[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6041132B2 - Material surface modification method - Google Patents

Material surface modification method Download PDF

Info

Publication number
JP6041132B2
JP6041132B2 JP2012232061A JP2012232061A JP6041132B2 JP 6041132 B2 JP6041132 B2 JP 6041132B2 JP 2012232061 A JP2012232061 A JP 2012232061A JP 2012232061 A JP2012232061 A JP 2012232061A JP 6041132 B2 JP6041132 B2 JP 6041132B2
Authority
JP
Japan
Prior art keywords
functional compound
test piece
stainless steel
modification method
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012232061A
Other languages
Japanese (ja)
Other versions
JP2014083104A (en
Inventor
佐知朗 柿木
佐知朗 柿木
山岡 哲二
哲二 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
National Cerebral and Cardiovascular Center
Original Assignee
Gunze Ltd
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd, National Cerebral and Cardiovascular Center filed Critical Gunze Ltd
Priority to JP2012232061A priority Critical patent/JP6041132B2/en
Publication of JP2014083104A publication Critical patent/JP2014083104A/en
Application granted granted Critical
Publication of JP6041132B2 publication Critical patent/JP6041132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Description

本発明は、簡便で材料選択性が広く、生体安全性も高い、金属、樹脂又はセラミックスからなる材料の表面を機能性化合物により化学修飾する材料表面修飾方法に関する。 The present invention relates to a material surface modification method that chemically modifies the surface of a material made of metal, resin, or ceramics with a functional compound that is simple, has wide material selectivity, and has high biological safety.

金属、樹脂又はセラミックスからなる材料の表面を改質して様々な機能を付与する試みが広く行われている。例えば、材料の表面を親水化する方法として、プラズマ処理、グロー放電処理、コロナ放電処理、オゾン処理、表面グラフト処理又は紫外線照射処理等が知られている。また、機能性ペプチド等の機能性化合物を材料の表面に結合させる表面処理方法は、特に医療インプラントや診断機器等の医療用途への応用が期待されている。 Attempts have been widely made to provide various functions by modifying the surface of a material made of metal, resin or ceramics. For example, plasma treatment, glow discharge treatment, corona discharge treatment, ozone treatment, surface graft treatment or ultraviolet irradiation treatment are known as methods for hydrophilizing the surface of a material. In addition, a surface treatment method for binding a functional compound such as a functional peptide to the surface of a material is expected to be applied to medical applications such as medical implants and diagnostic devices.

例えば特許文献1には、基材と、基材の表面に設けられた、抗凝固能成分を含み、かつ、一部を架橋した架橋性官能基で修飾した天然高分子からなるコーティング層とからなる埋め込み部材が記載されている。特許文献1に記載された発明は、チオール基、ビニル基等の架橋性官能基を導入したヒアルロン酸、ヘパリン、コンドロイチン硫酸、ゼラチン、コラーゲン等の天然高分子誘導体に、血管内皮前駆細胞に特異的に相互作用するタンパク質を複合化し、それを基材の表面にコーティングして架橋反応することにより、基材の表面を機能化するというものである。特許文献1に記載された基材表面の修飾方法は、コーティング法によることから簡便ではある。しかしながら、その準備段階である架橋官能基を有する天然高分子誘導体の合成には多大な手間を必要とする。また、基材の表面に結合したタンパク質は早期に徐放されてしまい長期に渡って効果を発揮させることは困難である。更に、架橋された天然高分子からなるコーティング層の生体内親和性、安全性も懸念される。 For example, Patent Document 1 includes a base material and a coating layer that is provided on the surface of the base material and includes a natural polymer that includes an anticoagulant component and is partially modified with a crosslinkable functional group. An embedded member is described. The invention described in Patent Document 1 is specific to vascular endothelial progenitor cells, such as natural polymer derivatives such as hyaluronic acid, heparin, chondroitin sulfate, gelatin, and collagen into which a crosslinkable functional group such as a thiol group or vinyl group is introduced. The surface of the substrate is functionalized by complexing proteins that interact with each other, coating it on the surface of the substrate, and crosslinking reaction. The substrate surface modification method described in Patent Document 1 is simple because it is based on a coating method. However, a great deal of labor is required to synthesize a natural polymer derivative having a cross-linking functional group in the preparation stage. In addition, the protein bound to the surface of the substrate is gradually released at an early stage, and it is difficult to exert the effect for a long time. Furthermore, there is a concern about the biocompatibility and safety of the coating layer made of a crosslinked natural polymer.

また、特許文献2には、ドーパミンやジヒドロキシフェニルアラニン(DOPA)を介した材料表面の修飾方法が開示されている。特許文献2に記載された発明は、ドーパミンやDOPAと機能性化合物とを反応させてジヒドロキシフェニル基を有する機能性化合物を調製し、該ジヒドロキシフェニル基を有する機能性化合物を材料に接触させることにより、材料の表面に機能性化合物を固定するというものである。ジヒドロキシフェニル基を有する機能性化合物の高い反応性を利用した特許文献2に記載された材料表面の修飾方法は、金属、樹脂、セラミックス等の広い材料に対して適用可能であり、材料選択性が広いという点で優れている。また、生体由来分子であるドーパミンやDOPAを用いていることから生体安全性も高い。しかしながら、ジヒドロキシフェニル基を有する機能性化合物は極めて反応性が高いことから、これを化学的に合成したり、合成したジヒドロキシフェニル基を有する機能性化合物を保存したりするのは困難であるという問題があった。 Patent Document 2 discloses a method for modifying a material surface via dopamine or dihydroxyphenylalanine (DOPA). The invention described in Patent Document 2 is prepared by reacting dopamine or DOPA with a functional compound to prepare a functional compound having a dihydroxyphenyl group, and bringing the functional compound having the dihydroxyphenyl group into contact with a material. The functional compound is fixed on the surface of the material. The material surface modification method described in Patent Document 2 utilizing the high reactivity of a functional compound having a dihydroxyphenyl group can be applied to a wide range of materials such as metals, resins, and ceramics, and has high material selectivity. It is excellent in that it is wide. In addition, the use of dopamine or DOPA, which are biologically derived molecules, provides high biological safety. However, since the functional compound having a dihydroxyphenyl group is extremely reactive, it is difficult to chemically synthesize it or to store the synthesized functional compound having a dihydroxyphenyl group. was there.

特開2011−92491号公報JP 2011-92491 A 米国特許出願公開第2010/0330025号明細書US Patent Application Publication No. 2010/0330025

本発明は、簡便で材料選択性が広く、生体安全性も高い、金属、樹脂又はセラミックスからなる材料の表面を機能性化合物により化学修飾する材料表面修飾方法を提供することを目的とする。 An object of the present invention is to provide a material surface modification method that chemically modifies the surface of a material made of metal, resin, or ceramics with a functional compound, which is simple, has a wide material selectivity, and has a high biological safety.

本発明は、金属、樹脂又はセラミックスからなる材料の表面を機能性化合物により化学修飾する材料表面修飾方法であって、ヒドロキシフェニル基を有する機能性化合物を、触媒及び酸化剤の存在下で金属、樹脂又はセラミックスからなる材料に接触させる工程を有する材料表面修飾方法である。
以下に本発明を詳述する。
The present invention is a material surface modification method for chemically modifying the surface of a material comprising a metal, a resin or a ceramic with a functional compound, wherein the functional compound having a hydroxyphenyl group is converted into a metal in the presence of a catalyst and an oxidizing agent, It is a material surface modification method which has the process made to contact the material which consists of resin or ceramics.
The present invention is described in detail below.

本発明者は、極めて反応性が高く、予め化学的に合成して保存することが困難なジヒドロキシフェニル基を有する機能性化合物に代えて、ヒドロキシフェニル基を有する機能性化合物を材料の表面修飾に用いることを検討した。ヒドロキシフェニル基を有する機能性化合物は、ジヒドロキシフェニル基を有する機能性化合物と比べて反応性が穏やかであり、合成や取扱いも容易である。また、チロシンやチラミン等の生体由来分子を原料として用いることができることから、安全性も高い。しかしながら、このような反応性の低いヒドロキシフェニル基を有する機能性化合物では、金属、樹脂又はセラミックスからなる材料の表面に結合させることは困難であった。
本発明者は、更に鋭意検討の結果、触媒及び酸化剤の存在下でヒドロキシフェニル基を有する機能性化合物を金属、樹脂又はセラミックスからなる材料に接触させることにより、容易に機能性化合物を材料の表面に結合させることができることを見出し、本発明を完成した。
The present inventor has used a functional compound having a hydroxyphenyl group for surface modification of a material in place of a functional compound having a dihydroxyphenyl group, which is extremely reactive and difficult to chemically synthesize and store in advance. We considered using it. A functional compound having a hydroxyphenyl group has a milder reactivity than a functional compound having a dihydroxyphenyl group, and is easy to synthesize and handle. Moreover, since biologically derived molecules such as tyrosine and tyramine can be used as raw materials, safety is also high. However, such a functional compound having a low-reactivity hydroxyphenyl group has been difficult to bond to the surface of a material made of metal, resin or ceramics.
As a result of further intensive studies, the inventor easily brought the functional compound into the material by bringing the functional compound having a hydroxyphenyl group into contact with a material made of metal, resin or ceramics in the presence of a catalyst and an oxidizing agent. The present invention was completed by finding that it can be bonded to the surface.

本発明の材料表面修飾方法は、ヒドロキシフェニル基を有する機能性化合物を、触媒及び酸化剤の存在下で金属、樹脂又はセラミックスからなる材料に接触させる工程を有する。
上記ヒドロキシフェニル基を有する機能性化合物は、安定性が高く、合成が容易で、合成後に保存することも可能である。従って、材料表面修飾方法を飛躍的に容易にすることができる。
The material surface modification method of the present invention includes a step of bringing a functional compound having a hydroxyphenyl group into contact with a material comprising a metal, a resin, or a ceramic in the presence of a catalyst and an oxidizing agent.
The functional compound having a hydroxyphenyl group has high stability, is easy to synthesize, and can be stored after synthesis. Therefore, the material surface modification method can be greatly facilitated.

上記ヒドロキシフェニル基を有する機能性化合物は、例えば、下記一般式(1)で表される化合物が挙げられる。 Examples of the functional compound having a hydroxyphenyl group include compounds represented by the following general formula (1).

Figure 0006041132
Figure 0006041132

上記式(1)中、Rは、機能性化合物の残基を表す。
上記機能性化合物としては、例えば、機能性ペプチド、核酸、タンパク質、糖質等の天然の機能性化合物のほか、合成高分子等も挙げられる。
In said formula (1), R represents the residue of a functional compound.
Examples of the functional compound include natural functional compounds such as functional peptides, nucleic acids, proteins, carbohydrates, and synthetic polymers.

上記機能性ペプチドとしては、例えば、血管内皮細胞が特異的に接着するペプチドであるフィブロネクチンCS5ドメイン由来ペプチド(REDV、Arg−Glu−Asp−Val)、フィブロネクチン由来細胞接着性ペプチド(RGDS、Arg−Gly−Asp−Ser)、ラミニン由来細胞接着性ペプチド(YIGSR、Tyr−Ile−Gly−Ser−Arg)、コラーゲン由来細胞接着性ペプチド(GFOGER、Gly−Phe−Hyp−Gly−Glu−Arg)、黄色ブドウ球菌膜タンパク由来補体抑制ペプチド(AHRKAQKAVNLV、Ala−His−Arg−Lys−Ala−Gln−Lys−Ala−Val−Asn−Leu−Val)等が挙げられる。
上記核酸としては、例えば、網羅解析用のDNAライブラリー等が挙げられる。
上記タンパク質としては、例えば、ヘパリン、アルブミン、アビジン、コラーゲン、酵素、抗体、リコンビナントタンパク質等が挙げられる。
上記糖質としては、例えば、ヒアルロン酸、キトサン、グルコサミノグリカン等が挙げられる。
上記合成高分子としては、例えば、ポリエチレングリコール、ポリビニルアルコール等が挙げられる。
Examples of the functional peptide include fibronectin CS5 domain-derived peptide (REDV, Arg-Glu-Asp-Val), which is a peptide to which vascular endothelial cells specifically adhere, and fibronectin-derived cell adhesive peptide (RGDS, Arg-Gly). -Asp-Ser), laminin-derived cell adhesion peptide (YIGSR, Tyr-Ile-Gly-Ser-Arg), collagen-derived cell adhesion peptide (GFOGER, Gly-Phe-Hyp-Gly-Glu-Arg), yellow grape Examples include a cocci membrane protein-derived complement inhibitory peptide (AHRKAQKAVNLV, Ala-His-Arg-Lys-Ala-Gln-Lys-Ala-Val-Asn-Leu-Val) and the like.
Examples of the nucleic acid include a DNA library for exhaustive analysis.
Examples of the protein include heparin, albumin, avidin, collagen, enzyme, antibody, and recombinant protein.
Examples of the saccharide include hyaluronic acid, chitosan, glucosaminoglycan and the like.
Examples of the synthetic polymer include polyethylene glycol and polyvinyl alcohol.

上記ヒドロキシフェニル基を有する機能性化合物は、例えば、下記式(2)で表されるチロシンや、下記式(3)で表されるチラミン等の生体由来分子と、材料に結合させたい機能性化合物とを反応させることにより調製することができる。上記REDVとチロシンとを反応させてなるチロシン誘導体(Ac−YGREDV)の構造を下記式(4)に示した。
また、機能性化合物自体がチロシン残基を有する場合には、そのままヒドロキシフェニル基を有する機能性化合物として用いることもできる。
The functional compound having a hydroxyphenyl group is, for example, a functional compound that is desired to be bound to a biologically derived molecule such as tyrosine represented by the following formula (2) or tyramine represented by the following formula (3). Can be prepared by reacting. The structure of a tyrosine derivative (Ac-YG 3 REDV) obtained by reacting the REDV with tyrosine is shown in the following formula (4).
Further, when the functional compound itself has a tyrosine residue, it can be used as it is as a functional compound having a hydroxyphenyl group.

Figure 0006041132
Figure 0006041132

Figure 0006041132
Figure 0006041132

本発明の材料表面修飾方法の材料としては、ステンレス、コバルト−クロム合金、金、チタン等の金属や、ポリエステル、ポリエチレン、ポリ塩化ビニル、ポリ乳酸、ポリテトラフルオロエチレン等の樹脂や、セラミックス等の広い材料を用いることができる。本発明の材料表面修飾方法は、極めて材料選択性が広く、広範な材料を用いることができる。
上記材料としては、DNAやタンパク質アレイ用基板、センサー用基板、繊維等が挙げられるが、特に医療インプラントや診断機器等の医療用途の材料が好適である。
Materials for the material surface modification method of the present invention include metals such as stainless steel, cobalt-chromium alloy, gold and titanium, resins such as polyester, polyethylene, polyvinyl chloride, polylactic acid, and polytetrafluoroethylene, and ceramics. A wide range of materials can be used. The material surface modification method of the present invention has a very wide material selectivity, and a wide range of materials can be used.
Examples of the material include DNA and protein array substrates, sensor substrates, fibers, and the like, and materials for medical use such as medical implants and diagnostic devices are particularly suitable.

本発明の材料表面修飾方法では、ヒドロキシフェニル基を有する機能性化合物を、触媒及び酸化剤の存在下で金属、樹脂又はセラミックスからなる材料に接触させる。触媒と酸化剤とを併用することにより、比較的反応性の低いヒドロキシフェニル基を有する機能性化合物であっても、高効率で材料の表面に結合させることができる。
なお、固定化反応は、ジヒドロキシフェニル基と同じくキノンを介した金属元素への配位結合や、アミノ基、水酸基、チオール基とのマイケル付加反応によるものであると考えられる。これらの結合は、安定性が高い。固定化反応の一例を示す化学式を下記式(5)に示した。
In the material surface modification method of the present invention, a functional compound having a hydroxyphenyl group is brought into contact with a material comprising a metal, a resin, or a ceramic in the presence of a catalyst and an oxidizing agent. By using a catalyst and an oxidizing agent in combination, even a functional compound having a hydroxyphenyl group having relatively low reactivity can be bonded to the surface of the material with high efficiency.
The immobilization reaction is considered to be due to a coordination bond to a metal element via a quinone as well as a dihydroxyphenyl group or a Michael addition reaction with an amino group, a hydroxyl group and a thiol group. These bonds are highly stable. The chemical formula showing an example of the immobilization reaction is shown in the following formula (5).

Figure 0006041132
Figure 0006041132

上記触媒としては、例えば、塩化第二銅、塩化第一銅、硝酸第二銅、塩化第一銀、塩化第二パラジウム、硫酸第三鉄、硝酸第三鉄、ペルオキシダーゼ、チロシナーゼ等が挙げられる。 Examples of the catalyst include cupric chloride, cuprous chloride, cupric nitrate, cuprous chloride, cupric chloride, ferric sulfate, ferric nitrate, peroxidase, tyrosinase, and the like.

上記酸化剤としては、例えば、過酸化水素、過マンガン酸カリウム、硝酸等が挙げられる。 Examples of the oxidizing agent include hydrogen peroxide, potassium permanganate, and nitric acid.

上記ヒドロキシフェニル基を有する機能性化合物を材料に接触させる条件は特に限定されず、4〜80℃程度の条件下でも充分に反応する。また、反応は数分間から数時間程度の短い時間で完了させることができることから、特にポリ乳酸等の加水分解するような材料であっても、ほとんど材料自体の性質に影響することがない。
上記反応は、窒素雰囲気中、遮光状態で行うことが好ましい。窒素雰囲気中、遮光状態で反応を行うことにより、溶媒中での機能性化合物の多量体化を防止することができる。
The conditions for bringing the functional compound having a hydroxyphenyl group into contact with the material are not particularly limited, and the reaction is sufficient even under conditions of about 4 to 80 ° C. In addition, since the reaction can be completed in a short time such as several minutes to several hours, even a material that is hydrolyzed, such as polylactic acid, hardly affects the properties of the material itself.
The above reaction is preferably performed in a light-shielded state in a nitrogen atmosphere. Multimerization of the functional compound in the solvent can be prevented by performing the reaction in a nitrogen atmosphere in a light-shielded state.

本発明の材料表面修飾方法は、金属、樹脂、セラミックス等の広い材料に対して適用可能であり、材料選択性が広い。また、生体由来分子であるチロシンやチラミンを用いることにより生体安全性も確保できる。更に、ヒドロキシフェニル基を有する機能性化合物は比較的安定であることから、化学的に合成することが容易であり、合成したヒドロキシフェニル基を有する機能性化合物を保存しておくことも可能である。 The material surface modification method of the present invention can be applied to a wide range of materials such as metals, resins, and ceramics, and has a wide material selectivity. In addition, biosafety can be ensured by using biologically derived molecules such as tyrosine and tyramine. Furthermore, since the functional compound having a hydroxyphenyl group is relatively stable, it can be easily synthesized chemically, and the synthesized functional compound having a hydroxyphenyl group can be stored. .

本発明によれば、内皮細胞のみならず、体細胞、体性幹細胞、ES細胞、iPS細胞を含むさまざまな細胞の接着性や非接着性を有する医用高分子基材を提供することができる。また、抗炎症性、抗菌性の縫合糸や、埋入医用材料や、創傷被覆材を提供することができる。更に、組織や臓器との接着性や臓器修復を誘導できる新しいスキャホールド材料も提供できる。また、医療分野に限らず、防臭性、抗菌性などを有する繊維、フィルム等の産業資材を提供することもできる。 ADVANTAGE OF THE INVENTION According to this invention, the medical polymeric base material which has the adhesiveness and non-adhesiveness of various cells including not only endothelial cells but somatic cells, somatic stem cells, ES cells, and iPS cells can be provided. In addition, anti-inflammatory and antibacterial sutures, implantable medical materials, and wound dressings can be provided. Furthermore, a new scaffold material capable of inducing adhesion to tissues and organs and organ repair can be provided. Further, not only in the medical field, it is also possible to provide industrial materials such as fibers and films having deodorizing properties and antibacterial properties.

本発明によれば、簡便で材料選択性が広く、生体安全性も高い、金属、樹脂又はセラミックスからなる材料の表面を機能性化合物により化学修飾する材料表面修飾方法を提供することができる。 According to the present invention, it is possible to provide a material surface modification method that chemically modifies the surface of a material made of metal, resin, or ceramics with a functional compound, which is simple, has wide material selectivity, and has high biological safety.

実験例1で得られたステンレス試験片の表面の水接触角の測定結果を示すグラフ(A)及びXPSによる表面分析結果を示すグラフ(B)である。It is a graph (A) which shows the measurement result of the water contact angle of the surface of the stainless steel test piece obtained in Experimental example 1, and a graph (B) which shows the surface analysis result by XPS. 実験例2で得られたステンレス試験片の表面の水接触角の測定結果を示すグラフ(A)及びXPSによる表面分析結果を示すグラフ(B)である。It is a graph (A) which shows the measurement result of the water contact angle of the surface of the stainless steel test piece obtained in Experimental example 2, and a graph (B) which shows the surface analysis result by XPS. 実験例2で得られたステンレス試験片を用いて行ったヒト臍帯静脈内皮細胞(HUVECs)(A)及びヒト大動脈平滑筋細胞(AoSMCs)(B)の接着性試験結果を示すグラフ、並びに、接着した各細胞の顕微鏡写真である。Graph showing adhesion test results of human umbilical vein endothelial cells (HUVECs) (A) and human aortic smooth muscle cells (AoSMCs) (B) performed using the stainless steel test piece obtained in Experimental Example 2, and adhesion It is the microscope picture of each done cell. 実験例3において大動脈に一週間留置後に取り出した未修飾ステント(A)及びAc−YGREDV修飾ステント(B)の走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image of an unmodified stent (A) and an Ac-YG 3 REDV modified stent (B) taken out after placement in the aorta for one week in Experimental Example 3. 実験例4で得られたポリ塩化ビニル試験片及びポリエチレン試験片のXPSによる表面分析結果を示すグラフである。6 is a graph showing the results of surface analysis by XPS of a polyvinyl chloride test piece and a polyethylene test piece obtained in Experimental Example 4. 実験例4で得られたポリL−乳酸試験片のXPSによる表面分析結果を示すグラフである。6 is a graph showing the result of XPS surface analysis of a poly L-lactic acid test piece obtained in Experimental Example 4.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実験例1)
触媒・酸化剤存在下におけるチロシンのステンレス(SUS316L)試験片への反応性を評価した。
1.0cm×1.0cmのステンレス試験片を、表面を洗浄する目的で紫外線−オゾン処理を行った。洗浄後のステンレス試験片をチロシン10mM水溶液中に浸漬し、触媒として塩化第二銅を0.02eq.、酸化剤として過酸化水素を4.4eq.加えた後、37℃で24時間、窒素雰囲気中、遮光状態で反応を行った。反応後、超純水を用いてステンレス試験片を充分に洗浄した。
対照実験として、触媒及び酸化剤を加えない以外は上記と同様にしてステンレス試験片を処理した。
(Experimental example 1)
The reactivity of tyrosine to a stainless steel (SUS316L) test piece in the presence of a catalyst / oxidant was evaluated.
A stainless steel test piece of 1.0 cm × 1.0 cm was subjected to ultraviolet-ozone treatment for the purpose of cleaning the surface. The washed stainless steel test piece was immersed in a 10 mM aqueous solution of tyrosine, and cupric chloride was used as a catalyst in an amount of 0.02 eq. Hydrogen peroxide as an oxidizing agent is 4.4 eq. After the addition, the reaction was conducted in a light-shielded state in a nitrogen atmosphere at 37 ° C. for 24 hours. After the reaction, the stainless steel specimen was thoroughly washed with ultrapure water.
As a control experiment, a stainless steel specimen was treated in the same manner as above except that the catalyst and the oxidizing agent were not added.

得られたステンレス試験片の表面について、接触角計(CA−X、協和界面科学社製)を用いた静滴法により水接触角を測定した。具体的には、JIS.R.3257:1999に準じ、室温25℃、湿度40%の環境下で水平に置いた試験片表面に水滴2μL(超純水)を静置し、1分後の接触角を測定した。結果を図1(A)に示した。
図1(A)より、触媒及び酸化剤の存在下でチロシンを反応させたステンレス試験片は、未処理のものに比べて著しく水接触角が小さくなった。これに対して、触媒及び酸化剤の非存在下でチロシンを反応させたステンレス試験片では、未処理のものと同程度の水接触角であった。
About the surface of the obtained stainless steel test piece, the water contact angle was measured by the sessile drop method using the contact angle meter (CA-X, Kyowa Interface Science company make). Specifically, JIS. R. In accordance with 3257: 1999, 2 μL of water droplets (ultra pure water) were allowed to stand on the surface of a test piece placed horizontally in an environment of room temperature 25 ° C. and humidity 40%, and the contact angle after 1 minute was measured. The results are shown in FIG.
From FIG. 1 (A), the stainless steel test piece reacted with tyrosine in the presence of a catalyst and an oxidizing agent had a significantly smaller water contact angle than that of an untreated sample. In contrast, the stainless steel test piece reacted with tyrosine in the absence of a catalyst and an oxidizing agent had a water contact angle comparable to that of the untreated sample.

得られたステンレス試験片の表面について、ESCA−3400(島津製作所社製)を用いたXPSによる表面分析を行った。結果を図1(B)に示した。
図1(B)より、触媒及び酸化剤の存在下でチロシンを反応させたステンレス試験片では、チロシンに由来する窒素(Nls)のピークが検出された。一方、触媒として用いた銅(Cu2p)のピークは検出されないことから、反応後の洗浄によって完全に除去されたものと思われる。これに対して、触媒及び酸化剤の非存在下でチロシンを反応させたステンレス試験片では、チロシンに由来する窒素(Nls)のピークは検出されなかった。
About the surface of the obtained stainless steel test piece, the surface analysis by XPS using ESCA-3400 (made by Shimadzu Corp.) was performed. The results are shown in FIG.
From FIG. 1 (B), a peak of nitrogen (N ls ) derived from tyrosine was detected in the stainless steel test piece reacted with tyrosine in the presence of a catalyst and an oxidizing agent. On the other hand, since the peak of copper (Cu 2p ) used as a catalyst is not detected, it is considered that it was completely removed by washing after the reaction. On the other hand, the peak of nitrogen (N ls ) derived from tyrosine was not detected in the stainless steel test piece reacted with tyrosine in the absence of a catalyst and an oxidizing agent.

(実験例2)
(1)Ac−YGREDVの調製
Fmoc固相合成法により、チロシンとフィブロネクチンCS5ドメイン由来ペプチド(REDV)よりなるヒドロキシフェニル基を有する機能性化合物であるAc−YGREDVを調製した。具体的には、クロロトリチル樹脂(Code:A00251、渡辺化学工業社製)上に脱水縮合剤(4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルフォリニウムクロライド−n−ハイドレート、国産化学社製)と、ジイソプロピルエチルアミン(Code:A00030、渡辺化学工業社製)を用いた縮合反応によってFmocアミノ酸誘導体を遂次伸長させた後、N末端を無水酢酸(和光純薬工業社製)でアセチル化し、トリフルオロ酢酸(Code:A00096、渡辺化学工業社製)を用いて粗ペプチドを樹脂から遊離した。得られた粗ペプチドを逆相HPLCで精製することで、精製ペプチドを得た。
得られた精製ペプチドについて、MALDI−TOF/MS(AB SCIEX社製、4800 Plus Analyzer)により分子量を測定したところ894.4であり、得られた精製ペプチドが上記式(4)で表されるAc−YGREDVであることが確認された。
(Experimental example 2)
(1) Ac-YG 3 Preparation of REDV Fmoc solid phase synthesis, to prepare a tyrosine and fibronectin CS5 domain from a functional compound having from consisting hydroxyphenyl group peptides (REDV) Ac-YG 3 REDV . Specifically, a dehydration condensing agent (4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methyl on a chlorotrityl resin (Code: A00251, manufactured by Watanabe Chemical Co., Ltd.) The Fmoc amino acid derivative was successively extended by a condensation reaction using morpholinium chloride-n-hydrate (manufactured by Kokusan Kagaku Co., Ltd.) and diisopropylethylamine (Code: A00030, manufactured by Watanabe Chemical Co., Ltd.), The peptide was acetylated with acetic anhydride (Wako Pure Chemical Industries, Ltd.), and the crude peptide was released from the resin using trifluoroacetic acid (Code: A00096, Watanabe Chemical Co., Ltd.). The obtained crude peptide was purified by reverse phase HPLC to obtain a purified peptide.
The obtained purified peptide was measured for molecular weight by MALDI-TOF / MS (manufactured by AB SCIEX, 4800 Plus Analyzer) and found to be 894.4. The obtained purified peptide was represented by the above formula (4). it was confirmed -YG is a 3 REDV.

対照実験として、生理活性を示さないネガティブ配列のREVDについてもチロシンと反応させて、ヒドロキシフェニル基を有する機能性化合物であるAc−YGREDV(ネガティブ)を調製した。 As a control experiment, negative sequence REVD that did not exhibit physiological activity was also reacted with tyrosine to prepare Ac-YG 3 REDV (negative), which is a functional compound having a hydroxyphenyl group.

(2)ステンレス表面の修飾
1.0cm×1.0cmのステンレス試験片を、表面を洗浄する目的で紫外線−オゾン処理を行った。洗浄後のステンレス試験片をAc−YGREDV10mM水溶液中に浸漬し、触媒として塩化第二銅を0.02eq.、酸化剤として過酸化水素を4.4eq.加えた後、37℃で24時間、窒素雰囲気中、遮光状態で反応を行った。反応後、超純水を用いてステンレス試験片を充分に洗浄した。
Ac−YGREVD(ネガティブ)についても同様の方法によりステンレス試験片に結合させた。
(2) Modification of stainless steel surface A stainless steel test piece having a size of 1.0 cm × 1.0 cm was subjected to ultraviolet-ozone treatment for the purpose of cleaning the surface. The washed stainless steel test piece was immersed in a 10 mM aqueous solution of Ac-YG 3 REDV, and cupric chloride was used as a catalyst in an amount of 0.02 eq. Hydrogen peroxide as an oxidizing agent is 4.4 eq. After the addition, the reaction was conducted in a light-shielded state in a nitrogen atmosphere at 37 ° C. for 24 hours. After the reaction, the stainless steel specimen was thoroughly washed with ultrapure water.
Ac-YG 3 REVD (negative) was also bonded to a stainless steel specimen by the same method.

(3)評価
得られたステンレス試験片の表面について、接触角計(CA−X、協和界面科学社製)を用いた静滴法により水接触角を測定した。具体的には、JIS.R.3257:1999に準じ、室温25℃、湿度40%の環境下で水平に置いた試験片表面に水滴2μL(超純水)を静置し、1分後の接触角を測定した。結果を図2(A)に示した。図2(A)より、Ac−YGREDV、Ac−YGREVD(ネガティブ)のいずれを処理したステンレス試験片も、未処理のものに比べて著しく水接触角が小さくなった。
また、得られたステンレス試験片の表面について、ESCA−3400(島津製作所社製)を用いたXPSによる表面分析を行った。結果を図2(B)に示した。図2(B)より、Ac−YGREDV、Ac−YGREVD(ネガティブ)のいずれを処理したステンレス試験片も、ペプチドに由来する窒素(Nls)のピークが検出された。
これらの評価により、ステンレス試験片の表面にAc−YGREDV、Ac−YGREVD(ネガティブ)が結合していることが確認された。
(3) Evaluation About the surface of the obtained stainless steel test piece, the water contact angle was measured by the sessile drop method using the contact angle meter (CA-X, Kyowa Interface Science Co., Ltd.). Specifically, JIS. R. In accordance with 3257: 1999, 2 μL of water droplets (ultra pure water) were allowed to stand on the surface of a test piece placed horizontally in an environment of room temperature 25 ° C. and humidity 40%, and the contact angle after 1 minute was measured. The results are shown in FIG. 2 from (A), Ac-YG 3 REDV, also stainless specimens treated with either Ac-YG 3 REVD (negative), significantly water contact angle was smaller than that of the untreated.
Moreover, about the surface of the obtained stainless steel test piece, the surface analysis by XPS using ESCA-3400 (made by Shimadzu Corp.) was performed. The results are shown in FIG. From FIG. 2 (B), a stainless steel test piece treated with either Ac-YG 3 REDV or Ac-YG 3 REVD (negative) showed a peak of nitrogen (N ls ) derived from the peptide.
These evaluations confirmed that Ac-YG 3 REDV and Ac-YG 3 REVD (negative) were bound to the surface of the stainless steel test piece.

得られたステンレス試験片を用いて、ヒト臍帯静脈内皮細胞(HUVECs)及びヒト大動脈平滑筋細胞(AoSMCs)の接着性試験を行った。具体的には、予め継代培養した細胞の懸濁液を、2.5×10個/試料となるようにステンレス試験片上へ播種し、3時間、COインキュベーター内で静置した。その後、リン酸緩衝溶液で洗浄することで未接着細胞を除き、接着細胞の定量はWST−1(タカラバイオ社製)で、接着細胞の形態観察はCell Tracker Geen(Molecular Probes社製)で染色後に共焦点レーザ顕微鏡(オリンパス社製)を用いて行った。結果を図3(A)及び(B)に示した。
図3(A)より、Ac−YGREDVを用いて表面修飾したステンレス試験片では、HUVECsの接着数は顕著に増加した。一方、図3(B)より、AoSMCsの接着数は、Ac−YGREDVを用いて表面修飾したステンレス試験片でも他の表面と同程度であった。この結果から、Ac−YGREDVを用いた表面修飾は、HUVECsの接着性のみを特異的に向上できることが明らかとなった。
Using the obtained stainless steel test pieces, adhesion tests of human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (AoSMCs) were performed. Specifically, a suspension of cells subcultured in advance was seeded onto a stainless steel test piece so as to be 2.5 × 10 4 cells / sample, and left to stand in a CO 2 incubator for 3 hours. Thereafter, the non-adherent cells are removed by washing with a phosphate buffer solution, the adherent cells are quantified with WST-1 (manufactured by Takara Bio Inc.), and the morphology of the adherent cells is stained with Cell Tracker Gene (manufactured by Molecular Probes). Later, a confocal laser microscope (manufactured by Olympus) was used. The results are shown in FIGS. 3 (A) and 3 (B).
From FIG. 3 (A), the adhesion number of HUVECs increased remarkably in the stainless steel test piece surface-modified with Ac-YG 3 REDV. On the other hand, from FIG. 3B, the adhesion number of AoSMCs was similar to other surfaces even in the stainless steel test piece surface-modified with Ac-YG 3 REDV. From this result, it was revealed that the surface modification using Ac-YG 3 REDV can specifically improve only the adhesion of HUVECs.

(実験例3)
実験例2と同様の方法によりAc−YGREDVを調製した。
内径4.0mm、長さ18mmのコバルト−クロム合金製のステントを、表面を洗浄する目的で紫外線−オゾン処理を行った。洗浄後のステントをAc−YGREDV10mM水溶液中に浸漬し、触媒として塩化第二銅を0.02eq.、酸化剤として過酸化水素を4.4eq.加えた後、37℃で24時間、窒素雰囲気中、遮光状態で反応を行った。反応後、超純水を用いてステントを充分に洗浄した。
(Experimental example 3)
Ac-YG 3 REDV was prepared in the same manner as in Experimental Example 2.
A cobalt-chromium alloy stent having an inner diameter of 4.0 mm and a length of 18 mm was subjected to ultraviolet-ozone treatment for the purpose of cleaning the surface. The washed stent was immersed in an Ac-YG 3 REDV 10 mM aqueous solution, and cupric chloride was used as a catalyst in an amount of 0.02 eq. Hydrogen peroxide as an oxidizing agent is 4.4 eq. After the addition, the reaction was conducted in a light-shielded state in a nitrogen atmosphere at 37 ° C. for 24 hours. After the reaction, the stent was thoroughly washed with ultrapure water.

得られたステントをバルーンカテーテル(ASAHI Douvan、3.0/20mm、DV30020、朝日インテック株式会社製)を用いて、ウサギの腹部大動脈へ挿入し、留置した。対照実験として、表面未修飾のステントも、同様にしてウサギの腹部大動脈へ挿入し、留置した。
留置一週間後にステントを摘出し、走査型電子顕微鏡(SEM)で内部を観察した。取り出したAc−YGREDV修飾ステント及び未修飾ステントのSEM像を図4に示した。
図4(A)より、未修飾ステントでは、近位を中心に血栓の形成が認められた。これに対して、図4(B)のAc−YGREDV修飾ステントでは、血栓の形成は認められず、ステントの大部分が内皮細胞で被覆されていた。
The obtained stent was inserted into an abdominal aorta of a rabbit using a balloon catheter (ASAHI Douvan, 3.0 / 20 mm, DV30020, manufactured by Asahi Intec Co., Ltd.) and left there. As a control experiment, a non-surface-modified stent was similarly inserted into a rabbit abdominal aorta and left in place.
One week after the placement, the stent was removed and the inside was observed with a scanning electron microscope (SEM). FIG. 4 shows SEM images of the extracted Ac-YG 3 REDV modified stent and unmodified stent.
From FIG. 4 (A), in the unmodified stent, formation of a thrombus was observed centering on the proximal portion. On the other hand, in the Ac-YG 3 REDV modified stent of FIG. 4 (B), no thrombus formation was observed, and most of the stent was covered with endothelial cells.

(実験例4)
(1)Ac−YGRGDSの調製
Fmoc固相合成法により、チロシンとフィブロネクチン由来細胞接着性配列(RGDS、Arg−Gly−Asp−Ser)よりなる、ヒドロキシフェニル基を有する機能性化合物であるAc−YGRGDSを調製した。具体的には、クロロトリチル樹脂(Code:A00187、渡辺化学工業社製)上にHOBU/HOBt脱水縮合法によってFmocアミノ酸誘導体を遂次伸長させた後、N末端を無水酢酸(和光純薬工業社製)でアセチル化し、トリフルオロ酢酸(Code:A00096、渡辺化学工業社製)を用いて粗ペプチドを樹脂から遊離した。得られた粗ペプチドを逆相HPLCで精製後することで、精製ペプチドを得た。
得られた精製ペプチドについて、MALDI−TOF/MS(AB SCIEX社製、4800 Plus Analyzer)により分子量を測定したところ810.3であり、得られた精製ペプチドが下記式(6)で表されるAc−YGRGDSであることが確認された。
(Experimental example 4)
(1) Preparation of Ac-YG 3 RGDS Ac is a functional compound having a hydroxyphenyl group, which is composed of tyrosine and a fibronectin-derived cell adhesion sequence (RGDS, Arg-Gly-Asp-Ser) by Fmoc solid phase synthesis. the -YG 3 RGDS was prepared. Specifically, after the Fmoc amino acid derivative is successively extended by HOBU / HOBt dehydration condensation method on chlorotrityl resin (Code: A00187, manufactured by Watanabe Chemical Industries), acetic anhydride (Wako Pure Chemical Industries, Ltd.) is used. The crude peptide was released from the resin using trifluoroacetic acid (Code: A00096, manufactured by Watanabe Chemical Co., Ltd.). The obtained crude peptide was purified by reverse phase HPLC to obtain a purified peptide.
The molecular weight of the purified peptide thus obtained was measured by MALDI-TOF / MS (manufactured by AB SCIEX, 4800 Plus Analyzer), which was 810.3. The obtained purified peptide was represented by the following formula (6). it was confirmed -YG is a 3 RGDS.

Figure 0006041132
Figure 0006041132

(2)樹脂材料表面の修飾
樹脂材料として、いずれも1.0cm×1.0cmのポリ塩化ビニル試験片(Code:12−547、Fisher Scientific社製)、ポリエチレン試験片(Code:162−09311、和光純薬工業社製)、及び、ポリL−乳酸試験片(分子量16万、三井化学社製)を準備した。各試験片を、超純水を満たした超音波洗浄装置中で1分間超音波洗浄(計3回)した後、表面を洗浄する目的で紫外線−オゾン処理を行った。洗浄後の各試験片をAc−YGRGDS10mM水溶液中に浸漬し、触媒として塩化第二銅を0.05eq.、酸化剤として過酸化水素を4.4eq.加えた後、37℃で24時間、窒素雰囲気中、遮光状態で反応を行った。なお、ポリL−乳酸試験片については、2、6及び24時間反応を行った。反応後、超純水を用いて各試験片を充分に洗浄した。
(2) As a modified resin material on the surface of the resin material, a polyvinyl chloride test piece (Code: 12-547, manufactured by Fisher Scientific), a polyethylene test piece (Code: 162-09311, Wako Pure Chemical Industries, Ltd.) and poly L-lactic acid test pieces (molecular weight 160,000, Mitsui Chemicals) were prepared. Each test piece was subjected to ultrasonic cleaning for 1 minute in an ultrasonic cleaning apparatus filled with ultrapure water (total 3 times) and then subjected to ultraviolet-ozone treatment for the purpose of cleaning the surface. Each test piece after washing was immersed in an Ac-YG 3 RGDS 10 mM aqueous solution, and cupric chloride was used as a catalyst at 0.05 eq. Hydrogen peroxide as an oxidizing agent is 4.4 eq. After the addition, the reaction was conducted in a light-shielded state in a nitrogen atmosphere at 37 ° C. for 24 hours. In addition, about the poly L-lactic acid test piece, reaction was performed for 2, 6 and 24 hours. After the reaction, each test piece was thoroughly washed with ultrapure water.

(3)評価
得られた各試験片の表面について、ESCA−3400(島津製作所社製)を用いたXPSによる表面分析を行った。ポリ塩化ビニル試験片及びポリエチレン試験片の結果を図5に、ポリL−乳酸試験片の結果を図6に示した。
図5より、Ac−YGRGDSを処理したポリ塩化ビニル試験片、ポリエチレン試験片のいずれでも、ペプチドに由来する窒素(Nls)のピークが検出された。
また、図6より、2時間処理時においてもポリL−乳酸試験片からペプチドに由来する窒素(Nls)のピークが検出された。このことより、2時間程度の短時間でも充分に反応が進んでいることが確認された。
(3) Evaluation About the surface of each obtained test piece, the surface analysis by XPS using ESCA-3400 (made by Shimadzu Corporation Corp.) was performed. The result of the polyvinyl chloride test piece and the polyethylene test piece is shown in FIG. 5, and the result of the poly L-lactic acid test piece is shown in FIG.
From FIG. 5, the peak of nitrogen (N ls ) derived from the peptide was detected in both the polyvinyl chloride test piece and the polyethylene test piece treated with Ac-YG 3 RGDS.
Moreover, from FIG. 6, the peak of nitrogen (N ls ) derived from the peptide was detected from the poly L-lactic acid test piece even during the treatment for 2 hours. From this, it was confirmed that the reaction was sufficiently advanced even in a short time of about 2 hours.

本発明によれば、簡便で材料選択性が広く、生体安全性も高い、金属、樹脂又はセラミックスからなる材料の表面を機能性化合物により化学修飾する材料表面修飾方法を提供することができる。 According to the present invention, it is possible to provide a material surface modification method that chemically modifies the surface of a material made of metal, resin, or ceramics with a functional compound, which is simple, has wide material selectivity, and has high biological safety.

Claims (2)

金属、樹脂又はセラミックスからなる材料の表面を、ヒドロキシフェニル基を有する機能性化合物により化学修飾する材料表面修飾方法であって、
ヒドロキシフェニル基を有する機能性化合物を、触媒及び酸化剤の存在下で金属、樹脂又はセラミックスからなる材料に接触させ、前記ヒドロキシフェニル基を有する機能性化合物のヒドロキシル基と、前記金属、樹脂又はセラミックスからなる材料とを結合させる工程を有する
ことを特徴とする材料表面修飾方法。
A material surface modification method for chemically modifying the surface of a material made of metal, resin or ceramics with a functional compound having a hydroxyphenyl group ,
A functional compound having a hydroxyphenyl group is brought into contact with a material comprising a metal, a resin or a ceramic in the presence of a catalyst and an oxidizing agent, and the hydroxyl group of the functional compound having a hydroxyphenyl group and the metal, resin or ceramic A material surface modification method comprising the step of bonding to a material comprising:
ヒドロキシフェニル基を有する機能性化合物は、チロシン又はチラミンと機能性化合物とを反応させてなるものであることを特徴とする請求項1記載の材料表面修飾方法。 2. The material surface modification method according to claim 1, wherein the functional compound having a hydroxyphenyl group is obtained by reacting tyrosine or tyramine with a functional compound.
JP2012232061A 2012-10-19 2012-10-19 Material surface modification method Active JP6041132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232061A JP6041132B2 (en) 2012-10-19 2012-10-19 Material surface modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232061A JP6041132B2 (en) 2012-10-19 2012-10-19 Material surface modification method

Publications (2)

Publication Number Publication Date
JP2014083104A JP2014083104A (en) 2014-05-12
JP6041132B2 true JP6041132B2 (en) 2016-12-07

Family

ID=50786778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232061A Active JP6041132B2 (en) 2012-10-19 2012-10-19 Material surface modification method

Country Status (1)

Country Link
JP (1) JP6041132B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1735456A4 (en) * 2004-02-27 2011-11-16 Univ Northwestern Polymeric compositions and related methods of use
JP2008505716A (en) * 2004-07-09 2008-02-28 ザ クリーヴランド クリニック ファウンデーション Hydroxyphenyl cross-linked polymer network and uses thereof
NZ562002A (en) * 2005-03-02 2010-05-28 Technion Res & Dev Foundation Novel adhesive compositions comprising phloroglucinol (1,3,5-trihydroxybenzene), manufacturing thereof, and applications thereof

Also Published As

Publication number Publication date
JP2014083104A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP4284187B2 (en) Surface coating method and coated device
US8846624B2 (en) Modified protein polymers
EP0494216B1 (en) Surfaces having desirable cell adhesive effects
JP6383732B2 (en) Low particle lubricity coating with a layer containing vinylpyrrolidone polymer and acidic polymer
EP1225946B1 (en) Coating having biological activity and medical implant having surface carrying the same and method
Roina et al. ePTFE functionalization for medical applications
JP5415078B2 (en) Biosurgical patch and production method
AU2003261242B2 (en) Bioactive coating for medical devices comprising keratin
CN106730051A (en) Antithrombogenic Polymer biomaterial and its preparation method and application
EP3044252B1 (en) Bioinert article and its use
US20150283301A1 (en) Method for grafting polymers on metallic substrates
Hsieh et al. Comparison of plasma and chemical modifications of poly-L-lactide-co-caprolactone scaffolds for heparin conjugation
Choi et al. Anti-thrombotic polymer surfaces modified with zwitterionic and fluorinated surface-migrating oligomers
JP6041132B2 (en) Material surface modification method
Ma et al. Immobilization of poly (acrylamide) brushes onto poly (caprolactone) surface by combining ATRP and “click” chemistry: synthesis, characterization and evaluation of protein adhesion
Munisso et al. Peptide with endothelial cell affinity and antiplatelet adhesion property to improve hemocompatibility of blood‐contacting biomaterials
WO2012121507A2 (en) Stent able to selectively capture vascular endothelial progenitor cells and a production method therefor
US11253626B2 (en) Use for peptide uniquely binding to vascular endothelial cells, and peptide
CN111012959A (en) Medical material and method for preparing anticoagulant coating on surface of medical material
CN117180511A (en) Albumin coating with anticoagulation and/or in-situ endothelialization functions and preparation method and application thereof
JP7320796B2 (en) Use of peptide that specifically binds to vascular endothelial cells, and peptide
Learn et al. Using nonthermal plasma treatment to improve quality and durability of hydrophilic coatings on hydrophobic polymer surfaces
RU2808584C1 (en) Method of increasing hemocompatibility of medical products
JP2009082257A (en) Medical equipment having lubricative surface and its manufacturing method
CN118059328A (en) Anti-coagulation endothelialization-promoting coating, preparation method thereof and anti-coagulation endothelialization-promoting valve clip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6041132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250