JP6044021B2 - Noise suppression member - Google Patents
Noise suppression member Download PDFInfo
- Publication number
- JP6044021B2 JP6044021B2 JP2012063174A JP2012063174A JP6044021B2 JP 6044021 B2 JP6044021 B2 JP 6044021B2 JP 2012063174 A JP2012063174 A JP 2012063174A JP 2012063174 A JP2012063174 A JP 2012063174A JP 6044021 B2 JP6044021 B2 JP 6044021B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetic thin
- circuit
- noise suppression
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001629 suppression Effects 0.000 title claims description 24
- 230000005291 magnetic effect Effects 0.000 claims description 76
- 239000010409 thin film Substances 0.000 claims description 48
- 230000000694 effects Effects 0.000 claims description 16
- 230000004907 flux Effects 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 11
- 230000005350 ferromagnetic resonance Effects 0.000 claims description 9
- 230000035699 permeability Effects 0.000 claims description 6
- 230000000903 blocking effect Effects 0.000 claims description 5
- 229910019236 CoFeB Inorganic materials 0.000 claims description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 239000010408 film Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
本発明は、回路から放射される電磁波を遮断するためのノイズ抑制部材に関する。 The present invention relates to a noise suppressing member for blocking electromagnetic waves radiated from a circuit.
携帯電話等の電子機器の回路では、回路から放射された電磁波が電磁干渉を起こすという問題がある。近年、電子機器の小型化や高性能化の要望にこたえる形で、回路基板や部品の高密度実装化が進んでおり、回路基板間や部品間の間隔が小さくなることに起因して、電磁干渉の問題が深刻となっている。このような電磁干渉の対策の一つとして、従来、回路の近傍に、結合材中にフェライト粉末を分散して作製されたノイズ抑制シートを配置したり(例えば、特許文献1参照)、回路の近傍に、フェライト粉末を焼結して作製されたノイズ抑制シートを配置したりするもの(例えば、特許文献2参照)があった。 In a circuit of an electronic device such as a mobile phone, there is a problem that electromagnetic waves radiated from the circuit cause electromagnetic interference. In recent years, high-density mounting of circuit boards and components has been progressing in response to demands for miniaturization and high performance of electronic devices, and the distance between circuit boards and components has been reduced. The problem of interference has become serious. As one of the countermeasures against such electromagnetic interference, a noise suppression sheet prepared by dispersing ferrite powder in a binder has been conventionally arranged in the vicinity of a circuit (for example, see Patent Document 1), In the vicinity, a noise suppression sheet prepared by sintering ferrite powder is disposed (for example, see Patent Document 2).
これら特許文献1や特許文献2に記載のノイズ抑制シートは、あまり薄くしすぎると厚さに比例して電磁干渉抑制効果が低下し、さらに破損する虞があるため、1ミリ程度の厚みが必要となる。このため、ノイズ抑制シートを回路の近傍に配置する際に、回路基板の実装に支障をきたすことがあるという課題があった。しかも、回路が高周波集積回路(Radio Frequency Integrated Circuit:RFIC)である場合、回路から放射される電磁波だけでなく、通信周波数帯で発生する信号も遮断されるため、通信品質の低下が懸念されるという課題もあった。 Since the noise suppression sheets described in Patent Document 1 and Patent Document 2 are too thin, the electromagnetic interference suppression effect is reduced in proportion to the thickness and may be damaged. It becomes. For this reason, when arrange | positioning a noise suppression sheet | seat in the vicinity of a circuit, there existed a subject that the mounting of a circuit board might be obstructed. In addition, when the circuit is a radio frequency integrated circuit (RFIC), not only electromagnetic waves radiated from the circuit but also signals generated in the communication frequency band are blocked, and there is a concern that communication quality may be degraded. There was also a problem.
本発明は、このような課題に鑑みてなされたものであって、回路基板の実装の妨げとならず、電磁干渉を抑制しつつ通信品質を良好に維持できるノイズ抑制部材を提供することを目的としている。 The present invention has been made in view of such problems, and it is an object of the present invention to provide a noise suppression member that does not hinder mounting of a circuit board and that can maintain good communication quality while suppressing electromagnetic interference. It is said.
本発明に係るノイズ抑制部材は、回路から放射される電磁波を遮断するためのノイズ抑制部材であって、強磁性共鳴周波数を有し、前記回路に近接配置された磁性薄膜を備え、前記強磁性共鳴周波数以上の周波数帯で、前記磁性薄膜内部の磁気抵抗と、前記磁性薄膜からの漏洩磁束の経路の磁気抵抗との和が0となるよう構成されており、前記回路の通信周波数帯が、前記磁性薄膜のシールド効果が負となる所定の周波数範囲内に含まれることを特徴とする。
Noise suppression member according to the present invention is a noise suppression member for blocking electromagnetic waves radiated from the circuit, has a ferromagnetic resonance frequency, comprising a magnetic thin film which is disposed close to the circuit, the ferromagnetic The sum of the magnetic resistance inside the magnetic thin film and the magnetic resistance of the leakage magnetic flux path from the magnetic thin film is configured to be 0 in a frequency band equal to or higher than the resonance frequency, and the communication frequency band of the circuit is The magnetic thin film is included in a predetermined frequency range in which the shielding effect is negative .
本発明に係るノイズ抑制部材は、前記磁性薄膜から成り、前記磁性薄膜は、前記強磁性共鳴周波数以上の周波数帯域で比透磁率の実部が負となる軟磁性薄膜であることが好ましい。また、この場合、前記軟磁性薄膜は、NiFe、CoFeB、CoCrNb、CoZrNb、NiFeNb、CoZrO、CoAlO、CoPdAlOから選択される1または複数の材料で構成されていることが好ましい。また、前記軟磁性薄膜は、厚みが、100nm〜5μmであることが好ましい。また、前記軟磁性薄膜と前記回路との間隔が、2μm〜10μmであることが好ましい。
Noise suppression member according to the present invention is made from the magnetic thin film, the magnetic thin film is preferably the real part of the relative permeability in the ferromagnetic resonance frequency or higher frequency band is soft magnetic thin film serving as a negative. In this case, the soft magnetic thin film is preferably made of one or more materials selected from NiFe, CoFeB, CoCrNb, CoZrNb, NiFeNb, CoZrO, CoAlO, and CoPdAlO. The soft magnetic thin film preferably has a thickness of 100 nm to 5 μm. Moreover, it is preferable that the space | interval of the said soft-magnetic thin film and the said circuit is 2 micrometers-10 micrometers.
本発明のノイズ抑制部材を用いることで、ノイズ抑制部材の回路基板への実装が容易となる。しかも、通信周波数帯の近傍の周波数でシールド効果が負になるため、信号が遮断されずに通信品質を良好に維持できながらも、通信周波数帯の近傍以外の周波数でシールド効果が正になるため、回路から放射された電磁波を遮断して電磁干渉を効果的に抑制できる。このように、本発明によれば、回路基板の実装の妨げとならず、電磁干渉を抑制しつつ通信品質を良好に維持できるノイズ抑制部材を提供することができる。 By using the noise suppression member of the present invention, the noise suppression member can be easily mounted on the circuit board. Moreover, since the shielding effect becomes negative at frequencies near the communication frequency band, the shielding effect becomes positive at frequencies other than the vicinity of the communication frequency band while maintaining good communication quality without blocking the signal. Electromagnetic interference can be effectively suppressed by blocking electromagnetic waves radiated from the circuit. As described above, according to the present invention, it is possible to provide a noise suppression member that does not hinder the mounting of the circuit board and that can satisfactorily maintain communication quality while suppressing electromagnetic interference.
以下、本発明の実施の形態のノイズ抑制部材を図面に基づいて詳細に説明する。
図1、図3に示すように、ガラスエキポシ製(Glass epoxy)の基板Aの上に、グラウンド(Ground)に接続されたコプレーナ線路(Coplanar transmission line)B(回路の一例)が配置されている。コプレーナ線路Bの寸法は、信号線幅160μm、厚み35μm、グラウンドギャップ30μmとし、直流抵抗を無視した場合に特性インピーダンスが50Ωに整合するよう設計した。このコプレーナ線路B上に、厚み2mmのガラス基板(Glass)Cの上に製膜した膜厚0.25μmの磁性薄膜(Co85Zr3Nb12膜、CoZrNb film)Dを、コプレーナ線路Bと磁性薄膜が近接するよう配置した。磁性薄膜(Magnetic film)Dは、本発明の実施の形態のノイズ抑制部材を成している。
Hereinafter, the noise suppression member of embodiment of this invention is demonstrated in detail based on drawing.
As shown in FIGS. 1 and 3, a coplanar transmission line B (an example of a circuit) connected to a ground is disposed on a glass epoxy substrate A. . The dimensions of the coplanar line B were designed such that the signal line width was 160 μm, the thickness was 35 μm, the ground gap was 30 μm, and the characteristic impedance matched to 50Ω when the DC resistance was ignored. On this coplanar line B, a magnetic thin film (Co 85 Zr 3 Nb 12 film, CoZrNb film) D having a thickness of 0.25 μm formed on a glass substrate (Glass) C having a thickness of 2 mm is formed with the coplanar line B and a magnetic film. The thin films were placed close together. A magnetic thin film (Magnetic film) D forms a noise suppressing member according to the embodiment of the present invention.
尚、CoZrNbの組成比は、Co85Zr3Nb12に限られるものではない。また、磁性薄膜Dとして、NiFe、CoFeB、CoCrNb、CoZrNb、NiFeNb、CoZrO、CoAlO、CoPdAlO等の軟磁性薄膜も利用可能である。膜厚は、0.25μmに限られるものではなく、100nm〜5μmの範囲であればよい。 The composition ratio of CoZrNb is not limited to Co 85 Zr 3 Nb 12 . Further, as the magnetic thin film D, soft magnetic thin films such as NiFe, CoFeB, CoCrNb, CoZrNb, NiFeNb, CoZrO, CoAlO, and CoPdAlO can be used. The film thickness is not limited to 0.25 μm and may be in the range of 100 nm to 5 μm.
この磁性薄膜Dの周波数特性を、図2に示す。図2に示すように、比透磁率(Relactive Pemeability)は0.1GHzにおいて700程度、強磁性共鳴周波数frは1.1GHzである。アジレント製のネットワークアナライザ(Network Analyzer)Eを用いて、この磁性薄膜Dのシールド効果を計測した。図3に示すように、ネットワークアナライザEのポート1(Port 1)より、0dBmの電力をコプレーナ線路Bの一端から入力し、他端を50Ω抵抗により終端させ、コプレーナ線路Bの上方に配置されたシールディドループコイル型の磁界プローブ(Magnetic field probe)Fを用いて、ネットワークアナライザEのポート2(Port 2)で信号を検出した。シールド効果(SE)を下記の(1)式で評価した。 The frequency characteristics of this magnetic thin film D are shown in FIG. As shown in FIG. 2, the relative permeability (Relactive Pemeability) is about 700 at 0.1 GHz, the ferromagnetic resonance frequency f r is 1.1 GHz. The shielding effect of the magnetic thin film D was measured using a network analyzer (Network Analyzer) E manufactured by Agilent. As shown in FIG. 3, 0 dBm of power is input from one end of the coplanar line B from the port 1 (Port 1) of the network analyzer E, and the other end is terminated by a 50Ω resistor, and is disposed above the coplanar line B. A signal was detected at port 2 (Port 2) of the network analyzer E by using a shielded loop coil type magnetic field probe F. The shielding effect (SE) was evaluated by the following formula (1).
図4に示すように、磁性薄膜Dの漏洩磁束を含めた磁気回路をモデルとして、シールド効果を計算した。特定の周波数帯域において、磁束が磁性薄膜Dを透過する現象の理解を行うため、磁性薄膜D内外の磁気抵抗の周波数特性を考察した。ここで、R’mおよびR’’mは、それぞれ磁性薄膜D内の磁気抵抗の実部および虚部を示している。RlpおよびRlvは、それぞれ磁性薄膜Dからの漏洩磁束の磁気抵抗(Reluctance of leakage flux)を示している。RdlおよびRdvは、信号線周りの磁気抵抗を示している。RlpおよびRlvの導出には、パーミアンス法を用いた。このとき、信号線を流れる伝導電流は周波数に対して一定値とし、磁性薄膜D内のシールド効果に対する渦電流の影響は小さいものと仮定した。 As shown in FIG. 4, the shielding effect was calculated using a magnetic circuit including the leakage magnetic flux of the magnetic thin film D as a model. In order to understand the phenomenon of magnetic flux passing through the magnetic thin film D in a specific frequency band, the frequency characteristics of the magnetoresistance inside and outside the magnetic thin film D were considered. Here, R ′ m and R ″ m indicate the real part and the imaginary part of the magnetic resistance in the magnetic thin film D, respectively. R lp and R lv indicate the reluctance of leakage flux from the magnetic thin film D, respectively. R dl and R dv indicate the magnetic resistance around the signal line. The permeance method was used to derive R lp and R lv . At this time, it was assumed that the conduction current flowing through the signal line was a constant value with respect to the frequency, and the influence of the eddy current on the shielding effect in the magnetic thin film D was small.
図5に示すように、シールド効果の計測値(Meas.)と計算値(Calc.)とを比較して、このモデルの妥当性を検討し、磁性薄膜Dを用いた帯域通過フィルタのメカニズムを実証した。シールド効果は、磁性薄膜Dの強磁性共鳴周波数である1.1GHzまでは2〜4dBであり、磁性薄膜Dのシールド効果が得られている。一方、シールド効果は、1.1〜1.5GHzまで単調に減少し、最小となった後に上昇した。1.5GHzでは、シールド効果が負となっており、この周波数帯においては、磁束が磁性薄膜Dを透過している。また、計算値は、計測値と傾向がよく一致しており、特に磁束を透過する周波数帯域についてはほぼ一致している。 As shown in FIG. 5, the measured value (Meas.) And the calculated value (Calc.) Of the shielding effect are compared to examine the validity of this model, and the mechanism of the bandpass filter using the magnetic thin film D is examined. Demonstrated. The shielding effect is 2 to 4 dB up to 1.1 GHz which is the ferromagnetic resonance frequency of the magnetic thin film D, and the shielding effect of the magnetic thin film D is obtained. On the other hand, the shielding effect decreased monotonically from 1.1 to 1.5 GHz, and increased after reaching a minimum. At 1.5 GHz, the shielding effect is negative, and the magnetic flux passes through the magnetic thin film D in this frequency band. In addition, the calculated values tend to agree well with the measured values, and in particular, the frequency band that transmits the magnetic flux substantially agrees.
図6に、磁性薄膜D内外の磁気抵抗(Reluctance)の周波数特性を示す。図6の黒の実線(R’m)は、磁性薄膜D内部の磁気抵抗の実部を示し、灰色の実線(Rl)は、漏洩磁束の経路における磁気抵抗を示している。図6に示すように、膜固有の強磁性共鳴周波数1.1GHz以上においては、磁性薄膜Dの比透磁率が負となることから、磁気抵抗内部の磁束は、周波数範囲において負の値となり、単調減少する。その結果、膜固有の強磁性共鳴周波数以上の周波数帯域において、磁性薄膜Dの磁気抵抗と漏洩磁束の経路の磁気抵抗との和が0となる所定の周波数帯ftが存在する。このことから、磁性薄膜D及び漏洩磁束の経路において、磁気回路が電気回路の共振現象に近い現象が発生し、膜内を流れる磁束および漏洩磁束が増大し、図5に示すように、シールド効果が負となることが明らかとなった。このとき、磁性薄膜Dのシールド効果が負となる所定の周波数範囲W内に、高周波集積回路の通信周波数帯が含まれることが好ましい。このように構成すれば、信号が遮断されずに通信品質を良好に維持できながらも、回路から放射された電磁波を遮断して電磁干渉を効果的に抑制できる。 FIG. 6 shows the frequency characteristics of the magnetic resistance (Reluctance) inside and outside the magnetic thin film D. The black solid line (R ′ m ) in FIG. 6 indicates the real part of the magnetic resistance inside the magnetic thin film D, and the gray solid line (R 1 ) indicates the magnetic resistance in the leakage magnetic flux path. As shown in FIG. 6, the magnetic permeability inside the magnetic resistance becomes negative in the frequency range because the relative permeability of the magnetic thin film D becomes negative at a film-specific ferromagnetic resonance frequency of 1.1 GHz or higher. Monotonously decreases. As a result, there is a predetermined frequency band ft in which the sum of the magnetic resistance of the magnetic thin film D and the magnetic resistance of the leakage flux path is zero in a frequency band equal to or higher than the ferromagnetic resonance frequency inherent in the film. Therefore, in the magnetic thin film D and the leakage magnetic flux path, a phenomenon occurs in which the magnetic circuit is close to the resonance phenomenon of the electric circuit, and the magnetic flux and the leakage magnetic flux flowing in the film increase. As shown in FIG. Became negative. At this time, it is preferable that the communication frequency band of the high-frequency integrated circuit is included in a predetermined frequency range W in which the shielding effect of the magnetic thin film D is negative. If comprised in this way, although electromagnetic waves radiated | emitted from the circuit are interrupted | blocked, electromagnetic interference can be suppressed effectively, although communication quality is favorably maintained without being interrupted | blocked.
本発明は、上記実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。 The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Nor.
A 基板
B コプレーナ線路
C ガラス基板
D 磁性薄膜
E ネットワークアナライザ
F シールディドループコイル型の磁界プローブ
ft 所定の周波数帯
W 所定の周波数範囲
A substrate B coplanar line C glass substrate D magnetic thin film E network analyzer F shielded loop coil type magnetic field probe ft predetermined frequency band W predetermined frequency range
Claims (5)
強磁性共鳴周波数を有し、前記回路に近接配置された磁性薄膜を備え、
前記強磁性共鳴周波数以上の周波数帯で、前記磁性薄膜内部の磁気抵抗と、前記磁性薄膜からの漏洩磁束の経路の磁気抵抗との和が0となるよう構成されており、
前記回路の通信周波数帯が、前記磁性薄膜のシールド効果が負となる所定の周波数範囲内に含まれることを
特徴とするノイズ抑制部材。 A noise suppressing member for blocking electromagnetic waves radiated from a circuit,
A magnetic thin film having a ferromagnetic resonance frequency and disposed in close proximity to the circuit;
In the frequency band equal to or higher than the ferromagnetic resonance frequency , the sum of the magnetoresistance in the magnetic thin film and the magnetoresistance of the leakage magnetic flux path from the magnetic thin film is configured to be 0 ,
The noise suppression member , wherein a communication frequency band of the circuit is included in a predetermined frequency range in which the shielding effect of the magnetic thin film is negative .
前記磁性薄膜は、前記強磁性共鳴周波数以上の周波数帯域で比透磁率の実部が負となる軟磁性薄膜であることを
特徴とする請求項1記載のノイズ抑制部材。 Consisting of the magnetic thin film,
The magnetic thin film, the noise suppression element according to claim 1, wherein the real part of the relative permeability in the ferromagnetic resonance frequency or higher frequency band is soft magnetic thin film serving as a negative.
5. The noise suppression member according to claim 2 , wherein an interval between the soft magnetic thin film and the circuit is 2 μm to 10 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012063174A JP6044021B2 (en) | 2012-03-21 | 2012-03-21 | Noise suppression member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012063174A JP6044021B2 (en) | 2012-03-21 | 2012-03-21 | Noise suppression member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013197328A JP2013197328A (en) | 2013-09-30 |
JP6044021B2 true JP6044021B2 (en) | 2016-12-14 |
Family
ID=49395910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012063174A Active JP6044021B2 (en) | 2012-03-21 | 2012-03-21 | Noise suppression member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6044021B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2360138A (en) * | 2000-03-06 | 2001-09-12 | Marconi Caswell Ltd | Screens for RF magnetic flux |
JP2008204086A (en) * | 2007-02-19 | 2008-09-04 | Shin Etsu Polymer Co Ltd | Manufacturing method of electronic equipment |
JP5218551B2 (en) * | 2008-04-18 | 2013-06-26 | 株式会社村田製作所 | Functional board |
JP5082060B2 (en) * | 2008-05-22 | 2012-11-28 | 学校法人明星学苑 | Low characteristic impedance power supply / ground pair line structure |
JP2010135567A (en) * | 2008-12-04 | 2010-06-17 | Tohoku Univ | Radio wave absorbing material |
JP5136914B2 (en) * | 2010-03-31 | 2013-02-06 | Necインフロンティア株式会社 | Wireless LAN terminal, automatic handover threshold optimization method for wireless LAN terminal, and optimization program thereof |
JP2012038807A (en) * | 2010-08-04 | 2012-02-23 | Toshiba Corp | Electromagnetic shield sheet |
-
2012
- 2012-03-21 JP JP2012063174A patent/JP6044021B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013197328A (en) | 2013-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7616085B2 (en) | Common mode choke coil | |
US8044753B2 (en) | Common-mode choke coil | |
JP6069129B2 (en) | Enhancement of planar RF sensor technology | |
JP5599607B2 (en) | RF sensor for use in plasma processing equipment | |
US20180106874A1 (en) | Inductance element for magnetic sensor and current sensor including the same | |
US20200227358A1 (en) | Electromagnetic wave attenuator and electronic device | |
JP5169856B2 (en) | Common mode filter | |
WO2021233128A1 (en) | Electronic device | |
US10468354B2 (en) | Semiconductor device with magnetic layer and nonmagnetic layer | |
JP5407936B2 (en) | Electromagnetic noise suppressor | |
JP6044021B2 (en) | Noise suppression member | |
US20240295586A1 (en) | Magnetic sensor and electronic device | |
US11782106B2 (en) | Permeability measurement jig, permeability measurement device, and permeability measurement method | |
Muroga et al. | Simultaneous evaluation of conductive/near-field noise suppression in Co-Zr-Nb film using magnetic circuit | |
WO2020105543A1 (en) | Magnetic shield material | |
JP5284736B2 (en) | Magnetic sheet and manufacturing method thereof | |
JP2012015395A (en) | Common mode choke coil mounting structure | |
Ma et al. | Analysis of magnetic-film-type noise suppressor integrated on transmission lines for on-chip crosstalk evaluation | |
JPH0878992A (en) | Filter | |
JP7258349B2 (en) | Magnetic permeability measuring jig, magnetic permeability measuring device and magnetic permeability measuring method | |
JP3306044B2 (en) | Differential transmission cable | |
Ito | Basics of ferrite and noise countermeasures | |
JPH10199721A (en) | Composite magnetic substance | |
JP2001111287A (en) | Electromagnetic interference restraining body and mounting method therefor | |
JP2022007092A (en) | Common mode noise suppression member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160315 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161026 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6044021 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |