[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6045779B2 - Wavelength conversion structure, manufacturing method thereof, and light emitting device including the wavelength conversion structure - Google Patents

Wavelength conversion structure, manufacturing method thereof, and light emitting device including the wavelength conversion structure Download PDF

Info

Publication number
JP6045779B2
JP6045779B2 JP2011193419A JP2011193419A JP6045779B2 JP 6045779 B2 JP6045779 B2 JP 6045779B2 JP 2011193419 A JP2011193419 A JP 2011193419A JP 2011193419 A JP2011193419 A JP 2011193419A JP 6045779 B2 JP6045779 B2 JP 6045779B2
Authority
JP
Japan
Prior art keywords
fluorescent powder
wavelength conversion
region
layer
conversion structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011193419A
Other languages
Japanese (ja)
Other versions
JP2013053257A5 (en
JP2013053257A (en
Inventor
シエ ミン−シュン
シエ ミン−シュン
チュアン イー−ジュイ
チュアン イー−ジュイ
ホン メン−ユアン
ホン メン−ユアン
シュ ミン−チ
シュ ミン−チ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to JP2011193419A priority Critical patent/JP6045779B2/en
Publication of JP2013053257A publication Critical patent/JP2013053257A/en
Publication of JP2013053257A5 publication Critical patent/JP2013053257A5/ja
Application granted granted Critical
Publication of JP6045779B2 publication Critical patent/JP6045779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、波長変換構造及びその製造方法に関し、特に、高い光取り出し効率を有する波長変換構造及びその製造方法、並びに該波長変換構造を含む発光装置に関する。   The present invention relates to a wavelength conversion structure and a manufacturing method thereof, and more particularly, to a wavelength conversion structure having a high light extraction efficiency, a manufacturing method thereof, and a light emitting device including the wavelength conversion structure.

近年、エネルギー問題がますます重視されており、様々な新型の省エネ照明器具が開発されている。そのうち、発光ダイオード(LED)が、発光効率が高く、電気消費量が少なく、水銀が無く、及び使用寿命が長いなどの利点を有し、次世代の照明器具になりつつある。   In recent years, energy issues have become more important and various new types of energy-saving lighting fixtures have been developed. Among them, light emitting diodes (LEDs) have advantages such as high luminous efficiency, low electricity consumption, no mercury, and long service life, and are becoming the next generation lighting fixtures.

照明用白色LEDについて言えば、一般的には、LEDチップが蛍光粉と併せて用いられる。例えば、青色LEDチップによる青色光を使用することにより、YAG(Yttrium Aluminum Garnet;Y3Al5O12)黄色蛍光粉を励起して黄色光を発光させ、それから、両者を混合して白色光を生成する。 As for the white LED for illumination, generally, an LED chip is used in combination with fluorescent powder. For example, by using blue light from a blue LED chip, YAG (Yttrium Aluminum Garnet; Y 3 Al 5 O 12 ) yellow fluorescent powder is excited to emit yellow light, and then both are mixed to produce white light. Generate.

よくある蛍光粉塗布方法としては、絶縁保護コーティング(conformal coating)とリモートフォスファ(remote phosphor)技術との2種類がある。絶縁保護コーティングは、蛍光粉をLEDチップに直接塗布して蛍光粉層を形成するよう行うものである。蛍光粉をLEDチップに直接塗布するので、この種類の塗布方法は、厚みが比較的均一である利点を有する。しかし、LEDチップ及びそのキャリアが蛍光粉層から発した光を吸収することがあるので、全体の発光効率が低下することがある。また、蛍光粉がLEDチップと直接接触するので、LEDチップが作動時に100℃〜150℃の高温状態になる場合には、蛍光粉層が次第に変質劣化し、変換効率に悪い影響を与える可能性がある。   There are two common fluorescent powder application methods: conformal coating and remote phosphor technology. The insulating protective coating is performed by directly applying fluorescent powder to the LED chip to form a fluorescent powder layer. Since fluorescent powder is applied directly to the LED chip, this type of application method has the advantage of a relatively uniform thickness. However, since the LED chip and its carrier may absorb light emitted from the fluorescent powder layer, the overall luminous efficiency may be reduced. In addition, since the fluorescent powder is in direct contact with the LED chip, when the LED chip is in a high temperature state of 100 ° C. to 150 ° C. during operation, the fluorescent powder layer may gradually deteriorate and deteriorate the conversion efficiency. There is.

リモートフォスファ技術は、上述の絶縁保護コーティングの問題を解決するために行うものである。リモートフォスファ技術によるLED発光素子の蛍光粉層とLEDチップとが分離されるので、蛍光粉層から発した光をLEDチップにより直接吸収することをできる限り避けることができる。また、蛍光粉層がLEDチップから離れる方式で設置されるので、蛍光粉層中の蛍光粉は、LEDチップの作動時の高温による劣化が生じ難い。   Remote phosphor technology is used to solve the above-mentioned problems of the insulating protective coating. Since the fluorescent powder layer and the LED chip of the LED light emitting element by the remote phosphor technology are separated, it is possible to avoid the light emitted from the fluorescent powder layer from being directly absorbed by the LED chip as much as possible. In addition, since the fluorescent powder layer is installed in a manner away from the LED chip, the fluorescent powder in the fluorescent powder layer is unlikely to deteriorate due to high temperatures during operation of the LED chip.

蛍光粉粒子がLEDチップからの光を受けると励起されて他の種類の色の光を生成することができる。しかし、蛍光粉粒子の励起により生成された光は、全ての方向に向かい、もちろん、内に向かって伝播する光も含む。そのため、パッケージ用樹脂と蛍光粉との屈折率が異なる場合には、全反射が起こりやすく、発光効率が低下する。   When the fluorescent powder particles receive light from the LED chip, they can be excited to generate light of other types. However, the light generated by the excitation of the fluorescent powder particles is directed in all directions, and of course includes light propagating inward. Therefore, when the refractive index of the package resin and the fluorescent powder are different, total reflection is likely to occur, and the light emission efficiency is lowered.

本発明の目的は、高い光取り出し効率を有する波長変換構造及びその製造方法、並びに該波長変換構造を有する発光装置を提供することにある。   An object of the present invention is to provide a wavelength conversion structure having high light extraction efficiency, a method for manufacturing the same, and a light emitting device having the wavelength conversion structure.

本発明の一実施例によれば、波長変換構造が提供される。この波長変換構造は、第一領域と第二領域とを含む蛍光粉層であって、第二領域は第一領域の上に位置し、且つ第一領域及び第二領域はそれぞれ隙間を有する蛍光粉層と、蛍光粉層の第一領域の隙間に形成される第一材料層と、蛍光粉層の第二領域の隙間に形成される第二材料層とを含む。   According to one embodiment of the present invention, a wavelength conversion structure is provided. This wavelength conversion structure is a fluorescent powder layer including a first region and a second region, the second region is located on the first region, and the first region and the second region are fluorescent light having a gap, respectively. A powder layer, a first material layer formed in a gap between the first regions of the fluorescent powder layer, and a second material layer formed in a gap between the second regions of the fluorescent powder layer are included.

本発明の一実施例によれば、波長変換構造が提供される。この波長変換構造は、第一材料層と、第二材料層と、複数の蛍光粉粒子とを含み、第二材料層は第一材料層の上に位置し、複数の蛍光粉粒子は第一材料層及び第二材料層内に分散される。   According to one embodiment of the present invention, a wavelength conversion structure is provided. The wavelength conversion structure includes a first material layer, a second material layer, and a plurality of fluorescent powder particles, the second material layer is located on the first material layer, and the plurality of fluorescent powder particles are the first Dispersed in the material layer and the second material layer.

本発明の他の一実施例によれば、波長変換構造の製造方法が提供される。この波長変換構造の製造方法は、基板を提供するステップと、基板の上に蛍光粉層を形成するステップであって、蛍光粉層は第一領域と第二領域とを含み、第二領域は第一領域の上に位置し、且つ第一領域及び第二領域はそれぞれ隙間を有するステップと、第一領域の隙間に第一材料層を形成するステップと、第二領域の隙間に第二材料層を形成するステップとを含む。   According to another embodiment of the present invention, a method for manufacturing a wavelength conversion structure is provided. The method for manufacturing a wavelength conversion structure includes a step of providing a substrate and a step of forming a fluorescent powder layer on the substrate, the fluorescent powder layer including a first region and a second region, wherein the second region is A first region and a second region each having a gap; a step of forming a first material layer in the first region; and a second material in the second region. Forming a layer.

本発明の他の一実施例によれば、発光装置が提供される。この発光装置は、キャリアと、キャリアの上に設置される発光素子と、発光素子を覆い且つキャリアの上に設置される第一導光層と、第一導光層の上に位置する波長変換構造とを含み、波長変換構造は、導電基板と、第一領域と第二領域とを含む蛍光粉層であって、第一領域は第一導光層の上に位置し、第二領域は第一領域の上に位置し、且つ第一領域及び第二領域はそれぞれ隙間を有する蛍光粉層と、蛍光粉層の第一領域の隙間に形成される第一材料層と、蛍光粉層の第二領域の隙間に形成される第二材料層とを含む。   According to another embodiment of the present invention, a light emitting device is provided. The light emitting device includes a carrier, a light emitting element installed on the carrier, a first light guide layer covering the light emitting element and installed on the carrier, and a wavelength conversion located on the first light guide layer. The wavelength conversion structure is a fluorescent powder layer including a conductive substrate, a first region and a second region, wherein the first region is located on the first light guide layer, and the second region is The first region and the second region are located above the first region, and the first region and the second region each have a gap, the first material layer formed in the gap between the first region of the phosphor layer, and the phosphor layer And a second material layer formed in the gap of the second region.

本発明の実施例によれば、高い光取り出し効率を有する波長変換構造及びその製造方法、並びに該波長変換構造を有する発光装置を提供することができる。   According to the embodiments of the present invention, it is possible to provide a wavelength conversion structure having high light extraction efficiency, a method for manufacturing the same, and a light emitting device having the wavelength conversion structure.

本発明の一実施例における波長変換構造を示す図である。It is a figure which shows the wavelength conversion structure in one Example of this invention. 本発明の一実施例における蛍光粉層の第一領域及び第二領域を示す図である。It is a figure which shows the 1st area | region and 2nd area | region of the fluorescent-powder layer in one Example of this invention. 第二領域に充填される第二材料層の上表面が蛍光粉層の頂面より高い様子を示す図である。It is a figure which shows a mode that the upper surface of the 2nd material layer with which a 2nd area | region is filled is higher than the top surface of a fluorescent powder layer. 基板に蛍光粉層を形成する様子の電子顕微鏡による写真を示す図である。It is a figure which shows the photograph by an electron microscope of a mode that a fluorescent powder layer is formed in a board | substrate. 第一領域に第一材料層を形成する様子の電子顕微鏡による写真を示す図である。It is a figure which shows the photograph by an electron microscope of a mode that a 1st material layer is formed in a 1st area | region. 第二領域に第二材料層を形成する様子の電子顕微鏡による写真を示す図である。It is a figure which shows the photograph by an electron microscope of a mode that a 2nd material layer is formed in a 2nd area | region. 本発明の一実施例における発光装置を示す図である。It is a figure which shows the light-emitting device in one Example of this invention.

次に、添付した図面を参照しながら、本発明の好適な実施形態を詳細に説明する。   Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

なお、本明細書では、一つの素子又は一つの材料層が他の素子又は他の材料層の上に設置(形成、配置など)又は接続(連結など)されるとのように記載するときは、この一つの素子又は一つの材料層が他の素子又は他の材料層上に直接的に設置(形成、配置など)又は接続(連結など)されること、或いは、他の素子又は他の材料層の上に間接的に設置(形成、配置など)又は接続(連結など)されること(即ち、両者の間は他の素子又は他の材料層を有すること)を意味する。また、一つの素子又は一つの材料層が他の素子又は他の材料層上に直接的に設置(形成、配置など)又は接続(連結など)されるとのように記載するときは、両者の間は他の素子又は他の材料層を有しないことを意味する。   In this specification, when it is described that one element or one material layer is placed (formed, arranged, etc.) or connected (coupled, etc.) on another element or another material layer This one element or one material layer is directly installed (formed, arranged, etc.) or connected (coupled) on another element or other material layer, or another element or other material It means that it is indirectly installed (formed, arranged, etc.) or connected (coupled, etc.) on the layer (that is, it has other elements or other material layers between them). In addition, when it is described that one element or one material layer is directly installed (formed, arranged, etc.) or connected (coupled, etc.) on another element or other material layer, It means that there are no other elements or other material layers.

図1は、本発明の一実施例における波長変換構造10を示す図である。波長変換構造10は、導電基板101と、蛍光粉層102と、第一材料層103と、第二材料層104とを含む。蛍光粉層102は、導電基板101の上に形成され、蛍光粉粒子からなり、また、蛍光粉粒子間は隙間を有する。蛍光粉層102は、第一領域105と第二領域106とを含み、第一領域105は、導電基板101の上に位置し、第二領域106は、第一領域105の上に位置し、また、第一領域105の厚みと第二領域106の厚みとの和は、蛍光粉層102の厚みと等しい。第一材料層103は、導電基板101の上に位置し、この第一材料層103は、無機化合物を第一領域105の隙間に充填し、厚みが蛍光粉層102の厚みより小さい薄層を形成することにより得られる。第二材料層104は、第一材料層103の上に位置し、この第二材料層104は、ゴム材料又はガラスを蛍光粉層102の第二領域106の隙間に充填することにより形成される。   FIG. 1 is a diagram showing a wavelength conversion structure 10 in one embodiment of the present invention. The wavelength conversion structure 10 includes a conductive substrate 101, a fluorescent powder layer 102, a first material layer 103, and a second material layer 104. The fluorescent powder layer 102 is formed on the conductive substrate 101 and is made of fluorescent powder particles, and there is a gap between the fluorescent powder particles. The fluorescent powder layer 102 includes a first region 105 and a second region 106, the first region 105 is located on the conductive substrate 101, the second region 106 is located on the first region 105, Further, the sum of the thickness of the first region 105 and the thickness of the second region 106 is equal to the thickness of the fluorescent powder layer 102. The first material layer 103 is located on the conductive substrate 101, and the first material layer 103 is a thin layer having an inorganic compound filled in the gaps of the first region 105 and having a thickness smaller than that of the fluorescent powder layer 102. It is obtained by forming. The second material layer 104 is located on the first material layer 103, and the second material layer 104 is formed by filling a gap between the second regions 106 of the fluorescent powder layer 102 with rubber material or glass. .

導電基板101は、透明導電性を有し、その材料は、透明導電性無機化合物(TCO)を含んでも良いが、これに限定されない。蛍光粉層102は、導電基板101の上に形成され、その材料は、黄色セラミック蛍光材料(即ち、励起されて黄色光を発光するセラミック蛍光材料)を含んでも良いが、これに限定されない。蛍光粉層102の蛍光粉粒子の粒径の範囲は、約225〜825nmであり、蛍光粉粒子間は、隙間を有する。蛍光粉層102は、第一領域105と第二領域106とを含み、この第一領域105の厚みは、蛍光粉層102の厚みより小さく、第一領域105の厚みと蛍光粉層102の厚みとの比は、0.5〜1.9であり、また、この第二領域106の厚みは、蛍光粉層102の厚みから第一領域105の厚みを引いた後の値に等しい。   The conductive substrate 101 has transparent conductivity, and the material thereof may include a transparent conductive inorganic compound (TCO), but is not limited thereto. The fluorescent powder layer 102 is formed on the conductive substrate 101. The material may include a yellow ceramic fluorescent material (that is, a ceramic fluorescent material that emits yellow light when excited), but is not limited thereto. The range of the particle size of the fluorescent powder particles of the fluorescent powder layer 102 is about 225 to 825 nm, and there is a gap between the fluorescent powder particles. The fluorescent powder layer 102 includes a first region 105 and a second region 106. The thickness of the first region 105 is smaller than the thickness of the fluorescent powder layer 102, and the thickness of the first region 105 and the thickness of the fluorescent powder layer 102 are the same. And the thickness of the second region 106 is equal to the value obtained by subtracting the thickness of the first region 105 from the thickness of the fluorescent powder layer 102.

図2に示すように、無機化合物を第一領域105の蛍光粉粒子間の隙間に充填することによって上述の第一材料層103を形成する。無機化合物の材料は、例えば、金属酸化物であり、酸化亜鉛(ZnO)、酸化アルミニウム(Al)、酸化インジウムスズ(ITO)、酸化アルミニウム亜鉛(AZO)又はインジウムガリウム亜鉛酸化物(InGaZnO、IGZO)を含んでも良いが、これらに限定されない。蛍光粉層102の材料が黄色セラミック蛍光粉であると、その屈折率が約2であり、この場合は、無機化合物の材料は、好ましくは、該蛍光粉の屈折率に近いものを有する材料を採用し、例えば、屈折率が約1.8〜2である酸化亜鉛(ZnO)を使用しても良い。第一材料層103の屈折率と蛍光粉層102の屈折率とが近いため、材料間の屈折率が異なることによる発光効率の低下を有効に防止することができる。また、蛍光粉粒子間の隙間に充填される無機化合物は、粘着剤の役割を果たすこともでき、これにより、蛍光粉層102の機械的強度を向上させることができる。 As shown in FIG. 2, the first material layer 103 described above is formed by filling the gap between the fluorescent powder particles in the first region 105 with an inorganic compound. The material of the inorganic compound is, for example, a metal oxide, such as zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), indium tin oxide (ITO), aluminum zinc oxide (AZO), or indium gallium zinc oxide (InGaZnO). IGZO), but is not limited thereto. When the material of the fluorescent powder layer 102 is a yellow ceramic fluorescent powder, the refractive index thereof is about 2. In this case, the material of the inorganic compound is preferably a material having a refractive index close to that of the fluorescent powder. For example, zinc oxide (ZnO) having a refractive index of about 1.8 to 2 may be used. Since the refractive index of the first material layer 103 and the refractive index of the fluorescent powder layer 102 are close to each other, it is possible to effectively prevent a decrease in luminous efficiency due to a difference in refractive index between materials. In addition, the inorganic compound filled in the gaps between the fluorescent powder particles can also play a role of an adhesive, thereby improving the mechanical strength of the fluorescent powder layer 102.

また、ゴム材料を蛍光粉層102の第二領域106の隙間に充填することによって上述の第二材料層104を形成する。第二材料層104の材料は、屈折率が約1.45であるシリカゲルを含んでも良いが、これに限定されない。言い換えると、本実施例におけるゴム材料は、シリカゲルであるが、他の実施例では、ゴム材料としては他の材料、例えば、ガラス(屈折率が1.5〜1.9)、樹脂(屈折率が1.5〜1.6)、二酸化チタン(TiO;屈折率が2.2〜2.4)、二酸化シリコン(SiO;屈折率が1.5〜1.7)、又はフッ化マグネシウム(MgF;屈折率が1.38)などを使用しても良い。また、第二材料層104は、屈折率が約1.3〜1.6である有機化合物又は無機化合物を含んでも良い。 Moreover, the above-mentioned second material layer 104 is formed by filling a gap between the second regions 106 of the fluorescent powder layer 102 with a rubber material. The material of the second material layer 104 may include silica gel having a refractive index of about 1.45, but is not limited thereto. In other words, the rubber material in this embodiment is silica gel, but in other embodiments, the rubber material is another material such as glass (refractive index of 1.5 to 1.9), resin (refractive index). 1.5 to 1.6), titanium dioxide (TiO 2 ; refractive index 2.2 to 2.4), silicon dioxide (SiO 2 ; refractive index 1.5 to 1.7), or magnesium fluoride (MgF; refractive index 1.38) or the like may be used. Further, the second material layer 104 may include an organic compound or an inorganic compound having a refractive index of about 1.3 to 1.6.

本実施例では、第二領域106の厚みは、蛍光粉層102の厚みから第一領域105の厚みを引いた後の値と等しい。また、他の一実施例では、図3に示すように、第二材料層104の厚みが第二領域106の厚みより大きく、即ち、第二材料層104の頂面124が蛍光粉層102の頂面126より高く、これにより、波長変換構造10の表面をさらに平坦化することができる。   In the present embodiment, the thickness of the second region 106 is equal to the value after the thickness of the first region 105 is subtracted from the thickness of the fluorescent powder layer 102. In another embodiment, as shown in FIG. 3, the thickness of the second material layer 104 is larger than the thickness of the second region 106, that is, the top surface 124 of the second material layer 104 is formed of the fluorescent powder layer 102. It is higher than the top surface 126, and thus the surface of the wavelength conversion structure 10 can be further planarized.

以下、本実施例における波長変換構造10の製造方法について説明する。先ず、導電基板101を電気泳動装置内に置き、この導電基板101は、例えば、ITOガラスであっても良い。図4のSEM写真に示すように、電気泳動技術により蛍光粉粒子をITOガラスの表面に堆積させることによって蛍光粉層102を形成する。本実施例における蛍光粉層102は、入射した光の波長を変換できる材料、例えば、蛍光材料を有する。蛍光粉層102の堆積方法は、電気泳動技術に限定されず、他の堆積方法、例えば、重力堆積方法を含んでも良い。次に、メッキにより透明な無機化合物(例えば、ZnO)を蛍光粉層102の第一領域105の隙間に充填することによって第一材料層103を形成する。蛍光粉の屈折率に近いものを有する透明な酸化物を充填することにより、光の散乱(scattering)による損失を減らして白色光の光取り出し効率を向上させることができる。図5のSEM写真に示すように、上述の無機化合物は、蛍光粉粒子の粘着剤の役割を果たすこともでき、これにより、蛍光粉層102の機械的強度を向上させることができる。第一材料層103の堆積厚みは、蛍光粉粒子及び又は隙間の大小に従って調整されても良い。第一材料層103の堆積方法は、メッキに限定されず、無機化合物を蛍光粉粒子間の隙間に充填できる他の方法、例えば、CVD方法又はSol−Gel方法を含んでも良い。最後に、図6のSEM写真に示すように、ゴム材料を蛍光粉層102の第二領域106の隙間に完全に充填する。ゴム材料を充填する方法は、当業者に良く知られているものであるため、ここでは、その詳細な説明を省略する。形成された波長変換構造10は、ほぼ均一又は不均一な厚みを有する。   Hereinafter, the manufacturing method of the wavelength conversion structure 10 in a present Example is demonstrated. First, the conductive substrate 101 is placed in an electrophoresis apparatus, and the conductive substrate 101 may be, for example, ITO glass. As shown in the SEM photograph of FIG. 4, the fluorescent powder layer 102 is formed by depositing the fluorescent powder particles on the surface of the ITO glass by the electrophoresis technique. The fluorescent powder layer 102 in this embodiment includes a material that can convert the wavelength of incident light, for example, a fluorescent material. The deposition method of the fluorescent powder layer 102 is not limited to the electrophoresis technique, and may include other deposition methods such as a gravity deposition method. Next, the first material layer 103 is formed by filling a gap between the first regions 105 of the fluorescent powder layer 102 with a transparent inorganic compound (for example, ZnO) by plating. By filling a transparent oxide having a refractive index close to that of the fluorescent powder, loss due to light scattering can be reduced and the light extraction efficiency of white light can be improved. As shown in the SEM photograph of FIG. 5, the above-described inorganic compound can also serve as a pressure-sensitive adhesive for fluorescent powder particles, thereby improving the mechanical strength of the fluorescent powder layer 102. The deposition thickness of the first material layer 103 may be adjusted according to the size of the fluorescent powder particles and / or the gap. The deposition method of the first material layer 103 is not limited to plating, and may include other methods that can fill the gaps between the fluorescent powder particles with an inorganic compound, such as a CVD method or a Sol-Gel method. Finally, as shown in the SEM photograph of FIG. 6, the rubber material is completely filled in the gap between the second regions 106 of the fluorescent powder layer 102. Since the method of filling the rubber material is well known to those skilled in the art, a detailed description thereof is omitted here. The formed wavelength conversion structure 10 has a substantially uniform or non-uniform thickness.

図7は、本発明の一実施例における発光装置20を示す図である。発光装置20は、パッケージ基板111と、発光ダイオード110と、筐体112と、導光層113と、波長変換構造10とを含む。発光ダイオード110は、パッケージ基板111の上に位置する。導光層113は、パッケージ基板111と発光ダイオード110とを覆う。発光装置20は、例えば、上述の実施例による波長変換構造10を含む。波長変換構造10と発光ダイオード110とが筐体112により分離され、蛍光粉が発光ダイオード110と直接接触せず、これにより、蛍光粉層から発した光を発光ダイオード110(LEDチップ)により直接吸収することをできる限り避けることができる。また、蛍光粉が発光ダイオード110から離れる方式で設置されるので、蛍光粉層中の蛍光粉は、発光ダイオード110の作動時の高温による劣化が生じ難い。   FIG. 7 is a diagram showing the light emitting device 20 in one embodiment of the present invention. The light emitting device 20 includes a package substrate 111, a light emitting diode 110, a housing 112, a light guide layer 113, and a wavelength conversion structure 10. The light emitting diode 110 is located on the package substrate 111. The light guide layer 113 covers the package substrate 111 and the light emitting diode 110. The light emitting device 20 includes, for example, the wavelength conversion structure 10 according to the above-described embodiment. The wavelength conversion structure 10 and the light emitting diode 110 are separated by the housing 112, and the fluorescent powder does not directly contact the light emitting diode 110, whereby the light emitted from the fluorescent powder layer is directly absorbed by the light emitting diode 110 (LED chip). You can avoid doing as much as possible. In addition, since the fluorescent powder is installed in a manner away from the light emitting diode 110, the fluorescent powder in the fluorescent powder layer is unlikely to deteriorate due to a high temperature during the operation of the light emitting diode 110.

本実施例における導光層113は、光透過層であり、光取り出し効率を向上できる材料層を有するものであっても良い。本実施例では、導光層113は、複数の材料層を有し、また、勾配屈折率(gradient refractive index)を有する。本実施例では、導光層113の複数の材料層は、窒化シリコン(Si;屈折率n=1.95)層と、酸化アルミニウム(Al2O3;屈折率n=1.7)層と、シリコーン(silicone;屈折率n=1.45)層とからなるスタック層であっても良いが、他の実施例では、他の材料層の組合せを採用しても良い。層と層との屈折率の差が小さく、各層の屈折率が発光ダイオード110から離れる方向に沿って次第に減少する複数の材料層を利用することにより、光の全反射の発生を有効に抑えることができる。また、使用可能な材料としては、ガラス(屈折率が1.5〜1.9)、樹脂(屈折率が1.5〜1.6)、DLC(diamond like carbon;屈折率が2.0〜2.4)、二酸化チタン(TiO;屈折率が2.2〜2.4)、二酸化シリコン(SiO;屈折率が1.5〜1.7)、又はフッ化マグネシウム(MgF;屈折率が1.38)などの組合せであっても良い。本実施例では、発光ダイオード110は、屈折率が2.4であるGaNの青色LEDチップを採用しても良い。よって、勾配屈折率を有し、且つ、層と層との屈折率の差が小さいスタック層を使用することにより、光の全反射の発生を有効に抑えることができる。 The light guide layer 113 in this embodiment is a light transmission layer, and may have a material layer that can improve light extraction efficiency. In the present embodiment, the light guide layer 113 includes a plurality of material layers and has a gradient refractive index. In the present embodiment, the plurality of material layers of the light guide layer 113 include a silicon nitride (Si 3 N 4 ; refractive index n a = 1.95) layer and an aluminum oxide (Al 2 O 3 ; refractive index n b = 1). .7) A stack layer composed of a layer and a silicone (silicone; refractive index n c = 1.45) layer may be used, but in other embodiments, a combination of other material layers may be adopted. . By using a plurality of material layers in which the difference in refractive index between layers is small and the refractive index of each layer gradually decreases along the direction away from the light emitting diode 110, generation of total reflection of light is effectively suppressed. Can do. Examples of usable materials include glass (refractive index: 1.5 to 1.9), resin (refractive index: 1.5 to 1.6), DLC (diamond like carbon; refractive index: 2.0 to 2.4), titanium dioxide (TiO 2 ; refractive index: 2.2 to 2.4), silicon dioxide (SiO 2 ; refractive index: 1.5 to 1.7), or magnesium fluoride (MgF; refractive index) May be a combination such as 1.38). In this embodiment, the light emitting diode 110 may be a GaN blue LED chip having a refractive index of 2.4. Therefore, by using a stack layer having a gradient refractive index and a small difference in refractive index between layers, occurrence of total reflection of light can be effectively suppressed.

本実施例における発光装置20では、導光層113の上に例えば上述の実施例による波長変換構造10が設けられ、光が発光ダイオード110から発した後に導光層113を通過して波長変換構造10に進入する。つまり、発光ダイオード110から発した光は、複数の材料層を有する導光層113を通過した後に、屈折率が比較的低い第二材料層104に入射し、それから、蛍光粉層102と、蛍光粉の屈折率に近いものを有する第一材料層103とに進入する。よって、屈折率の差が比較的小さいので、全反射による光の損失を有効に軽減することができる。また、無機化合物と蛍光粉粒子との屈折率が近いので、蛍光粉粒子間における光の散乱を低減することもできる。なお、本実施例における発光装置20は、平板状のパッケージ構造であるが、他の実施例では、波長変換構造10の導電基板101の形状が平板状に限定されず、凸レンズ状、凹レンズ状、又は三角錐状であっても良く、即ち、導電基板101の表面が平面、曲面、又は折れ曲がり面であっても良い。   In the light emitting device 20 according to the present embodiment, the wavelength conversion structure 10 according to the above-described embodiment is provided on the light guide layer 113, and the wavelength conversion structure passes through the light guide layer 113 after light is emitted from the light emitting diode 110. Enter 10. That is, the light emitted from the light emitting diode 110 passes through the light guide layer 113 having a plurality of material layers, and then enters the second material layer 104 having a relatively low refractive index. It enters into the first material layer 103 having a material close to the refractive index of the powder. Therefore, since the difference in refractive index is relatively small, the loss of light due to total reflection can be effectively reduced. Moreover, since the refractive indexes of the inorganic compound and the fluorescent powder particles are close to each other, light scattering between the fluorescent powder particles can be reduced. Although the light emitting device 20 in this embodiment has a flat package structure, in other embodiments, the shape of the conductive substrate 101 of the wavelength conversion structure 10 is not limited to a flat plate shape, and may be a convex lens shape, a concave lens shape, Alternatively, it may be a triangular pyramid, that is, the surface of the conductive substrate 101 may be a flat surface, a curved surface, or a bent surface.

表1は、本発明の一実施例による波長変換構造10を有する発光装置20の発光効率と、従来のリモートフォスファ技術によるLED発光素子の発光効率とを比較するものである。具体的には、実験により、蛍光粉層102の隙間にシリカゲルのみを充填する従来のLED発光素子の発光効率と、蛍光粉層102の隙間に無機化合物ITO、シリカゲル、及びZnOを充填する本発明の一実施例による波長変換構造10を有する発光装置20の発光効率とを比較する。この実験によれば、蛍光粉層102の隙間にシリカゲルのみ充填するLED発光素子の発光効率は、約32.15ルーメン/ワットであり、蛍光粉層102の隙間にZnO、シリカゲル、及びITO材料を充填する発光装置20の発光効率は、約35.9〜36.8ルーメン/ワットである。後者の場合は、ZnOのメッキ時間が45分であるときに、その発光効率は約35.9ルーメン/ワットであり、ZnOのメッキ時間が90分であるときに、その発光効率は約36.8ルーメン/ワットである。比較すれば分かるように、本発明の一実施例による波長変換構造10を有する発光装置20の発光効率は、従来のLED発光素子の発光効率より約14%高い。また、ZnOのメッキ時間が90分である発光素子20の発光効率は、ZnOのメッキ時間が45分である発光素子20の発光効率より高い。その結果は、表1に示されている。
以上、本発明の好ましい実施形態を説明したが、本発明はこの実施形態に限定されず、本発明の趣旨を離脱しない限り、本発明に対するあらゆる変更は本発明の範囲に属する。
Table 1 compares the light emission efficiency of the light emitting device 20 having the wavelength conversion structure 10 according to one embodiment of the present invention and the light emission efficiency of the LED light emitting element by the conventional remote phosphor technology. Specifically, according to the present invention, the luminous efficiency of a conventional LED light emitting element in which only the silica gel is filled in the gap between the fluorescent powder layers 102 and the inorganic compound ITO, silica gel, and ZnO are filled in the gap between the fluorescent powder layers 102 by the experiment. The light emission efficiency of the light emitting device 20 having the wavelength conversion structure 10 according to the embodiment will be compared. According to this experiment, the luminous efficiency of the LED light emitting element in which only the silica gel is filled in the gap between the fluorescent powder layers 102 is about 32.15 lumens / watt, and ZnO, silica gel, and ITO material are filled in the gap between the fluorescent powder layers 102. The luminous efficiency of the light emitting device 20 to be filled is about 35.9 to 36.8 lumens / watt. In the latter case, when the ZnO plating time is 45 minutes, the luminous efficiency is about 35.9 lumens / watt, and when the ZnO plating time is 90 minutes, the luminous efficiency is about 36. 8 lumens / watt. As can be seen, the luminous efficiency of the light emitting device 20 having the wavelength conversion structure 10 according to an embodiment of the present invention is about 14% higher than the luminous efficiency of the conventional LED light emitting element. Further, the light emission efficiency of the light emitting element 20 in which the ZnO plating time is 90 minutes is higher than the light emission efficiency of the light emitting element 20 in which the ZnO plating time is 45 minutes. The results are shown in Table 1.
The preferred embodiment of the present invention has been described above, but the present invention is not limited to this embodiment, and all modifications to the present invention are within the scope of the present invention unless departing from the spirit of the present invention.

10 波長変換構造
101 導電基板
102 蛍光粉層
103 第一材料層
104 第二材料層
105 第一領域
106 第二領域
110 発光ダイオード
111 パッケージ基板
112 筐体
113 導光層
20 発光装置
DESCRIPTION OF SYMBOLS 10 Wavelength conversion structure 101 Conductive board | substrate 102 Fluorescent powder layer 103 1st material layer 104 2nd material layer 105 1st area | region 106 2nd area | region 110 Light emitting diode 111 Package board | substrate 112 Case 113 Light guide layer 20 Light-emitting device

Claims (8)

波長変換構造であって、
第一領域と第二領域とを含む蛍光粉層であって、前記第二領域は前記第一領域の上に位置し、且つ前記第一領域及び前記第二領域は隙間をそれぞれ有する蛍光粉層と、
前記蛍光粉層の前記第一領域の隙間に形成される第一材料層と、
前記蛍光粉層の前記第二領域の隙間に形成される第二材料層と、を含み、
前記第一材料層の屈折率は、前記第二材料層の屈折率より少なくとも0.2大きい、波長変換構造。
A wavelength conversion structure,
A fluorescent powder layer including a first region and a second region, wherein the second region is located on the first region, and the first region and the second region each have a gap. When,
A first material layer formed in a gap between the first regions of the fluorescent powder layer;
A second material layer formed in the gap of the second region of the fluorescent powder layer,
The wavelength conversion structure, wherein the refractive index of the first material layer is at least 0.2 larger than the refractive index of the second material layer.
前記第一材料層の一方側に位置する透明導電基板をさらに含む、請求項に記載の波長変換構造。 Further comprising a transparent conductive substrate located on one side of the first material layer, the wavelength conversion structure according to claim 1. 前記第一材料層は無機化合物を含み、及び/又は、前記第二材料層は無機化合物を含む、請求項に記載の波長変換構造。 The wavelength conversion structure according to claim 1 , wherein the first material layer includes an inorganic compound and / or the second material layer includes an inorganic compound. 前記第一材料層の屈折率は実質的に1.8〜2.0であり、及び/又は、前記第二材料層の屈折率は実質的に1.3〜1.6である、請求項に記載の波長変換構造。 The refractive index of the first material layer is substantially 1.8 to 2.0 and / or the refractive index of the second material layer is substantially 1.3 to 1.6. 1. The wavelength conversion structure according to 1. 前記第一領域の厚みは前記蛍光粉層の厚みの0.5〜0.9倍である、請求項1に記載の波長変換構造。   The wavelength conversion structure according to claim 1, wherein the thickness of the first region is 0.5 to 0.9 times the thickness of the fluorescent powder layer. 前記第二材料層の上表面は前記蛍光粉層の頂面より高い、請求項1に記載の波長変換構造。   The wavelength conversion structure according to claim 1, wherein an upper surface of the second material layer is higher than a top surface of the fluorescent powder layer. 前記透明導電基板の表面は曲面又は折れ曲がり面である、請求項に記載の波長変換構造。 The wavelength conversion structure according to claim 2 , wherein the surface of the transparent conductive substrate is a curved surface or a bent surface. 前記蛍光粉層の屈折率と前記第一材料層の屈折率との差は0.3より小さい、請求項1に記載の波長変換構造。   The wavelength conversion structure according to claim 1, wherein a difference between a refractive index of the fluorescent powder layer and a refractive index of the first material layer is smaller than 0.3.
JP2011193419A 2011-09-06 2011-09-06 Wavelength conversion structure, manufacturing method thereof, and light emitting device including the wavelength conversion structure Active JP6045779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193419A JP6045779B2 (en) 2011-09-06 2011-09-06 Wavelength conversion structure, manufacturing method thereof, and light emitting device including the wavelength conversion structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193419A JP6045779B2 (en) 2011-09-06 2011-09-06 Wavelength conversion structure, manufacturing method thereof, and light emitting device including the wavelength conversion structure

Publications (3)

Publication Number Publication Date
JP2013053257A JP2013053257A (en) 2013-03-21
JP2013053257A5 JP2013053257A5 (en) 2014-10-23
JP6045779B2 true JP6045779B2 (en) 2016-12-14

Family

ID=48130540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193419A Active JP6045779B2 (en) 2011-09-06 2011-09-06 Wavelength conversion structure, manufacturing method thereof, and light emitting device including the wavelength conversion structure

Country Status (1)

Country Link
JP (1) JP6045779B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580866B2 (en) * 2012-10-23 2014-08-27 浜松ホトニクス株式会社 Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
JP6029926B2 (en) 2012-10-23 2016-11-24 浜松ホトニクス株式会社 Ultraviolet light generation target, electron beam excited ultraviolet light source, and method for producing ultraviolet light generation target
JP6204746B2 (en) * 2013-08-20 2017-09-27 株式会社トクヤマ Neutron scintillator and neutron detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005010122D1 (en) * 2005-01-04 2008-11-13 Philips Intellectual Property WAVELENGTH CONVERSION LAYERS WITH EMBEDDED CRYSTALLITES
JP5614675B2 (en) * 2010-02-16 2014-10-29 独立行政法人物質・材料研究機構 Method for manufacturing wavelength conversion member

Also Published As

Publication number Publication date
JP2013053257A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
TWI523278B (en) Wavelength conversion structure, manufacturing methods thereof, and lighting emitting device including the wavelength conversion structure
TWI505515B (en) Lighting emitting device and manufacturing method thereof
JP6176171B2 (en) Method for manufacturing light emitting device
US8210698B2 (en) Phosphor layer having enhanced thermal conduction and light sources utilizing the phosphor layer
JP6065408B2 (en) Light emitting device and manufacturing method thereof
JP5915483B2 (en) Light emitting device and manufacturing method thereof
JP2012044132A (en) Light-emitting apparatus with coating substrate composed of material having high optical density
CN104638078A (en) Light emitting diode and manufacturing method for same
TW201729434A (en) Light-emitting element and the manufacturing method thereof
TW201611339A (en) Semiconductor light emitting device
CN204088355U (en) A kind of light emitting diode construction
JP6058939B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6045779B2 (en) Wavelength conversion structure, manufacturing method thereof, and light emitting device including the wavelength conversion structure
JP2013501374A (en) High power LED device architecture and manufacturing method using dielectric coating
KR101765183B1 (en) Light extraction layer for light emitting apparatus and method of forming the light extraction layer
TW201340388A (en) LED die and method for manufacturing the same
TWI489055B (en) Led light bar
CN104347776B (en) LED (light emitting diode) structure and preparing method of LED structure
TWI538262B (en) Wavelength Conversion Structure and Lighting Emitting Device including the Wavelength Conversion Structure
WO2014053953A1 (en) Light emitting device
TWI500188B (en) Light emitting apparatus and manufacturing methods thereof
CN102956801B (en) Wavelength transformational structure and manufacture method thereof, and comprise its light-emitting device
CN102956800B (en) Wavelength transformational structure and manufacture method thereof and light-emitting device
JP2013516761A (en) LED device architecture and manufacturing method using a novel optical coating
TW201306308A (en) LED with gradient refractive index conductive layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6045779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250