発生した場合、電力が高いレベルに達したときに、アルゴリズムは決定ブロック186に進む。しかしながら、電力が立ち上がり中で、且つその最高ではないとき(例えば、20秒から45秒までの間)にイベントが起こる場合、アルゴリズムは決定ブロック188に進む。   At decision block 184, the algorithm 170 evaluates when a high impedance event has occurred during treatment. For example, if an event occurs after a predetermined time period (eg, 45 seconds), the algorithm proceeds to decision block 186 when the power reaches a high level. However, if the event occurs when power is rising and not at its maximum (eg, between 20 and 45 seconds), the algorithm proceeds to decision block 188.

決定ブロック186で、アルゴリズム170は、指定された時間(例えば、45秒)でのインピーダンスと比較して高インピーダンス・イベント時のインピーダンスの変化割合(%ΔZ)を計算する。これは電力が高いレベルで持続されるときの期間である。一実施形態では、インピーダンスの変化割合は以下のように計算される。

Figure 0006046041
%ΔZが所定の量(例えば、7%)よりも大きい又はこれに等しい場合、高温に起因して組織が乾燥し始めた可能性が高い。このイベントでは、臨床医に収縮又は突出を確認するように(すなわち、治療部位を画像化するように)及び同じ場所で再び治療することを回避するように指示するメッセージ174が表示されてもよい。他の場合には、組織乾燥が起こる可能性が低く、電極が動かされて高インピーダンス・イベントが引き起こされる可能性がより高い。このイベントでは、電極が動かされた可能性があることを臨床医に通知するメッセージ178が表示されてもよい。電極が動かされた又は動かされた可能性があるイベントでは、組織温度が高いレベルに達することはまずない。したがって、同じ場所での治療は、別の治療を行うための他の場所がない又は限られた他の場所がある場合に行われることがあることが予期される。 At decision block 186, the algorithm 170 calculates the rate of change in impedance (% ΔZ) during a high impedance event compared to the impedance at a specified time (eg, 45 seconds). This is the period when power is sustained at a high level. In one embodiment, the rate of change of impedance is calculated as follows:
Figure 0006046041
If% ΔZ is greater than or equal to a predetermined amount (eg, 7%), it is likely that the tissue has started to dry due to high temperatures. At this event, a message 174 may be displayed instructing the clinician to confirm the contraction or protrusion (ie, to image the treatment site) and avoid treating again at the same location. . In other cases, tissue desiccation is unlikely to occur and the electrode is more likely to cause a high impedance event. In this event, a message 178 may be displayed notifying the clinician that the electrode may have been moved. In events where the electrode has been moved or may have been moved, the tissue temperature is unlikely to reach a high level. Thus, it is expected that treatment at the same location may be performed when there are no other places to perform another treatment or there are limited other places.

決定ブロック188で、アルゴリズム170は、突然の不安定性が発生したかどうかを判定してもよい。こうした不安定性が存在した場合、電極が動かされた可能性が高い。このイベントでは、電極が動かされた可能性があることを臨床医に通知するメッセージ178が表示されてもよい。上述のように、臨床医は、用心して、元の場所又は電極が動かされた場所を治療することを回避してもよく、又は臨床医は、さらなる治療のために利用可能な他の部位がない又は限られた数の部位が利用可能である場合に同じ場所で治療することを選んでもよい。そうではなく、突然の不安定性が発生しなかった場合、電極が乏しい接触を有した可能性がより高い。このイベントでは、より良好な接触を確立することを試みるように臨床医に指示する及び同じ部位での治療が安全であることを示すメッセージ176が表示されてもよい。   At decision block 188, the algorithm 170 may determine whether a sudden instability has occurred. If this instability exists, it is likely that the electrode has been moved. In this event, a message 178 may be displayed notifying the clinician that the electrode may have been moved. As noted above, the clinician may be careful to avoid treating the original location or the location where the electrode was moved, or the clinician may have other sites available for further treatment. If no or a limited number of sites are available, one may choose to treat at the same location. Otherwise, if no sudden instability occurred, it is more likely that the electrode had poor contact. In this event, a message 176 may be displayed instructing the clinician to attempt to establish better contact and indicating that treatment at the same site is safe.

高インピーダンス条件を検出することの同じ目的は、代替的な測定及び計算を用いて達成することができる。例えば、アルゴリズム170のさらなる実施形態では、温度及びインピーダンスデータは、サンプル時間間隔(例えば、20秒)毎にとられる。より短い時間間隔で(例えば、1.5秒毎)、インピーダンス及び温度データの標準偏差が計算される。或る時間間隔に関する第1の標準温度は、最初の時間間隔での温度の標準偏差で割られる温度の標準偏差として計算される。インピーダンス測定の標準偏差が所定の値(例えば、10オーム)よりも大きく又はこれに等しく、且つ第1の標準温度が所定の閾値(例えば、3)よりも大きい場合、アルゴリズム170は、乏しい電極接触を示すメッセージ176を表示することができる。しかしながら、インピーダンス測定の標準偏差が容認可能な範囲外であるが、第1の標準温度が容認可能な範囲内である場合、電極の不安定性が存在することを臨床医に警告するためにメッセージ178が表示されるであろう。   The same purpose of detecting high impedance conditions can be achieved using alternative measurements and calculations. For example, in a further embodiment of algorithm 170, temperature and impedance data are taken every sample time interval (eg, 20 seconds). At shorter time intervals (eg every 1.5 seconds), standard deviations of impedance and temperature data are calculated. The first standard temperature for a time interval is calculated as the temperature standard deviation divided by the temperature standard deviation in the first time interval. If the standard deviation of the impedance measurement is greater than or equal to a predetermined value (eg, 10 ohms) and the first standard temperature is greater than a predetermined threshold value (eg, 3), then the algorithm 170 may cause poor electrode contact. A message 176 indicating can be displayed. However, if the standard deviation of the impedance measurement is outside the acceptable range, but the first standard temperature is within the acceptable range, message 178 to alert the clinician that electrode instability exists. Will be displayed.

アルゴリズム170のさらなる実施形態によれば、2つ以上の電極24(例えば、図1のカテーテル12の治療領域22上に位置決めされる)のインピーダンスは、それぞれ独立したインピーダンス読取値を提供することができる。治療部位(例えば、腎動脈内)への治療組立体22の送達中に、カテーテル12が最小抵抗経路に一致し、しばしば血管構造の湾曲部で屈曲して腎動脈の一方の壁にだけ接触することになるので、電極24のインピーダンス読取値は、典型的に、血管構造の解剖学的構造に起因して異なる。幾つかの実施形態では、治療組立体22が治療のための位置にくると、治療組立体22は、腎動脈壁のセグメントの全周表面に接触するために周方向に拡張することができる。この拡張は、複数の電極24を腎動脈壁と接触する状態におくことができる。治療組立体22が治療構成に拡張され、且つ電極24と腎動脈壁との接触が増加する際に、個々の電極24のインピーダンス値が増加し及び/又は同じ値に近づくことができる。良好な安定した接触状態では、インピーダンス値の変動はまた上記で説明されたように低減される。エネルギー発生器26は、個々のインピーダンス値を絶えず又は連続的に監視することができる。次いで、成功した治療の指標として、いつ接触が効果的になされたかを判定するために値を比較することができる。さらなる実施形態では、インピーダンスの移動平均は、安定手段をガイドするように設定されるリミットをもつインピーダンス値の所定の範囲の変動性と比較することができる。   According to a further embodiment of algorithm 170, the impedance of two or more electrodes 24 (eg, positioned on treatment region 22 of catheter 12 of FIG. 1) can each provide an independent impedance reading. . During delivery of the treatment assembly 22 to the treatment site (eg, within the renal artery), the catheter 12 conforms to the minimum resistance path and often bends at the curvature of the vasculature and contacts only one wall of the renal artery. As such, the impedance reading of the electrode 24 typically varies due to the anatomy of the vasculature. In some embodiments, once the treatment assembly 22 is in a position for treatment, the treatment assembly 22 can be expanded circumferentially to contact the entire circumferential surface of a segment of the renal artery wall. This expansion can leave a plurality of electrodes 24 in contact with the renal artery wall. As the treatment assembly 22 is expanded to the treatment configuration and the contact between the electrode 24 and the renal artery wall increases, the impedance value of the individual electrode 24 can increase and / or approach the same value. In good and stable contact conditions, the variation in impedance value is also reduced as explained above. The energy generator 26 can continuously or continuously monitor individual impedance values. The values can then be compared to determine when contact has been made effectively as an indicator of successful treatment. In a further embodiment, the moving average of the impedance can be compared to a predetermined range of variability in impedance values with limits set to guide the stabilizing means.

F.血管収縮に関係したフィードバック
さらなる実施形態では、システム10は、血管収縮の発生に関係したメッセージを生成してもよい。特に、治療が送達されている間、血管は、最適には及ばない直径に収縮する可能性がある。収縮した血管は、減少した血流、増加した治療部位温度、及び増加した血圧につながることがある。血管収縮は、リアルタイム温度データの振幅(「エンベロープ」)のサンプリングによって測定することができる。現在のエンベロープは、とられた前のエンベロープサンプル(例えば、200ms前)と比較することができる。現在のエンベロープと前の時間点エンベロープとの間の差異が所定の値よりも小さい(例えば、−0.5℃未満、すなわち、言い換えれば、前の時間点でのエンベロープ値に比べて今のエンベロープ値における0.5度未満の減少が存在する)場合、将来の時間点で(例えば、5秒で)測定値がとられる。将来の時間点と現在の時間点における平均温度の差異が所与の温度閾値よりも大きい(例えば、1℃よりも高い)場合、アルゴリズム800は、望ましくないほど高いレベルの収縮が存在することを判定する可能性があり、エネルギー送達をやめる/変更することができる。このようなイベントでは、システム10は、高い収縮条件を示すメッセージを生成してもよい。しかしながら、状況に応じて、臨床医による異なるアクションが適切な場合がある。
F. Feedback Related to Vasoconstriction In a further embodiment, system 10 may generate a message related to the occurrence of vasoconstriction. In particular, blood vessels can contract to suboptimal diameters during treatment delivery. Contracted blood vessels can lead to decreased blood flow, increased treatment site temperature, and increased blood pressure. Vasoconstriction can be measured by sampling the amplitude (“envelope”) of real-time temperature data. The current envelope can be compared to the previous envelope sample taken (eg, 200 ms before). The difference between the current envelope and the previous time point envelope is less than a predetermined value (eg less than −0.5 ° C., in other words, the current envelope relative to the envelope value at the previous time point). If there is a decrease of less than 0.5 degrees in the value), the measurement is taken at a future time point (eg at 5 seconds). If the difference between the average temperature at the future time point and the current time point is greater than a given temperature threshold (eg, greater than 1 ° C.), the algorithm 800 indicates that an undesirably high level of contraction exists. Can be determined and energy delivery can be stopped / changed. In such an event, the system 10 may generate a message indicating a high contraction condition. However, depending on the situation, different actions by the clinician may be appropriate.

図8は、例えば、本技術の一実施形態に係る高い度合いの血管収縮が検出されるときにオペレータ・フィードバックを提供するためのアルゴリズム800を例証するブロック図である。一実装では、アルゴリズム800は、高い収縮レベル(例えば、或る直径に又はこれ以下に収縮した血管)に応答して実行され(ブロック802)、高い収縮レベルが突然の不安定性を含んだ状況に関与したか又はしなかったかを判定するために治療からのデータを評価する(決定ブロック804)。突然の不安定性の指標は、電極24が動いたことを示すことができる。   FIG. 8 is a block diagram illustrating an algorithm 800 for providing operator feedback when, for example, a high degree of vasoconstriction is detected according to one embodiment of the present technology. In one implementation, the algorithm 800 is performed in response to a high contraction level (eg, a blood vessel that contracts to or below a certain diameter) (block 802), and the high contraction level includes a sudden instability. Data from the treatment is evaluated to determine if it was involved or not (decision block 804). An indication of sudden instability can indicate that the electrode 24 has moved.

決定ブロック804で突然の不安定性が検出されないイベントでは、高い収縮レベルが検出されているという指標及び治療パワーを低減させることの臨床医への指示のような第1のメッセージが表示されてもよい(ブロック806)。さらなる実施形態では、エネルギーレベルは、検出された収縮レベルに応答して自動的に変更されてもよい。決定ブロック804で突然の不安定性が検出されるイベントでは、高い収縮レベルの発生を示すこと及び臨床医への指示に加えて、電極24がそのオリジナル部位から動かされた可能性があることを示してもよい代替メッセージが表示されてもよい(ブロック808)。こうしたフィードバックは、治療を変更する又はやめるように臨床医に促してもよい。   In an event where sudden instability is not detected at decision block 804, a first message may be displayed, such as an indication that a high contraction level has been detected and an instruction to the clinician to reduce treatment power. (Block 806). In further embodiments, the energy level may be automatically changed in response to the detected contraction level. In the event that sudden instability is detected at decision block 804, in addition to indicating the occurrence of a high contraction level and instructing the clinician, it may indicate that the electrode 24 may have been moved from its original site. An alternative message may be displayed (block 808). Such feedback may prompt the clinician to change or stop treatment.

G.心臓因子に関係したフィードバック
1.異常な心拍に関係したフィードバック
上述の他の生理的条件と同様に、或る状況では、システム10は、異常な心拍の発生に関係したメッセージを生成してもよい。特に、治療が送達されている間、心拍は、望ましい条件を超過する又は下回る可能性がある(例えば、一時的な処置上又は慢性の徐脈)。瞬時心拍は、リアルタイム温度及びインピーダンスを測定することによって判定することができる。より詳細には、リアルタイム温度読取値は、二次バターワースフィルタを用いて、例えば0.5Hzから2.5Hzまでの間でフィルタすることができる。フィルタされた信号の極大が判定される。極大は、真の温度信号の検出されたピークである。信号ピークが心臓周期の周期的変化に対応するので、瞬時心拍はピーク間のインターバルである。
G. Feedback related to cardiac factors Feedback Related to Abnormal Heart Rate Similar to the other physiological conditions described above, in some situations, system 10 may generate a message related to the occurrence of an abnormal heart rate. In particular, while the therapy is being delivered, the heart rate may exceed or fall below a desired condition (eg, temporary therapeutic or chronic bradycardia). Instantaneous heartbeats can be determined by measuring real time temperature and impedance. More specifically, the real-time temperature reading can be filtered, for example between 0.5 Hz and 2.5 Hz, using a second order Butterworth filter. The maximum of the filtered signal is determined. The maximum is the detected peak of the true temperature signal. Since the signal peak corresponds to a periodic change in the cardiac cycle, the instantaneous heartbeat is the interval between the peaks.

一実装では、システム10は、心拍が望ましい範囲外にある場合にエネルギー送達をやめる/変更してもよい。このようなイベントでは、システムは、不都合な心拍条件を示すメッセージを生成してもよい。しかしながら、状況に応じて、臨床医による異なるアクションが適切な場合がある。   In one implementation, the system 10 may stop / change energy delivery when the heart rate is outside the desired range. In such an event, the system may generate a message indicating an unfavorable heartbeat condition. However, depending on the situation, different actions by the clinician may be appropriate.

図9Aは、例えば、本技術の一実施形態に係る異常な心拍条件の検出時にオペレータ・フィードバック/指示を提供するためのアルゴリズム900を例証するブロック図である。一実装では、例えば、アルゴリズム900は、異常な心拍条件(例えば、所定の閾値を上回る又は下回る)に応答して実行されてもよい(ブロック902)。決定ブロック904で、アルゴリズム900は、検出された異常な心拍条件が突然の不安定性を含んだ状況に関与したか否かを判定するために治療からのデータを評価する。突然の不安定性の指標は、電極が動かされたことを示すことができる。   FIG. 9A is a block diagram illustrating an algorithm 900 for providing operator feedback / instructions upon detection of an abnormal heart rate condition, for example, according to one embodiment of the present technology. In one implementation, for example, the algorithm 900 may be performed in response to an abnormal heart rate condition (eg, above or below a predetermined threshold) (block 902). At decision block 904, the algorithm 900 evaluates the data from the treatment to determine whether the detected abnormal heart rate condition involved a situation involving sudden instability. A sudden instability indicator can indicate that the electrode has been moved.

決定ブロック904で突然の不安定性が検出されないイベントでは、異常な心拍が検出されているという指標及び治療パワーを低減させることの臨床医への指示のような第1のメッセージが臨床医に表示されてもよい(ブロック906)。さらなる実施形態では、エネルギーレベルは、検出される不都合な心拍に応答して自動的に変更されてもよい。決定ブロック904で突然の不安定性が検出されるイベントでは、異常な心拍の発生を示すこと及び臨床医への指示に加えて、電極がそのオリジナル部位から動かされた可能性があることを示してもよい代替メッセージが表示されてもよい(ブロック908)。こうしたフィードバックは、臨床医に治療を変更する又はやめるように促してもよい。   For events where no sudden instability is detected at decision block 904, a first message is displayed to the clinician, such as an indication that an abnormal heartbeat has been detected and an instruction to the clinician to reduce treatment power. (Block 906). In a further embodiment, the energy level may be changed automatically in response to a detected adverse heartbeat. In the event that sudden instability is detected at decision block 904, in addition to indicating the occurrence of an abnormal heartbeat and instructing the clinician, the electrode may have been moved from its original site An alternative message may be displayed (block 908). Such feedback may prompt the clinician to change or stop treatment.

2.低血流に関係したフィードバック
システム10はまた、低血流条件に関係したメッセージを生成するように構成されてもよい。例えば、血流が治療中に或るレベルよりも低く減少する場合(又は血管が望ましくないほど狭い場合)、電極24及び組織表面から除去される対流熱が減少する。過度に高い組織温度は、血栓症、炭化、信頼できない損傷部サイズなどのような上記で説明された否定的転帰につながることがある。組織が容認できない温度に達するのを防ぐために発生器26からの電力を低減させることは、不十分な損傷部深さにつながることがあり、神経が十分なアブレーション温度に加熱されない場合がある。血流又は血液の流れへの熱の損失を測定するのにアルゴリズムを用いることができる。一実施形態では、血流は、腎動脈の中に、別個のカテーテル上に、又は治療カテーテル12上におかれる流量計又はドップラーセンサで測定することができる。別の実施形態では、血液、組織、又は基質温度を上昇させるためにエネルギー(例えば、RFエネルギー)を送達することによって熱損失又は熱的減衰(thermal decay)を測定することができる。エネルギーは、オフにすることができ、アルゴリズムは、熱的減衰の尺度として温度を監視することを含むことができる。急速な熱的減衰は十分な血流を表す可能性があり、一方、緩慢な熱的減衰は低血流を表す可能性がある。例えば、一実施形態では、開始温度を超えるリアルタイム温度測定値の傾きがプリセット閾値(例えば、2.75)を超過し、且つ平均温度がプリセット温度(例えば、65℃)よりも高い場合に、アルゴリズム910は低血流を示すことができる。さらなる実施形態では、熱的減衰及び/又は血流は、RF又は抵抗熱を送達する電極の温度変動を測定することによって特徴付けることができる。所与の温度又は電力送達振幅/大きさでは、狭い変動範囲は、比較的低い熱的減衰/血流を示す可能性がある。
2. Feedback system 10 related to low blood flow may also be configured to generate messages related to low blood flow conditions. For example, if blood flow is reduced below a certain level during treatment (or if blood vessels are undesirably narrow), the convective heat removed from the electrode 24 and the tissue surface is reduced. An excessively high tissue temperature can lead to the negative outcomes described above, such as thrombosis, charring, unreliable lesion size, and the like. Reducing the power from the generator 26 to prevent the tissue from reaching an unacceptable temperature may lead to insufficient lesion depth and the nerve may not be heated to a sufficient ablation temperature. An algorithm can be used to measure the loss of heat to the bloodstream or blood flow. In one embodiment, blood flow can be measured with a flow meter or Doppler sensor placed in the renal artery, on a separate catheter, or on the treatment catheter 12. In another embodiment, heat loss or thermal decay can be measured by delivering energy (eg, RF energy) to increase blood, tissue, or substrate temperature. The energy can be turned off and the algorithm can include monitoring temperature as a measure of thermal decay. Rapid thermal decay can represent sufficient blood flow, while slow thermal decay can represent low blood flow. For example, in one embodiment, if the slope of the real-time temperature measurement above the starting temperature exceeds a preset threshold (eg, 2.75) and the average temperature is higher than the preset temperature (eg, 65 ° C.), an algorithm 910 can indicate low blood flow. In a further embodiment, thermal attenuation and / or blood flow can be characterized by measuring temperature fluctuations of electrodes that deliver RF or resistive heat. For a given temperature or power delivery amplitude / magnitude, a narrow range of variation can indicate a relatively low thermal attenuation / blood flow.

図9Bは、例えば、本技術の一実施形態に係る低血流条件の発生時にオペレータ・フィードバック/指示を提供するためのアルゴリズム910を例証するブロック図である。一実装では、アルゴリズム910は、検出される低血流条件(例えば、所定の閾値を下回る流れ)(ブロック912)に応答して実行される。ブロック914で、アルゴリズム910は、低血流条件が突然の不安定性を含んだ状況に関与したか否かを判定するために治療からのデータを評価する。決定ブロック914で突然の不安定性が検出されないイベントでは、低血流が検出されているという指標及び治療パワーを低減させることの臨床医への指示のような第1のメッセージが表示されてもよい(ブロック916)。突然の不安定性が検出されるイベントでは、低血流の発生を示すこと及び臨床医への指示に加えて、電極がそのオリジナル部位から動かされた可能性があることを示してもよい代替メッセージが表示されてもよい(ブロック918)。上で述べたように、こうしたフィードバックは、臨床医に治療を変更する又はやめるように促してもよい。   FIG. 9B is a block diagram illustrating an algorithm 910 for providing operator feedback / instructions upon occurrence of a low blood flow condition, for example, according to one embodiment of the present technology. In one implementation, the algorithm 910 is executed in response to a detected low blood flow condition (eg, flow below a predetermined threshold) (block 912). At block 914, the algorithm 910 evaluates the data from the treatment to determine if the low blood flow condition was involved in a situation involving sudden instability. In an event where sudden instability is not detected at decision block 914, a first message may be displayed, such as an indication that low blood flow is being detected and an instruction to the clinician to reduce treatment power. (Block 916). In the event that sudden instability is detected, in addition to indicating the occurrence of low blood flow and instructing the clinician, an alternative message that may indicate that the electrode may have been moved from its original site May be displayed (block 918). As noted above, such feedback may prompt the clinician to change or stop treatment.

さらなる実施形態では、血流又は熱的減衰値が典型的な又は所定の閾値よりも低い場合、エネルギー送達アルゴリズム910は、血流を改善するために治療の又はカテーテルの1つ又は複数の条件又は特徴を自動的に変更することを含むことができる。例えば、一実施形態では、アルゴリズム910は、連続的なエネルギーを提供するのではなくエネルギー送達要素24に提供されるエネルギーをパルシングすることによって低血流に対応することができる。これは、より低い血流が、神経をアブレートするのに十分な深さの損傷部を依然としてもたらしながら、組織表面から熱をより適切に除去できるようにする可能性がある。   In a further embodiment, if the blood flow or thermal attenuation value is below a typical or predetermined threshold, the energy delivery algorithm 910 may determine one or more conditions of the treatment or catheter to improve blood flow or It can include changing features automatically. For example, in one embodiment, algorithm 910 can accommodate low blood flow by pulsing the energy provided to energy delivery element 24 rather than providing continuous energy. This may allow lower blood flow to better remove heat from the tissue surface while still resulting in a lesion that is deep enough to ablate the nerve.

別の実施形態では、アルゴリズム910は、2011年4月26日に出願された国際特許出願第PCT/US2011/033491号及び2010年8月30日に出願された米国特許出願第12/874,457号でさらに詳細に説明されるように電極を冷却することによって低血流に対応することを含むことができる。上記の出願は、それらの全体が参照により本明細書に組み込まれる。   In another embodiment, the algorithm 910 is based on International Patent Application No. PCT / US2011 / 033491 filed on April 26, 2011 and US Patent Application No. 12 / 874,457 filed on August 30, 2010. Addressing low blood flow by cooling the electrodes as described in more detail in the section. The above applications are incorporated herein by reference in their entirety.

さらなる実施形態では、アルゴリズム910は、領域への血流の手動での増加を必要とすることによって低血流に対応することができる。例えば、非閉塞性バルーンを腹部大動脈の中で膨張させて、腎動脈中の圧力及び流れを増加させることができる。バルーンは、治療カテーテル又は別個のカテーテル上に組み込むことができる。   In a further embodiment, the algorithm 910 can accommodate low blood flow by requiring a manual increase in blood flow to the region. For example, a non-occlusive balloon can be inflated in the abdominal aorta to increase pressure and flow in the renal arteries. The balloon can be incorporated on the treatment catheter or a separate catheter.

H.フィードバック表示
図10A及び図10Bは、本技術の態様に従って構成される代表的な発生器ディスプレイ画面を例証するスクリーンショットである。図10Aは、例えば、治療中の強化されたインピーダンス・トラッキングのためのディスプレイ画面1100である。ディスプレイ1100は、選択された時間期間(例えば、100秒)にわたってインピーダンス測定値をリアルタイムでトラックするグラフ表示1110を含む。このグラフ表示1110は、例えば、オペレータにインピーダンス測定値の瞬間トラッキングとヒストリカル・トラッキングとの両方を提供するために定期的間隔で更新される動的なローリング表示とすることができる。ディスプレイ1110はまた、現在のインピーダンス並びにインピーダンスに関する標準偏差指標1122を伴うインピーダンス表示1120を含むことができる。一実施形態では、標準偏差指標1122は、この値が10よりも大きいときにフラッシュするように構成される。こうした指標は、オペレータに造影剤注入が測定に影響を及ぼしていること又は電極が不安定である可能性があることを警告することができる。造影剤注入指標に関するさらなる情報が以下で説明される。
H. Feedback Display FIGS. 10A and 10B are screenshots illustrating a typical generator display screen configured in accordance with aspects of the present technology. FIG. 10A is a display screen 1100 for enhanced impedance tracking, eg, during treatment. Display 1100 includes a graphical display 1110 that tracks impedance measurements in real time over a selected time period (eg, 100 seconds). This graphical display 1110 can be, for example, a dynamic rolling display that is updated at regular intervals to provide the operator with both instantaneous and historical tracking of impedance measurements. The display 1110 can also include an impedance display 1120 with a standard deviation indicator 1122 regarding the current impedance as well as the impedance. In one embodiment, the standard deviation indicator 1122 is configured to flash when this value is greater than 10. Such an indicator can alert the operator that contrast agent injection is affecting the measurement or that the electrode may be unstable. Further information regarding contrast agent injection indices is described below.

図10Bは、例えば、オペレータに対する付加的な情報をもつ別の代表的なディスプレイ画面1130である。この例では、ディスプレイ画面1130は、造影剤注入のオペレータに警告するように構成され、しかもシステムは、開始前に造影剤がクリアになるのを待つ(例えば、造影剤がクリアになるまでおよそ1〜2秒間RFを無効にする)。別の実施形態では、ディスプレイ画面1130は、他の警告メッセージ(例えば、「電極が不安定である可能性がある」など)を提供するように構成されてもよい。上記で説明されたディスプレイ画面1110及び1130で提供される付加的な情報は、RFをオンにする前に接触評価を改善し、且つ治療の効率及び有効性を改善することが期待される。   FIG. 10B is another exemplary display screen 1130 with additional information for an operator, for example. In this example, the display screen 1130 is configured to alert the operator of contrast agent injection, and the system waits for the contrast agent to clear before starting (eg, approximately 1 until the contrast agent is cleared). Disable RF for ~ 2 seconds). In another embodiment, display screen 1130 may be configured to provide other warning messages (eg, “electrode may be unstable”, etc.). The additional information provided on the display screens 1110 and 1130 described above is expected to improve contact assessment before turning on RF and improve the efficiency and effectiveness of treatment.

図10A及び図10Bを参照して上記で説明された付加的な情報は、本明細書で説明されるアルゴリズム又は他の適切なアルゴリズムに基づいて生成することができる。一実施形態では、例えば、アルゴリズムは、RFがオンになるまでの間の造影剤注入/安定性を連続的に確認することができる。電極が安定であり且つ≧1秒間にわたって造影剤が存在しない場合、ベースライン・インピーダンスZは、1秒間にわたる平均インピーダンスZに等しく設定される。1つの特定の例では、リアルタイムインピーダンスは、1秒ウィンドウ内の平均インピーダンス値の標準偏差2と比較される。別の特異的な例では、リアルタイムインピーダンスは、固定の数と比較されてもよい(例えば、標準偏差が10よりも大きいか否かを判定する)。さらに他の例では、他の配置が用いられてもよい。   The additional information described above with reference to FIGS. 10A and 10B can be generated based on the algorithms described herein or other suitable algorithms. In one embodiment, for example, the algorithm can continuously check contrast agent injection / stability until RF is turned on. If the electrode is stable and no contrast agent is present for ≧ 1 second, the baseline impedance Z is set equal to the average impedance Z over 1 second. In one particular example, the real-time impedance is compared to a standard deviation 2 of the average impedance value within a 1 second window. In another specific example, the real-time impedance may be compared to a fixed number (eg, determine if the standard deviation is greater than 10). In still other examples, other arrangements may be used.

リアルタイムインピーダンス測定値がこの範囲内である場合、メッセージは表示されない。しかしながら、リアルタイムインピーダンスが平均の標準偏差2内でない場合、電極は安定ではない(すなわち、ドリフトしている、動いているなど)場合があり、図10A及び図10Bを参照して上記で説明されたメッセージ(単数又は複数)(例えば、「造影剤がクリアになるのを待つ」、「電極が不安定である可能性がある」)の一方又は両方がユーザに表示されてもよい。単なる例として、造影剤注入検出に関して、インピーダンスの標準偏差に加えて、アルゴリズムは、開始体温を下回るリアルタイム温度の逸脱(excursion)を探すためにリアルタイム温度測定値の標準偏差を計算に入れるように構成されてもよい。温度の逸脱の切り捨てに関する正確な値は変化することがある。1つの特定の例では、システムは、リアルタイム温度の低下に付随して起こるインピーダンスの増加(例えば、標準偏差>10)が存在する場合、システムがオペレータに表示されるべき「造影剤がクリアになるのを待つ」メッセージにつながる造影剤検出イベントのフラグを立てるように構成される。他の例では、しかしながら、造影剤注入イベント及び/又は電極の安定性を判定するために他のアルゴリズム及び/又は範囲が用いられてもよい。さらに、幾つかの実施形態では、システムは、こうしたメッセージを臨床医に表示することなく検出された条件に基づいて種々の治療パラメータを修正/調節してもよい。   If the real-time impedance measurement is within this range, no message is displayed. However, if the real-time impedance is not within an average standard deviation of 2, the electrode may not be stable (ie, drifting, moving, etc.) and is described above with reference to FIGS. 10A and 10B. One or both of the message (s) (eg, “waiting for contrast agent to clear”, “electrode may be unstable”) may be displayed to the user. By way of example only, for contrast agent injection detection, in addition to the standard deviation of impedance, the algorithm is configured to take into account the standard deviation of real-time temperature measurements to look for real-time temperature excursions below the starting body temperature. May be. The exact value for truncation of temperature deviation may vary. In one particular example, if there is an impedance increase (eg, standard deviation> 10) that accompanies a decrease in real-time temperature, the system should be displayed to the operator “Contrast cleared. It is configured to flag a contrast agent detection event leading to a “wait for” message. In other examples, however, other algorithms and / or ranges may be used to determine contrast agent injection events and / or electrode stability. Further, in some embodiments, the system may modify / adjust various treatment parameters based on detected conditions without displaying such messages to the clinician.

IV.関係する解剖学及び生理学
以下の解説は、関係する患者解剖学及び生理学に関するさらなる詳細を提供する。このセクションは、該当する解剖学的構造及び生理学に関する前の説明を補足し及び拡充すること、並びに腎除神経に関連する開示された技術及び治療的利点に関する付加的な文脈を提供することを意図される。例えば、既述のように、腎血管構造の幾つかの特性は、血管内アクセスを介して腎神経変調を達成するための治療デバイス及び関連する方法の設計を報告し、及びこうしたデバイスに特異的な設計要件を課す可能性がある。特異的な設計要件は、腎動脈にアクセスすること、こうしたデバイスのエネルギー送達要素と腎動脈の管腔表面又は壁との間の安定した接触を容易にすること、及び/又は神経変調装置で腎神経を効果的に変調することを含んでもよい。
IV. Related Anatomy and Physiology The following discussion provides further details regarding the related patient anatomy and physiology. This section is intended to supplement and expand the previous description of applicable anatomy and physiology, and provide additional context on the disclosed techniques and therapeutic benefits associated with renal denervation. Is done. For example, as already mentioned, some properties of the renal vasculature report the design of therapeutic devices and associated methods for achieving renal neuromodulation via intravascular access and are specific to such devices. May impose significant design requirements. Specific design requirements include access to the renal arteries, facilitating stable contact between the energy delivery elements of such devices and the luminal surface or wall of the renal arteries, and / or the kidney with a neuromodulator. It may include modulating the nerve effectively.

A.交感神経系
交感神経系(SNS)は、腸管神経系及び副交感神経系と共に、自律神経系の分岐である。これは基礎レベルでは常にアクティブであり(交感神経緊張と呼ばれる)、ストレスの場合に、よりアクティブになる。神経系の他の部分のように、交感神経系は、一連の相互接続されたニューロンを通じて動作する。交感神経ニューロンは、末梢神経系(PNS)の一部とよく考えられるが、多くは中枢神経系(CNS)内にある。脊髄の交感神経ニューロン(CNSの一部である)は、一連の交感神経節を介して末梢交感神経ニューロンと通信する。神経節内で、脊髄交感神経ニューロンは、シナプスを通じて末梢交感神経ニューロンと合流する。脊髄交感神経ニューロンは、したがってシナプス前(又は節前)ニューロンと呼ばれ、一方、末梢交感神経ニューロンは、シナプス後(又は節後)ニューロンと呼ばれる。
A. Sympathetic nervous system The sympathetic nervous system (SNS) is a branch of the autonomic nervous system, along with the enteric nervous system and the parasympathetic nervous system. This is always active at the basal level (called sympathetic tone) and becomes more active in the case of stress. Like other parts of the nervous system, the sympathetic nervous system operates through a series of interconnected neurons. Sympathetic neurons are often considered part of the peripheral nervous system (PNS), but many are in the central nervous system (CNS). Spinal sympathetic neurons (which are part of the CNS) communicate with peripheral sympathetic neurons through a series of sympathetic ganglia. Within the ganglia, spinal cord sympathetic neurons merge with peripheral sympathetic neurons through synapses. Spinal cord sympathetic neurons are therefore referred to as presynaptic (or prenodal) neurons, whereas peripheral sympathetic neurons are referred to as postsynaptic (or postnodal) neurons.

交感神経節内のシナプスで、交感神経節前ニューロンは、節後ニューロン上のニコチン性アセチルコリン受容体と結合し及びこれを活性化させる化学的メッセンジャーであるアセチルコリンを放出する。この刺激に応答して、節後ニューロンは、主としてノルアドレナリン(ノルエピネフリン)を放出する。長期にわたる活性化は、副腎髄質からのアドレナリンの放出を誘う可能性がある。   At synapses within the sympathetic ganglion, sympathetic preganglionic neurons release acetylcholine, a chemical messenger that binds to and activates nicotinic acetylcholine receptors on postganglionic neurons. In response to this stimulus, post-node neurons primarily release noradrenaline (norepinephrine). Long-term activation can lead to the release of adrenaline from the adrenal medulla.

放出されると、ノルエピネフリンとエピネフリンは、末梢組織上のアドレナリン受容体と結合する。アドレナリン受容体への結合は、ニューロンの及びホルモンの応答を引き起こす。生理的症状発現は、瞳孔の拡張、増加した心拍、時折の嘔吐、及び上昇した血圧を含む。増加した発汗はまた、汗腺のコリン受容体の結合に起因すると考えられる。   When released, norepinephrine and epinephrine bind to adrenergic receptors on peripheral tissues. Binding to adrenergic receptors causes a neuronal and hormonal response. Physiological manifestations include pupil dilation, increased heart rate, occasional vomiting, and elevated blood pressure. Increased sweating is also thought to result from the binding of sweat gland cholinergic receptors.

交感神経系は、生物における多くのホメオスタシス機構をアップレギュレーション及びダウンレギュレーションする役割を担う。SNSからの線維は、ほとんどすべての器官系における組織を神経支配し、瞳孔径、腸運動、及び尿量のような様々な事象への少なくとも幾つかのレギュレーション機能を提供する。この応答はまた、副腎髄質の中で終端する節前交感神経線維(しかしまたすべての他の交感神経線維)がアセチルコリンを分泌する際の身体の交感神経副腎応答として知られており、アセチルコリンはアドレナリン(エピネフリン)の分泌を活性化させ、且つノルアドレナリン(ノルエピネフリン)の分泌をより低い程度にする。したがって、主として心血管系で作用するこの応答は、交感神経系を通して伝送されるインパルスを介して直接的に及び副腎髄質から分泌されるカテコールアミンを介して間接的に伝えられる。   The sympathetic nervous system is responsible for up-regulating and down-regulating many homeostasis mechanisms in an organism. Fibers from the SNS innervate tissue in almost all organ systems and provide at least some regulation functions for various events such as pupil diameter, intestinal motility, and urine output. This response is also known as the body's sympathoadrenal response when prenode sympathetic fibers (but also all other sympathetic fibers) that terminate in the adrenal medulla secrete acetylcholine, which is adrenaline. (Epinephrine) secretion is activated and noradrenaline (norepinephrine) secretion is reduced to a lower extent. Thus, this response, acting primarily in the cardiovascular system, is transmitted directly through impulses transmitted through the sympathetic nervous system and indirectly through catecholamines secreted from the adrenal medulla.

科学は典型的に、SNSを自動レギュレーションシステム、すなわち、意識的な考えの介入なしに動作するものとして見る。進化的理論家らは、交感神経系が身体に行動のためのプライミングをする役割を担うので、初期の生物では交感神経系は生存を維持するように動作したと提案する。このプライミングの一例は、行動の準備のために交感神経流出が自発的に増加する、目覚める前の瞬間である。   Science typically sees an SNS as an automatic regulation system, that is, one that operates without conscious thought intervention. Evolutionary theorists suggest that in early organisms, the sympathetic nervous system worked to maintain survival because the sympathetic nervous system is responsible for priming the body for action. An example of this priming is the moment before waking, when sympathetic outflow increases spontaneously in preparation for action.

1.交感神経鎖
図11に示すように、SNSは、脳が身体と通信することを可能にする神経ネットワークを提供する。交感神経は、脊柱内部で起始し、第1胸髄で始まる中間外側細胞柱(又は側角)の中の脊髄の中央に向かい、且つ第2又は第3腰髄に延びると考えられる。その細胞が脊髄の胸部領域及び腰部領域で始まるため、SNSは、胸腰部流出(thoracolumbar outflow)を有すると言われる。これらの神経の軸索は、前細根/前根を通して脊髄を出る。それらは、脊髄(知覚)神経節の近くを通り、そこでそれらは脊髄神経の前枝に入る。しかしながら、体性神経支配とは異なり、それらは脊椎の傍に延びる脊椎傍(脊柱の近くにある)又は脊椎前(大動脈の分岐の近くにある)神経節のいずれかに接続する白交通枝を通してすぐに分かれる。
1. Sympathetic Nerve Chain As shown in FIG. 11, the SNS provides a neural network that allows the brain to communicate with the body. The sympathetic nerve is thought to originate within the spinal column, toward the middle of the spinal cord in the intermediate lateral cell column (or lateral corner) starting at the first thoracic spinal cord and extending to the second or third lumbar spinal cord. SNS is said to have thoracolumbar outflow because its cells begin in the thorax and lumbar regions of the spinal cord. These nerve axons exit the spinal cord through the anterior fine root / anterior root. They pass near the spinal (sensory) ganglia, where they enter the anterior branch of the spinal nerve. However, unlike somatic innervation, they pass through white traffic branches that connect to either the vertebral (near the spine) or the prespinal (near the aortic branch) ganglia that extend beside the spine. Divide immediately.

標的器官及び腺に到達するために、軸索は、身体の中で長い距離を移動するべきであり、これを達成するために、多くの軸索は、それらのメッセージをシナプス伝達を通じて第2の細胞にリレーする。軸索の端は、スペース、シナプスをまたいで第2の細胞の樹状突起に連結される。第1の細胞(シナプス前細胞)は、シナプス間隙をまたいで神経伝達物質を送り、そこでこれは第2の細胞(シナプス後細胞)を活性化させる。メッセージは、次いで、最終目的地に運ばれる。   To reach the target organs and glands, axons should travel long distances within the body, and to achieve this, many axons pass their messages through synaptic transmission through a second Relay to cells. The end of the axon is connected to the dendrites of the second cell across the space and synapse. The first cell (pre-synaptic cell) sends a neurotransmitter across the synaptic cleft, where it activates the second cell (post-synaptic cell). The message is then taken to the final destination.

末梢神経系のSNS及び他の構成要素では、これらのシナプスは神経節と呼ばれる部位で作製される。その線維を送る細胞は節前細胞と呼ばれ、一方、その線維が神経節を出る細胞は節後細胞と呼ばれる。既述のように、SNSの節前細胞は、第1胸髄(T1)と第3腰髄(L3)との間に位置する。節後細胞は、神経節の中にそれらの細胞体を有し、それらの軸索を標的器官又は腺に送る。   In the SNS and other components of the peripheral nervous system, these synapses are made at sites called ganglia. The cells that send the fibers are called pre-node cells, while the cells from which the fibers leave the ganglion are called post-node cells. As described above, SNS pre-node cells are located between the first thoracic spinal cord (T1) and the third lumbar spinal cord (L3). Postnodal cells have their cell bodies in the ganglia and send their axons to the target organ or gland.

神経節は、交感神経幹だけでなく頸神経節(上、中、及び下)も含み、これは、交感神経線維を頭部及び胸郭器官、並びに腹腔神経節及び腸間膜神経節に送る(これは交感神経線維を消化管に送る)。   Ganglia include not only the sympathetic trunk but also the cervical ganglion (upper, middle, and lower), which sends sympathetic fibers to the head and thoracic organs, and the celiac and mesenteric ganglia ( This sends sympathetic fibers to the gastrointestinal tract).

2.腎臓の神経支配
図12が示すように、腎臓は、腎動脈と密接に関連付けられる腎神経叢RPによって神経支配される。腎神経叢RPは、腎動脈を取り囲み且つ腎動脈の外膜内に組み込まれる自律神経叢である。腎神経叢RPは、腎臓の実体に到達するまで腎動脈に沿って延びる。腎神経叢RPに寄与する線維は、腹腔神経節、上腸間膜神経節、大動脈腎動脈神経節、及び大動脈神経叢から生じる。腎神経とも呼ばれる腎神経叢RPは、主として交感神経構成要素からなる。腎臓の副交感神経の神経支配は存在しない(又は少なくとも非常に最小限である)。
2. Renal innervation As FIG. 12 shows, the kidney is innervated by the renal plexus RP, which is closely associated with the renal arteries. The renal plexus RP is the autonomic plexus that surrounds the renal artery and is incorporated into the outer membrane of the renal artery. The renal plexus RP extends along the renal arteries until it reaches the kidney entity. Fibers that contribute to the renal plexus RP arise from the celiac ganglion, superior mesenteric ganglion, aortic renal artery ganglion, and aortic plexus. The renal plexus RP, also called the renal nerve, mainly consists of sympathetic nerve components. There is no (or at least very minimal) innervation of the renal parasympathetic nerves.

節前ニューロン細胞体は、脊髄の中間外側細胞柱の中に位置する。節前軸索は、脊椎傍神経節(それらはシナプスではない)を通って、小内臓神経、最小内臓神経、第1腰内臓神経、第2腰内臓神経となり、腹腔神経節、上腸間膜神経節、及び大動脈腎動脈神経節に移動する。節後ニューロン細胞体は、腹腔神経節、上腸間膜神経節、及び腎神経叢RPへの大動脈腎動脈神経節を出て、腎血管構造に分布する。   The prenodal neuron cell body is located in the middle lateral cell column of the spinal cord. Prenodal axons pass through paravertebral ganglia (they are not synapses) and become the small visceral nerve, minimal visceral nerve, first lumbar visceral nerve, second lumbar visceral nerve, celiac ganglion, superior mesentery Move to ganglia and aorto-renal artery ganglia. Postnodal neuronal cell bodies exit the aortic renal artery ganglion to the celiac ganglion, superior mesenteric ganglion, and renal plexus RP, and are distributed in the renal vasculature.

3.腎交感神経活性
メッセージは、SNSを通して二方向の流れで移動する。遠心性のメッセージは、身体の異なる部分における変化を同時にトリガする可能性がある。例えば、交感神経系は、心拍を加速する、気管支を広げる、大腸の運動性(動き)を減少させる、血管を収縮させる、食道の蠕動を増加させる、瞳孔拡張、立毛(鳥肌)、及び汗(発汗)を引き起こす、及び血圧を上昇させる可能性がある。求心性メッセージは、身体の種々の器官及び知覚レセプタから他の器官、特に脳に信号を運ぶ。
3. Renal sympathetic nerve activity Messages travel in two directions through the SNS. Centrifugal messages can simultaneously trigger changes in different parts of the body. For example, the sympathetic nervous system accelerates the heartbeat, widens the bronchi, reduces colonic motility (movement), contracts blood vessels, increases esophageal peristalsis, pupil dilation, raised hair (bird skin), and sweat ( May cause sweating) and increase blood pressure. Afferent messages carry signals from various organs of the body and sensory receptors to other organs, particularly the brain.

高血圧症、心不全、及び慢性腎疾患は、SNS、特に腎交感神経系の慢性の活性化に起因する多くの疾患状態のうちの幾つかである。SNSの慢性の活性化は、これらの疾患状態の進行を後押しする不適応応答である。レニン−アンギオテンシン−アルドステロン系(RAAS)の製薬管理は、SNSの過活性を低減させるための長年にわたる、しかし若干効率的でない手法である。   Hypertension, heart failure, and chronic kidney disease are some of the many disease states that result from chronic activation of the SNS, particularly the renal sympathetic nervous system. Chronic activation of SNS is a maladaptive response that drives the progression of these disease states. Pharmaceutical management of the renin-angiotensin-aldosterone system (RAAS) is a long-standing but somewhat inefficient approach to reduce SNS overactivity.

前述のように、腎交感神経系は、両方とも実験的に及びヒトにおいて高血圧症の複雑な病態生理学、容量過負荷の状態(心不全のような)、及び進行性腎疾患の主因として識別されている。腎臓から血漿へのノルエピネフリンの溢流を測定するために放射性トレーサ希釈法を採用する研究は、若年性高血圧被検者では特にそうである、本態性高血圧症の患者での増加した腎ノルエピネフリン(NE)スピルオーバー率を明らかにし、これは心臓からの増加したNEスピルオーバーに呼応し、早期高血圧症で典型的に見られる血流力学的プロフィールと一致し、且つ増加した心拍、心拍出量、及び腎血管抵抗によって特徴付けられる。本態性高血圧症は通常は神経性であり、しばしば顕著な交感神経系過活性に付随して起こることが現在知られている。   As mentioned above, the renal sympathetic nervous system has been identified both as an experimental and a major cause of complex pathophysiology of hypertension, capacity overload conditions (such as heart failure), and progressive kidney disease in humans. Yes. Studies that employ radioactive tracer dilution to measure norepinephrine overflow from the kidney to plasma have been shown to increase renal norepinephrine (NE) in patients with essential hypertension, especially in young hypertensive subjects. ) Reveals spillover rate, which corresponds to increased NE spillover from the heart, consistent with the hemodynamic profile typically seen in early hypertension, and increased heart rate, cardiac output, and kidney Characterized by vascular resistance. It is now known that essential hypertension is usually neurological and often accompanies significant sympathetic nervous system overactivity.

心腎交感神経活性の活性化は、この患者群の心臓及び腎臓から血漿へのNE溢流の過大な増加によって実証される場合の心不全においてより一層顕著である。この見解に沿うのが、全交感神経活性、糸球体濾過率、及び左心室駆出率に無関係な鬱血性心不全の患者における全死亡率及び心臓移植術に対する腎交感神経活性化の強い否定的予測値の最近の実証である。これらの発見は、腎交感神経刺激を減らすように設計される治療計画が心不全の患者の生存度を改善する可能性を有するという見解を支持する。   Activation of cardiorenal sympathetic nerve activity is even more pronounced in heart failure as evidenced by an excessive increase in NE overflow from the heart and kidney to plasma in this patient group. In line with this view is a strong negative prediction of total mortality and renal sympathetic nerve activation for heart transplantation in patients with congestive heart failure independent of total sympathetic activity, glomerular filtration rate, and left ventricular ejection fraction A recent proof of value. These findings support the view that treatment regimens designed to reduce renal sympathetic stimulation have the potential to improve the survival of patients with heart failure.

慢性腎疾患と末期腎疾患との両方は、高められた交感神経活性化によって特徴付けられる。末期腎疾患の患者では、平均を上回るノルエピネフリンの血漿レベルは、全死亡と心血管疾患による死亡との両方の前兆となることが実証されている。これはまた、糖尿病又は造影剤腎症に悩む患者にも当てはまる。疾患のある腎臓が起源である知覚求心性信号がこの患者群における高められた中枢交感神経流出を開始させ及び持続させる主因であることを示唆する強力な証拠があり、これは、高血圧症、左心室肥大、心室不整脈、突然心臓死、インスリン抵抗性、糖尿病、及び代謝症候群のような慢性の交感神経過活性の周知の悪い結果の発生を促進させる。   Both chronic kidney disease and end-stage renal disease are characterized by increased sympathetic activation. In patients with end-stage renal disease, plasma levels of norepinephrine above average have been shown to be predictive of both overall death and death from cardiovascular disease. This is also true for patients suffering from diabetes or contrast nephropathy. There is strong evidence to suggest that sensory afferent signals originating from diseased kidneys are a major cause of initiating and sustaining increased central sympathetic outflow in this group of patients, including hypertension, left Promotes the occurrence of well-known adverse outcomes of chronic sympathetic overactivity such as ventricular hypertrophy, ventricular arrhythmias, sudden cardiac death, insulin resistance, diabetes, and metabolic syndrome.

(i)腎交感神経遠心性活性
腎臓への交感神経は、血管、傍糸球体装置、及び尿細管で終端する。腎交感神経の刺激は、増加したレニン分泌、増加したナトリウム(Na+)再吸収、及び腎血流の減少を引き起こす。腎機能のこれらの神経性調節構成要素は、高められた交感神経緊張によって特徴付けられる疾患状態においてかなり刺激され、高血圧患者の血圧の上昇に明らかに寄与する。腎交感神経の遠心性刺激の結果としての腎血流の減少及び糸球体濾過率は、患者の臨床的状態及び治療に伴って典型的に変化する臨床的過程での慢性心不全の進行性の合併症としての腎機能障害である心腎症候群における腎機能の損失の礎となりうる。腎交感神経の遠心性刺激の結果を妨げる薬理学的戦略は、中枢作用性交感神経遮断薬、ベータ遮断薬(レニン分泌を減らすことを意図される)、アンギオテンシン変換酵素阻害薬及び受容体拮抗薬(レニン分泌の結果としてのアンギオテンシンII及びアルドステロンの活性化作用をブロックすることを意図される)、及び利尿薬(腎交感神経を介するナトリウム及び水分貯留に拮抗することを意図される)を含む。しかしながら、現在の薬理学的戦略は、限られた有効性、コンプライアンス問題、副作用、及び他のものを含む顕著な制限を有する。
(I) Renal sympathetic efferent activity The sympathetic nerve to the kidney terminates in blood vessels, paraglomerular devices, and tubules. Renal sympathetic stimulation causes increased renin secretion, increased sodium (Na + ) reabsorption, and decreased renal blood flow. These neuromodulatory components of renal function are significantly stimulated in disease states characterized by elevated sympathetic tone and clearly contribute to increased blood pressure in hypertensive patients. Decreased renal blood flow and glomerular filtration rate as a result of efferent stimulation of the renal sympathetic nerve is a progressive complication of chronic heart failure in a clinical process that typically changes with the patient's clinical condition and treatment It can be the cornerstone of loss of renal function in cardiorenal syndrome, which is renal dysfunction as a disease. Pharmacological strategies that prevent the consequences of efferent stimulation of the renal sympathetic nerve include centrally acting sympathetic blockers, beta blockers (intended to reduce renin secretion), angiotensin converting enzyme inhibitors and receptor antagonists. (Intended to block the activating action of angiotensin II and aldosterone as a result of renin secretion), and diuretics (intended to antagonize sodium and water retention via renal sympathetic nerves). However, current pharmacological strategies have significant limitations including limited effectiveness, compliance issues, side effects, and others.

(ii)腎知覚求心性神経活性
腎臓は、腎知覚求心性神経を介して中枢神経系における一体の構造と通信する。幾つかの形態の「腎損傷」は、知覚求心性信号の活性化を誘起する可能性がある。例えば、腎虚血、一回拍出量又は腎血流の減少、又はアデノシン酵素の豊富さは、求心性神経通信の活性化をトリガする可能性がある。図13A及び図13Bに示すように、この求心性通信は、腎臓から脳へ又は一方の腎臓から他方の腎臓へ(中枢神経系を介して)のものである場合がある。これらの求心性信号は、中枢神経に統合され、結果的に増加した交感神経流出をもたらす可能性がある。この交感神経駆動は腎臓の方に向けられ、これにより、RAASを活性化させ、増加したレニン分泌、ナトリウム貯留、拍出量保持、及び血管収縮を誘起する。中枢交感神経過活性はまた、心臓及び末梢血管構造のような交感神経によって神経支配される他の器官及び身体構造に影響し、結果的に説明した交感神経活性化の悪影響をもたらし、そのうちの幾つかの態様はまた血圧の上昇に寄与する。
(Ii) Renal sensory afferent nerve activity The kidney communicates with a unitary structure in the central nervous system via the renal sensory afferent nerve. Some forms of “renal injury” may induce activation of sensory afferent signals. For example, renal ischemia, stroke volume or decreased renal blood flow, or adenosine enzyme abundance can trigger activation of afferent neurocommunication. As shown in FIGS. 13A and 13B, this afferent communication may be from the kidney to the brain or from one kidney to the other (via the central nervous system). These afferent signals can be integrated into the central nerve, resulting in increased sympathetic outflow. This sympathetic drive is directed towards the kidneys, thereby activating RAAS and inducing increased renin secretion, sodium retention, stroke retention, and vasoconstriction. Central sympathetic overactivity also affects other organs and body structures innervated by sympathetic nerves, such as the heart and peripheral vasculature, resulting in the negative effects of sympathetic activation described, some of which Such embodiments also contribute to an increase in blood pressure.

生理学は、したがって、(i)遠心性交感神経を伴う組織の変調は、不適切なレニン分泌、塩類貯留、及び腎血流の減少を減らすことになること、及び(ii)求心性知覚神経を伴う組織の変調は、視床下部後部並びに対側腎に対するその直接的影響を通じて増加した中枢交感神経緊張に関連する高血圧症及び他の疾患状態への全身性寄与を減らすことになることを示唆する。求心性腎除神経の中枢性降圧作用に加えて、心臓及び血管構造のような種々の他の交感神経により神経支配される器官への中枢交感神経流出の望ましい減少が予想される。   Physiology is therefore (i) modulation of tissue with efferent sympathetic nerves will reduce inappropriate renin secretion, salt retention, and decreased renal blood flow, and (ii) afferent sensory nerves. The accompanying tissue modulation suggests that the systemic contribution to hypertension and other disease states associated with increased central sympathetic tone through its posterior hypothalamic and its direct effects on the contralateral kidney will be reduced. In addition to the central antihypertensive effect of afferent renal denervation, a desirable reduction in central sympathetic outflow to organs innervated by various other sympathetic nerves such as the heart and vasculature is expected.

B.腎除神経の付加的な臨床的利点
上記で与えられるように、腎除神経は、高血圧症、代謝症候群、インスリン抵抗性、糖尿病、左心室肥大、慢性末期腎疾患、心不全における不適切な体液鬱滞、心腎症候群、及び突然死のような増加した全交感神経活性、特に、腎交感神経活性によって特徴付けられる幾つかの臨床的条件の治療においておそらく価値がある。求心性神経信号の減少は交感神経緊張/駆動の全身的減少に寄与するので、腎除神経はまた全身性交感神経亢進に関連する他の条件を治療するのに有用である可能性がある。したがって、腎除神経はまた、図11で識別されるものを含む交感神経によって神経支配される他の器官及び身体構造に役立つ可能性がある。例えば、前述のように、中枢交感神経駆動の減少は、代謝症候群及びII型糖尿病の人々を苦しめるインスリン抵抗性を低減させる可能性がある。さらに、骨粗鬆症の患者もまた、交感神経により活性化され、腎除神経に付随する交感神経駆動のダウンレギュレーションから恩恵を受ける可能性がある。
B. Additional clinical benefits of renal denervation As given above, renal denervation is associated with inadequate fluid retention in hypertension, metabolic syndrome, insulin resistance, diabetes, left ventricular hypertrophy, chronic end-stage renal disease, heart failure It is probably of value in the treatment of some clinical conditions characterized by increased total sympathetic activity, such as cardiorenal syndrome, and sudden death, especially renal sympathetic activity. Renal denervation may also be useful in treating other conditions associated with generalized sympathetic hypersensitivity, as a decrease in afferent nerve signals contributes to a systemic decrease in sympathetic tone / drive. Thus, renal denervation may also serve other organs and body structures innervated by sympathetic nerves, including those identified in FIG. For example, as noted above, a decrease in central sympathetic drive may reduce insulin resistance that afflicts people with metabolic syndrome and type II diabetes. Furthermore, osteoporotic patients can also be activated by sympathetic nerves and benefit from sympathetic drive down-regulation associated with renal denervation.

C.腎動脈への血管内アクセスの達成
本技術によれば、左及び/又は右腎動脈と密接に関連付けられる左及び/又は右腎神経叢RPの神経変調は、血管内アクセスを通じて達成されてもよい。図14Aが示すように、心臓の収縮によって動かされる血液は、心臓の左心室から大動脈によって運ばれる。大動脈は、胸郭を通して下行し、左腎動脈及び右腎動脈に分岐する。腎動脈の下で、大動脈は、左腸骨動脈及び右腸骨動脈に2つに分岐する。左腸骨動脈及び右腸骨動脈は、それぞれ左脚及び右脚を通して下行し、左大腿動脈及び右大腿動脈に合流する。
C. Achieving Intravascular Access to the Renal Artery According to the present technology, neuromodulation of the left and / or right renal plexus RP closely associated with the left and / or right renal artery may be achieved through intravascular access. . As FIG. 14A shows, blood moved by the contraction of the heart is carried by the aorta from the left ventricle of the heart. The aorta descends through the thorax and branches into the left and right renal arteries. Under the renal artery, the aorta branches in two into a left iliac artery and a right iliac artery. The left and right iliac arteries descend through the left and right legs, respectively, and join the left and right femoral arteries.

図14Bが示すように、血液は、静脈の中に集まり、心臓に戻り、大腿静脈を通して腸骨静脈に入り、そして下大静脈に入る。下大静脈は、左腎静脈と右腎静脈に分岐する。腎静脈よりも上で、下大静脈は、上行して心臓の右心房の中に血液を運ぶ。右心房から、血液は、右心室を通して肺の中に送り込まれ、そこで酸素を含有する。肺から、酸素を含んだ血液が左心房の中に運ばれる。左心房から、酸素を含んだ血液が左心室によって大動脈に戻るように運ばれる。   As FIG. 14B shows, blood collects in the vein, returns to the heart, enters the iliac vein through the femoral vein, and enters the inferior vena cava. The inferior vena cava branches into the left and right renal veins. Above the renal veins, the inferior vena cava ascends and carries blood into the right atrium of the heart. From the right atrium, blood is pumped through the right ventricle into the lungs where it contains oxygen. From the lungs, oxygenated blood is carried into the left atrium. From the left atrium, oxygenated blood is carried by the left ventricle back to the aorta.

後でより詳細に説明されることになるように、大腿動脈は、鼠径靱帯の中間点のすぐ下の大腿三角の底辺でアクセスされ及び挿入されてもよい。カテーテルは、このアクセス部位を通して大腿動脈の中に経皮的に挿入され、腸骨動脈及び大動脈を通過し、左腎動脈又は右腎動脈のいずれかの中に配置されてもよい。これは、それぞれの腎動脈及び/又は他の腎血管への最小限に侵襲的なアクセスを与える血管内経路を備える。   As will be described in more detail later, the femoral artery may be accessed and inserted at the base of the femoral triangle just below the midpoint of the inguinal ligament. The catheter may be inserted percutaneously into the femoral artery through this access site, passed through the iliac and aortic arteries, and placed in either the left or right renal artery. This comprises intravascular pathways that provide minimally invasive access to the respective renal arteries and / or other renal blood vessels.

手首、上腕、及び肩領域は、動脈系の中へのカテーテルの導入のための他の場所を提供する。例えば、橈骨動脈、上腕動脈、又は腋窩動脈のうちのいずれかのカテーテル法が、選ばれた場合に使用されてもよい。これらのアクセスポイントを介して導入されるカテーテルは、標準血管造影技術を用いて左側の鎖骨下動脈を通して(又は右側の鎖骨下動脈及び腕頭動脈を介して)、大動脈弓を通して、下行大動脈を下り、腎動脈の中に通されてもよい。   The wrist, upper arm, and shoulder regions provide other places for introduction of the catheter into the arterial system. For example, catheterization of either radial artery, brachial artery, or axillary artery may be used when selected. Catheters introduced through these access points descend the descending aorta through the left subclavian artery (or through the right subclavian artery and brachiocephalic artery) using standard angiography techniques, through the aortic arch. May be passed through the renal artery.

D.腎血管構造の特性及び特徴
左及び/又は右腎神経叢RPの神経変調は、血管内アクセスを通じて本技術に従って達成される場合があるので、腎血管構造の特性及び特徴が、こうした腎神経変調を達成するための装置、システム、及び方法の設計に対して制約を課す及び/又は情報提供する可能性がある。これらの特性及び特徴のうちの幾つかは、患者集団にわたって及び/又は時間にわたって特定の患者内で、並びに高血圧症、慢性腎疾患、血管疾患、末期腎疾患、インスリン抵抗性、糖尿病、代謝症候群などのような疾患状態に対応して変化する可能性がある。本明細書で解説される場合のこれらの特性及び特徴は、処置の有効性及び血管内デバイスの特異的設計に対する支持を有する可能性がある。関心ある特性は、例えば、材料特性/機械特性、空間特性、流体力学特性/血流力学特性及び/又は熱力学特性を含んでもよい。
D. Characteristics and characteristics of the renal vasculature Since neuromodulation of the left and / or right renal plexus RP may be achieved according to the present technology through intravascular access, the characteristics and characteristics of the renal vasculature may be There may be constraints and / or information on the design of the devices, systems, and methods to achieve. Some of these characteristics and features may include hypertension, chronic kidney disease, vascular disease, end-stage renal disease, insulin resistance, diabetes, metabolic syndrome, etc. across a patient population and / or within a particular patient May change in response to disease states such as These properties and characteristics as described herein may have support for treatment effectiveness and specific design of intravascular devices. Properties of interest may include, for example, material properties / mechanical properties, spatial properties, hydrodynamic properties / hemodynamic properties and / or thermodynamic properties.

既に説明したように、カテーテルは、最小限に侵襲的な血管内経路を介して左腎動脈又は右腎動脈のいずれかの中に経皮的に前進させられてもよい。しかしながら、最小限に侵襲的な腎動脈アクセスは困難な場合があり、例えば、カテーテルを用いて規定通りにアクセスされる幾つかの他の動脈と比べて、腎動脈は、しばしば極めて蛇行しているため、比較的小直径である場合があり、及び/又は比較的短い長さである場合がある。さらに、腎動脈アテローム性動脈硬化症は、多くの患者、特に心血管疾患の患者では一般的である。腎動脈の解剖学的構造はまた、患者から患者で大きく変化する可能性があり、これは最小限に侵襲的なアクセスをさらに難しくする。例えば、相対的蛇行性、直径、長さ、及び/又はアテローム硬化性プラーク負荷、並びに腎動脈が大動脈から分岐する分岐角(take−off angle)において顕著な患者間の変動が見られる場合がある。血管内アクセスを介して腎神経変調を達成するための装置、システム、及び方法は、腎動脈に最小限に侵襲的にアクセスするときの腎動脈の解剖学的構造及び患者集団にわたるその変化のこれらの及び他の態様を考慮すべきである。   As already described, the catheter may be advanced percutaneously into either the left renal artery or the right renal artery via a minimally invasive intravascular route. However, minimally invasive renal artery access can be difficult, for example, renal arteries are often very serpentine compared to some other arteries that are routinely accessed using a catheter. Thus, it may be a relatively small diameter and / or may be a relatively short length. In addition, renal artery atherosclerosis is common in many patients, particularly those with cardiovascular disease. The anatomy of the renal arteries can also vary greatly from patient to patient, which makes minimally invasive access more difficult. For example, there may be significant patient-to-patient variation in relative tortuousness, diameter, length, and / or atherosclerotic plaque burden, and the take-off angle at which the renal artery branches from the aorta . Devices, systems, and methods for achieving renal neuromodulation via intravascular access are those of the renal artery anatomy and its changes across the patient population when minimally invasively accessing the renal artery. These and other aspects should be considered.

腎動脈アクセスを難しくすることに加えて、腎臓の解剖学的構造の詳細はまた、装置と腎動脈の管腔表面又は壁との間の安定した接触の確立を難しくする。神経変調装置が電極のようなエネルギー送達要素を含むとき、エネルギー送達要素によって血管壁に適用される一貫した位置決め力及び適切な接触力は、予測可能性のために重要である。しかしながら、ナビゲーションは、腎動脈内の狭いスペース、並びに動脈の蛇行性によって妨げられる。さらに、一貫した接触の確立は、これらの因子が大動脈に対する腎動脈の大きな動きを引き起こす可能性があり、心臓周期は腎動脈を一時的に膨張させる可能性がある(すなわち、動脈の壁を脈動させる)ので、患者の動き、呼吸、及び/又は心臓周期によって難しくされる。   In addition to making renal artery access difficult, the details of the renal anatomy also make it difficult to establish a stable contact between the device and the luminal surface or wall of the renal artery. When the neuromodulation device includes an energy delivery element such as an electrode, the consistent positioning force and proper contact force applied by the energy delivery element to the vessel wall is important for predictability. However, navigation is hampered by the narrow space within the renal artery as well as the tortuous nature of the artery. Furthermore, the establishment of consistent contact can cause these factors to cause large movements of the renal arteries relative to the aorta, and the cardiac cycle can cause the renal arteries to temporarily expand (ie pulsate the walls of the arteries). So that it is made difficult by patient movement, breathing, and / or the cardiac cycle.

腎動脈にアクセスし、神経変調装置と動脈の管腔表面との間の安定した接触を円滑にした後であっても、動脈外膜の中の及び周りの神経は、神経変調装置を介して安全に変調されるべきである。腎動脈内から熱的治療を効果的に適用することは、こうした治療に関連する潜在的な臨床的合併症を考えると些細なことではない。例えば、腎動脈の内膜及び中膜は熱的損傷に非常に弱い。以下でより詳細に説明するように、その外膜から血管管腔を分離する内膜−中膜の厚さは、標的腎神経が動脈の管腔表面から数ミリメートル離れている場合があることを意味する。望ましくない程度に壁が凍結される、乾燥される、又は他の方法で潜在的に影響される程度に血管壁を過度に冷却する又は加熱することなく、標的腎神経を変調するのに十分なエネルギーが標的腎神経に送達される又は標的腎神経から熱が除去されるべきである。過度の加熱に関連する潜在的な臨床的合併症は、動脈を通して流れる血液の凝集から血栓を形成する。この血栓が腎梗塞を引き起こして腎臓への不可逆的な損傷を引き起こす可能性があるとすれば、腎動脈内からの熱的治療が注意深く適用されるべきである。したがって、治療中に腎動脈に存在する複雑な流体力学及び熱力学的条件、特に治療部位での熱伝達動力学に影響する可能性がある条件は、腎動脈内からエネルギー(例えば、加熱する熱エネルギー)を適用すること及び/又は組織から熱を除去すること(例えば、冷却する熱的条件)において重要な場合がある。   Even after accessing the renal arteries and smoothing stable contact between the neuromodulator and the luminal surface of the artery, the nerves in and around the outer arterial membrane can be routed through the neuromodulator. Should be safely modulated. Effective application of thermal therapy from within the renal arteries is not trivial given the potential clinical complications associated with such therapy. For example, the intima and media of the renal arteries are very vulnerable to thermal damage. As described in more detail below, the intima-media thickness that separates the vessel lumen from its adventitia indicates that the target renal nerve may be several millimeters away from the luminal surface of the artery. means. Enough to modulate the target renal nerve without overcooling or heating the vessel wall to the extent that the wall is frozen, dried, or otherwise potentially affected to an undesirable degree Energy should be delivered to or removed from the target kidney nerve. A potential clinical complication associated with excessive heating forms a thrombus from blood clots flowing through the artery. Given that this thrombus can cause renal infarction and irreversible damage to the kidney, thermal therapy from within the renal artery should be carefully applied. Thus, complex fluid dynamics and thermodynamic conditions present in the renal arteries during treatment, particularly conditions that can affect heat transfer dynamics at the treatment site, are energy (eg, heat to be heated) from within the renal arteries. Energy) and / or removing heat from the tissue (eg, thermal conditions for cooling).

治療の場所もまた臨床的有効性に影響を与える可能性があるので、神経変調装置はまた、腎動脈内のエネルギー送達要素の調節可能な位置決め及び再位置決めを可能にするように構成されるべきである。例えば、腎神経が腎動脈の周りに周方向に間隔をおいて位置する可能性があるとすれば、腎動脈内から全周治療を適用しようとするかもしれない。幾つかの状況では、連続的な周方向治療から生じる可能性がある全円損傷部は、潜在的に腎動脈狭窄症に関係する場合がある。したがって、本明細書で説明されるメッシュ構造を介する腎動脈の長手方向の寸法に沿ったより複雑な損傷部の形成及び/又は複数の治療場所への神経変調装置の再位置決めが望ましい場合がある。しかしながら、周方向アブレーションをもたらすことの利点は、腎動脈狭窄症の可能性又はリスクが或る実施形態で又は或る患者において緩和される場合があることに勝る可能性があり、周方向アブレーションをもたらすことが目標となる可能性があることに留意されたい。さらに、神経変調装置の可変の位置決め及び再位置決めは、腎動脈が特に蛇行している状況において又は或る場所での治療を困難なものにする腎動脈主血管を離れる近位分岐血管が存在する場合に有用となることが判明する可能性がある。腎動脈の中でのデバイスの操作はまた、デバイスによって腎動脈に与えられる機械的損傷を考慮すべきである。例えば、挿入すること、操作すること、屈曲部を通り抜けることなどによる、動脈の中でのデバイスの動きは、切開、穿孔、内膜露出、又は内部弾性膜の撹乱に寄与する可能性がある。   The neuromodulator should also be configured to allow adjustable positioning and repositioning of energy delivery elements within the renal arteries, as the location of treatment can also affect clinical efficacy It is. For example, if there is a possibility that the renal nerves are circumferentially spaced around the renal artery, one may attempt to apply full circumference therapy from within the renal artery. In some situations, a full circle injury that may result from continuous circumferential treatment may potentially be related to renal artery stenosis. Accordingly, it may be desirable to form more complex lesions along the longitudinal dimension of the renal artery via the mesh structure described herein and / or reposition the neuromodulator to multiple treatment locations. However, the advantages of providing circumferential ablation may outweigh the possibility or risk of renal artery stenosis may be alleviated in certain embodiments or in certain patients, Note that the goal may be to bring. In addition, the variable positioning and repositioning of the neuromodulator exists in a proximal branch vessel that leaves the main artery of the renal artery, making it difficult to treat in situations where the renal artery is particularly tortuous or at some location May prove useful in some cases. Manipulation of the device within the renal artery should also take into account the mechanical damage caused by the device to the renal artery. For example, movement of the device in the artery, such as by inserting, manipulating, or passing through a bend, can contribute to incision, perforation, intimal exposure, or disruption of the inner elastic membrane.

腎動脈を通した血流は、最小限の合併症を伴って又は合併症なしに短時間にわたって一時的に閉塞される場合がある。しかしながら、虚血のような腎臓への損傷を防ぐために、かなりの時間量にわたる閉塞は回避されるべきである。一斉の閉塞を回避すること、すなわち、閉塞が実施形態にとって有益である場合、閉塞の持続時間を例えば2〜5分に制限することが有益である可能性がある。   Blood flow through the renal arteries may be temporarily occluded for a short time with or without minimal complications. However, occlusion over a significant amount of time should be avoided to prevent damage to the kidney, such as ischemia. It may be beneficial to avoid simultaneous occlusion, i.e., if occlusion is beneficial to the embodiment, limit the duration of occlusion to e.g. 2-5 minutes.

(1)腎動脈介入、(2)血管壁に対する治療要素の一貫した且つ安定した位置決め、(3)血管壁にわたる治療の効果的な適用、(4)複数の治療場所を可能にするための治療装置の位置決め、潜在的には再位置決め、及び(5)血流閉塞の回避又は持続時間の制限、といった上記で説明された課題に基づいて、関心をもたれる場合がある腎血管構造の種々の独立した及び依存する特性は、例えば、(a)血管直径、血管長さ、内膜−中膜の厚さ、摩擦係数、及び蛇行性、(b)血管壁の伸展性、剛性、及び弾性率、(c)ピーク収縮期、拡張末期血液流速、並びに平均収縮期−拡張期ピーク血液流速、及び平均/最大体積血液流量、(d)血液の及び/又は血管壁の比熱容量、血液の及び/又は血管壁の熱伝導率、及び/又は血管壁治療部位を通過する血流の熱対流性及び/又は放射熱伝達、(e)呼吸、患者の動き、及び/又は血流の脈動性によって誘起される大動脈に対する腎動脈の動き、並びに(f)大動脈に対する腎動脈の分岐角を含む。これらの特性は、腎動脈に関してより詳細に説明されるであろう。しかしながら、腎神経変調を達成するのに用いられる装置、システム、及び方法に応じて、腎動脈のこうした特性はまた、設計特徴をガイドし及び/又は制約する可能性がある。   (1) renal artery intervention, (2) consistent and stable positioning of therapeutic elements relative to the vessel wall, (3) effective application of treatment across the vessel wall, (4) treatment to allow multiple treatment locations Based on the issues described above, such as device positioning, potentially repositioning, and (5) avoidance of blood flow obstruction or limited duration, various independence of renal vasculature that may be of interest The properties made and dependent include, for example, (a) vessel diameter, vessel length, intima-media thickness, coefficient of friction, and tortuousness, (b) vessel wall extensibility, stiffness, and modulus, (C) peak systole, end diastolic blood flow rate, and mean systolic-diastolic peak blood flow rate, and mean / maximum volume blood flow, (d) specific heat capacity of blood and / or vessel wall, blood and / or Vessel wall thermal conductivity and / or vessel wall treatment Convective and / or radiative heat transfer of blood flow through the limb, (e) movement of the renal artery relative to the aorta induced by breathing, patient movement, and / or pulsatile blood flow, and (f) aorta Including the bifurcation angle of the renal arteries. These properties will be described in more detail with respect to the renal arteries. However, depending on the devices, systems, and methods used to achieve renal neuromodulation, these properties of the renal arteries can also guide and / or constrain design features.

上で述べたように、腎動脈内に位置決めされる装置は、動脈の幾何学的形状に一致するべきである。腎動脈血管直径、DRAは、典型的には約2〜10mmの範囲内であり、このとき患者集団のほとんどは、約4mm〜約8mm、平均して約6mmのDRAを有する。大動脈/腎動脈連結部におけるその口とその遠位分岐部との間の腎動脈血管長さLRAは、一般に約5〜70mmの範囲内であり、患者集団の大部分は約20〜50mmの範囲内である。標的腎神経叢が腎動脈の外膜内に組み込まれるので、内膜−中膜の複合厚さ、IMT(すなわち、動脈の管腔表面から標的神経構造を収容する外膜までの半径方向外側の距離)もまた注目すべきであり、一般に約0.5〜2.5mmの範囲内であり、平均して約1.5mmである。治療の或る深さは標的神経性線維に達するのに重要であるが、治療は、腎静脈のような非標的組織及び解剖学的構造を避けるほど深すぎる(例えば、腎動脈の内壁から>5mm)べきではない。 As noted above, the device positioned within the renal artery should conform to the artery geometry. The renal artery vessel diameter, D RA, is typically in the range of about 2-10 mm, with most patient populations having a D RA of about 4 mm to about 8 mm, averaging about 6 mm. The renal artery vessel length L RA between its mouth and its distal bifurcation at the aorta / renal artery junction is generally in the range of about 5-70 mm, with the majority of the patient population in the range of about 20-50 mm. Is within. Since the target renal plexus is incorporated into the adventitial artery of the renal artery, the combined intima-media thickness, IMT (ie, radially outward from the luminal surface of the artery to the adventitia that houses the target nerve structure) The distance) is also noteworthy and is generally in the range of about 0.5-2.5 mm with an average of about 1.5 mm. Although a certain depth of treatment is important to reach the target nerve fibers, the treatment is too deep to avoid non-target tissues and anatomy such as renal veins (eg, from the inner wall of the renal artery> 5mm) should not.

関心をもたれる場合がある腎動脈の付加的な特性は、呼吸及び/又は血流脈動性によって誘起される大動脈に対する腎臓の動きの度合いである。腎動脈の遠位端に位置する患者の腎臓は、呼吸の偏位運動に伴い頭蓋の方に4インチほども動く可能性がある。これは、大動脈と腎臓とを結ぶ腎動脈に大きな動きを与え、これにより、神経変調装置から、呼吸サイクル中の熱的治療要素と血管壁との間の接触を維持するために剛性と可撓性の独自のバランスを必要とする可能性がある。さらに、腎動脈と大動脈との間の分岐角は患者間で大きく変化する可能性があり、且つまた、例えば、腎臓の動きに起因して患者内で動的に変化する可能性がある。分岐角は、一般に約30°〜135°の範囲内である場合がある。   An additional characteristic of the renal artery that may be of interest is the degree of kidney movement relative to the aorta induced by respiration and / or blood flow pulsatility. The patient's kidney, located at the distal end of the renal artery, can move as much as 4 inches toward the skull with respiratory excursion. This gives great motion to the renal arteries that connect the aorta to the kidneys, thereby allowing the neuromodulator to be rigid and flexible to maintain contact between the thermal treatment element and the vessel wall during the respiratory cycle. May require a unique balance of sex. Furthermore, the bifurcation angle between the renal arteries and the aorta can vary greatly between patients and can also change dynamically within the patient due to, for example, kidney movement. The branch angle may generally be in the range of about 30 ° to 135 °.

V.結言
本技術の幾つかの実施形態の上記の詳細な説明は、網羅的なものとなること又は本技術を上記で開示された正確な形態に限定することを意図されない。本技術の具体的な実施形態及び例は例証する目的で上記で説明されるが、本技術の範囲内で当該技術分野の当業者が認識するであろう種々の等価な修正が可能である。例えば、ステップは所与の順序で提示されるが、代替的な実施形態は、ステップを異なる順序で行ってもよい。本明細書で説明される種々の実施形態はまた、さらなる実施形態を提供するために組み合わされてもよい。
V. Conclusion The above detailed description of some embodiments of the technology is not intended to be exhaustive or to limit the technology to the precise form disclosed above. While specific embodiments and examples of the technology have been described above for purposes of illustration, various equivalent modifications are possible within the scope of the technology that would be recognized by one of ordinary skill in the art. For example, although the steps are presented in a given order, alternative embodiments may perform the steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.

上記から、本技術の具体的な実施形態が例証する目的で本明細書で説明されているが、本技術の幾つかの実施形態の説明を不必要に不明瞭にするのを避けるために、周知の構造及び機能は詳細には図示又は説明されていないことが理解されるであろう。文脈が許せば、単数形又は複数形の用語はまたそれぞれ複数形又は単数形の用語を含む場合がある。例えば、前述のように、本明細書での開示の多くはエネルギー送達要素24(例えば、電極)を単数形で説明するが、この開示は2つ以上のエネルギー送達要素又は電極を除外しないことを理解されたい。   From the foregoing, while specific embodiments of the technology have been described herein for purposes of illustration, in order to avoid unnecessarily obscuring the description of some embodiments of the technology, It will be understood that well-known structures and functions are not shown or described in detail. Where the context allows, singular or plural terms may also include plural or singular terms, respectively. For example, as noted above, much of the disclosure herein describes the energy delivery element 24 (eg, an electrode) in the singular, but this disclosure does not exclude more than one energy delivery element or electrode. I want you to understand.

さらに、「又は」という言葉は、2つ以上のアイテムのリストの中の他のアイテムを除く単一のアイテムだけを意味するように明確に限定されない限り、このようなリストの中での「又は」の使用は、(a)リストの中の任意の単一のアイテム、(b)リストの中のアイテムのすべて、又は(c)リストの中のアイテムの任意の組合せを含むものとして解釈されるべきである。さらに、「備えている」という用語は、あらゆるより大きい数の同じ特徴及び/又は付加的なタイプの他の特徴が除外されないように、少なくとも列挙される特徴(単数又は複数)を含むことを指すために全体を通して用いられる。例証する目的で具体的な実施形態が本明細書で説明されているが、本技術から逸脱することなく種々の修正がなされてもよいことも分かるであろう。さらに、本技術の或る実施形態に関連する利点がこれらの実施形態との関連で説明されているが、他の実施形態がまたこうした利点を呈してもよく、すべての実施形態が必ずしも本技術の範囲内に入るようにこうした利点を呈する必要はない。したがって、開示及び関連する技術は、明確に図示されない又は本明細書で説明されない他の実施形態を包含することができる。   Further, the word “or” means “or” in such a list unless it is specifically limited to mean only a single item excluding other items in the list of two or more items. Is interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of items in the list. Should. Further, the term “comprising” is meant to include at least the listed feature (s) so that any larger number of the same features and / or other features of the additional type are not excluded. Used throughout. While specific embodiments have been described herein for purposes of illustration, it will be appreciated that various modifications may be made without departing from the technology. Further, although advantages associated with certain embodiments of the technology have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and all embodiments are not necessarily subject to the technology. It is not necessary to exhibit these advantages within the scope of Accordingly, the disclosure and related techniques may encompass other embodiments that are not explicitly illustrated or described herein.

本開示は1つまたは複数の以下の付記により定義され得る。
1.
腎神経変調のためのシステムであって、
近位部及び遠位部を有する細長いシャフトを備えるカテーテルであり、前記遠位部が腎血管内に位置決めされるように構成されるエネルギー送達要素を備える、カテーテルと、
前記エネルギー送達要素に結合され、前記エネルギー送達要素を介して前記腎血管の壁の近傍の標的神経性線維にエネルギーを送達するように構成される、エネルギー源と、
を備え、
前記エネルギー源が、
エネルギー送達を第1の時間期間にわたって所定の第1の電力レベルに増加させ、
前記第1の電力レベルでのエネルギー送達を第2の時間期間にわたって維持し、
前記第2の時間期間後に前記温度値がプリセット閾値温度よりも低い場合にエネルギー送達を第2の所定の電力レベルに増加させる、
ように構成される構成要素を備え、
前記エネルギー源がさらに、
前記カテーテル、前記エネルギー源、及び前記エネルギー送達要素を用いて行われた完了した治療に対応する治療データ・セットを取得し、
前記完了した治療の評価が所定の範囲内であった可能性があるか否かを判定するために1つ又は複数の基準に照らして前記治療データ・セットを評価し、
前記完了した治療の評価が所定の範囲内であった可能性があるかどうかについての指標を提供する、
ように構成される構成要素を備える、システム。
2.
前記治療データ・セットが第1の完了した治療に対応する第1の治療データ・セットであり、前記システムがさらに、
前記第1の治療データの前記評価と、前記第1の完了した治療の前記評価が前記所定の範囲内であったかどうかについての前記指標に少なくとも部分的に基づいて、前記第1の所定の電力レベル、前記第1の時間期間、前記第2の時間期間、及び/又は前記第2の所定の電力レベルを修正し、
前記修正された第1の所定の電力レベル、前記修正された第1の時間期間、前記修正された第2の時間期間、及び/又は前記修正された第2の所定の電力レベルを用いて第2の治療を行い、
第2の完了した治療に対応する第2の治療データ・セットを取得する、
ように構成される、付記1に記載のシステム。
3.
前記治療データ・セットが、温度ベースの測定、インピーダンスベースの測定、血流ベースの測定、又は移動ベースの判定のうちの1つ又は複数に関係したデータを含む、付記1に記載のシステム。
4.
前記治療データ・セットが、指定された時間にわたる温度の変化、最高温度、最高平均温度、最低温度、所定の又は計算された温度に対する所定の又は計算された時間における温度、指定された時間にわたる平均温度、最大血流、最小血流、所定の又は計算された血流に対する所定の又は計算された時間における血流、経時的な平均血流、最大インピーダンス、最小インピーダンス、所定の又は計算されたインピーダンスに対する所定の又は計算された時間におけるインピーダンス、指定された時間にわたるインピーダンスの変化、又は指定された時間にわたる温度の変化に対するインピーダンスの変化に関係した1つ又は複数の測定値を含む、付記1に記載のシステム。
5.
前記エネルギー送達要素が第1のエネルギー送達要素を含み、前記カテーテルが、前記エネルギー源に結合され且つ前記標的神経性線維にエネルギーを送達するように構成される第2のエネルギー送達部をさらに備え、
前記治療データ・セットが、前記第1のエネルギー送達要素のインピーダンスベースの測定に関係した第1のデータ・セット及び前記第2のエネルギー送達要素のインピーダンスベースの測定に関係した第2のデータ・セットを備える、
付記1に記載のシステム。
6.
1つ又は複数の基準に照らして前記治療データ・セットを評価することが、前記第1のデータ・セットを前記第2のデータ・セットと比較することを含む、付記5に記載のシステム。
7.
前記治療データ・セットを評価することが、前記完了した治療が成功したかどうかを判定するのに用いられるスコアを生成することを含む、付記1に記載のシステム。
8.
前記治療データ・セットを評価することが、線形判別分析を行うことを含む、付記1に記載のシステム。
9.
前記線形判別分析が、前記完了した治療が成功したかどうかを判定するのに用いられるスコアを生成する、付記8に記載のシステム。
10.
ディスプレイ画面をさらに備え、前記提供される指標がディスプレイ画面上に表示されるメッセージを含む、付記1に記載のシステム。
11.
前記治療部位又は前記電極のインピーダンスを測定するためのインピーダンスセンサをさらに備え、前記エネルギー源がさらに、選択された時間期間にわたってインピーダンス測定値をリアルタイムでトラックし、前記リアルタイムインピーダンス測定値を前記ディスプレイ画面上に表示するように構成される、付記10に記載のシステム。
12.
命令を収容するコンピュータ可読記憶媒体であって、コンピュータによって実行されるときに、
カテーテルによって支えられるエネルギー送達要素へのエネルギー送達を増加させるステップであり、前記エネルギー送達が第1の時間期間にわたって所定の第1の電力レベルに増加され、前記エネルギー送達要素がヒト患者の腎血管の壁の近傍の標的神経性線維にエネルギーを送達するように位置決めされる、ステップと、
前記第1の電力レベルでのエネルギー送達を第2の時間期間にわたって維持するステップと、
前記第2の時間期間後に前記温度値がプリセット閾値温度よりも低い場合にエネルギー送達を第2の所定の電力レベルに増加させるステップと、
前記エネルギー送達要素を用いて行われた完了した治療に対応する治療データ・セットを取得するステップと、
前記完了した治療の評価が所定の範囲内であった可能性があるか否かを判定するために1つ又は複数の基準に照らして前記治療データ・セットを評価するステップと、
前記完了した治療の評価が所定の範囲内であったかどうかについての指標を提供するステップと、
を含む動作を行う、コンピュータ可読記憶媒体。
13.
前記治療データ・セットが、温度ベースの測定、インピーダンスベースの測定、血流ベースの測定、又は移動ベースの判定のうちの1つ又は複数に関係したデータを含む、付記12に記載のコンピュータ可読記憶媒体。
14.
前記動作パラメータが、温度、時間、インピーダンス、電力、血流、流速、体積流量、血圧、又は心拍のうちの1つ又は複数を含む、付記12に記載のコンピュータ可読記憶媒体。
15.
前記治療データ・セットが、指定された時間にわたる温度の変化、最高温度、最高平均温度、最低温度、所定の又は計算された温度に対する所定の又は計算された時間における温度、指定された時間にわたる平均温度、最大血流、最小血流、所定の又は計算された血流に対する所定の又は計算された時間における血流、経時的な平均血流、最大インピーダンス、最小インピーダンス、所定の又は計算されたインピーダンスに対する所定の又は計算された時間におけるインピーダンス、指定された時間にわたるインピーダンスの変化、又は指定された時間にわたる温度の変化に対するインピーダンスの変化に関係した1つ又は複数の測定値を含む、付記12に記載のコンピュータ可読記憶媒体。
16.
前記治療データ・セットが第1の完了した治療に対応する第1の治療データ・セットを含み、前記動作が、
前記第1の治療データの前記評価と、前記第1の完了した治療の前記評価が所定の範囲内であったかどうかについての前記指標に少なくとも部分的に基づいて、前記第1の所定の電力レベル、前記第1の時間期間、前記第2の時間期間、及び/又は前記第2の所定の電力レベルを修正すること、
前記修正された第1の所定の電力レベル、前記修正された第1の時間期間、前記修正された第2の時間期間、及び/又は前記修正された第2の所定の電力レベルを用いて第2の治療を行うこと、
第2の完了した治療に対応する第2の治療データ・セットを取得すること、
をさらに含む、付記12に記載のコンピュータ可読記憶媒体。
17.
前記治療データ・セットを評価することが、前記完了した治療が前記所定の範囲内であったかどうか又は前記完了した治療が期待通りに進まなかったか否かを判定するのに用いられるスコアを生成することを含む、付記12に記載のコンピュータ可読記憶媒体。
18.
前記治療データ・セットを評価することが、線形判別分析を行うことを含む、付記12に記載のコンピュータ可読記憶媒体。
19.
前記線形判別分析が、前記完了した治療が前記所定の範囲内であったかどうかを判定するのに用いられるスコアを生成する、付記17に記載のコンピュータ可読記憶媒体。
20.
前記提供される指標が、前記完了した治療を施すのに用いられるシステムのディスプレイ画面上に表示されるメッセージを含む、付記12に記載のコンピュータ可読記憶媒体。
21.
前記完了した治療が前記所定の範囲内であったかどうかについての指標を提供することが、
前記治療の評価が前記所定の範囲内であった場合に前記ディスプレイ画面上に第1のメッセージを表示すること、
前記治療の評価が治療が期待通りに進まなかったことを示した場合に前記ディスプレイ画面上に第2の異なるメッセージを表示すること、
を含む、付記20に記載のコンピュータ可読記憶媒体。
22.
動作パラメータが所定の範囲外である場合にエネルギー送達を所定の第2の電力レベルに増加させることが、第1のエネルギー送達要素と第2のエネルギー送達要素からのインピーダンス値における差異が所定の範囲外である場合にエネルギー送達を所定の第2の電力レベルに増加させることを含む、付記12に記載のコンピュータ可読記憶媒体。
The present disclosure may be defined by one or more of the following supplementary notes.
1.
A system for renal neuromodulation,
A catheter comprising an elongate shaft having a proximal portion and a distal portion, the catheter comprising an energy delivery element configured to be positioned within a renal vessel;
An energy source coupled to the energy delivery element and configured to deliver energy via the energy delivery element to a target neural fiber proximate to the wall of the renal blood vessel;
With
The energy source is
Increasing energy delivery to a predetermined first power level over a first time period;
Maintaining energy delivery at the first power level for a second time period;
Increasing energy delivery to a second predetermined power level if the temperature value is below a preset threshold temperature after the second time period;
Comprising components configured as
The energy source further comprises:
Obtaining a treatment data set corresponding to a completed treatment performed using the catheter, the energy source, and the energy delivery element;
Evaluating the treatment data set against one or more criteria to determine whether the evaluation of the completed treatment may have been within a predetermined range;
Providing an indication as to whether the assessment of the completed treatment may have been within a predetermined range;
A system comprising components configured as follows.
2.
The treatment data set is a first treatment data set corresponding to a first completed treatment, and the system further comprises:
The first predetermined power level based at least in part on the evaluation of the first treatment data and the indicator as to whether the evaluation of the first completed treatment was within the predetermined range. Modifying the first time period, the second time period, and / or the second predetermined power level;
Using the modified first predetermined power level, the modified first time period, the modified second time period, and / or the modified second predetermined power level; 2 treatments,
Obtaining a second treatment data set corresponding to the second completed treatment;
The system of claim 1 configured as follows.
3.
The system of claim 1, wherein the treatment data set includes data related to one or more of temperature-based measurements, impedance-based measurements, blood flow-based measurements, or movement-based decisions.
4).
The treatment data set is a temperature change over a specified time, a maximum temperature, a maximum average temperature, a minimum temperature, a temperature at a predetermined or calculated time relative to a predetermined or calculated temperature, an average over a specified time Temperature, maximum blood flow, minimum blood flow, blood flow at a predetermined or calculated time relative to a predetermined or calculated blood flow, average blood flow over time, maximum impedance, minimum impedance, predetermined or calculated impedance The one or more measurements related to the impedance change for a predetermined or calculated time relative to the impedance, the impedance change over a specified time, or the temperature change over a specified time System.
5.
The energy delivery element includes a first energy delivery element, and the catheter further comprises a second energy delivery portion coupled to the energy source and configured to deliver energy to the target neural fiber;
The treatment data set is a first data set related to an impedance based measurement of the first energy delivery element and a second data set related to an impedance based measurement of the second energy delivery element. Comprising
The system according to appendix 1.
6).
The system of claim 5, wherein evaluating the treatment data set against one or more criteria comprises comparing the first data set to the second data set.
7).
The system of claim 1, wherein evaluating the treatment data set includes generating a score that is used to determine whether the completed treatment was successful.
8).
The system of claim 1, wherein evaluating the treatment data set comprises performing a linear discriminant analysis.
9.
The system of claim 8, wherein the linear discriminant analysis generates a score that is used to determine whether the completed treatment was successful.
10.
The system of claim 1, further comprising a display screen, wherein the provided indicator includes a message displayed on the display screen.
11.
Further comprising an impedance sensor for measuring the impedance of the treatment site or the electrode, wherein the energy source further tracks impedance measurements in real time over a selected time period, and the real time impedance measurements are displayed on the display screen The system of claim 10, wherein the system is configured to display.
12
A computer readable storage medium containing instructions, when executed by a computer,
Increasing energy delivery to an energy delivery element supported by a catheter, wherein the energy delivery is increased to a predetermined first power level over a first time period, wherein the energy delivery element is in a renal vessel of a human patient Positioned to deliver energy to target neural fibers in the vicinity of the wall; and
Maintaining energy delivery at the first power level for a second time period;
Increasing energy delivery to a second predetermined power level if the temperature value is lower than a preset threshold temperature after the second time period;
Obtaining a treatment data set corresponding to a completed treatment performed using the energy delivery element;
Evaluating the treatment data set against one or more criteria to determine whether the evaluation of the completed treatment may have been within a predetermined range;
Providing an indication as to whether the assessment of the completed therapy was within a predetermined range;
A computer-readable storage medium that performs operations including:
13.
The computer readable storage of claim 12, wherein the treatment data set includes data related to one or more of a temperature based measurement, an impedance based measurement, a blood flow based measurement, or a movement based determination. Medium.
14
The computer-readable storage medium of claim 12, wherein the operating parameter comprises one or more of temperature, time, impedance, power, blood flow, flow rate, volume flow rate, blood pressure, or heart rate.
15.
The treatment data set is a temperature change over a specified time, a maximum temperature, a maximum average temperature, a minimum temperature, a temperature at a predetermined or calculated time relative to a predetermined or calculated temperature, an average over a specified time Temperature, maximum blood flow, minimum blood flow, blood flow at a predetermined or calculated time relative to a predetermined or calculated blood flow, average blood flow over time, maximum impedance, minimum impedance, predetermined or calculated impedance 15. The one or more measurements related to the impedance change at a predetermined or calculated time relative to a change in impedance over a specified time, or a change in impedance over a specified time over temperature. Computer readable storage medium.
16.
The treatment data set includes a first treatment data set corresponding to a first completed treatment;
The first predetermined power level based at least in part on the evaluation of the first treatment data and the indicator as to whether the evaluation of the first completed treatment was within a predetermined range; Modifying the first time period, the second time period, and / or the second predetermined power level;
Using the modified first predetermined power level, the modified first time period, the modified second time period, and / or the modified second predetermined power level; Two treatments,
Obtaining a second treatment data set corresponding to a second completed treatment;
The computer-readable storage medium according to appendix 12, further comprising:
17.
Evaluating the treatment data set generates a score that is used to determine whether the completed treatment was within the predetermined range or whether the completed treatment did not proceed as expected. The computer-readable storage medium according to appendix 12, including:
18.
The computer readable storage medium of claim 12, wherein evaluating the treatment data set comprises performing a linear discriminant analysis.
19.
18. The computer readable storage medium of claim 17, wherein the linear discriminant analysis generates a score that is used to determine whether the completed treatment was within the predetermined range.
20.
13. The computer readable storage medium of claim 12, wherein the provided indication includes a message displayed on a display screen of a system used to deliver the completed treatment.
21.
Providing an indication as to whether the completed treatment was within the predetermined range;
Displaying a first message on the display screen when the treatment rating is within the predetermined range;
Displaying a second different message on the display screen when the evaluation of the therapy indicates that the therapy did not proceed as expected;
The computer-readable storage medium according to appendix 20, comprising:
22.
Increasing energy delivery to a predetermined second power level when the operating parameter is outside the predetermined range results in a difference in impedance values from the first energy delivery element and the second energy delivery element being within the predetermined range. 13. The computer readable storage medium of claim 12, comprising increasing energy delivery to a predetermined second power level when outside.

Claims (20)

腎神経変調のためのシステムであって、
近位部及び遠位部を有する細長いシャフトを備えたカテーテルであり、前記遠位部が腎血管内に位置決めできるように構成されたエネルギー送達要素を備えることを特徴とするカテーテルと、
前記エネルギー送達要素に結合するように構成され、前記エネルギー送達要素を介して前記腎血管の壁の近傍の標的神経性線維にエネルギーを送達するように構成されたエネルギー源と、
を備え、
前記エネルギー源が、
エネルギー送達を制御する第1構成要素であって、
エネルギー送達を第1の時間期間にわたって所定の第1の電力レベルに増加させ、
前記第1の電力レベルでのエネルギー送達を第2の時間期間にわたって維持し、
前記第2の時間期間後に温度値がプリセット閾値温度よりも低い場合にエネルギー送達を第2の所定の電力レベルに増加させる、
ように構成されていることを特徴とする第1構成要素を備え、
前記エネルギー源がさらに、
第2構成要素であって、
治療サイクルが完了した後に、
前記カテーテル、前記エネルギー源、及び前記エネルギー送達要素を用いて行われた完了した治療サイクルに対応する治療データ・セットを取得し、
前記完了した治療サイクルの評価が所定の範囲内であった可能性があるか否かを判定するために1つ又は複数の基準に照らして前記治療データ・セットを評価し、
前記完了した治療サイクルの評価が所定の範囲内であった可能性があるかどうかについての指標を提供する、
ように構成されていることを特徴とする第2構成要素を備えることを特徴とし、
前記治療データ・セットが第1の完了した治療サイクルに対応する第1の治療データ・セットであり、前記システムがさらに、
前記第1の治療データの前記評価と、前記第1の完了した治療サイクルの前記評価が前記所定の範囲内であったかどうかについての前記指標に少なくとも部分的に基づいて、前記第1の所定の電力レベル、前記第1の時間期間、前記第2の時間期間、及び/又は前記第2の所定の電力レベルを修正し、
前記修正された第1の所定の電力レベル、前記修正された第1の時間期間、前記修正された第2の時間期間、及び/又は前記修正された第2の所定の電力レベルを用いて第2の治療サイクルを行い、
第2の完了した治療サイクルに対応する第2の治療データ・セットを取得する、
ように構成されていることを特徴とするシステム。
A system for renal neuromodulation,
A catheter comprising an elongate shaft having a proximal portion and a distal portion, the catheter comprising an energy delivery element configured to be positioned within a renal vessel;
An energy source configured to couple to the energy delivery element and configured to deliver energy via the energy delivery element to a target neural fiber proximate to a wall of the renal vessel;
With
The energy source is
A first component for controlling energy delivery comprising:
Increasing energy delivery to a predetermined first power level over a first time period;
Maintaining energy delivery at the first power level for a second time period;
Increasing energy delivery to a second predetermined power level if the temperature value is below a preset threshold temperature after the second time period;
Comprising a first component characterized by being configured as follows:
The energy source further comprises:
A second component,
After the treatment cycle is complete,
Obtaining a treatment data set corresponding to a completed treatment cycle performed using the catheter, the energy source, and the energy delivery element;
Evaluating the treatment data set against one or more criteria to determine whether the evaluation of the completed treatment cycle may have been within a predetermined range;
Providing an indication as to whether the assessment of the completed treatment cycle may have been within a predetermined range;
Characterized in that it comprises a second component characterized by being configured as follows :
The treatment data set is a first treatment data set corresponding to a first completed treatment cycle, and the system further comprises:
The first predetermined power based at least in part on the evaluation of the first treatment data and the indicator as to whether the evaluation of the first completed treatment cycle was within the predetermined range. Modifying a level, the first time period, the second time period, and / or the second predetermined power level;
Using the modified first predetermined power level, the modified first time period, the modified second time period, and / or the modified second predetermined power level; 2 treatment cycles,
Obtaining a second treatment data set corresponding to a second completed treatment cycle;
A system characterized by being configured as follows .
前記治療データ・セットが、温度に関する測定値、インピーダンスに関する測定値、血流に関する測定値のうちの1つ又は複数に関係したデータを含むことを特徴とする請求項1に記載のシステム。
The system of claim 1 wherein the treatment data set, characterized measurements for temperature, measurements of impedance, to include data related to one or more of the measures of blood flow.
前記治療データ・セットが、指定された時間にわたる温度の変化、最高温度、最高平均温度、最低温度、所定の又は計算された温度に対する所定の又は計算された時間における温度、指定された時間にわたる平均温度、最大血流、最小血流、所定の又は計算された血流に対する所定の又は計算された時間における血流、経時的な平均血流、最大インピーダンス、最小インピーダンス、所定の又は計算されたインピーダンスに対する所定の又は計算された時間におけるインピーダンス、指定された時間にわたるインピーダンスの変化、又は指定された時間にわたる温度の変化に対するインピーダンスの変化に関係した1つ又は複数の測定値を含むことを特徴とする請求項1に記載のシステム。
The treatment data set is a temperature change over a specified time, a maximum temperature, a maximum average temperature, a minimum temperature, a temperature at a predetermined or calculated time relative to a predetermined or calculated temperature, an average over a specified time Temperature, maximum blood flow, minimum blood flow, blood flow at a predetermined or calculated time relative to a predetermined or calculated blood flow, average blood flow over time, maximum impedance, minimum impedance, predetermined or calculated impedance characterized in that it comprises a impedance, change in impedance over a specified time, or one or more measurements related impedance change with respect to the specified time over temperature change in predetermined or calculated time for The system of claim 1.
前記エネルギー送達要素が第1のエネルギー送達要素を含み、前記カテーテルが、前記エネルギー源に結合され且つ前記標的神経性線維にエネルギーを送達するように構成される第2のエネルギー送達部をさらに備え、
前記治療データ・セットが、前記第1のエネルギー送達要素のインピーダンスベースの測定に関係した第1のデータ・セット及び前記第2のエネルギー送達要素のインピーダンスベースの測定に関係した第2のデータ・セットを備えることを特徴とする請求項1に記載のシステム。
The energy delivery element includes a first energy delivery element, and the catheter further comprises a second energy delivery portion coupled to the energy source and configured to deliver energy to the target neural fiber;
The treatment data set is a first data set related to an impedance based measurement of the first energy delivery element and a second data set related to an impedance based measurement of the second energy delivery element. the system according to claim 1, characterized in that it comprises a.
1つ又は複数の基準に照らして前記治療データ・セットを評価することが、前記第1のデータ・セットを前記第2のデータ・セットと比較することを含むことを特徴とする請求項に記載のシステム。
5. The method of claim 4 , wherein evaluating the treatment data set against one or more criteria comprises comparing the first data set to the second data set. The described system.
前記治療データ・セットを評価することが、前記完了した治療サイクルが成功したかどうかを判定するのに用いられるスコアを生成することを含むことを特徴とする請求項1に記載のシステム。
The system of claim 1 wherein evaluating the therapeutic data set, which comprises generating a score used to determine whether the completed treatment cycle was successful.
前記治療データ・セットを評価することが、線形判別分析を行うことを含むことを特徴とする請求項1に記載のシステム。
The system of claim 1 to evaluate the therapeutic data set, characterized in that it comprises performing a linear discriminant analysis.
前記線形判別分析が、前記完了した治療サイクルが成功したかどうかを判定するのに用いられるスコアを生成することを特徴とする請求項に記載のシステム。
The system of claim 7, wherein the linear discriminant analysis, and generating a score used to determine whether the completed treatment cycle was successful.
ディスプレイ画面をさらに備え、前記提供される指標がディスプレイ画面上に表示されるメッセージを含むことを特徴とする請求項1に記載のシステム。
The system of claim 1, further comprising a display screen, indicator said is provided, characterized in that it comprises a message displayed on the display screen.
前記治療部位又は前記電極のインピーダンスを測定するためのインピーダンスセンサをさらに備え、前記エネルギー源がさらに、選択された時間期間にわたってインピーダンス測定値をリアルタイムでトラックし、前記リアルタイムインピーダンス測定値を前記ディスプレイ画面上に表示するように構成されることを特徴とする請求項に記載のシステム。
Further comprising an impedance sensor for measuring the impedance of the treatment site or the electrode, wherein the energy source further tracks impedance measurements in real time over a selected time period, and the real-time impedance measurements are displayed on the display screen. the system of claim 9, wherein the configured to display on.
命令を収容するコンピュータ可読記憶媒体であって、コンピュータによって実行されるときに、
カテーテルによって支えられるエネルギー送達要素へのエネルギー送達を増加させるステップであり、前記エネルギー送達が第1の時間期間にわたって所定の第1の電力レベルに増加され、前記エネルギー送達要素がヒト患者の腎血管の壁の近傍の標的神経性線維にエネルギーを送達するように位置決めされる、ステップと、
前記第1の電力レベルでのエネルギー送達を第2の時間期間にわたって維持するステップと、
前記第2の時間期間後に前記温度値がプリセット閾値温度よりも低い場合にエネルギー送達を第2の所定の電力レベルに増加させるステップと、
前記エネルギー送達要素を用いて行われた完了した治療サイクルに対応する治療データ・セットを取得するステップと、
前記完了した治療サイクルの評価が所定の範囲内であった可能性があるか否かを判定するために1つ又は複数の基準に照らして前記治療データ・セットを評価するステップと、
前記完了した治療サイクルの評価が所定の範囲内であったかどうかについての指標を提供するステップと、
を含む動作を行うことを特徴とし、
前記治療データ・セットが第1の完了した治療サイクルに対応する第1の治療データ・セットを含み、前記動作が、
前記第1の治療データの前記評価と、前記第1の完了した治療サイクルの前記評価が所定の範囲内であったかどうかについての前記指標に少なくとも部分的に基づいて、前記第1の所定の電力レベル、前記第1の時間期間、前記第2の時間期間、及び/又は前記第2の所定の電力レベルを修正すること、
前記修正された第1の所定の電力レベル、前記修正された第1の時間期間、前記修正された第2の時間期間、及び/又は前記修正された第2の所定の電力レベルを用いて第2の治療サイクルを行うこと、
第2の完了した治療サイクルに対応する第2の治療データ・セットを取得すること、
をさらに含むことを特徴とするコンピュータ可読記憶媒体。
A computer readable storage medium containing instructions, when executed by a computer,
Increasing energy delivery to an energy delivery element supported by a catheter, wherein the energy delivery is increased to a predetermined first power level over a first time period, wherein the energy delivery element is in a renal vessel of a human patient Positioned to deliver energy to target neural fibers in the vicinity of the wall; and
Maintaining energy delivery at the first power level for a second time period;
Increasing energy delivery to a second predetermined power level if the temperature value is lower than a preset threshold temperature after the second time period;
Obtaining a treatment data set corresponding to a completed treatment cycle performed using the energy delivery element;
Evaluating the treatment data set against one or more criteria to determine whether the evaluation of the completed treatment cycle may have been within a predetermined range;
Providing an indication as to whether the evaluation of the completed treatment cycle was within a predetermined range;
It is characterized by performing operations including
The treatment data set includes a first treatment data set corresponding to a first completed treatment cycle;
The first predetermined power level based at least in part on the evaluation of the first treatment data and the indication as to whether the evaluation of the first completed treatment cycle was within a predetermined range. Modifying the first time period, the second time period, and / or the second predetermined power level;
Using the modified first predetermined power level, the modified first time period, the modified second time period, and / or the modified second predetermined power level; Performing two treatment cycles,
Obtaining a second treatment data set corresponding to a second completed treatment cycle;
A computer-readable storage medium further comprising:
前記治療データ・セットが、温度ベースの測定、インピーダンスベースの測定、血流ベースの測定のうちの1つ又は複数に関係したデータを含むことを特徴とする請求項11に記載のコンピュータ可読記憶媒体。
It said treatment data set, the measurement of temperature based, impedance based measurement, computer-readable storage medium of claim 11, characterized in that it comprises data relating to one or more of the blood flow based measurements .
前記動作パラメータが、温度、時間、インピーダンス、電力、血流、流速、体積流量、血圧、又は心拍のうちの1つ又は複数を含むことを特徴とする請求項11に記載のコンピュータ可読記憶媒体。
Said operating parameters, temperature, time, impedance, power, blood flow, flow rate, volume flow rate, the computer-readable medium according to claim 11, characterized in that it comprises a blood pressure, or one or more of the heart beat.
前記治療データ・セットが、指定された時間にわたる温度の変化、最高温度、最高平均温度、最低温度、所定の又は計算された温度に対する所定の又は計算された時間における温度、指定された時間にわたる平均温度、最大血流、最小血流、所定の又は計算された血流に対する所定の又は計算された時間における血流、経時的な平均血流、最大インピーダンス、最小インピーダンス、所定の又は計算されたインピーダンスに対する所定の又は計算された時間におけるインピーダンス、指定された時間にわたるインピーダンスの変化、又は指定された時間にわたる温度の変化に対するインピーダンスの変化に関係した1つ又は複数の測定値を含むことを特徴とする請求項11に記載のコンピュータ可読記憶媒体。
The treatment data set is a temperature change over a specified time, a maximum temperature, a maximum average temperature, a minimum temperature, a temperature at a predetermined or calculated time relative to a predetermined or calculated temperature, an average over a specified time Temperature, maximum blood flow, minimum blood flow, blood flow at a predetermined or calculated time relative to a predetermined or calculated blood flow, average blood flow over time, maximum impedance, minimum impedance, predetermined or calculated impedance characterized in that it comprises a impedance, change in impedance over a specified time, or one or more measurements related impedance change with respect to the specified time over temperature change in predetermined or calculated time for The computer-readable storage medium according to claim 11 .
前記治療データ・セットを評価することが、前記完了した治療サイクルが前記所定の範囲内であったかどうか又は前記完了した治療サイクルが期待通りに進まなかったか否かを判定するのに用いられるスコアを生成することを含むことを特徴とする請求項11に記載のコンピュータ可読記憶媒体。
Evaluating the treatment data set generates a score that is used to determine whether the completed treatment cycle was within the predetermined range or whether the completed treatment cycle did not proceed as expected. The computer-readable storage medium according to claim 11 , further comprising:
前記治療データ・セットを評価することが、線形判別分析を行うことを含むことを特徴とする請求項11に記載のコンピュータ可読記憶媒体。
Wherein evaluating the therapeutic data set, a computer readable storage medium of claim 11, characterized in that it comprises performing a linear discriminant analysis.
線形判別分析が、前記完了した治療サイクルが前記所定の範囲内であったかどうかを判定するのに用いられるスコアを生成することを特徴とする請求項15に記載のコンピュータ可読記憶媒体。
The computer-readable storage medium of claim 15 linear discriminant analysis, the complete therapeutic cycle and generates a score that is used to determine whether the was within a predetermined range.
前記提供される指標が、前記完了した治療サイクルを施すのに用いられるシステムのディスプレイ画面上に表示されるメッセージを含むことを特徴とする請求項11に記載のコンピュータ可読記憶媒体。
The computer-readable storage medium of claim 11, wherein the indicator is provided, characterized in that it comprises a message displayed on a display screen of the system used to apply the treatment cycle described above completed.
前記完了した治療サイクルが前記所定の範囲内であったかどうかについての指標を提供することが、
前記完了した治療サイクルの評価が前記所定の範囲内であった場合に前記ディスプレイ画面上に第1のメッセージを表示すること、
前記完了した治療サイクルの評価が治療サイクルが期待通りに進まなかったことを示した場合に前記ディスプレイ画面上に第2の異なるメッセージを表示すること、
を含むことを特徴とする請求項18に記載のコンピュータ可読記憶媒体。
Providing an indication as to whether the completed treatment cycle was within the predetermined range;
Displaying a first message on the display screen when the evaluation of the completed treatment cycle is within the predetermined range;
Displaying a second different message on the display screen when an evaluation of the completed treatment cycle indicates that the treatment cycle has not progressed as expected;
The computer-readable storage medium of claim 18, characterized in that it comprises a.
動作パラメータが所定の範囲外である場合にエネルギー送達を所定の第2の電力レベルに増加させることが、第1のエネルギー送達要素と第2のエネルギー送達要素からのインピーダンス値における差異が所定の範囲外である場合にエネルギー送達を所定の第2の電力レベルに増加させることを含むことを特徴とする請求項11に記載のコンピュータ可読記憶媒体。

Increasing energy delivery to a predetermined second power level when the operating parameter is outside the predetermined range results in a difference in impedance values from the first energy delivery element and the second energy delivery element being within the predetermined range. the computer-readable storage medium of claim 11, characterized in that it comprises increasing the energy delivered to a predetermined second power level if it is outside.

JP2013536748A 2010-10-25 2011-10-25 Devices, systems, and methods for neuromodulation therapy evaluation and feedback Active JP6046041B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US40653110P 2010-10-25 2010-10-25
US61/406,531 2010-10-25
US201161528108P 2011-08-26 2011-08-26
US201161528091P 2011-08-26 2011-08-26
US61/528,108 2011-08-26
US61/528,091 2011-08-26
US201161528684P 2011-08-29 2011-08-29
US61/528,684 2011-08-29
PCT/US2011/057740 WO2012061153A1 (en) 2010-10-25 2011-10-25 Devices, systems and methods for evaluation and feedback of neuromodulation treatment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016223636A Division JP6267774B2 (en) 2010-10-25 2016-11-16 Devices, systems, and methods for neuromodulation therapy evaluation and feedback

Publications (2)

Publication Number Publication Date
JP2013544130A JP2013544130A (en) 2013-12-12
JP6046041B2 true JP6046041B2 (en) 2016-12-14

Family

ID=45973616

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013536748A Active JP6046041B2 (en) 2010-10-25 2011-10-25 Devices, systems, and methods for neuromodulation therapy evaluation and feedback
JP2016223636A Active JP6267774B2 (en) 2010-10-25 2016-11-16 Devices, systems, and methods for neuromodulation therapy evaluation and feedback
JP2017246629A Active JP6522099B2 (en) 2010-10-25 2017-12-22 Device, system, and method for neuromodulation therapy evaluation and feedback

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016223636A Active JP6267774B2 (en) 2010-10-25 2016-11-16 Devices, systems, and methods for neuromodulation therapy evaluation and feedback
JP2017246629A Active JP6522099B2 (en) 2010-10-25 2017-12-22 Device, system, and method for neuromodulation therapy evaluation and feedback

Country Status (6)

Country Link
US (7) US9066720B2 (en)
EP (2) EP2632373B1 (en)
JP (3) JP6046041B2 (en)
CN (2) CN107007348B (en)
TW (1) TWI513451B (en)
WO (1) WO2012061153A1 (en)

Families Citing this family (344)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8016823B2 (en) 2003-01-18 2011-09-13 Tsunami Medtech, Llc Medical instrument and method of use
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US8444636B2 (en) 2001-12-07 2013-05-21 Tsunami Medtech, Llc Medical instrument and method of use
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
DE202004021947U1 (en) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US8579892B2 (en) 2003-10-07 2013-11-12 Tsunami Medtech, Llc Medical system and method of use
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
EP2021846B1 (en) 2006-05-19 2017-05-03 Koninklijke Philips N.V. Ablation device with optimized input power profile
EP2842604A1 (en) 2006-06-28 2015-03-04 Medtronic Ardian Luxembourg S.à.r.l. Systems for thermally-induced renal neuromodulation
AU2007310988B2 (en) 2006-10-18 2013-08-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
CA2666663C (en) 2006-10-18 2016-02-09 Minnow Medical, Inc. System for inducing desirable temperature effects on body tissue
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US8721632B2 (en) 2008-09-09 2014-05-13 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8768469B2 (en) 2008-08-08 2014-07-01 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
CA2957010C (en) 2008-09-26 2017-07-04 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
EP2349440B1 (en) 2008-10-07 2019-08-21 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
CN102271603A (en) 2008-11-17 2011-12-07 明诺医学股份有限公司 Selective accumulation of energy with or without knowledge of tissue topography
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US8903488B2 (en) 2009-05-28 2014-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
CA2779386C (en) 2009-10-30 2018-09-11 Sound Interventions, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
JP2013523318A (en) 2010-04-09 2013-06-17 べシックス・バスキュラー・インコーポレイテッド Power generation and control equipment for tissue treatment
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
WO2012051433A2 (en) 2010-10-13 2012-04-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
EP2632373B1 (en) 2010-10-25 2018-07-18 Medtronic Ardian Luxembourg S.à.r.l. System for evaluation and feedback of neuromodulation treatment
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
EP2637590B1 (en) 2010-11-09 2022-04-13 Aegea Medical, Inc. Positioning apparatus for delivering vapor to the uterus
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
KR102000302B1 (en) 2011-05-27 2019-07-15 엠씨10, 인크 Electronic, optical and/or mechanical apparatus and systems and methods for fabricating same
CN103813745B (en) 2011-07-20 2016-06-29 波士顿科学西美德公司 In order to visualize, be directed at and to melt transcutaneous device and the method for nerve
AU2012287189B2 (en) 2011-07-22 2016-10-06 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
JP6320920B2 (en) 2011-08-05 2018-05-09 エムシーテン、インコーポレイテッド Balloon catheter device and sensing method using sensing element
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
WO2013052967A1 (en) 2011-10-07 2013-04-11 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
WO2013059202A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
WO2013070724A1 (en) 2011-11-08 2013-05-16 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
WO2013074813A1 (en) 2011-11-15 2013-05-23 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
WO2013086461A1 (en) 2011-12-09 2013-06-13 Metavention, Inc. Therapeutic neuromodulation of the hepatic system
JP5544046B2 (en) * 2011-12-12 2014-07-09 オリンパスメディカルシステムズ株式会社 Treatment system and method of operating a treatment system
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
EP2793689B1 (en) 2011-12-23 2023-05-10 Vessix Vascular, Inc. Tissue remodeling systems
CN104135958B (en) 2011-12-28 2017-05-03 波士顿科学西美德公司 By the apparatus and method that have the new ablation catheter modulation nerve of polymer ablation
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
AU2012362524B2 (en) 2011-12-30 2018-12-13 Relievant Medsystems, Inc. Systems and methods for treating back pain
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20130296840A1 (en) * 2012-05-01 2013-11-07 Medtronic Ablation Frontiers Llc Systems and methods for detecting tissue contact during ablation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9226402B2 (en) 2012-06-11 2015-12-29 Mc10, Inc. Strain isolation structures for stretchable electronics
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
WO2014007871A1 (en) * 2012-07-05 2014-01-09 Mc10, Inc. Catheter device including flow sensing
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
EP2895095A2 (en) 2012-09-17 2015-07-22 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
WO2014047411A1 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
WO2014047454A2 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
CN105008949A (en) 2012-10-09 2015-10-28 Mc10股份有限公司 Conformal electronics integrated with apparel
EP2906135A2 (en) 2012-10-10 2015-08-19 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
JP6195625B2 (en) 2012-11-05 2017-09-13 リリーバント メドシステムズ、インコーポレイテッド System and method for creating a curved pathway through bone and regulating nerves within the bone
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
JP6470185B2 (en) 2013-01-24 2019-02-13 タイラートン インターナショナル ホールディングス インコーポレイテッドTylerton International Holdings Inc. Body structure imaging
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
CN105188848B (en) 2013-03-14 2019-12-10 瑞蔻医药有限公司 ultrasound-based neuromodulation system
CN105074050B (en) 2013-03-14 2019-02-15 瑞蔻医药有限公司 The method for being plated or coated with ultrasonic transducer
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
CN105228546B (en) 2013-03-15 2017-11-14 波士顿科学国际有限公司 Utilize the impedance-compensated medicine equipment and method that are used to treat hypertension
US20140275993A1 (en) * 2013-03-15 2014-09-18 Medtronic Ardian Luxembourg S.a.r.I. Devices, Systems, and Methods for Specialization of Neuromodulation Treatment
US9987070B2 (en) 2013-03-15 2018-06-05 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9706647B2 (en) 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
CN105473089A (en) 2013-06-05 2016-04-06 麦特文申公司 Modulation of targeted nerve fibers
WO2014205388A1 (en) 2013-06-21 2014-12-24 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
CN105473092B (en) 2013-06-21 2019-05-17 波士顿科学国际有限公司 The medical instrument for renal nerve ablation with rotatable shaft
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
EP3016605B1 (en) 2013-07-01 2019-06-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
CN105377169B (en) 2013-07-11 2019-04-19 波士顿科学国际有限公司 Device and method for neuromodulation
CN105377170A (en) 2013-07-11 2016-03-02 波士顿科学国际有限公司 Medical device with stretchable electrode assemblies
EP3049007B1 (en) 2013-07-19 2019-06-12 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
JP2016527959A (en) 2013-07-22 2016-09-15 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Renal nerve ablation medical device
EP3024405A1 (en) 2013-07-22 2016-06-01 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
KR20160040670A (en) 2013-08-05 2016-04-14 엠씨10, 인크 Flexible temperature sensor including conformable electronics
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
EP4049605A1 (en) 2013-08-22 2022-08-31 Boston Scientific Scimed Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
EP3041425B1 (en) 2013-09-04 2022-04-13 Boston Scientific Scimed, Inc. Radio frequency (rf) balloon catheter having flushing and cooling capability
CN105744985B (en) 2013-09-08 2020-04-07 泰勒顿国际公司 Detection of cardiac zones of controlled attenuation
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
CN105530885B (en) 2013-09-13 2020-09-22 波士顿科学国际有限公司 Ablation balloon with vapor deposited covering
JP2016532468A (en) 2013-10-07 2016-10-20 エムシー10 インコーポレイテッドMc10,Inc. Conformal sensor system for detection and analysis
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
EP3057488B1 (en) 2013-10-14 2018-05-16 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
EP3057520A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. Medical device balloon
WO2015057961A1 (en) 2013-10-18 2015-04-23 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10433902B2 (en) 2013-10-23 2019-10-08 Medtronic Ardian Luxembourg S.A.R.L. Current control methods and systems
CN105658163B (en) 2013-10-25 2020-08-18 波士顿科学国际有限公司 Embedded thermocouple in denervation flexible circuit
US10098685B2 (en) 2013-10-30 2018-10-16 Medtronic Cryocath Lp Feedback system for cryoablation of cardiac tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
CA2930740A1 (en) 2013-11-22 2015-05-28 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
EP3089686A4 (en) * 2014-01-03 2017-11-22 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
EP3092661A4 (en) 2014-01-06 2017-09-27 Mc10, Inc. Encapsulated conformal electronic systems and devices, and methods of making and using the same
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
WO2015104672A2 (en) 2014-01-10 2015-07-16 Tylerton International Holdings Inc. Detection of scar and fibrous cardiac zones
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
CN106572881B (en) 2014-02-04 2019-07-26 波士顿科学国际有限公司 Substitution of the heat sensor on bipolar electrode is placed
CN106572875A (en) * 2014-02-07 2017-04-19 沃夫医药公司 Methods and systems for ablation of the renal pelvis
WO2015134588A1 (en) 2014-03-04 2015-09-11 Mc10, Inc. Multi-part flexible encapsulation housing for electronic devices
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9999463B2 (en) 2014-04-14 2018-06-19 NeuroMedic, Inc. Monitoring nerve activity
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10398501B2 (en) * 2014-04-24 2019-09-03 St. Jude Medical, Cardiology Division, Inc. Ablation systems including pulse rate detector and feedback mechanism and methods of use
US10610292B2 (en) 2014-04-25 2020-04-07 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems, and methods for monitoring and/or controlling deployment of a neuromodulation element within a body lumen and related technology
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
CN106794031B (en) 2014-05-22 2020-03-10 埃杰亚医疗公司 Integrity testing method and apparatus for delivering vapor to uterus
US9993290B2 (en) 2014-05-22 2018-06-12 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US12114911B2 (en) * 2014-08-28 2024-10-15 Angiodynamics, Inc. System and method for ablating a tissue site by electroporation with real-time pulse monitoring
EP4389044A3 (en) 2014-10-01 2024-09-11 Medtronic Ardian Luxembourg S.à.r.l. Systems and methods for evaluating neuromodulation therapy via hemodynamic responses
US9899330B2 (en) 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
US10297572B2 (en) 2014-10-06 2019-05-21 Mc10, Inc. Discrete flexible interconnects for modules of integrated circuits
USD781270S1 (en) 2014-10-15 2017-03-14 Mc10, Inc. Electronic device having antenna
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
SG11201703943VA (en) 2014-11-19 2017-06-29 Advanced Cardiac Therapeutics Inc Ablation devices, systems and methods of using a high-resolution electrode assembly
CA2967829A1 (en) 2014-11-19 2016-05-26 Advanced Cardiac Therapeutics, Inc. Systems and methods for high-resolution mapping of tissue
EP3220841B1 (en) 2014-11-19 2023-01-25 EPiX Therapeutics, Inc. High-resolution mapping of tissue with pacing
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10667736B2 (en) 2014-12-17 2020-06-02 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing sympathetic nervous system tone for neuromodulation therapy
US11534239B2 (en) 2014-12-22 2022-12-27 Biosense Webster (Israel) Ltd. Systems and method or uses of ablating cardiac tissue
US10376308B2 (en) 2015-02-05 2019-08-13 Axon Therapies, Inc. Devices and methods for treatment of heart failure by splanchnic nerve ablation
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
EP3258837A4 (en) 2015-02-20 2018-10-10 Mc10, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
WO2016140961A1 (en) 2015-03-02 2016-09-09 Mc10, Inc. Perspiration sensor
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US20170007157A1 (en) * 2015-07-08 2017-01-12 Rainbow Medical Ltd. Electrical-signal-based electrode-tissue contact detection
WO2017015000A1 (en) 2015-07-17 2017-01-26 Mc10, Inc. Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers
US10709384B2 (en) 2015-08-19 2020-07-14 Mc10, Inc. Wearable heat flux devices and methods of use
US20170086909A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Frequency agile generator for a surgical instrument
US10300371B2 (en) 2015-10-01 2019-05-28 Mc10, Inc. Method and system for interacting with a virtual environment
EP3359031A4 (en) 2015-10-05 2019-05-22 Mc10, Inc. Method and system for neuromodulation and stimulation
US10207110B1 (en) 2015-10-13 2019-02-19 Axon Therapies, Inc. Devices and methods for treatment of heart failure via electrical modulation of a splanchnic nerve
US10285751B2 (en) * 2015-10-16 2019-05-14 Biosense Webster (Israel) Ltd. System and method for controlling catheter power based on renal ablation response
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
DE102015226846A1 (en) * 2015-12-30 2017-07-06 Olympus Winter & Ibe Gmbh Electrosurgical system for generating high-frequency alternating current
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
CN109069064B (en) 2016-02-19 2022-05-13 埃杰亚医疗公司 Method and apparatus for determining the integrity of a body cavity
CN115175014A (en) 2016-02-22 2022-10-11 美谛达解决方案公司 On-body sensor system
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10673280B2 (en) 2016-02-22 2020-06-02 Mc10, Inc. System, device, and method for coupled hub and sensor node on-body acquisition of sensor information
SG11201807618QA (en) 2016-03-15 2018-10-30 Epix Therapeutics Inc Improved devices, systems and methods for irrigated ablation
US20170273732A1 (en) * 2016-03-24 2017-09-28 Boston Scientific Scimed Inc. Regional flow sensor on cardiac catheter
WO2017184705A1 (en) 2016-04-19 2017-10-26 Mc10, Inc. Method and system for measuring perspiration
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US20190192033A1 (en) * 2016-05-05 2019-06-27 BestBrian Ltd. Neurofeedback systems and methods
WO2017199240A2 (en) 2016-05-18 2017-11-23 Pythagoras Medical Ltd. Helical catheter
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
US10905329B2 (en) 2016-06-09 2021-02-02 Biosense Webster (Israel) Ltd. Multi-function conducting elements for a catheter
EP4209190A1 (en) 2016-06-27 2023-07-12 Galvanize Therapeutics, Inc. System comprising a generator and a catheter with an electrode for treating a lung passageway
US11154354B2 (en) 2016-07-29 2021-10-26 Axon Therapies, Inc. Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
US20180092689A1 (en) * 2016-10-04 2018-04-05 St. Jude Medical, Cardiology Division, Inc. Methods and devices for estimating tip-tissue coupling of an ablation catheter tip
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11400205B2 (en) 2016-11-23 2022-08-02 Biosense Webster (Israel) Ltd. Balloon-in-balloon irrigation balloon catheter
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
WO2018200865A1 (en) 2017-04-27 2018-11-01 Epix Therapeutics, Inc. Determining nature of contact between catheter tip and tissue
US12029545B2 (en) 2017-05-30 2024-07-09 Biosense Webster (Israel) Ltd. Catheter splines as location sensors
US11109878B2 (en) 2017-10-30 2021-09-07 Cilag Gmbh International Surgical clip applier comprising an automatic clip feeding system
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
WO2019097296A1 (en) 2017-11-17 2019-05-23 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and associated methods for neuromodulation with enhanced nerve targeting
WO2019118976A1 (en) 2017-12-17 2019-06-20 Axon Therapies, Inc. Methods and devices for endovascular ablation of a splanchnic nerve
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
WO2019133144A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US12127729B2 (en) 2017-12-28 2024-10-29 Cilag Gmbh International Method for smoke evacuation for surgical hub
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US20190201042A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Determining the state of an ultrasonic electromechanical system according to frequency shift
US20190206569A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of cloud based data analytics for use with the hub
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US20190201139A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Communication arrangements for robot-assisted surgical platforms
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US12096916B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US10595887B2 (en) 2017-12-28 2020-03-24 Ethicon Llc Systems for adjusting end effector parameters based on perioperative information
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11154352B2 (en) * 2018-01-23 2021-10-26 Biosense Webster (Israel) Ltd. Power controlled short duration ablation with varying temperature limits
US11717343B2 (en) 2018-01-24 2023-08-08 Medtronic Ireland Manufacturing Unlimited Company Systems, devices, and associated methods for neuromodulation in heterogeneous tissue environments
US10959669B2 (en) 2018-01-24 2021-03-30 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing the efficacy of neuromodulation therapy
US12082917B2 (en) 2018-01-24 2024-09-10 Medtronic Ireland Manufacturing Unlimited Company Systems, devices, and methods for assessing efficacy of renal neuromodulation therapy
US11253189B2 (en) 2018-01-24 2022-02-22 Medtronic Ardian Luxembourg S.A.R.L. Systems, devices, and methods for evaluating neuromodulation therapy via detection of magnetic fields
US10786306B2 (en) 2018-01-24 2020-09-29 Medtronic Ardian Luxembourg S.A.R.L. Denervation therapy
EP4406567A3 (en) 2018-01-26 2024-10-09 Axon Therapies, Inc. Methods and devices for endovascular ablation of a splanchnic nerve
US11589915B2 (en) 2018-03-08 2023-02-28 Cilag Gmbh International In-the-jaw classifier based on a model
US11457944B2 (en) 2018-03-08 2022-10-04 Cilag Gmbh International Adaptive advanced tissue treatment pad saver mode
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11633120B2 (en) 2018-09-04 2023-04-25 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for assessing efficacy of renal neuromodulation therapy
CN113038895A (en) * 2018-09-14 2021-06-25 伯恩森斯韦伯斯特(以色列)有限责任公司 System for ablating cardiac tissue
US11071585B2 (en) 2018-09-14 2021-07-27 Biosense Webster (Israel) Ltd. Systems and methods of ablating cardiac tissue
WO2020053831A1 (en) * 2018-09-14 2020-03-19 Biosense Webster (Israel) Ltd. Systems for ablating cardiac tissue
CN109793568B (en) * 2019-01-30 2020-12-01 苏州信迈医疗器械有限公司 Multi-electrode ablation device
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11779391B2 (en) * 2019-02-28 2023-10-10 Biosense Webster (Israel) Ltd. Forming a lesion based on pre-determined amount of abaltive energy vs lesion size curve
JP2020146208A (en) * 2019-03-13 2020-09-17 オムロンヘルスケア株式会社 Medical treatment apparatus, medical treatment system, medical treatment apparatus control method, and medical treatment apparatus control program
EP3917426B1 (en) 2019-06-20 2023-09-06 Axon Therapies, Inc. Devices for endovascular ablation of a splanchnic nerve
DE102019121375A1 (en) * 2019-08-07 2021-02-25 Aesculap Ag Device and method for determining a switch-off time of a medical instrument
EP4027912A4 (en) 2019-09-12 2023-08-16 Relievant Medsystems, Inc. Systems and methods for tissue modulation
CN114929136A (en) * 2019-10-31 2022-08-19 美敦力阿迪安卢森堡有限公司 Modulation of renal denervation energy delivery
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US20210196357A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with asynchronous energizing electrodes
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11413090B2 (en) 2020-01-17 2022-08-16 Axon Therapies, Inc. Methods and devices for endovascular ablation of a splanchnic nerve
CN113941088A (en) * 2020-07-17 2022-01-18 纽罗西格玛公司 Pulse generator for trigeminal stimulation
US12082876B1 (en) 2020-09-28 2024-09-10 Relievant Medsystems, Inc. Introducer drill
US11974803B2 (en) 2020-10-12 2024-05-07 Biosense Webster (Israel) Ltd. Basket catheter with balloon
CN112244993B (en) * 2020-10-31 2022-03-15 杭州诺生医疗科技有限公司 Radio frequency ablation instrument
EP4268150A1 (en) 2020-12-22 2023-11-01 Relievant Medsystems, Inc. Prediction of candidates for spinal neuromodulation
CN112791262B (en) * 2020-12-31 2023-02-03 杭州堃博生物科技有限公司 Radio frequency operation data regulation and control method and device and injection pump
US11957852B2 (en) 2021-01-14 2024-04-16 Biosense Webster (Israel) Ltd. Intravascular balloon with slidable central irrigation tube
CN114191707B (en) * 2021-12-15 2022-12-23 广东花至美容科技有限公司 Skin impedance-based cosmetic instrument radio frequency power control method and equipment
CN114052896A (en) * 2021-12-17 2022-02-18 苏州润迈德医疗科技有限公司 Ablation catheter effect parameter evaluation method and evaluation device
CN117679147A (en) * 2022-09-02 2024-03-12 杭州堃博生物科技有限公司 Method and system for automatically adjusting power

Family Cites Families (792)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2130758A (en) 1935-06-01 1938-09-20 E J Rose Mfg Company Of Califo Electrode for diathermy treatment and the like
US2276995A (en) 1938-01-22 1942-03-17 A J Ginsberg Electrotherapy
US2276996A (en) 1940-11-30 1942-03-17 A J Ginsberg Non-radio-interfering therapeutic apparatus
US3181535A (en) 1957-10-04 1965-05-04 Diapulse Mfg Corp Of America Athermapeutic apparatus
US3043310A (en) 1959-04-24 1962-07-10 Diapulse Mfg Corp Of America Treatment head for athermapeutic apparatus
US3127895A (en) 1962-07-02 1964-04-07 Dynapower System Corp Therapeutic pulse generation and control circuit
US3270746A (en) 1963-08-26 1966-09-06 Dynapower Systems Corp High-performance electrotherapeutic treatment head
US3329149A (en) 1964-10-28 1967-07-04 Dynapower Systems Corp Of Cali Supporting arm for electrotherapeutic treatment head
US3563246A (en) 1967-04-24 1971-02-16 Intelectron Corp Method and apparatus for improving neural performance in human subjects by electrotherapy
US3522811A (en) 1969-02-13 1970-08-04 Medtronic Inc Implantable nerve stimulator and method of use
SE346468B (en) 1969-02-24 1972-07-10 Lkb Medical Ab
US3670737A (en) 1970-07-02 1972-06-20 Diapulse Corp Of America Ultra-short wave athermapeutic apparatus
US3760812A (en) 1971-03-19 1973-09-25 Univ Minnesota Implantable spiral wound stimulation electrodes
US3774620A (en) 1971-06-14 1973-11-27 Nemectron Gmbh Electromedicinal apparatus for interference current therapy
US3895639A (en) 1971-09-07 1975-07-22 Rodler Ing Hans Apparatus for producing an interference signal at a selected location
US3800802A (en) 1972-01-07 1974-04-02 Int Medical Electronics Ltd Short-wave therapy apparatus
US3794022A (en) 1972-06-30 1974-02-26 E Nawracaj Dual oscillator, variable pulse duration electrotherapeutic device
US3803463A (en) 1972-07-10 1974-04-09 J Cover Weapon for immobilization and capture
US3897789A (en) 1973-09-13 1975-08-05 Stanley J Blanchard Acupuncture apparatus
US3894532A (en) 1974-01-17 1975-07-15 Acupulse Inc Instruments for transcutaneous and subcutaneous investigation and treatment
US3911930A (en) 1974-03-01 1975-10-14 Stimulation Tech Method and structure of preventing and treating ileus, and reducing acute pain by electrical pulse stimulation
US4011861A (en) 1974-04-03 1977-03-15 Case Western Reserve University Implantable electric terminal for organic tissue
US4055190A (en) 1974-12-19 1977-10-25 Michio Tany Electrical therapeutic apparatus
US3952751A (en) 1975-01-08 1976-04-27 W. Denis Kendall High-performance electrotherapeutic apparatus
US4026300A (en) 1975-03-14 1977-05-31 Liberty Mutual Method and apparatus for interfacing to nerves
US3987790A (en) 1975-10-01 1976-10-26 Alza Corporation Osmotically driven fluid dispenser
US4105017A (en) 1976-11-17 1978-08-08 Electro-Biology, Inc. Modification of the growth repair and maintenance behavior of living tissue and cells by a specific and selective change in electrical environment
US4266532A (en) 1976-11-17 1981-05-12 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4315503A (en) 1976-11-17 1982-02-16 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4071033A (en) 1976-12-20 1978-01-31 Nawracaj Edward P Electrotherapeutic device with modulated dual signals
US4141365A (en) 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4360019A (en) 1979-02-28 1982-11-23 Andros Incorporated Implantable infusion device
US4305115A (en) 1979-03-14 1981-12-08 Harry H. Leveen Electrostatic shield
US4692147A (en) 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4405305A (en) 1980-10-27 1983-09-20 University Of Utah Research Foundation Subcutaneous peritoneal injection catheter
US4379462A (en) 1980-10-29 1983-04-12 Neuromed, Inc. Multi-electrode catheter assembly for spinal cord stimulation
CS226514B1 (en) 1981-01-28 1984-04-16 Petr Ing Csc Slovak Apparatus for stimulating live tissues
US4454883A (en) 1982-02-16 1984-06-19 Therafield Holdings Limited Electrotherapeutic apparatus
US4530840A (en) 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4467808A (en) 1982-09-17 1984-08-28 Biolectron, Inc. Method for preventing and treating osteoporosis in a living body by using electrical stimulation non-invasively
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
FR2541902B1 (en) 1983-03-04 1986-02-07 Cofrem International Sa THERMAL THERAPEUTIC APPARATUS
AU577549B2 (en) 1983-09-14 1988-09-29 Jacob Zabara Neurocybernetic prothesis
JPS60100516A (en) 1983-11-04 1985-06-04 Takeda Chem Ind Ltd Preparation of sustained release microcapsule
US4816016A (en) 1984-03-16 1989-03-28 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4618600A (en) 1984-04-19 1986-10-21 Biotechnology Research Associates, J.V. Novel polypeptide diuretic/vasodilators
JPS6023729A (en) 1984-05-31 1985-02-06 Matsushita Electric Ind Co Ltd Water controlling device
US4587975A (en) 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4674482A (en) 1984-09-12 1987-06-23 Irt, Inc. Pulse electro-magnetic field therapy device with auto bias circuit
US4602624A (en) 1984-10-11 1986-07-29 Case Western Reserve University Implantable cuff, method of manufacture, and method of installation
US4649936A (en) 1984-10-11 1987-03-17 Case Western Reserve University Asymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking
US4608985A (en) 1984-10-11 1986-09-02 Case Western Reserve University Antidromic pulse generating wave form for collision blocking
US4865845A (en) 1986-03-21 1989-09-12 Alza Corporation Release rate adjustment of osmotic or diffusional delivery devices
US4709698A (en) 1986-05-14 1987-12-01 Thomas J. Fogarty Heatable dilation catheter
US5014699A (en) 1986-05-23 1991-05-14 Trustees Of The University Of Pennsylvania Electromagnetic method and apparatus for healing living tissue
US4998532A (en) 1986-05-23 1991-03-12 Lti Biomedical, Inc. Portable electro-therapy system
US4715852A (en) 1986-07-21 1987-12-29 Eaton Corporation Implanted medication infusion device
US4774967A (en) 1986-09-09 1988-10-04 American Biointerface Corporation Method and apparatus for mammalian nerve regeneration
US4791931A (en) 1987-08-13 1988-12-20 Pacesetter Infusion, Ltd. Demand pacemaker using an artificial baroreceptor reflex
US4852573A (en) 1987-12-04 1989-08-01 Kennedy Philip R Implantable neural electrode
DE68925030T2 (en) 1988-01-21 1996-07-25 Massachusetts Inst Technology MOLECULE TRANSPORT THROUGH FABRICS WITH THE USE OF ELECTROPORATION.
US5389069A (en) 1988-01-21 1995-02-14 Massachusetts Institute Of Technology Method and apparatus for in vivo electroporation of remote cells and tissue
US4890623A (en) 1988-03-14 1990-01-02 C. R. Bard, Inc. Biopotential sensing device and method for making
CA1319174C (en) 1988-04-21 1993-06-15 Lawrence E. Bertolucci Electrical nerve stimulation device for nausea control
US4955377A (en) 1988-10-28 1990-09-11 Lennox Charles D Device and method for heating tissue in a patient's body
US5094242A (en) 1988-11-07 1992-03-10 Regents Of The University Of California Implantable nerve stimulation device
US5059423A (en) 1988-12-13 1991-10-22 Alza Corporation Delivery system comprising biocompatible beneficial agent formulation
US5057318A (en) 1988-12-13 1991-10-15 Alza Corporation Delivery system for beneficial agent over a broad range of rates
WO1990007303A1 (en) 1989-01-06 1990-07-12 Angioplasty Systems, Inc. Electrosurgical catheter for resolving atherosclerotic plaque
US5458631A (en) 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
US5779698A (en) 1989-01-18 1998-07-14 Applied Medical Resources Corporation Angioplasty catheter system and method for making same
US5125928A (en) 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5006119A (en) 1989-05-25 1991-04-09 Engineering & Research Associates, Inc. Hollow core coaxial catheter
US20030220521A1 (en) 1989-07-27 2003-11-27 G.D. Searle & Co. Renal-selective prodrugs for control of renal sympathetic nerve activity in the treatment of hypertension
US5112614A (en) 1989-09-14 1992-05-12 Alza Corporation Implantable delivery dispenser
RU1785710C (en) 1989-10-06 1993-01-07 Vremennyj Nauchnyj Kollektiv O Microwave resonant therapeutic device
US4979511A (en) 1989-11-03 1990-12-25 Cyberonics, Inc. Strain relief tether for implantable electrode
US5188837A (en) 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
US5851206A (en) 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5193048A (en) 1990-04-27 1993-03-09 Kaufman Dennis R Stun gun with low battery indicator and shutoff timer
US5184617A (en) 1990-06-05 1993-02-09 Staodyn, Inc. Output pulse compensation for therapeutic-type electronic devices
US5095905A (en) 1990-06-07 1992-03-17 Medtronic, Inc. Implantable neural electrode
DE69110467T2 (en) 1990-06-15 1996-02-01 Cortrak Medical Inc DEVICE FOR DISPENSING MEDICINES.
US5499971A (en) 1990-06-15 1996-03-19 Cortrak Medical, Inc. Method for iontophoretically delivering drug adjacent to a heart
US5498238A (en) 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
US5234693A (en) 1990-07-11 1993-08-10 Alza Corporation Delivery device with a protective sleeve
US5234692A (en) 1990-07-11 1993-08-10 Alza Corporation Delivery device with a protective sleeve
US5058584A (en) 1990-08-30 1991-10-22 Medtronic, Inc. Method and apparatus for epidural burst stimulation for angina pectoris
US5111815A (en) 1990-10-15 1992-05-12 Cardiac Pacemakers, Inc. Method and apparatus for cardioverter/pacer utilizing neurosensing
EP0491979A1 (en) 1990-12-22 1992-07-01 Peter Dr. Ing. Osypka Pacemaker catheter with two poles
US5324255A (en) 1991-01-11 1994-06-28 Baxter International Inc. Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm
US5263480A (en) 1991-02-01 1993-11-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5425364A (en) 1991-02-15 1995-06-20 Cardiac Pathways Corporation Flexible strip assembly without feedthrough holes and device utilizing the same
US5269303A (en) 1991-02-22 1993-12-14 Cyberonics, Inc. Treatment of dementia by nerve stimulation
US5199428A (en) 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5251634A (en) 1991-05-03 1993-10-12 Cyberonics, Inc. Helical nerve electrode
US5335657A (en) 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5215086A (en) 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5458568A (en) 1991-05-24 1995-10-17 Cortrak Medical, Inc. Porous balloon for selective dilatation and drug delivery
WO1992020291A1 (en) 1991-05-24 1992-11-26 Applied Medical Resources, Inc. Articulating tissue cutter assembly
US5472443A (en) 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
US5137727A (en) 1991-06-12 1992-08-11 Alza Corporation Delivery device providing beneficial agent stability
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5213098A (en) 1991-07-26 1993-05-25 Medtronic, Inc. Post-extrasystolic potentiation stimulation with physiologic sensor feedback
US5222494A (en) 1991-07-31 1993-06-29 Cyberonics, Inc. Implantable tissue stimulator output stabilization system
US5231988A (en) 1991-08-09 1993-08-03 Cyberonics, Inc. Treatment of endocrine disorders by nerve stimulation
EP0606390A4 (en) 1991-10-03 1994-12-07 Gen Hospital Corp Apparatus and method for vasodilation.
US5215089A (en) 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
AU3128593A (en) 1991-11-08 1993-06-07 Ep Technologies Inc Radiofrequency ablation with phase sensitive power detection
WO1993008757A1 (en) 1991-11-08 1993-05-13 Ep Technologies, Inc. Systems and methods for ablating tissue while monitoring tissue impedance
EP0566725B1 (en) 1991-11-08 2003-06-04 Boston Scientific Limited Ablation electrode with insulated temperature sensing elements
US5906614A (en) 1991-11-08 1999-05-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods using predicted temperature for monitoring and control
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5358514A (en) 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
US5203326A (en) 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5193540A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
US5193539A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
US5301683A (en) 1991-12-23 1994-04-12 Durkan John A Diagnosing carpal tunnel syndrome
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
GB9204217D0 (en) 1992-02-27 1992-04-08 Goble Nigel M Cauterising apparatus
WO1993018415A1 (en) 1992-03-09 1993-09-16 University Of Washington Image neurography and diffusion anisotropy imaging
US5540681A (en) 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5370680A (en) 1992-05-27 1994-12-06 Magnetic Resonance Therapeutics, Inc. Athermapeutic apparatus employing electro-magnetic fields
WO1994000188A1 (en) 1992-06-24 1994-01-06 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5772590A (en) 1992-06-30 1998-06-30 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire
US5304120A (en) 1992-07-01 1994-04-19 Btx Inc. Electroporation method and apparatus for insertion of drugs and genes into endothelial cells
US5507724A (en) 1992-07-01 1996-04-16 Genetronics, Inc. Electroporation and iontophoresis apparatus and method for insertion of drugs and genes into cells
US5542916A (en) 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5484400A (en) 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
DE4229693A1 (en) 1992-09-05 1994-03-10 Achim Dr Hansjuergens Electrotherapeutic device
US5922340A (en) 1992-09-10 1999-07-13 Children's Medical Center Corporation High load formulations and methods for providing prolonged local anesthesia
DK0659073T3 (en) 1992-09-10 2002-03-11 Childrens Medical Center Biodegradable polymer matrices with sustained release of local anesthetics
US5700485A (en) 1992-09-10 1997-12-23 Children's Medical Center Corporation Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid
US5478303A (en) 1992-09-18 1995-12-26 Foley-Nolan; Darragh Electromagnetic apparatus for use in therapy
US5338662A (en) 1992-09-21 1994-08-16 Bio-Preserve Medical Corporation Organ perfusion device
US5553611A (en) 1994-01-06 1996-09-10 Endocardial Solutions, Inc. Endocardial measurement method
WO1994007446A1 (en) 1992-10-05 1994-04-14 Boston Scientific Corporation Device and method for heating tissue
US5634899A (en) 1993-08-20 1997-06-03 Cortrak Medical, Inc. Simultaneous cardiac pacing and local drug delivery method
US5807306A (en) 1992-11-09 1998-09-15 Cortrak Medical, Inc. Polymer matrix drug delivery apparatus
WO1994010922A1 (en) 1992-11-13 1994-05-26 Ep Technologies, Inc. Cardial ablation systems using temperature monitoring
US5342357A (en) 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
CA2109980A1 (en) 1992-12-01 1994-06-02 Mir A. Imran Steerable catheter with adjustable bend location and/or radius and method
DE69318850T2 (en) 1992-12-11 1998-10-22 Siemens Medical Systems Inc DOCKING STATION FOR PATIENT MONITORING SYSTEM
US5256141A (en) 1992-12-22 1993-10-26 Nelson Gencheff Biological material deployment method and apparatus
US5317155A (en) 1992-12-29 1994-05-31 The Electrogesic Corporation Corona discharge apparatus
US5429634A (en) 1993-09-09 1995-07-04 Pdt Systems Biogenic implant for drug delivery and method
US5792187A (en) 1993-02-22 1998-08-11 Angeion Corporation Neuro-stimulation to control pain during cardioversion defibrillation
US5397338A (en) 1993-03-29 1995-03-14 Maven Labs, Inc. Electrotherapy device
US5439440A (en) 1993-04-01 1995-08-08 Genetronics, Inc. Electroporation system with voltage control feedback for clinical applications
PT702723E (en) 1993-04-21 2003-01-31 Pasteur Institut BIOCOMPATIBLE IMPLANTS FOR EXPRESSION AND IN VIVO SECRECY OF A THERAPEUTIC COMPOUND
FR2704151B1 (en) 1993-04-21 1995-07-13 Klotz Antoine Olivier Electronic device intended for the adrenergic stimulation of the sympathetic system relating to the venous media.
US6517811B2 (en) 1993-05-06 2003-02-11 Research Corporation Technologies, Inc. Compounds for cancer imaging and therapy
US5584863A (en) 1993-06-24 1996-12-17 Electropharmacology, Inc. Pulsed radio frequency electrotherapeutic system
US5860974A (en) 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
ES2189805T3 (en) 1993-07-01 2003-07-16 Boston Scient Ltd IMAGE, ELECTRICAL POTENTIAL AND ABLATION VIEW CATHETERS.
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5507791A (en) 1993-08-31 1996-04-16 Sit'ko; Sergei P. Microwave resonance therapy
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
US5582609A (en) 1993-10-14 1996-12-10 Ep Technologies, Inc. Systems and methods for forming large lesions in body tissue using curvilinear electrode elements
US5400784A (en) 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
US5397308A (en) 1993-10-22 1995-03-14 Scimed Life Systems, Inc. Balloon inflation measurement apparatus
US5470352A (en) 1993-10-29 1995-11-28 Northeastern University Balloon angioplasty device
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5571147A (en) 1993-11-02 1996-11-05 Sluijter; Menno E. Thermal denervation of an intervertebral disc for relief of back pain
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5730127A (en) 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
JPH07157424A (en) 1993-12-03 1995-06-20 Lintec Corp Gel formulation for local anesthesia
US5458626A (en) 1993-12-27 1995-10-17 Krause; Horst E. Method of electrical nerve stimulation for acceleration of tissue healing
US5437664A (en) 1994-01-18 1995-08-01 Endovascular, Inc. Apparatus and method for venous ligation
US6099524A (en) 1994-01-28 2000-08-08 Cardiac Pacemakers, Inc. Electrophysiological mapping and ablation catheter and method
US5447529A (en) 1994-01-28 1995-09-05 Philadelphia Heart Institute Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation
US5697975A (en) 1994-02-09 1997-12-16 The University Of Iowa Research Foundation Human cerebral cortex neural prosthetic for tinnitus
US6858024B1 (en) 1994-02-14 2005-02-22 Scimed Life Systems, Inc. Guide catheter having selected flexural modulus segments
US5584830A (en) 1994-03-30 1996-12-17 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
GB9407135D0 (en) 1994-04-11 1994-06-01 Aberdeen University And Plasma Treatment of osteoporosis
US5505201A (en) 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode
WO1995033514A1 (en) 1994-06-09 1995-12-14 Magnetic Resonance Therapeutics, Inc. Electro-therapeutic method
US5505700A (en) 1994-06-14 1996-04-09 Cordis Corporation Electro-osmotic infusion catheter
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6405732B1 (en) 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US6009877A (en) 1994-06-24 2000-01-04 Edwards; Stuart D. Method for treating a sphincter
US5800429A (en) 1994-06-24 1998-09-01 Somnus Medical Technologies, Inc. Noninvasive apparatus for ablating turbinates
WO1996000040A1 (en) 1994-06-27 1996-01-04 Ep Technologies, Inc. Tissue ablation systems using temperature curve control
EP0768842A4 (en) 1994-06-27 1998-05-13 Ep Technologies Systems and methods for sensing temperature within the body
CA2194062C (en) 1994-06-27 2005-06-28 Dorin Panescu System for controlling tissue ablation using temperature sensors
US5735846A (en) 1994-06-27 1998-04-07 Ep Technologies, Inc. Systems and methods for ablating body tissue using predicted maximum tissue temperature
US5540684A (en) 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5810802A (en) 1994-08-08 1998-09-22 E.P. Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5454782A (en) 1994-08-11 1995-10-03 Perkins; Rodney C. Translumenal circumferential energy delivery device
CA2197767C (en) 1994-08-17 2001-01-02 Arthur A. Pilla Electrotherapeutic system
US5531778A (en) 1994-09-20 1996-07-02 Cyberonics, Inc. Circumneural electrode assembly
US5540734A (en) 1994-09-28 1996-07-30 Zabara; Jacob Cranial nerve stimulation treatments using neurocybernetic prosthesis
WO1996011723A1 (en) 1994-10-17 1996-04-25 Australasian Medical Technology Limited Devices and methods for implementation of pulsed electromagnetic field therapy
US5722401A (en) 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US5660848A (en) 1994-11-02 1997-08-26 The Population Council, Center For Biomedical Research Subdermally implantable device
CA2204789C (en) 1994-11-10 2002-11-12 Paul Ashton Implantable refillable controlled release device to deliver drugs directly to an internal portion of the body
US5571150A (en) 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
DE69636885T2 (en) 1995-05-04 2007-06-21 Sherwood Services Ag Surgical system with cooled electrode tip
WO1996039086A1 (en) 1995-06-06 1996-12-12 Valleylab Inc. Power control for an electrosurgical generator
US5540730A (en) 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
US6041252A (en) 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
EP0773753B1 (en) 1995-06-07 2003-10-08 Gore Hybrid Technologies, Inc. An implantable containment apparatus for a therapeutical device
CN1156961A (en) 1995-06-09 1997-08-13 欧罗赛铁克股份有限公司 Formulations and method for providing prolonged local anesthesia
US6113592A (en) 1995-06-09 2000-09-05 Engineering & Research Associates, Inc. Apparatus and method for controlling ablation depth
US5697925A (en) 1995-06-09 1997-12-16 Engineering & Research Associates, Inc. Apparatus and method for thermal ablation
US6322558B1 (en) 1995-06-09 2001-11-27 Engineering & Research Associates, Inc. Apparatus and method for predicting ablation depth
US5868737A (en) 1995-06-09 1999-02-09 Engineering Research & Associates, Inc. Apparatus and method for determining ablation
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
WO1997004702A1 (en) 1995-07-28 1997-02-13 Ep Technologies, Inc. Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun heart tissue
US5983131A (en) 1995-08-11 1999-11-09 Massachusetts Institute Of Technology Apparatus and method for electroporation of tissue
US5672174A (en) 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5711326A (en) 1995-08-25 1998-01-27 Whirlpool Corporation Dishwasher accumulator soil removal grating for a filter system
US5707400A (en) 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
DE69622764T2 (en) 1995-09-20 2003-04-24 California Institute Of Technology, Pasadena y DISPLAY OF THERMAL DISCONTINUITY ON VESSEL WALLS
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US5700282A (en) 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
IL151563A0 (en) 1995-10-13 2003-04-10 Transvascular Inc A longitudinal compression apparatus for compressing tissue
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US5817092A (en) 1995-11-09 1998-10-06 Radio Therapeutics Corporation Apparatus, system and method for delivering radio frequency energy to a treatment site
US5755750A (en) 1995-11-13 1998-05-26 University Of Florida Method and apparatus for selectively inhibiting activity in nerve fibers
US6073048A (en) 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
US6010613A (en) 1995-12-08 2000-01-04 Cyto Pulse Sciences, Inc. Method of treating materials with pulsed electrical fields
CN2291164Y (en) 1996-12-23 1998-09-16 祝强 Instrument for bringing high blood pressure down
US5658619A (en) 1996-01-16 1997-08-19 The Coca-Cola Company Method for adhering resin to bottles
ES2232713T3 (en) 1996-02-02 2005-06-01 Alza Corporation PROLONGED ADMINISTRATION OF AN ACTIVE AGENT USING AN IMPLANTABLE SYSTEM.
IL125415A (en) 1996-02-02 2004-02-19 Transvascular Inc Device and system for interstitial transvascular intervention
WO1997029802A2 (en) 1996-02-20 1997-08-21 Advanced Bionics Corporation Improved implantable microstimulator and systems employing the same
US5913876A (en) 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US6036687A (en) 1996-03-05 2000-03-14 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency
US5747060A (en) 1996-03-26 1998-05-05 Euro-Celtique, S.A. Prolonged local anesthesia with colchicine
US5690681A (en) 1996-03-29 1997-11-25 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6735471B2 (en) 1996-04-30 2004-05-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US6449507B1 (en) 1996-04-30 2002-09-10 Medtronic, Inc. Method and system for nerve stimulation prior to and during a medical procedure
WO1997040882A2 (en) 1996-05-01 1997-11-06 Vidamed Incorporated Systems and methods for optimizing the delivery of radio frequency energy for lesion formation within human tissue
US5690691A (en) 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
US5859762A (en) 1996-05-13 1999-01-12 International Business Machines Corporation Docking station for portable computers
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
DE19623840A1 (en) 1996-06-14 1997-12-18 Berchtold Gmbh & Co Geb High frequency electrosurgical generator
US5861021A (en) 1996-06-17 1999-01-19 Urologix Inc Microwave thermal therapy of cardiac tissue
US5944710A (en) 1996-06-24 1999-08-31 Genetronics, Inc. Electroporation-mediated intravascular delivery
US20020040204A1 (en) 1996-06-24 2002-04-04 Dev Nagendu B. Electroporation-enhanced inhibition of vascular neointimal hyperplasia
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US5924997A (en) 1996-07-29 1999-07-20 Campbell; Thomas Henderson Catheter and method for the thermal mapping of hot spots in vascular lesions of the human body
US6058328A (en) 1996-08-06 2000-05-02 Pacesetter, Inc. Implantable stimulation device having means for operating in a preemptive pacing mode to prevent tachyarrhythmias and method thereof
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US5906636A (en) 1996-09-20 1999-05-25 Texas Heart Institute Heat treatment of inflamed tissue
US5800464A (en) 1996-10-03 1998-09-01 Medtronic, Inc. System for providing hyperpolarization of cardiac to enhance cardiac function
US5814079A (en) 1996-10-04 1998-09-29 Medtronic, Inc. Cardiac arrhythmia management by application of adnodal stimulation for hyperpolarization of myocardial cells
US5704908A (en) 1996-10-10 1998-01-06 Genetronics, Inc. Electroporation and iontophoresis catheter with porous balloon
US5893885A (en) 1996-11-01 1999-04-13 Cordis Webster, Inc. Multi-electrode ablation catheter
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US5954719A (en) 1996-12-11 1999-09-21 Irvine Biomedical, Inc. System for operating a RF ablation generator
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US6026326A (en) 1997-01-13 2000-02-15 Medtronic, Inc. Apparatus and method for treating chronic constipation
ATE274974T1 (en) 1997-01-13 2004-09-15 Neurodan As IMPLANTABLE ELECTRODE FOR NERVE STIMULATION
EP1006908A2 (en) 1997-02-12 2000-06-14 Oratec Interventions, Inc. Concave probe for arthroscopic surgery
EP1666087A3 (en) 1997-02-26 2009-04-29 The Alfred E Mann Foundation for Scientific Research Battery-powered patient implantable device
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
CA2284785C (en) 1997-03-27 2006-07-11 Joseph H. Schulman System of implantable devices for monitoring and/or affecting body parameters
US6261281B1 (en) 1997-04-03 2001-07-17 Electrofect As Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells
US7027869B2 (en) 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
US5907589A (en) 1997-04-10 1999-05-25 Motorola, Inc. GHZ range frequency divider in CMOS
US5871481A (en) 1997-04-11 1999-02-16 Vidamed, Inc. Tissue ablation apparatus and method
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6326020B1 (en) 1997-05-16 2001-12-04 Children's Medical Center Corporation Local anesthetic formulations
ATE419789T1 (en) 1997-05-23 2009-01-15 Prorhythm Inc HIGH INTENSITY DISPOSABLE FOCUSING ULTRASONIC APPLICATOR
US6161048A (en) 1997-06-26 2000-12-12 Radionics, Inc. Method and system for neural tissue modification
WO1999000060A1 (en) 1997-06-26 1999-01-07 Advanced Coronary Intervention Electrosurgical catheter for resolving obstructions by radio frequency ablation
BR9815499A (en) 1997-07-02 2001-01-02 Euro Celtique Sa Prolonged anesthesia in joints and body spaces.
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6869431B2 (en) 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
ATE353689T1 (en) 1997-07-16 2007-03-15 Metacure Nv DEVICE FOR CONTROLLING A SMOOTH MUSCLE
US6258084B1 (en) 1997-09-11 2001-07-10 Vnus Medical Technologies, Inc. Method for applying energy to biological tissue including the use of tumescent tissue compression
US6358246B1 (en) 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US6231569B1 (en) 1997-10-06 2001-05-15 Somnus Medical Technologies, Inc. Dual processor architecture for electro generator
US6917834B2 (en) 1997-12-03 2005-07-12 Boston Scientific Scimed, Inc. Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates
AU2022999A (en) 1997-12-31 1999-07-19 Heartport, Inc. Methods and apparatus for perfusion of isolated tissue structure
US6080149A (en) 1998-01-09 2000-06-27 Radiotherapeutics, Corporation Method and apparatus for monitoring solid tissue heating
US6146380A (en) 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
US6334069B1 (en) 1998-01-15 2001-12-25 Regenesis Biomedical, Inc. Pulsed electromagnetic energy treatment apparatus and method
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6522932B1 (en) 1998-02-10 2003-02-18 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and tools for use therewith
US6205361B1 (en) 1998-02-10 2001-03-20 Advanced Bionics Corporation Implantable expandable multicontact electrodes
US6415187B1 (en) 1998-02-10 2002-07-02 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and insertion needle for use therewith
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US6258087B1 (en) 1998-02-19 2001-07-10 Curon Medical, Inc. Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US6142993A (en) 1998-02-27 2000-11-07 Ep Technologies, Inc. Collapsible spline structure using a balloon as an expanding actuator
US6086527A (en) 1998-04-02 2000-07-11 Scimed Life Systems, Inc. System for treating congestive heart failure
US6314325B1 (en) 1998-04-07 2001-11-06 William R. Fitz Nerve hyperpolarization method and apparatus for pain relief
CA2326786A1 (en) 1998-04-14 1999-10-21 Charles L. Brown, Iii Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
US6219577B1 (en) 1998-04-14 2001-04-17 Global Vascular Concepts, Inc. Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
US5916154A (en) 1998-04-22 1999-06-29 Nellcor Puritan Bennett Method of enhancing performance in pulse oximetry via electrical stimulation
US6269269B1 (en) 1998-04-23 2001-07-31 Medtronic Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US6058331A (en) 1998-04-27 2000-05-02 Medtronic, Inc. Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US6558378B2 (en) 1998-05-05 2003-05-06 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
US6192889B1 (en) 1998-05-05 2001-02-27 Woodside Biomedical, Inc. Method of suppression and prevention of the gag reflex
US6059778A (en) 1998-05-05 2000-05-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method using unipolar and bipolar techniques
CA2331532A1 (en) 1998-05-08 1999-11-18 Genetronics, Inc. Electrically induced vessel vasodilation
US6508815B1 (en) 1998-05-08 2003-01-21 Novacept Radio-frequency generator for powering an ablation device
US6428537B1 (en) 1998-05-22 2002-08-06 Scimed Life Systems, Inc. Electrophysiological treatment methods and apparatus employing high voltage pulse to render tissue temporarily unresponsive
US7198635B2 (en) 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
US6368316B1 (en) * 1998-06-11 2002-04-09 Target Therapeutics, Inc. Catheter with composite stiffener
US6292695B1 (en) 1998-06-19 2001-09-18 Wilton W. Webster, Jr. Method and apparatus for transvascular treatment of tachycardia and fibrillation
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
CA2337652C (en) 1998-07-13 2013-03-26 Genetronics, Inc. Skin and muscle-targeted gene therapy by pulsed electrical field
US6972013B1 (en) 1998-07-13 2005-12-06 Genetronics, Inc. Enhanced delivery of naked DNA to skin by non-invasive in vivo electroporation
US7599736B2 (en) 2001-07-23 2009-10-06 Dilorenzo Biomedical, Llc Method and apparatus for neuromodulation and physiologic modulation for the treatment of metabolic and neuropsychiatric disease
US6304787B1 (en) 1998-08-26 2001-10-16 Advanced Bionics Corporation Cochlear electrode array having current-focusing and tissue-treating features
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
WO2000015130A2 (en) 1998-09-10 2000-03-23 Scimed Life Systems, Inc. Systems for controlling an ablation process performed with a heart electrocatheter
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6183468B1 (en) 1998-09-10 2001-02-06 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US6796981B2 (en) 1999-09-30 2004-09-28 Sherwood Services Ag Vessel sealing system
US6123718A (en) 1998-11-02 2000-09-26 Polymerex Medical Corp. Balloon catheter
US10967045B2 (en) 1998-11-02 2021-04-06 Secretary of State for Health and Social Care Multicomponent meningococcal vaccine
US6451015B1 (en) 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
US7313444B2 (en) 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US6436096B1 (en) 1998-11-27 2002-08-20 Olympus Optical Co., Ltd. Electrosurgical apparatus with stable coagulation
US6210406B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Split tip electrode catheter and signal processing RF ablation system
US20070066972A1 (en) 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US6077227A (en) 1998-12-28 2000-06-20 Medtronic, Inc. Method for manufacture and implant of an implantable blood vessel cuff
US7329236B2 (en) 1999-01-11 2008-02-12 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US6749598B1 (en) 1999-01-11 2004-06-15 Flowmedica, Inc. Apparatus and methods for treating congestive heart disease
US7481803B2 (en) 2000-11-28 2009-01-27 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US7780628B1 (en) 1999-01-11 2010-08-24 Angiodynamics, Inc. Apparatus and methods for treating congestive heart disease
US7122019B1 (en) 2000-11-28 2006-10-17 Flowmedica Inc. Intra-aortic renal drug delivery catheter
US6451011B2 (en) 1999-01-19 2002-09-17 Hosheng Tu Medical device having temperature sensing and ablation capabilities
US6423057B1 (en) 1999-01-25 2002-07-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
AU2751200A (en) 1999-02-02 2000-08-25 Transurgical, Inc. Intrabody hifu applicator
US6464696B1 (en) 1999-02-26 2002-10-15 Olympus Optical Co., Ltd. Electrical surgical operating apparatus
AU779100B2 (en) 1999-03-09 2005-01-06 Thermage, Inc. Apparatus and method for treatment of tissue
US6464687B1 (en) 1999-03-09 2002-10-15 Ball Semiconductor, Inc. Implantable drug delivery system
US6508774B1 (en) 1999-03-09 2003-01-21 Transurgical, Inc. Hifu applications with feedback control
US6678558B1 (en) 1999-03-25 2004-01-13 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US6692738B2 (en) 2000-01-27 2004-02-17 The General Hospital Corporation Delivery of therapeutic biologicals from implantable tissue matrices
US6325797B1 (en) 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US6738663B2 (en) 1999-04-09 2004-05-18 Oncostim, A Minnesota Corporation Implantable device and method for the electrical treatment of cancer
US6366808B1 (en) 2000-03-13 2002-04-02 Edward A. Schroeppel Implantable device and method for the electrical treatment of cancer
US6178349B1 (en) 1999-04-15 2001-01-23 Medtronic, Inc. Drug delivery neural stimulation device for treatment of cardiovascular disorders
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6341236B1 (en) 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US6923784B2 (en) 1999-04-30 2005-08-02 Medtronic, Inc. Therapeutic treatment of disorders based on timing information
WO2000066017A1 (en) 1999-05-04 2000-11-09 Curon Medical, Inc. Electrodes for creating lesions in tissue regions at or near a sphincter
US6178352B1 (en) 1999-05-07 2001-01-23 Woodside Biomedical, Inc. Method of blood pressure moderation
US6442424B1 (en) 1999-05-26 2002-08-27 Impulse Dynamics N.V. Local cardiac motion control using applied electrical signals
US6304777B1 (en) 1999-05-26 2001-10-16 Impulse Dynamics N.V. Induction of cardioplegia applied electrical signals
US7171263B2 (en) 1999-06-04 2007-01-30 Impulse Dynamics Nv Drug delivery device
WO2001000273A1 (en) 1999-06-25 2001-01-04 Emory University Devices and methods for vagus nerve stimulation
US6272383B1 (en) 1999-06-28 2001-08-07 Woodside Biomedical, Inc. Electro-acupuncture method using an electrical stimulator
US7053063B2 (en) 1999-07-21 2006-05-30 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes in tissue
US6300108B1 (en) 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US6927049B2 (en) 1999-07-21 2005-08-09 The Regents Of The University Of California Cell viability detection using electrical measurements
US6326177B1 (en) 1999-08-04 2001-12-04 Eastern Virginia Medical School Of The Medical College Of Hampton Roads Method and apparatus for intracellular electro-manipulation
US6450942B1 (en) 1999-08-20 2002-09-17 Cardiorest International Ltd. Method for reducing heart loads in mammals
JP3848572B2 (en) 1999-09-10 2006-11-22 プロリズム,インコーポレイテッド Device for occluding anatomic tissue
US7510536B2 (en) 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
EP1244392A1 (en) 1999-09-28 2002-10-02 Novasys Medical, Inc. Treatment of tissue by application of energy and drugs
US6272377B1 (en) 1999-10-01 2001-08-07 Cardiac Pacemakers, Inc. Cardiac rhythm management system with arrhythmia prediction and prevention
US6473644B1 (en) 1999-10-13 2002-10-29 Cyberonics, Inc. Method to enhance cardiac capillary growth in heart failure patients
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6514248B1 (en) 1999-10-15 2003-02-04 Neothermia Corporation Accurate cutting about and into tissue volumes with electrosurgically deployed electrodes
US6669655B1 (en) 1999-10-20 2003-12-30 Transurgical, Inc. Sonic element and catheter incorporating same
WO2001033172A1 (en) 1999-10-29 2001-05-10 Universität Zürich Method of volumetric blood flow measurement
US6436091B1 (en) 1999-11-16 2002-08-20 Microsolutions, Inc. Methods and implantable devices and systems for long term delivery of a pharmaceutical agent
US6711444B2 (en) 1999-11-22 2004-03-23 Scimed Life Systems, Inc. Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US6542781B1 (en) 1999-11-22 2003-04-01 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
ATE365574T1 (en) 1999-11-30 2007-07-15 Biotronik Gmbh & Co Kg DEVICE FOR CONTROLLING HEART RATE AND HEART PUMPING POWER
US20020026228A1 (en) 1999-11-30 2002-02-28 Patrick Schauerte Electrode for intravascular stimulation, cardioversion and/or defibrillation
US6635057B2 (en) 1999-12-02 2003-10-21 Olympus Optical Co. Ltd. Electric operation apparatus
US6592567B1 (en) 1999-12-07 2003-07-15 Chf Solutions, Inc. Kidney perfusion catheter
US6415183B1 (en) 1999-12-09 2002-07-02 Cardiac Pacemakers, Inc. Method and apparatus for diaphragmatic pacing
US20030150464A1 (en) 1999-12-17 2003-08-14 Casscells S. Ward Inducing apoptosis of atrial myocytes to treat atrial fibrillation
US6328699B1 (en) 2000-01-11 2001-12-11 Cedars-Sinai Medical Center Permanently implantable system and method for detecting, diagnosing and treating congestive heart failure
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US20060085046A1 (en) 2000-01-20 2006-04-20 Ali Rezai Methods of treating medical conditions by transvascular neuromodulation of the autonomic nervous system
US6356786B1 (en) 2000-01-20 2002-03-12 Electrocore Techniques, Llc Method of treating palmar hyperhydrosis by electrical stimulation of the sympathetic nervous chain
US6356787B1 (en) 2000-02-24 2002-03-12 Electro Core Techniques, Llc Method of treating facial blushing by electrical stimulation of the sympathetic nerve chain
US6438423B1 (en) 2000-01-20 2002-08-20 Electrocore Technique, Llc Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain
US6514226B1 (en) 2000-02-10 2003-02-04 Chf Solutions, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney
US6868289B2 (en) 2002-10-02 2005-03-15 Standen Ltd. Apparatus for treating a tumor or the like and articles incorporating the apparatus for treatment of the tumor
ATE397900T1 (en) 2000-03-06 2008-07-15 Salient Surgical Technologies FLUID DELIVERY SYSTEM AND CONTROL FOR ELECTROSURGICAL EQUIPMENT
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6536949B1 (en) 2000-03-07 2003-03-25 Richard R. Heuser Catheter for thermal evaluation of arteriosclerotic plaque
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
AU2001245971A1 (en) 2000-03-24 2001-10-08 Transurgical, Inc. Apparatus and method for intrabody thermal treatment
US6287608B1 (en) 2000-04-11 2001-09-11 Intellicardia, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney by infusion of a vasodilator
US6558382B2 (en) 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
US20010044596A1 (en) 2000-05-10 2001-11-22 Ali Jaafar Apparatus and method for treatment of vascular restenosis by electroporation
ATE413848T1 (en) 2000-05-12 2008-11-15 Cardima Inc MULTI-CHANNEL HIGH FREQUENCY DELIVERY SYSTEM WITH COAGULATION REDUCTION
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
AU2001266824B2 (en) 2000-06-13 2005-05-12 Atrionix, Inc. Surgical ablation probe for forming a circumferential lesion
US6546270B1 (en) * 2000-07-07 2003-04-08 Biosense, Inc. Multi-electrode catheter, system and method
CA2415134C (en) 2000-07-13 2015-09-22 Transurgical, Inc. Thermal treatment methods and apparatus with focused energy application
AU2001279026B2 (en) 2000-07-25 2005-12-22 Angiodynamics, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
EP1303332B1 (en) 2000-07-26 2004-12-29 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
JP4667709B2 (en) 2000-08-08 2011-04-13 エルベ エレクトロメディツィン ゲーエムベーハー High-frequency surgical high-frequency generator capable of adjusting allowable power amount and control method of allowable power
US6892099B2 (en) 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US6697670B2 (en) 2001-08-17 2004-02-24 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
US6862479B1 (en) 2000-08-30 2005-03-01 Advanced Bionics Corporation Spinal cord stimulation as a therapy for sexual dysfunction
WO2002019933A1 (en) 2000-09-07 2002-03-14 Sherwood Services Ag Apparatus for and treatment of the intervertebral disc
US6405079B1 (en) 2000-09-22 2002-06-11 Mehdi M. Ansarinia Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions
US6850801B2 (en) 2001-09-26 2005-02-01 Cvrx, Inc. Mapping methods for cardiovascular reflex control devices
US7623926B2 (en) 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7616997B2 (en) 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US6985774B2 (en) 2000-09-27 2006-01-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7158832B2 (en) 2000-09-27 2007-01-02 Cvrx, Inc. Electrode designs and methods of use for cardiovascular reflex control devices
US6522926B1 (en) 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7499742B2 (en) 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US6845267B2 (en) 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6640120B1 (en) 2000-10-05 2003-10-28 Scimed Life Systems, Inc. Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
US7104987B2 (en) 2000-10-17 2006-09-12 Asthmatx, Inc. Control system and process for application of energy to airway walls and other mediums
JP2004512105A (en) 2000-10-26 2004-04-22 メドトロニック・インコーポレーテッド Method and apparatus for protecting heart tissue from seizures
CA2426810A1 (en) 2000-10-26 2002-06-13 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac comditions
US6616624B1 (en) 2000-10-30 2003-09-09 Cvrx, Inc. Systems and method for controlling renovascular perfusion
US7081114B2 (en) 2000-11-29 2006-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
US6681136B2 (en) 2000-12-04 2004-01-20 Science Medicus, Inc. Device and method to modulate blood pressure by electrical waveforms
US6676657B2 (en) 2000-12-07 2004-01-13 The United States Of America As Represented By The Department Of Health And Human Services Endoluminal radiofrequency cauterization system
US6752804B2 (en) 2000-12-28 2004-06-22 Cardiac Pacemakers, Inc. Ablation system and method having multiple-sensor electrodes to assist in assessment of electrode and sensor position and adjustment of energy levels
US8133218B2 (en) 2000-12-28 2012-03-13 Senorx, Inc. Electrosurgical medical system and method
US6666845B2 (en) 2001-01-04 2003-12-23 Advanced Neuromodulation Systems, Inc. Implantable infusion pump
WO2002053207A2 (en) 2001-01-04 2002-07-11 Advanced Neuromodulation Systems, Inc. Implantable infusion pump
CA2434151C (en) 2001-01-11 2009-12-22 Rita Medical Systems, Inc. Bone-treatment instrument and method
US6600954B2 (en) 2001-01-25 2003-07-29 Biocontrol Medical Bcm Ltd. Method and apparatus for selective control of nerve fibers
US6672312B2 (en) 2001-01-31 2004-01-06 Transurgical, Inc. Pulmonary vein ablation with myocardial tissue locating
US6564096B2 (en) 2001-02-28 2003-05-13 Robert A. Mest Method and system for treatment of tachycardia and fibrillation
WO2002070039A2 (en) 2001-03-01 2002-09-12 Three Arch Partners Intravascular device for treatment of hypertension
US6666862B2 (en) 2001-03-01 2003-12-23 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US6620151B2 (en) 2001-03-01 2003-09-16 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
US20020177846A1 (en) 2001-03-06 2002-11-28 Mulier Peter M.J. Vaporous delivery of thermal energy to tissue sites
US6786904B2 (en) 2002-01-10 2004-09-07 Triton Biosystems, Inc. Method and device to treat vulnerable plaque
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
WO2002076344A1 (en) 2001-03-23 2002-10-03 Durect Corporation Delivery of drugs from sustained release devices implanted in myocardial tissue or in the pericardial space
WO2002085448A2 (en) 2001-04-20 2002-10-31 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
AU2002258990A1 (en) 2001-04-23 2002-11-05 Transurgical, Inc. Improvements in ablation therapy
US6989010B2 (en) 2001-04-26 2006-01-24 Medtronic, Inc. Ablation system and method of use
US6648883B2 (en) 2001-04-26 2003-11-18 Medtronic, Inc. Ablation system and method of use
US6684105B2 (en) 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US7959626B2 (en) 2001-04-26 2011-06-14 Medtronic, Inc. Transmural ablation systems and methods
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US6663627B2 (en) 2001-04-26 2003-12-16 Medtronic, Inc. Ablation system and method of use
US6972016B2 (en) 2001-05-01 2005-12-06 Cardima, Inc. Helically shaped electrophysiology catheter
JP4656755B2 (en) 2001-05-07 2011-03-23 オリンパス株式会社 Electrosurgical equipment
CA2445392C (en) 2001-05-10 2011-04-26 Rita Medical Systems, Inc. Rf tissue ablation apparatus and method
EP1395335A1 (en) 2001-05-29 2004-03-10 Medtronic, Inc. Closed-loop neuromodulation for prevention and treatment of cardiac conditions
US7127284B2 (en) 2001-06-11 2006-10-24 Mercator Medsystems, Inc. Electroporation microneedle and methods for its use
US20060167498A1 (en) 2001-07-23 2006-07-27 Dilorenzo Daniel J Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of disease
ATE292992T1 (en) 2001-07-27 2005-04-15 Impella Cardiotech Ag NEUROSTIMULATION UNIT FOR IMMOBILIZATION OF THE HEART DURING CARDIOSURGICAL OPERATIONS
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
US6622041B2 (en) 2001-08-21 2003-09-16 Cyberonics, Inc. Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US6600956B2 (en) 2001-08-21 2003-07-29 Cyberonics, Inc. Circumneural electrode assembly
US20030050635A1 (en) 2001-08-22 2003-03-13 Csaba Truckai Embolization systems and techniques for treating tumors
US7778703B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
WO2003020915A2 (en) 2001-08-31 2003-03-13 Cyto Pulse Sciences, Inc. Non-linear amplitude dielectrophoresis waveform for cell fusion
US6761716B2 (en) 2001-09-18 2004-07-13 Cardiac Pacemakers, Inc. System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time
DE60210111T2 (en) * 2001-09-28 2007-03-29 Rita Medical Systems, Inc., Mountain View IMPEDANCE-CONTROLLED DEVICE FOR THE ABLATION OF TISSUE
WO2003028802A2 (en) 2001-10-01 2003-04-10 Am Discovery, Incorporated Devices for treating atrial fibrilation
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US7488313B2 (en) 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US20030125790A1 (en) 2001-12-27 2003-07-03 Vitaly Fastovsky Deployment device, system and method for medical implantation
US6893436B2 (en) 2002-01-03 2005-05-17 Afx, Inc. Ablation instrument having a flexible distal portion
US20060189941A1 (en) 2002-01-22 2006-08-24 Mercator Medsystems, Inc. Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation
US7155284B1 (en) 2002-01-24 2006-12-26 Advanced Bionics Corporation Treatment of hypertension
US6827715B2 (en) 2002-01-25 2004-12-07 Medtronic, Inc. System and method of performing an electrosurgical procedure
WO2003063692A2 (en) 2002-02-01 2003-08-07 The Cleveland Clinic Foundation Delivery device for stimulating the sympathetic nerve chain
WO2003066155A2 (en) 2002-02-01 2003-08-14 The Cleveland Clinic Foundation Methods of affecting hypothalamic-related conditions
AU2003216133A1 (en) 2002-02-01 2003-09-02 The Cleveland Clinic Foundation Neural stimulation delivery device with independently moveable delivery structures
US6733498B2 (en) 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US7236821B2 (en) 2002-02-19 2007-06-26 Cardiac Pacemakers, Inc. Chronically-implanted device for sensing and therapy
WO2003076008A1 (en) 2002-03-14 2003-09-18 Brainsgate Ltd. Technique for blood pressure regulation
US6882885B2 (en) 2002-03-19 2005-04-19 Solarant Medical, Inc. Heating method for tissue contraction
US6736835B2 (en) 2002-03-21 2004-05-18 Depuy Acromed, Inc. Early intervention spinal treatment methods and devices for use therein
EP1487536A4 (en) 2002-03-27 2009-12-02 Cvrx Inc Devices and methods for cardiovascular reflex control via coupled electrodes
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US20060206150A1 (en) 2002-04-08 2006-09-14 Ardian, Inc. Methods and apparatus for treating acute myocardial infarction
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US7191015B2 (en) 2002-04-11 2007-03-13 Medtronic Vascular, Inc. Devices and methods for transluminal or transthoracic interstitial electrode placement
US7258688B1 (en) 2002-04-16 2007-08-21 Baylis Medical Company Inc. Computerized electrical signal generator
US20060089674A1 (en) 2002-04-16 2006-04-27 Walters Richard E Method of treating biological materials with translating electrical fields and electrode polarity reversal
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199767A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199747A1 (en) 2002-04-19 2003-10-23 Michlitsch Kenneth J. Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199768A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US7008417B2 (en) 2002-04-22 2006-03-07 Medtronics, Inc. Detecting coagulum formation
US20030204161A1 (en) 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
US6748953B2 (en) 2002-06-11 2004-06-15 Scimed Life Systems, Inc. Method for thermal treatment of type II endoleaks in arterial aneurysms
US6730079B2 (en) 2002-07-22 2004-05-04 Medtronic Vidamed, Inc. Method for calculating impedance and apparatus utilizing same
US6855141B2 (en) 2002-07-22 2005-02-15 Medtronic, Inc. Method for monitoring impedance to control power and apparatus utilizing same
US20040193228A1 (en) 2003-03-31 2004-09-30 Gerber Martin T. Method, system and device for treating various disorders of the pelvic floor by electrical stimulation of the left and right pudendal nerves
WO2004107965A2 (en) 2002-09-20 2004-12-16 Flowmedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7993325B2 (en) 2002-09-20 2011-08-09 Angio Dynamics, Inc. Renal infusion systems and methods
AU2003300779A1 (en) 2002-09-20 2004-05-04 Flowmedica, Inc. Catheter system for renal therapy
US7063679B2 (en) 2002-09-20 2006-06-20 Flowmedica, Inc. Intra-aortic renal delivery catheter
AU2003276903A1 (en) 2002-09-20 2004-05-04 Flowmedica, Inc. Method and apparatus for selective material delivery via an intra-renal catheter
AU2003278858A1 (en) 2002-09-20 2004-04-08 Flowmedica, Inc. Method and apparatus for selective drug infusion via an intraaortic flow diverter delivery catheter
US7150741B2 (en) 2002-09-20 2006-12-19 Advanced Neuromodulation Systems, Inc. Programmable dose control module
AU2003294226A1 (en) 2002-09-20 2004-04-23 Flowmedica, Inc. Method and apparatus for intra aortic substance delivery to a branch vessel
WO2004033036A2 (en) 2002-10-04 2004-04-22 Microchips, Inc. Medical device for controlled drug delivery and cardiac monitoring and/or stimulation
AU2003284018A1 (en) 2002-10-04 2004-05-04 Microchips, Inc. Medical device for neural stimulation and controlled drug delivery
US7108694B2 (en) 2002-11-08 2006-09-19 Olympus Corporation Heat-emitting treatment device
US20040162590A1 (en) 2002-12-19 2004-08-19 Whitehurst Todd K. Fully implantable miniature neurostimulator for intercostal nerve stimulation as a therapy for angina pectoris
US7131445B2 (en) 2002-12-23 2006-11-07 Gyrus Medical Limited Electrosurgical method and apparatus
EP1587576A2 (en) 2003-01-03 2005-10-26 Advanced Neuromodulation Systems Inc. SYSTEM AND METHOD FOR STIMULATION OF A PERSON&rsquo;S BRAIN STEM
US7167750B2 (en) 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
CN1764419A (en) 2003-02-20 2006-04-26 普罗里森姆股份有限公司 Cardiac ablation devices
US6923808B2 (en) 2003-02-24 2005-08-02 Boston Scientific Scimed, Inc. Probes having helical and loop shaped inflatable therapeutic elements
US7004911B1 (en) 2003-02-24 2006-02-28 Hosheng Tu Optical thermal mapping for detecting vulnerable plaque
US20040163655A1 (en) 2003-02-24 2004-08-26 Plc Systems Inc. Method and catheter system applicable to acute renal failure
US20040176699A1 (en) 2003-03-03 2004-09-09 Volcano Therapeutics, Inc. Thermography catheter with improved wall contact
WO2004078066A2 (en) 2003-03-03 2004-09-16 Sinus Rhythm Technologies, Inc. Primary examiner
US7104985B2 (en) 2003-03-06 2006-09-12 Martinelli Michael A Apparatus and method for causing selective necrosis of abnormal cells
WO2004086992A1 (en) 2003-03-28 2004-10-14 C.R. Bard, Inc. Junction of catheter tip and electrode
US7517342B2 (en) 2003-04-29 2009-04-14 Boston Scientific Scimed, Inc. Polymer coated device for electrically medicated drug delivery
US7221979B2 (en) 2003-04-30 2007-05-22 Medtronic, Inc. Methods and apparatus for the regulation of hormone release
JP2006525096A (en) 2003-05-01 2006-11-09 シャーウッド・サービシーズ・アクチェンゲゼルシャフト Method and system for programming and controlling an electrosurgical generator system
JP4212949B2 (en) 2003-05-06 2009-01-21 朝日インテック株式会社 Chemical injection device
US20050021020A1 (en) 2003-05-15 2005-01-27 Blaha Derek M. System for activating an electrosurgical instrument
EP1635736A2 (en) 2003-06-05 2006-03-22 FlowMedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
US7738952B2 (en) 2003-06-09 2010-06-15 Palo Alto Investors Treatment of conditions through modulation of the autonomic nervous system
US20060167437A1 (en) 2003-06-17 2006-07-27 Flowmedica, Inc. Method and apparatus for intra aortic substance delivery to a branch vessel
CA2926068C (en) 2003-07-18 2022-05-03 Eastern Virginia Medical School Apparatus for generating electrical pulses and methods of using the same
AU2003275052A1 (en) 2003-08-05 2005-03-07 Flowmedica, Inc. System and method for prevention of radiocontrast induced nephropathy
US7742809B2 (en) 2003-08-25 2010-06-22 Medtronic, Inc. Electroporation catheter with sensing capabilities
DE202004021947U1 (en) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US7502650B2 (en) 2003-09-22 2009-03-10 Cvrx, Inc. Baroreceptor activation for epilepsy control
US7435248B2 (en) 2003-09-26 2008-10-14 Boston Scientific Scimed, Inc. Medical probes for creating and diagnosing circumferential lesions within or around the ostium of a vessel
US20050153885A1 (en) 2003-10-08 2005-07-14 Yun Anthony J. Treatment of conditions through modulation of the autonomic nervous system
US7186209B2 (en) 2003-10-09 2007-03-06 Jacobson Jerry I Cardioelectromagnetic treatment
US7416549B2 (en) 2003-10-10 2008-08-26 Boston Scientific Scimed, Inc. Multi-zone bipolar ablation probe assembly
US7480532B2 (en) 2003-10-22 2009-01-20 Cvrx, Inc. Baroreflex activation for pain control, sedation and sleep
CA2542849C (en) 2003-10-23 2013-08-20 Sherwood Services Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
SE0303124D0 (en) 2003-11-25 2003-11-25 Elekta Instr Ab An apparatus for controlled directional monitoring and destruction of tissue
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US20050171574A1 (en) 2003-12-24 2005-08-04 The Regents Of The University Of California Electroporation to interrupt blood flow
US20080015659A1 (en) 2003-12-24 2008-01-17 Yi Zhang Neurostimulation systems and methods for cardiac conditions
US8396560B2 (en) 2004-11-18 2013-03-12 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US8086315B2 (en) 2004-02-12 2011-12-27 Asap Medical, Inc. Cardiac stimulation apparatus and method for the control of hypertension
WO2005084389A2 (en) 2004-03-02 2005-09-15 Cvrx, Inc. External baroreflex activation
WO2005091910A2 (en) 2004-03-04 2005-10-06 Flowmedica, Inc. Sheath for use in peripheral interventions
US20050209548A1 (en) 2004-03-19 2005-09-22 Dev Sukhendu B Electroporation-mediated intravascular delivery
JP2005278739A (en) 2004-03-29 2005-10-13 Citizen Watch Co Ltd Blood collecting device
US8244345B2 (en) 2004-04-23 2012-08-14 Novocure Ltd Treating a tumor or the like with electric fields at different frequencies
WO2005107712A1 (en) 2004-05-03 2005-11-17 Hermes Biosciences, Inc. Liposomes useful for drug delivery
EP1750799A2 (en) 2004-05-04 2007-02-14 The Cleveland Clinic Foundation Methods of treating medical conditions by neuromodulation of the sympathetic nervous system
US8412348B2 (en) 2004-05-06 2013-04-02 Boston Scientific Neuromodulation Corporation Intravascular self-anchoring integrated tubular electrode body
JP2007537298A (en) 2004-05-14 2007-12-20 フロウメディカ, インコーポレイテッド Bilateral local renal delivery for the treatment of congestive heart failure and BNP therapy
WO2005113068A1 (en) * 2004-05-14 2005-12-01 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US20050261672A1 (en) 2004-05-18 2005-11-24 Mark Deem Systems and methods for selective denervation of heart dysrhythmias
US20050277868A1 (en) 2004-06-11 2005-12-15 University Of South Florida Electroporation Device and Method for Delivery to Ocular Tissue
US7610092B2 (en) 2004-12-21 2009-10-27 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
US20050283148A1 (en) 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction
US20060067972A1 (en) 2004-06-23 2006-03-30 Flowmedica, Inc. Devices for renal-based heart failure treatment
US7226447B2 (en) 2004-06-23 2007-06-05 Smith & Nephew, Inc. Electrosurgical generator
WO2006012050A2 (en) 2004-06-30 2006-02-02 Cvrx, Inc. Connection structures for extra-vascular electrode lead body
US20060004417A1 (en) 2004-06-30 2006-01-05 Cvrx, Inc. Baroreflex activation for arrhythmia treatment
US7076399B2 (en) 2004-07-19 2006-07-11 Baylis Medical Company Inc. Medical generator with hierarchical error logic
US7596469B2 (en) 2004-07-19 2009-09-29 Baylis Medical Company Inc. Method and apparatus for prioritizing errors in a medical treatment system
FR2873385B1 (en) 2004-07-23 2006-10-27 Centre Nat Rech Scient Cnrse MONITORING AND CONTROL OF ELECTROPORATION
WO2006015354A2 (en) 2004-07-30 2006-02-09 Washington University In St. Louis Electrosurgical systems and methods
US7373204B2 (en) 2004-08-19 2008-05-13 Lifestim, Inc. Implantable device and method for treatment of hypertension
JP4064388B2 (en) * 2004-09-09 2008-03-19 オリンパス株式会社 Treatment system
WO2006031541A1 (en) 2004-09-09 2006-03-23 Vnus Medical Technologies, Inc. Methods and apparatus for treatment of hollow anatomical structures
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
WO2006031899A2 (en) 2004-09-10 2006-03-23 The Cleveland Clinic Foundation Intraluminal electrode assembly
US20060069323A1 (en) 2004-09-24 2006-03-30 Flowmedica, Inc. Systems and methods for bi-lateral guidewire cannulation of branched body lumens
US20060074453A1 (en) 2004-10-04 2006-04-06 Cvrx, Inc. Baroreflex activation and cardiac resychronization for heart failure treatment
CA2584138A1 (en) 2004-10-18 2006-04-27 Raphael C. Lee Methods and compositions for treatment of free radical injury
US7524318B2 (en) 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US20070083239A1 (en) 2005-09-23 2007-04-12 Denise Demarais Methods and apparatus for inducing, monitoring and controlling renal neuromodulation
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
WO2006052940A2 (en) * 2004-11-05 2006-05-18 Asthmatx, Inc. Medical device with procedure improvement features
US20060100618A1 (en) 2004-11-08 2006-05-11 Cardima, Inc. System and method for performing ablation and other medical procedures using an electrode array with flex circuit
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
US8332047B2 (en) 2004-11-18 2012-12-11 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US7429261B2 (en) 2004-11-24 2008-09-30 Ablation Frontiers, Inc. Atrial ablation catheter and method of use
US20060116720A1 (en) 2004-12-01 2006-06-01 Penny Knoblich Method and apparatus for improving renal function
US7842076B2 (en) 2004-12-20 2010-11-30 Tyco Healthcare Group, Lp Systems and methods for treating a hollow anatomical structure
JP5559460B2 (en) 2004-12-27 2014-07-23 スタンデン・リミテッド Method for treating tumors or the like using electric fields of different orientations
US20060161148A1 (en) 2005-01-13 2006-07-20 Robert Behnke Circuit and method for controlling an electrosurgical generator using a full bridge topology
US20060161147A1 (en) 2005-01-18 2006-07-20 Salvatore Privitera Method and apparatus for controlling a surgical ablation device
DE102005025946A1 (en) 2005-01-26 2006-08-03 Erbe Elektromedizin Gmbh High frequency surgical device for treating monopolar coagulation of biological tissue, has control unit controlling generator to supply voltage to target region and producing switching off signal if target input reaches final value
US9833618B2 (en) 2005-02-04 2017-12-05 Palo Alto Investors Methods and compositions for treating a disease condition in a subject
US7548780B2 (en) 2005-02-22 2009-06-16 Cardiac Pacemakers, Inc. Cell therapy and neural stimulation for cardiac repair
CN101511292B (en) 2005-03-28 2011-04-06 明诺医学有限公司 Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues
US7499748B2 (en) 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US7794455B2 (en) * 2005-04-29 2010-09-14 Medtronic Cryocath Lp Wide area ablation of myocardial tissue
WO2006119103A2 (en) * 2005-04-29 2006-11-09 Medtronic, Inc. Event-based lead impedance monitoring
US8696662B2 (en) 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US20070016274A1 (en) 2005-06-29 2007-01-18 Boveja Birinder R Gastrointestinal (GI) ablation for GI tumors or to provide therapy for obesity, motility disorders, G.E.R.D., or to induce weight loss
US7390894B2 (en) 2005-07-07 2008-06-24 Mayo Foundation For Medical Education And Research Glutathione S-transferase sequence variants
US8834461B2 (en) 2005-07-11 2014-09-16 Medtronic Ablation Frontiers Llc Low power tissue ablation system
DE202006021215U1 (en) 2005-07-21 2013-11-08 Covidien Lp Apparatus for treating a hollow anatomical structure
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US8712522B1 (en) 2005-10-18 2014-04-29 Cvrx, Inc. System for setting programmable parameters for an implantable hypertension treatment device
EP1962945B1 (en) 2005-12-06 2016-04-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
US20070156200A1 (en) 2005-12-29 2007-07-05 Lilian Kornet System and method for regulating blood pressure and electrolyte balance
US7887534B2 (en) 2006-01-18 2011-02-15 Stryker Corporation Electrosurgical system
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
CA2638029A1 (en) * 2006-01-27 2007-08-09 Medtronic, Inc. Ablation device and system for guiding said ablation device into a patient's body
US8571650B2 (en) 2006-03-03 2013-10-29 Palo Alto Investors Methods and compositions for treating a renal associated condition in a subject
US7322164B2 (en) 2006-03-10 2008-01-29 Tipper Tie, Inc. Clippers with translating gate members and cooperating stiffener assemblies and related methods, computer program products
US20080004673A1 (en) 2006-04-03 2008-01-03 Cvrx, Inc. Implantable extravascular electrostimulation system having a resilient cuff
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US20070282376A1 (en) 2006-06-06 2007-12-06 Shuros Allan C Method and apparatus for neural stimulation via the lymphatic system
US7647101B2 (en) 2006-06-09 2010-01-12 Cardiac Pacemakers, Inc. Physical conditioning system, device and method
US9049096B2 (en) 2006-06-19 2015-06-02 Qualcomm Incorporated Data routing via lower layers in a communication system
EP2842604A1 (en) 2006-06-28 2015-03-04 Medtronic Ardian Luxembourg S.à.r.l. Systems for thermally-induced renal neuromodulation
US8700176B2 (en) * 2006-07-27 2014-04-15 Pollogen Ltd. Apparatus and method for non-invasive treatment of skin tissue
US20080039904A1 (en) 2006-08-08 2008-02-14 Cherik Bulkes Intravascular implant system
US20080051704A1 (en) * 2006-08-28 2008-02-28 Patel Rajnikant V Catheter and system for using same
US8486060B2 (en) 2006-09-18 2013-07-16 Cytyc Corporation Power ramping during RF ablation
US20080077126A1 (en) 2006-09-22 2008-03-27 Rassoll Rashidi Ablation for atrial fibrillation
US7799020B2 (en) 2006-10-02 2010-09-21 Conmed Corporation Near-instantaneous responsive closed loop control electrosurgical generator and method
US20080091255A1 (en) 2006-10-11 2008-04-17 Cardiac Pacemakers Implantable neurostimulator for modulating cardiovascular function
AU2007310988B2 (en) 2006-10-18 2013-08-15 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
CA2666663C (en) 2006-10-18 2016-02-09 Minnow Medical, Inc. System for inducing desirable temperature effects on body tissue
WO2008070562A1 (en) 2006-12-06 2008-06-12 Boston Scientific Limited Tissue ablation using pulse modulated radio frequency energy
US7846160B2 (en) 2006-12-21 2010-12-07 Cytyc Corporation Method and apparatus for sterilization
US7896871B2 (en) 2007-02-22 2011-03-01 Medtronic, Inc. Impedance computation for ablation therapy
US9265559B2 (en) 2007-02-25 2016-02-23 Avent, Inc. Electrosurgical method
EP2653128B1 (en) 2007-02-25 2016-10-19 Avent, Inc. Control of energy delivery to multiple energy delivery devices
WO2008128070A2 (en) 2007-04-11 2008-10-23 The Cleveland Clinic Foundation Method and apparatus for renal neuromodulation
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US8594779B2 (en) * 2007-04-30 2013-11-26 Medtronic, Inc. Seizure prediction
US20080275440A1 (en) * 2007-05-03 2008-11-06 Medtronic, Inc. Post-ablation verification of lesion size
US20080281386A1 (en) * 2007-05-09 2008-11-13 Tessaron Medical, Inc. Systems and methods for treating body tissue
US20080281318A1 (en) * 2007-05-09 2008-11-13 Tessaron Medical, Inc. Systems and methods for inductive heat treatment of body tissue
US8641704B2 (en) 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US8630704B2 (en) 2007-06-25 2014-01-14 Cardiac Pacemakers, Inc. Neural stimulation with respiratory rhythm management
US8690823B2 (en) 2007-07-13 2014-04-08 Abbott Cardiovascular Systems Inc. Drug coated balloon catheter
WO2009015278A1 (en) 2007-07-24 2009-01-29 Asthmatx, Inc. System and method for controlling power based on impedance detection, such as controlling power to tissue treatment devices
DE102008061418A1 (en) 2007-12-12 2009-06-18 Erbe Elektromedizin Gmbh Apparatus for contactless communication and use of a memory device
US7949398B1 (en) 2007-12-27 2011-05-24 Pacesetter, Inc. Acquiring nerve activity from carotid body and/or sinus
US7848816B1 (en) 2007-12-27 2010-12-07 Pacesetter, Inc. Acquiring nerve activity from carotid body and/or sinus
US9204927B2 (en) 2009-05-13 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US8821488B2 (en) 2008-05-13 2014-09-02 Medtronic, Inc. Tissue lesion evaluation
JP2010021134A (en) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for manufacturing lithium complex metal oxide
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8340763B2 (en) 2008-09-08 2012-12-25 Backbeat Medical, Inc. Methods and apparatus to stimulate heart atria
US8095212B2 (en) 2008-10-24 2012-01-10 Olympus Medical Systems Corp. High-frequency surgical apparatus and high-frequency surgical method for closure of patent foramen ovale
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US20100168739A1 (en) * 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8211100B2 (en) 2009-01-12 2012-07-03 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US8333759B2 (en) 2009-01-12 2012-12-18 Covidien Lp Energy delivery algorithm for medical devices
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8162932B2 (en) 2009-01-12 2012-04-24 Tyco Healthcare Group Lp Energy delivery algorithm impedance trend adaptation
US8152802B2 (en) 2009-01-12 2012-04-10 Tyco Healthcare Group Lp Energy delivery algorithm filter pre-loading
JP2010162163A (en) 2009-01-15 2010-07-29 Sumitomo Bakelite Co Ltd Indwelling balloon catheter
EP2459096B1 (en) 2009-07-28 2014-10-22 Neuwave Medical, Inc. Ablation device
JP2011053608A (en) 2009-09-04 2011-03-17 Mitsubishi Electric Corp Method of manufacturing liquid crystal panel
US8388614B2 (en) 2009-09-29 2013-03-05 Covidien Lp Return electrode temperature prediction
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8568401B2 (en) 2009-10-27 2013-10-29 Covidien Lp System for monitoring ablation size
US20110112400A1 (en) * 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US9724400B2 (en) 2009-11-09 2017-08-08 The Trustees Of The University Of Pennsylvania Administration of plant expressed oral tolerance agents
CN102883659A (en) 2010-01-19 2013-01-16 美敦力阿迪安卢森堡有限公司 Methods and apparatus for renal neuromodulation via stereotactic radiotherapy
JP2011147758A (en) 2010-01-22 2011-08-04 Olympus Corp Treatment instrument
US20110190755A1 (en) 2010-01-29 2011-08-04 Medtronic Ablation Frontiers Llc Patient return electrode detection for ablation system
JP5483339B2 (en) 2010-02-15 2014-05-07 三菱自動車工業株式会社 Rear seat locking mechanism
JP2013523318A (en) 2010-04-09 2013-06-17 べシックス・バスキュラー・インコーポレイテッド Power generation and control equipment for tissue treatment
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
ES2757726T3 (en) 2010-04-26 2020-04-30 Medtronic Ardian Luxembourg Catheter devices and systems for renal neuromodulation
US8845631B2 (en) 2010-04-28 2014-09-30 Medtronic Ablation Frontiers Llc Systems and methods of performing medical procedures
US8834388B2 (en) 2010-04-30 2014-09-16 Medtronic Ablation Frontiers Llc Method and apparatus to regulate a tissue temperature
US10631912B2 (en) 2010-04-30 2020-04-28 Medtronic Xomed, Inc. Interface module for use with nerve monitoring and electrosurgery
US20120123400A1 (en) 2010-05-10 2012-05-17 David Francischelli Methods and devices for controlling energy during ablation
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US8798950B2 (en) 2010-08-20 2014-08-05 Bio-Rad Laboratories, Inc. System and method for ultrasonic transducer control
US20120065506A1 (en) 2010-09-10 2012-03-15 Scott Smith Mechanical, Electromechanical, and/or Elastographic Assessment for Renal Nerve Ablation
TW201221165A (en) 2010-10-20 2012-06-01 Medtronic Ardian Luxembourg Catheter apparatuses having expandable mesh structures for renal neuromodulation and associated systems and methods
EP2632373B1 (en) 2010-10-25 2018-07-18 Medtronic Ardian Luxembourg S.à.r.l. System for evaluation and feedback of neuromodulation treatment
JP6046631B2 (en) 2010-11-19 2016-12-21 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Renal nerve detection and excision device
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9504518B2 (en) 2010-11-29 2016-11-29 Medtronic Ablation Frontiers Llc System and method for adaptive RF ablation
US10016233B2 (en) 2010-12-06 2018-07-10 Biosense Webster (Israel) Ltd. Treatment of atrial fibrillation using high-frequency pacing and ablation of renal nerves
US20120150049A1 (en) 2010-12-09 2012-06-14 Medtronic, Inc. Impedance measurement to monitor organ perfusion or hemodynamic status
US20130030738A1 (en) 2011-01-19 2013-01-31 Sendyne Corporation Converging algorithm for real-time battery prediction
US20120191083A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US9265557B2 (en) 2011-01-31 2016-02-23 Medtronic Ablation Frontiers Llc Multi frequency and multi polarity complex impedance measurements to assess ablation lesions
US8909316B2 (en) 2011-05-18 2014-12-09 St. Jude Medical, Cardiology Division, Inc. Apparatus and method of assessing transvascular denervation
WO2012158864A1 (en) 2011-05-18 2012-11-22 St. Jude Medical, Inc. Apparatus and method of assessing transvascular denervation
US20120296232A1 (en) 2011-05-18 2012-11-22 St. Jude Medical, Inc. Method and apparatus of assessing transvascular denervation
US9050089B2 (en) 2011-05-31 2015-06-09 Covidien Lp Electrosurgical apparatus with tissue site sensing and feedback control
CN103813745B (en) 2011-07-20 2016-06-29 波士顿科学西美德公司 In order to visualize, be directed at and to melt transcutaneous device and the method for nerve
US8702619B2 (en) 2011-08-26 2014-04-22 Symap Holding Limited Mapping sympathetic nerve distribution for renal ablation and catheters for same
US9820811B2 (en) 2011-08-26 2017-11-21 Symap Medical (Suzhou), Ltd System and method for mapping the functional nerves innervating the wall of arteries, 3-D mapping and catheters for same
JP6188159B2 (en) 2011-08-26 2017-08-30 サイマップ ホールディング リミテッド System and method for locating and identifying functional nerves governing arterial walls and catheter thereof
US9427579B2 (en) 2011-09-29 2016-08-30 Pacesetter, Inc. System and method for performing renal denervation verification
WO2013074813A1 (en) 2011-11-15 2013-05-23 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
WO2013096461A1 (en) 2011-12-20 2013-06-27 Cardiac Pacemakers, Inc. Apparatus for monitoring and ablating nerves
EP2793689B1 (en) 2011-12-23 2023-05-10 Vessix Vascular, Inc. Tissue remodeling systems
WO2013101446A1 (en) 2011-12-28 2013-07-04 Boston Scientific Scimed, Inc. Balloon expandable multi-electrode rf ablation catheter
CN104135959A (en) 2011-12-29 2014-11-05 波士顿科学西美德公司 Device and methods for renal nerve modulation monitoring
US9649064B2 (en) 2012-01-26 2017-05-16 Autonomix Medical, Inc. Controlled sympathectomy and micro-ablation systems and methods
EP2804527B1 (en) 2012-01-26 2021-04-14 Autonomix Medical, Inc. Controlled sympathectomy and micro-ablation system
US20130218029A1 (en) 2012-02-16 2013-08-22 Pacesetter, Inc. System and method for assessing renal artery nerve density
EP3348220B1 (en) 2012-03-08 2024-10-23 Medtronic Ardian Luxembourg S.à.r.l. Biomarker sampling in the context of neuromodulation devices and associated systems
US9439598B2 (en) 2012-04-12 2016-09-13 NeuroMedic, Inc. Mapping and ablation of nerves within arteries and tissues
AU2013267672B2 (en) 2012-05-29 2017-11-16 Autonomix Medical, Inc. Endoscopic sympathectomy systems and methods
US11357447B2 (en) 2012-05-31 2022-06-14 Sonivie Ltd. Method and/or apparatus for measuring renal denervation effectiveness
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
WO2014007871A1 (en) 2012-07-05 2014-01-09 Mc10, Inc. Catheter device including flow sensing
CN102743225B (en) 2012-07-18 2014-04-02 深圳市惠泰医疗器械有限公司 Radiofrequency ablation controlled electrode catheter for renal artery
CN103284693B (en) 2012-08-24 2014-12-24 苏州信迈医疗器械有限公司 Instrument for locating and identifying nerves in vessel wall, and application method thereof
TWI498101B (en) 2012-08-30 2015-09-01 Univ Nat Chiao Tung Method of analyzing nerve fiber distribution and measuring standardized induced compound motion electric potential
JP2014054430A (en) 2012-09-13 2014-03-27 Nippon Koden Corp Catheter
EP2906135A2 (en) 2012-10-10 2015-08-19 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9770593B2 (en) 2012-11-05 2017-09-26 Pythagoras Medical Ltd. Patient selection using a transluminally-applied electric current
CA3183802A1 (en) 2012-11-05 2014-05-08 Autonomix Medical, Inc. Systems, methods, and devices for monitoring and treatment of tissues within and/or through a lumen wall
CN104902836B (en) 2012-11-05 2017-08-08 毕达哥拉斯医疗有限公司 Controlled tissue melts
US20140316496A1 (en) 2012-11-21 2014-10-23 NeuroTronik IP Holding (Jersey) Limited Intravascular Electrode Arrays for Neuromodulation
WO2014091328A1 (en) 2012-12-10 2014-06-19 Koninklijke Philips N.V. Digital ruler and reticule for renal denervation.
WO2014091401A2 (en) 2012-12-10 2014-06-19 Perseus-Biomed Inc. Dynamic denervation procedures and systems for the implementation thereof
AU2014214766B2 (en) 2013-02-08 2018-04-05 Covidien Lp System and method for lung denervation
US20140228829A1 (en) 2013-02-13 2014-08-14 St. Jude Medical, Cardiology Division, Inc. Laser-based devices and methods for renal denervation
US10195467B2 (en) 2013-02-21 2019-02-05 Boston Scientific Scimed, Inc. Ablation catheter system with wireless radio frequency temperature sensor
US10028764B2 (en) 2013-02-21 2018-07-24 Boston Scientific Scimed, Inc. Ablation catheter with wireless temperature sensor
US20140249524A1 (en) 2013-03-01 2014-09-04 Boston Scientific Scimed, Inc. System and method for performing renal nerve modulation
US20140246465A1 (en) 2013-03-03 2014-09-04 Joan Darnell Peterson Fish n stow
US20140257266A1 (en) 2013-03-08 2014-09-11 Symple Surgical Inc. Balloon catheter apparatus with microwave emitter
AU2014249776B2 (en) 2013-03-12 2017-04-20 Boston Scientific Scimed, Inc. Medical systems and methods for modulating nerves
US9510902B2 (en) 2013-03-13 2016-12-06 St. Jude Medical, Cardiology Division, Inc. Ablation catheters and systems including rotational monitoring means
US8876813B2 (en) 2013-03-14 2014-11-04 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US9179973B2 (en) 2013-03-15 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US9186212B2 (en) 2013-03-15 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods utilizing two or more sites along denervation catheter
CN105228546B (en) 2013-03-15 2017-11-14 波士顿科学国际有限公司 Utilize the impedance-compensated medicine equipment and method that are used to treat hypertension
WO2014150441A2 (en) 2013-03-15 2014-09-25 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9987070B2 (en) 2013-03-15 2018-06-05 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9974477B2 (en) 2013-03-15 2018-05-22 St. Jude Medical, Cardiology Division, Inc. Quantification of renal denervation via alterations in renal blood flow pre/post ablation
CA3205904A1 (en) 2013-03-27 2014-10-02 Autonomix Medical, Inc. Systems and methods for neurological traffic and/or receptor functional evaluation and/or modification
WO2014162660A1 (en) 2013-04-01 2014-10-09 テルモ株式会社 Monitoring device and monitoring device kit
WO2014179768A1 (en) 2013-05-02 2014-11-06 Harrington Douglas C Devices and methods for detection and treatment of the aorticorenal ganglion
US20140330266A1 (en) 2013-05-03 2014-11-06 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
WO2014182946A2 (en) 2013-05-08 2014-11-13 Boston Scientific Scimed, Inc. Systems and methods for temperature monitoring and control during an ablation procedure
EP3016605B1 (en) 2013-07-01 2019-06-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US20150025524A1 (en) 2013-07-18 2015-01-22 St. Jude Medical, Cardiology Division, Inc. Renal denervation monitoring and feedback apparatus, system and method
US9931046B2 (en) 2013-10-25 2018-04-03 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
EP3089686A4 (en) 2014-01-03 2017-11-22 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
US9848949B2 (en) 2014-01-21 2017-12-26 Oscor Inc. Renal denervation system
EP2907464A1 (en) 2014-02-12 2015-08-19 Perseus-Biomed Inc. Methods and systems for treating nerve structures
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
US11382515B2 (en) 2014-08-07 2022-07-12 Verve Medical, Inc. Renal denervation using nerve fluorescing dye
US10231778B2 (en) 2014-10-20 2019-03-19 Biosense Webster (Israel) Ltd. Methods for contemporaneous assessment of renal denervation
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
US20170007157A1 (en) 2015-07-08 2017-01-12 Rainbow Medical Ltd. Electrical-signal-based electrode-tissue contact detection
US10285751B2 (en) 2015-10-16 2019-05-14 Biosense Webster (Israel) Ltd. System and method for controlling catheter power based on renal ablation response

Also Published As

Publication number Publication date
JP2017080420A (en) 2017-05-18
CN103313671A (en) 2013-09-18
EP3449856A1 (en) 2019-03-06
US11006999B2 (en) 2021-05-18
US20210259760A1 (en) 2021-08-26
JP6522099B2 (en) 2019-05-29
US9750560B2 (en) 2017-09-05
EP3449856B1 (en) 2023-06-28
US20240335226A1 (en) 2024-10-10
US9345530B2 (en) 2016-05-24
US20150257815A1 (en) 2015-09-17
JP6267774B2 (en) 2018-01-24
CN107007348B (en) 2019-05-31
US20170020597A1 (en) 2017-01-26
CN103313671B (en) 2017-06-06
US20120101538A1 (en) 2012-04-26
EP2632373A1 (en) 2013-09-04
EP2632373B1 (en) 2018-07-18
US20180028256A1 (en) 2018-02-01
WO2012061153A1 (en) 2012-05-10
JP2013544130A (en) 2013-12-12
US10179020B2 (en) 2019-01-15
US12035959B2 (en) 2024-07-16
JP2018079334A (en) 2018-05-24
US9066720B2 (en) 2015-06-30
TW201221114A (en) 2012-06-01
US20190183560A1 (en) 2019-06-20
TWI513451B (en) 2015-12-21
CN107007348A (en) 2017-08-04

Similar Documents

Publication Publication Date Title
JP6267774B2 (en) Devices, systems, and methods for neuromodulation therapy evaluation and feedback
US11504184B2 (en) Current control methods and systems
CN111700677B (en) Specialized devices, systems, and methods for neuromodulation therapy
CN108601534B (en) Systems and methods for monitoring and evaluating neuromodulation therapy
US20200146742A1 (en) Controlled neuromodulation systems and methods of use

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6046041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250