[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5936969B2 - Heat source machine operation control method in cold / hot water supply system - Google Patents

Heat source machine operation control method in cold / hot water supply system Download PDF

Info

Publication number
JP5936969B2
JP5936969B2 JP2012203914A JP2012203914A JP5936969B2 JP 5936969 B2 JP5936969 B2 JP 5936969B2 JP 2012203914 A JP2012203914 A JP 2012203914A JP 2012203914 A JP2012203914 A JP 2012203914A JP 5936969 B2 JP5936969 B2 JP 5936969B2
Authority
JP
Japan
Prior art keywords
steam
heat source
cold
hot water
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012203914A
Other languages
Japanese (ja)
Other versions
JP2014059091A (en
Inventor
祐介 和田
祐介 和田
裕文 佐々木
裕文 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2012203914A priority Critical patent/JP5936969B2/en
Publication of JP2014059091A publication Critical patent/JP2014059091A/en
Application granted granted Critical
Publication of JP5936969B2 publication Critical patent/JP5936969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、蒸気を駆動源とする冷温水供給システムの熱源機運転制御技術に関する。   The present invention relates to a heat source machine operation control technique of a cold / hot water supply system using steam as a drive source.

従来、分散型電源(コジェネ)の廃熱や蒸気ボイラから供給される蒸気を駆動源とする蒸気焚冷凍機及び蒸気熱交換器を組み合わせた冷温水供給システムが公知である。蒸気焚冷凍機については、効率向上を目的とした技術(例えば特許文献1、2)、部分負荷効率向上を目的とした技術(例えば特許文献3)が提案されている。
蒸気焚冷凍機の運転に際しては、省エネ性向上の観点からエネルギー原単位が相対的に大きい蒸気ボイラによる蒸気よりも、エネルギー原単位が相対的に小さいコジェネ蒸気等を優先活用すべきということになる。
2. Description of the Related Art Conventionally, a cold / hot water supply system is known that combines a steam-fired refrigerator and a steam heat exchanger that use waste heat from a distributed power source (cogeneration) or steam supplied from a steam boiler as a driving source. As for the steam chiller, a technique (for example, Patent Documents 1 and 2) for improving efficiency and a technique (for example, Patent Document 3) for improving partial load efficiency have been proposed.
When operating a steam-fired refrigerator, priority should be given to cogeneration steam with a relatively small energy intensity rather than steam with a steam boiler with a relatively large energy intensity in order to improve energy savings. .

一方、従来の蒸気を駆動源とする複数熱源機を備えた冷温水供給システムでは、各蒸気焚冷凍機は個別に出口温度、高温再生器温度・圧力に対応して蒸気弁開度を調整し、また、蒸気熱交換器は出口温度に対応して蒸気弁開度を調整して、それぞれ蒸気投入量を制御している。   On the other hand, in a conventional hot / cold water supply system equipped with multiple heat source devices that use steam as the drive source, each steam chiller individually adjusts the steam valve opening according to the outlet temperature, high temperature regenerator temperature and pressure. In addition, the steam heat exchanger controls the amount of steam input by adjusting the opening of the steam valve corresponding to the outlet temperature.

特開2001−56160号公報JP 2001-56160 A 特開2001−56161号公報JP 2001-56161 A 特開2000−283589号公報JP 2000-283589 A

上述のような制御を採用すると、蒸気消費量が大きい場合、蒸気系統の圧力低下に伴いエネルギー原単位が相対的に大きな蒸気ボイラが起動することになり、省エネ運転を維持することができないという問題がある。
本発明はこのような課題を解決すべく、エネルギー原単位が相対的に小さい蒸気のみを熱源機側に投入可能とする、省エネ性に優れた熱源機運転制御技術を提供することを目的とする。
When the above-mentioned control is adopted, when the steam consumption is large, a steam boiler with a relatively large energy unit is started as the pressure of the steam system is lowered, and the energy saving operation cannot be maintained. There is.
In order to solve such problems, an object of the present invention is to provide a heat source machine operation control technology excellent in energy saving that enables only a steam having a relatively small energy intensity to be input to the heat source machine side. .

本発明は以下の内容を要旨とする。すなわち、本願発明に係る冷温水供給システムの熱源機運転制御方法は、
(1)異なるエネルギー原単位の蒸気を製造する複数の蒸気発生源と、該蒸気発生源の蒸気により冷温水を製造する複数の熱源機と、を備えた冷温水供給システムにおける熱源機運転制御方法であって、
特定のエネルギー原単位の蒸気発生源の蒸気(以下、特定蒸気という)のみを該熱源機系統に供給するように、予め設定された起動優先順位に従って、各熱源機の起動・停止制御を行うことを特徴とする冷温水供給システムにおける熱源機運転制御方法。
The gist of the present invention is as follows. That is, the heat source machine operation control method of the cold / hot water supply system according to the present invention is:
(1) A heat source machine operation control method in a cold / hot water supply system comprising: a plurality of steam generation sources that produce steam of different energy intensity units; and a plurality of heat source units that produce cold / hot water using the steam of the steam generation source. Because
Perform start / stop control of each heat source unit according to a preset startup priority so that only steam from a steam source with a specific energy intensity (hereinafter referred to as specific steam) is supplied to the heat source system. A heat source machine operation control method in a cold / hot water supply system.

本発明において、「冷温水供給システム」とは、熱源機により製造された冷水又は温水を使用先に配管供給して、空調、温水供給を行うシステムをいう。
「エネルギー原単位」とは、単位生産蒸気量に対する投入一次エネルギー量や、単位生産蒸気量に対する投入エネルギーコストや、単位生産蒸気量に対する投入エネルギーの二酸化炭素排出量を表す指標で、ユーザーが運転の目的に合わせて選択することができる。
In the present invention, the “cold / warm water supply system” refers to a system that supplies cold water or warm water produced by a heat source machine to a user's destination to perform air conditioning and warm water supply.
The “energy intensity” is an index that represents the amount of primary energy input per unit production steam, the input energy cost per unit production steam, and the carbon dioxide emissions of input energy per unit production steam. You can choose according to your purpose.

(2)上記発明において、前記特定蒸気の供給蒸気量総和(ΣSs)が、現在運転中の熱源機の消費蒸気量総和(ΣSd)を上回る場合であって(供給余裕蒸気量:ΔS=ΣSs−ΣSd>0)、現在運転停止中の起動優先順位最上位の熱源機(次発熱源機)を起動させる場合において、
該次発熱源機の運転可能最低蒸気量(Sd_min(k))が、供給余裕蒸気量(ΔS)を上回る場合には、
起動優先順位に拘わらず、最低蒸気量(Sd_min(k))が供給余裕蒸気量(ΔS)以下となる熱源機を、順次繰り上げて起動させる、
ことを特徴とする。
(2) In the above invention, the total amount of supplied steam (ΣSs) of the specific steam is greater than the total amount of consumed steam (ΣSd) of the currently operating heat source unit (supply margin steam amount: ΔS = ΣSs− ΣSd> 0), when starting the heat source machine (second heat source machine) with the highest start priority in the current operation stop,
When the minimum operable steam amount (Sd_min (k)) of the next heat source unit exceeds the supply surplus steam amount (ΔS),
Regardless of the startup priority, the heat source machines in which the minimum steam volume (Sd_min (k)) is less than the supply surplus steam volume (ΔS) are sequentially raised and started.
It is characterized by that.

熱源機起動には運転可能最低蒸気量が必要であり、この条件を満たさずに運転した場合、当該熱源機は特定蒸気製造量以上に蒸気を消費してしまい、結果的にエネルギー原単位の大きな蒸気(例えばボイラ蒸気)が供給されることになる。
本発明による制御により、熱源機系統は特定蒸気(例えばコージェネ蒸気)のみを最大限活用した運転が可能となる。
また、運転可能最低蒸気量条件を満足する熱源機を1台でも多く運転することにより、特定蒸気を無駄にすることのないオペレーションが可能となり、省エネ性向上を図ることができる。
The minimum amount of steam that can be operated is required for starting the heat source unit.If the unit is operated without satisfying this condition, the heat source unit consumes more steam than the specific steam production amount, resulting in a large energy intensity. Steam (for example, boiler steam) is supplied.
By the control according to the present invention, the heat source system can be operated with maximum utilization of only specific steam (for example, cogeneration steam).
In addition, by operating as many heat source machines as possible that satisfy the minimum operable steam amount condition, it is possible to perform operations without wasting specific steam, and energy saving can be improved.

(3)上記各発明において、現在運転中の熱源機(k)の能力制御を行う場合において、
該熱源機(k)の現在消費蒸気量Sd(k)と、熱源機(k)が消費可能な最大蒸気量Sd_max(k)と、の差に基づいて、
熱源機ごとに設けた蒸気弁の上限開度(αk)を、予め定めた増加又は減少幅(β%、γ%)づつ、所定の時間ごとに増減制御することを特徴とする。
但し、Sd_max(k)=ΣSs(i)−(ΣSd(j)−Sd(k))
本発明によれば、熱源機(k)の蒸気弁上限開度(αk)の調整により、特定蒸気の発生量以上に熱源機が蒸気を消費することを防止することができる。
(3) In each of the above inventions, when performing capacity control of the heat source machine (k) currently in operation,
Based on the difference between the current steam consumption Sd (k) of the heat source unit (k) and the maximum steam amount Sd_max (k) that can be consumed by the heat source unit (k),
The upper limit opening degree (αk) of the steam valve provided for each heat source unit is controlled to increase or decrease at predetermined intervals by a predetermined increase or decrease range (β%, γ%).
However, Sd_max (k) = ΣSs (i) − (ΣSd (j) −Sd (k))
ADVANTAGE OF THE INVENTION According to this invention, it can prevent that a heat source machine consumes steam more than the generation amount of specific steam by adjusting the steam valve upper limit opening degree ((alpha) k) of a heat source machine (k).

本発明によれば、コージェネ廃熱等、エネルギー原単位の小さな蒸気(特定蒸気)のみを駆動源として熱源機を運転制御するため、省エネルギーや低コスト、二酸化炭素排出量抑制を追求した空調用冷水の製造が可能となる。   According to the present invention, since the operation of the heat source machine is controlled using only steam (specific steam) having a small energy intensity such as cogeneration waste heat, the air conditioning chilled water pursuing energy saving, low cost, and carbon dioxide emission control. Can be manufactured.

熱源機運転制御システム1の全体構成を示す図である。1 is a diagram illustrating an overall configuration of a heat source machine operation control system 1. FIG. 第一の実施形態における運転制御フローを示す図である。It is a figure which shows the operation control flow in 1st embodiment. 実施例において、供給余裕度(ΔS)が次発機の運転可能最低蒸気量(Sd_min(k))を上回る状態を模式的に示す図である。In an Example, it is a figure which shows typically the state in which supply margin ((DELTA) S) exceeds the minimum steam | vapor amount (Sd_min (k)) which can operate | move the next generator. 同上において、供給余裕度(ΔS)が次発機の運転可能最低蒸気量(Sd_min(k))を下回る状態を模式的に示す図である。FIG. 6 is a diagram schematically showing a state where the supply margin (ΔS) is lower than the minimum operable steam amount (Sd_min (k)) of the next engine. 同上において、供給余裕度(ΔS)が次々発機の運転可能最低蒸気量(Sd_min(k))を上回る状態を模式的に示す図である。In the same as above, it is a diagram schematically showing a state where the supply margin (ΔS) exceeds the minimum operable steam amount (Sd_min (k)) of the generators one after another. k機起動後の蒸気弁開度制御フローを示す図である。It is a figure which shows the steam valve opening degree control flow after k machine start-up.

以下、本発明の各実施形態についてさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
<第一の実施形態>
本実施形態は、エネルギー原単位の異なる複数の蒸気駆動源を備えたシステムにおける熱源機台数制御の態様に係る。
図1を参照して、本実施形態に係る熱源機運転制御システム1は、各熱源機側に蒸気を供給する蒸気供給系統1Aと、蒸気を駆動源として冷水・温水を製造して負荷側(図示せず)に供給する熱源機系統1Bと、システム全体の制御を行う制御系統1Cと、により構成されている。
Hereinafter, each embodiment of the present invention will be described in more detail. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
<First embodiment>
The present embodiment relates to a mode of controlling the number of heat source units in a system including a plurality of steam drive sources having different energy intensity units.
Referring to FIG. 1, a heat source unit operation control system 1 according to the present embodiment produces a steam supply system 1A that supplies steam to each heat source unit side, and produces cold water / hot water using steam as a driving source to load side ( It is configured by a heat source machine system 1B to be supplied to a not-shown system and a control system 1C that controls the entire system.

蒸気供給系統1Aは、蒸気発生源である複数のCGS(コージェネレーション・システム)4(請求項における特定蒸気)、及び、一又は複数の蒸気ボイラ5と、発生蒸気を一旦貯蔵して熱源機系統1B側に分散供給する供給ヘッダー6と、を主要構成として備えている。
熱源機系統1Bは、複数(n台)の蒸気焚冷凍機2(2(1)〜2(n))(以下、適宜、熱源機2(1)〜2(n)と表記する)と、複数の蒸気熱交換器3と、を主要構成として備えている。
The steam supply system 1A includes a plurality of CGS (cogeneration system) 4 (specific steam in the claims) that is a steam generation source, one or a plurality of steam boilers 5, and the generated steam once to store the generated steam. A supply header 6 distributed and supplied to the 1B side is provided as a main configuration.
The heat source system 1B includes a plurality (n units) of steam chillers 2 (2 (1) to 2 (n)) (hereinafter referred to as heat source units 2 (1) to 2 (n) as appropriate), A plurality of steam heat exchangers 3 are provided as main components.

熱源機系統1Bの各熱源機には、表1に示す起動優先順位k(k=1〜n)が設定されており、後述する制御フロー(図2)において、各熱源機の起動・停止は同表の優先順位に従って行われるように構成されている。
起動優先順位の設定は、エネルギー原単位に基づき行われる。本実施形態では、エネルギー原単位の小さいコージェネ廃熱蒸気が、特定蒸気として優先される。
なお、表1では蒸気焚冷凍機2(n)が常に熱交換器3より上位に設定されているが、後述するように負荷条件によって熱交換器3が蒸気焚冷凍機2(k)(k≧2)より上位に設定される場合もある。
Each heat source machine of the heat source system 1B is set with the activation priority k (k = 1 to n) shown in Table 1, and in the control flow (FIG. 2) described later, the activation / stop of each heat source machine is It is configured to be performed according to the priority order in the table.
The startup priority is set based on the energy intensity. In this embodiment, the cogeneration waste heat steam with a small energy basic unit is given priority as the specific steam.
In Table 1, the steam tank refrigerator 2 (n) is always set higher than the heat exchanger 3. However, as will be described later, the heat exchanger 3 is connected to the steam tank refrigerator 2 (k) (k) depending on the load conditions. It may be set higher than ≧ 2).

Figure 0005936969
Figure 0005936969

以上の構成により、蒸気供給系統1Aにおいてコジェネ廃熱又はボイラ加熱により製造した蒸気を、ヘッダー6を介して両系統を結ぶ配管7a乃至7cにより熱源機系統1Bに駆動源として供給し、熱源機系統1Bにおいて冷温水を製造して負荷側(図示せず)に供給するように構成されている。   With the above configuration, steam produced by cogeneration waste heat or boiler heating in the steam supply system 1A is supplied as a drive source to the heat source system 1B by the pipes 7a to 7c connecting the both systems via the header 6, and the heat source system In 1B, cold / hot water is manufactured and supplied to the load side (not shown).

熱源機運転制御システム1の制御系統1Cは、蒸気供給系統1Aの各配管7a経路中に配設される蒸気流量計8aと、熱源機系統1Bの各分岐配管7cに配設される蒸気流量計8b及び蒸気弁9と、これら各流量計及び蒸気弁の計測値に基づいて後述の各演算を行い、熱源機系統1B側に運転指令を行う制御部10と、により構成されている。
制御部10は、表1の起動優先順位に基づいて以下の台数制御、すなわち各熱源機の起動・停止制御を行う。なお、各熱源機の能力制御は、それぞれの出口温度、圧力等に基づいて熱源機ごとに行われる。
The control system 1C of the heat source unit operation control system 1 includes a steam flow meter 8a disposed in each pipe 7a path of the steam supply system 1A and a steam flow meter disposed in each branch pipe 7c of the heat source unit system 1B. 8b and the steam valve 9, and the control part 10 which performs each calculation mentioned later based on the measured value of each of these flowmeters and steam valves, and performs a driving | operation command to the heat-source-machine system 1B side.
The control unit 10 performs the following number control, that is, start / stop control of each heat source unit based on the start priority in Table 1. In addition, capacity control of each heat source machine is performed for every heat source machine based on each exit temperature, pressure, etc.

熱源機運転制御システム1は以上のように構成されており、次に図2を参照して、制御部10が行う熱源機台数制御の態様について説明する。
制御中は蒸気流量計8a、8bにより供給側及び消費側の蒸気流量Ss(i),Sd(j)(i:各蒸気発生源、j:各熱源機)が計測され、制御部10に集められる(S101)。
The heat source machine operation control system 1 is configured as described above. Next, with reference to FIG. 2, an aspect of the heat source machine number control performed by the control unit 10 will be described.
During control, the steam flow meters 8a and 8b measure the steam flows Ss (i) and Sd (j) on the supply side and the consumption side (i: each steam generation source, j: each heat source machine) and collect them in the control unit 10. (S101).

次いで、その現在時点における供給総蒸気量(ΣSs(i))と消費総蒸気量(ΣSd(j))の比較が行われる(S102)。ここに、供給総蒸気量とはコジェネ(CGS4)廃熱(特定蒸気)の総和であり、消費総蒸気量とは熱源機側の消費蒸気量の総和をいう。
ΣSs<ΣSdの場合には(S102においてN)、蒸気供給余力がないため所定時間経過後(S110においてY)、優先度最下位の熱源機を運転停止する(S112)。
Next, a comparison is made between the total supply steam amount (ΣSs (i)) and the total consumption steam amount (ΣSd (j)) at the current time (S102). Here, the total supply steam amount is the sum of cogeneration (CGS4) waste heat (specific steam), and the total consumption steam amount is the total consumption steam amount on the heat source unit side.
In the case of ΣSs <ΣSd (N in S102), since there is no steam supply capacity, the heat source machine with the lowest priority is shut down after a predetermined time has elapsed (Y in S110) (S112).

S102においてY、すなわちΣSs≧ΣSdの場合には、供給余力があるため熱源機2(1)〜2(n)の起動順序フローに移行する(S103〜S109)。
具体的には特定蒸気を使用した運転の可否を、各熱源機(k=1からk=n)について順次判定していく。
以下、フローが進行した状態(k<n;S104においてN)を想定する。供給蒸気量(ΣSs(i))と消費蒸気量(ΣSd(j))の差ΔS(=ΣSs(i)−ΣSd(j))が、熱源機2(k)の最小能力運転に必要な蒸気量(Sd_min(k))以上か否かが判定される(S105)。
If Y in S102, that is, if ΣSs ≧ ΣSd, there is a surplus supply capacity, and the process proceeds to the activation sequence flow of the heat source units 2 (1) to 2 (n) (S103 to S109).
Specifically, it is sequentially determined for each heat source unit (k = 1 to k = n) whether the operation using the specific steam is possible.
Hereinafter, it is assumed that the flow has progressed (k <n; N in S104). The difference ΔS (= ΣSs (i) −ΣSd (j)) between the supply steam amount (ΣSs (i)) and the consumption steam amount (ΣSd (j)) is the steam required for the minimum capacity operation of the heat source unit 2 (k). It is determined whether or not the amount is greater than or equal to the amount (Sd_min (k)) (S105).

ΔS≧Sd_min(k)の場合には(S105においてY)、さらに熱源機2(k)が運転中であるか否かが判定される(S106)。運転中ではない場合には(S106においてN)、優先順位に従って次発対象の熱源機を起動させる(S108)。
S106においてY,すなわち熱源機2(k)が運転中の場合には、さらに熱源機2(k)より優先順位下位(k=k+1)について(S107)、上述のフロー(S104〜S106)が適用される。
If ΔS ≧ Sd_min (k) (Y in S105), it is further determined whether or not the heat source unit 2 (k) is in operation (S106). If not in operation (N in S106), the next heat source machine is activated in accordance with the priority order (S108).
When Y in S106, that is, when the heat source device 2 (k) is in operation, the above flow (S104 to S106) is applied to the lower priority order (k = k + 1) than the heat source device 2 (k) (S107). Is done.

以上の各フロー中、熱源機の起動、停止、増段、減段等に際しては、熱源機タイプにより起動特性、安定化時間等がそれぞれ異なることを考慮して、熱源機タイプごとに予め設定されたステップ移行時間(インターバル)が採用されている(S109)。   During each of the above flows, when starting, stopping, increasing or decreasing the heat source unit, etc., it is set in advance for each heat source unit type, taking into account that the startup characteristics, stabilization time, etc. differ depending on the heat source unit type. The step transition time (interval) is adopted (S109).

なお本実施形態では、S102において特定蒸気の供給余力がない場合に、優先度最下位の熱源機を運転停止する例を示したが、運転停止することなく蒸気ボイラ5の蒸気を使用する形態とすることもできる。さらに、蒸気供給可能な別システムと連系制御する形態とすることもできる。   In addition, in this embodiment, when there was no supply capacity of specific steam in S102, the example which stopped the heat source machine of the lowest priority was shown, However, The form which uses the steam of the steam boiler 5 without stopping operation and You can also Furthermore, it can also be set as the form linked and controlled with another system which can supply steam.

<第二の実施形態>
本実施形態は、図2フローのS108において、k機起動後のk機蒸気弁9の開度制御フローに関する。
k機蒸気弁9は、上限開度をαkとして 0%≦αk≦100% の範囲で開度制御される。また、開度を増加又は減少させる場合の幅は、それぞれβ%、γ%に設定されている。なお、β、γは、予め蒸気使用設備の蒸気変化率に対する許容度を考慮して、定めることができる。
<Second Embodiment>
This embodiment relates to the opening degree control flow of the k machine steam valve 9 after starting the k machine in S108 of the flow of FIG.
The k-machine steam valve 9 is controlled to open within a range of 0% ≦ αk ≦ 100%, where αk is the upper limit opening. In addition, the width when increasing or decreasing the opening is set to β% and γ%, respectively. Β and γ can be determined in advance in consideration of the allowance for the steam change rate of the steam-using facility.

図3を参照して、k機起動時において(S201)、k機の蒸気弁の上限開度αkは0%であるとする(S202)。以下の説明では、制御が進行した状態(上限開度αk)を想定する。
制御中は蒸気供給系統1A,熱源機系統1Bの蒸気流量計により、k機の消費蒸気量(Sd(k))(S203)、及び、それぞれの各蒸気流量Ss(i),Sd(j)が計測される。次いで、蒸気供給系統内の供給蒸気量(ΣSs(i))と熱源機系統側の消費蒸気量(ΣSd(j))の演算が行われ(S204)、さらに、k機が消費可能な最大蒸気量Sd_max(k)の演算が行われる(S205)。ここに、Sd_max(k)は下式で示される。
Sd_max(k)=ΣSs(i)−(ΣSd(j)−Sd(k))
Referring to FIG. 3, at the time of starting up k machine (S201), it is assumed that upper limit opening degree αk of the steam valve of k machine is 0% (S202). In the following description, it is assumed that the control has progressed (upper limit opening degree αk).
During the control, the steam flow meter of the steam supply system 1A and the heat source system 1B uses the steam consumption of the k machines (Sd (k)) (S203) and the respective steam flows Ss (i), Sd (j) Is measured. Next, the supply steam amount (ΣSs (i)) in the steam supply system and the consumption steam amount (ΣSd (j)) on the heat source system side are calculated (S204), and the maximum steam that can be consumed by the k machine is calculated. An amount Sd_max (k) is calculated (S205). Here, Sd_max (k) is expressed by the following equation.
Sd_max (k) = ΣSs (i) − (ΣSd (j) −Sd (k))

次に、k機について使用可能な最大蒸気量Sd_max(k)と、現在消費蒸気量Sd(k)との比較が行われ、さらなる使用余地の有無が判定される(S206)。
ΔSd(k)(=Sd_max(k)−Sd(k))=0の場合には、現状蒸気弁上限開度αkが維持される(S207)。
ΔSd(k)>0の場合には使用余地があると判定され、蒸気弁上限開度αkがβ%増加される(S208)。
Sd_max(k)<0の場合には使用余地なしと判定され、蒸気弁上限開度αkがγ%減少される(S209)。
Next, the maximum steam amount Sd_max (k) that can be used for the k machine is compared with the current steam consumption Sd (k), and it is determined whether there is room for further use (S206).
When ΔSd (k) (= Sd_max (k) −Sd (k)) = 0, the current steam valve upper limit opening αk is maintained (S207).
When ΔSd (k)> 0, it is determined that there is room for use, and the steam valve upper limit opening degree αk is increased by β% (S208).
When Sd_max (k) <0, it is determined that there is no room for use, and the steam valve upper limit opening degree αk is reduced by γ% (S209).

変更後のαkにより(S210)、上記S203〜S209のフローが繰り返し行われる。なお、本制御中に、ΔS(=ΣSs(i)−ΣSd(j))<0の条件に至った場合には、図2のS102によりk機の運転は停止となる。   By the changed αk (S210), the flow of S203 to S209 is repeated. If the condition of ΔS (= ΣSs (i) −ΣSd (j)) <0 is reached during this control, the operation of the k machine is stopped by S102 in FIG.

次に、第一の実施形態における熱源機運転制御システム1の構成を単純化した例により、図2のS104−S108のフローをさらに詳細に説明する。
本実施例において、蒸気供給系統1Aは3台の蒸気発生源(CGS−1,2)により構成され、各駆動源の発生蒸気量を表2のとおりとする。また、熱源機系統1Bは、2台の蒸気焚冷凍機(NC−1,2)と1台の熱交換器(HEX1)により構成されており、運転時消費蒸気量、起動優先順位を表3のとおりとする。なお、蒸気ボイラについては、本制御には関係しないため無視している。
表2より、特定蒸気の最大蒸気供給量ΣSs(i)は550kg/hである。なお、以下では単位表示を省略し、数量表示のみとする。
Next, the flow of S104 to S108 in FIG. 2 will be described in more detail with an example in which the configuration of the heat source apparatus operation control system 1 in the first embodiment is simplified.
In this embodiment, the steam supply system 1A is constituted by three steam generation sources (CGS-1, 2), and the amount of generated steam of each drive source is as shown in Table 2. Further, the heat source system 1B is composed of two steam chillers (NC-1, 2) and one heat exchanger (HEX1). It shall be as follows. The steam boiler is ignored because it is not related to this control.
From Table 2, the maximum steam supply amount ΣSs (i) of the specific steam is 550 kg / h. In the following, unit display is omitted and only quantity display is used.

Figure 0005936969
Figure 0005936969

Figure 0005936969
Figure 0005936969

以下、初期状態(S103においてk=1)において熱源機系統側はNC−1のみ稼働の状態を想定し、その消費蒸気量Sd(1)が250、400である2つのケースについて説明する。
(a)ケース1(Sd(1)=250の場合)
S103においてk=1として、ΣSs(i)=550、ΣSd(j)=250であるから、ΔS=550−250=300となり、ΔS>Sd_min(1)、すなわちS105においてYとなる。
Hereinafter, in the initial state (k = 1 in S103), it is assumed that the heat source system side is in a state where only NC-1 is operating, and two cases where the consumed steam amount Sd (1) is 250 and 400 will be described.
(A) Case 1 (when Sd (1) = 250)
In S103, k = 1, ΣSs (i) = 550, and ΣSd (j) = 250, so ΔS = 550−250 = 300, and ΔS> Sd_min (1), that is, Y in S105.

次いで、k機(k=1)は運転中であるから(S106においてY)、k=2となり(S107)、S104に戻る。k<3であるから(S104おいてY)、さらにS105に進み、ここでΔS=250、Sd_min(2)=200 より、ΔS>Sd_min(2)、すなわちS105においてYとなる。この状態を模式的に示すと、図3(a)の通りであり、
δ=ΔS−Sd_min(2)>0 より、供給余裕があることが分かる。
さらにk機(k=2)は運転中でないから(S106においてN)、k=2であるNC−2が起動となる(S108)。
Next, since the k machine (k = 1) is in operation (Y in S106), k = 2 (S107), and the process returns to S104. Since k <3 (Y in S104), the process further proceeds to S105, where ΔS = 250, Sd_min (2) = 200, and ΔS> Sd_min (2), that is, Y in S105. This state is schematically shown in FIG. 3 (a).
From δ = ΔS−Sd_min (2)> 0, it can be seen that there is a supply margin.
Further, since k machine (k = 2) is not in operation (N in S106), NC-2 with k = 2 is activated (S108).

(b)ケース2(Sd(1)=400の場合)
S103においてk=1として、ΣSs(i)=550、ΣSd(j)=400であるから、ΔS=550−400=150となり、ΔS<Sd_min(1)、すなわちS105においてNとなる。
(B) Case 2 (when Sd (1) = 400)
In S103, k = 1, and ΣSs (i) = 550 and ΣSd (j) = 400, so ΔS = 550−400 = 150, and ΔS <Sd_min (1), that is, N in S105.

次いで、S107にスキップしてk=2となりS104に戻る。k<3であるので(S104においてY)、S105に移行する。ΔS=150、Sd_min(2)=200 より、ΔS<Sd_min(2)(S105においてN)、すなわちNC−2は起動不可となる。この状態を模式的に示すと図3(b)の通りとなる。
さらにS107に進み、k=2+1=3となり、HEX−1の起動判定となる。この場合には、ΔS=550−400=150、Sd_min(3)=100であるから、ΔS>Sd_min(3)、すなわちS105においてYとなる。HEX−1は停止中であるから、これを起動することになる(S108)。この状態を模式的に示すと図3(c)の通りであり、
δ=ΔS−Sd_min(3)>0 より、供給余裕があることが分かる。
Next, the process skips to S107 and becomes k = 2, and the process returns to S104. Since k <3 (Y in S104), the process proceeds to S105. Since ΔS = 150 and Sd_min (2) = 200, ΔS <Sd_min (2) (N in S105), that is, NC-2 cannot be activated. This state is schematically shown in FIG.
Further, the process proceeds to S107, where k = 2 + 1 = 3, and HEX-1 is activated. In this case, since ΔS = 550−400 = 150 and Sd_min (3) = 100, ΔS> Sd_min (3), that is, Y in S105. Since HEX-1 is stopped, it is activated (S108). This state is schematically shown in FIG.
From δ = ΔS−Sd_min (3)> 0, it can be seen that there is a supply margin.

本発明は、地域熱供給、業務用・産業用空調・熱供給等、用途を問わず未利用蒸気を駆動源とする冷温水供給システムに広く適用可能である。   The present invention can be widely applied to cold / hot water supply systems using unused steam as a drive source regardless of applications, such as district heat supply, commercial / industrial air conditioning, and heat supply.

1・・・・・熱源機運転制御システム
1A・・・・蒸気供給系統
1B・・・・熱源機系統
1C・・・・制御系統
2・・・・・蒸気焚冷凍機
3・・・・・蒸気熱交換器
4・・・・・CGS(コージェネレーション・システム)
5・・・・・蒸気ボイラ
6・・・・・供給ヘッダー
7a、7b、7c・・・・・蒸気配管
8a、8b・・・・・蒸気流量計
9・・・・・蒸気弁
10・・・・制御部
DESCRIPTION OF SYMBOLS 1 ... Heat source machine operation control system 1A ... Steam supply system 1B ... Heat source machine system 1C ... Control system 2 Steam steam refrigerator 3 ... Steam heat exchanger 4 ... CGS (Cogeneration system)
5. Steam boiler 6 Supply headers 7a, 7b, 7c Steam pipes 8a, 8b Steam flow meter 9 Steam valve 10 ..Control part

Claims (1)

異なるエネルギー原単位の蒸気を製造する複数の蒸気発生源と、該蒸気発生源の蒸気により冷温水を製造する複数の熱源機と、を備えた冷温水供給システムにおける熱源機運転制御方法であって、
特定のエネルギー原単位の蒸気発生源の蒸気(以下、特定蒸気という)のみを該熱源機系統に供給するように、予め設定された起動優先順位に従って、各熱源機の起動・停止制御を行うものであり、かつ、
現在運転中の熱源機(k)の能力制御を行う場合において、
該熱源機(k)の現在消費蒸気量Sd(k)と、熱源機(k)が消費可能な最大蒸気量Sd_max(k)と、の差に基づいて、
熱源機ごとに設けた蒸気弁の上限開度(αk)を、予め定めた増加又は減少幅(β%、γ%)づつ、所定の時間ごとに増減制御する
ことを特徴とする冷温水供給システムにおける熱源機運転制御方法。
但し、Sd_max(k)=ΣSs−(ΣSd−Sd(k))
特定蒸気の供給蒸気量総和(ΣSs)、現在運転中の熱源機の消費蒸気量総和(ΣSd)
A heat source unit operation control method in a cold / hot water supply system comprising: a plurality of steam generation sources that produce steam of different energy intensity units; and a plurality of heat source units that produce cold / hot water from the steam of the steam generation source. ,
Steam vapor source specific energy unit (hereinafter, certain of steam) only to supply to the heat source machine system, according to the preset boot priority, performs start and stop control of the heat source apparatus And
When performing capacity control of the heat source machine (k) currently in operation,
Based on the difference between the current steam consumption Sd (k) of the heat source unit (k) and the maximum steam amount Sd_max (k) that can be consumed by the heat source unit (k),
An upper limit opening degree (? K) of a steam valve provided for each heat source unit is controlled to increase or decrease at predetermined time intervals in a predetermined increase or decrease range (?%,?%). Heat source machine operation control method in cold / hot water supply system.
However, Sd_max (k) = ΣSs− (ΣSd−Sd (k))
Total amount of steam supplied for specific steam (ΣSs), total amount of steam consumed by heat source units currently in operation (ΣSd)
JP2012203914A 2012-09-18 2012-09-18 Heat source machine operation control method in cold / hot water supply system Active JP5936969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012203914A JP5936969B2 (en) 2012-09-18 2012-09-18 Heat source machine operation control method in cold / hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203914A JP5936969B2 (en) 2012-09-18 2012-09-18 Heat source machine operation control method in cold / hot water supply system

Publications (2)

Publication Number Publication Date
JP2014059091A JP2014059091A (en) 2014-04-03
JP5936969B2 true JP5936969B2 (en) 2016-06-22

Family

ID=50615717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203914A Active JP5936969B2 (en) 2012-09-18 2012-09-18 Heat source machine operation control method in cold / hot water supply system

Country Status (1)

Country Link
JP (1) JP5936969B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306612B2 (en) * 1995-03-24 2002-07-24 株式会社山武 How to control the number of operating heat source units
JP3004627B2 (en) * 1998-06-03 2000-01-31 川崎重工業株式会社 Operation support system for district heating and cooling equipment
JP3365999B2 (en) * 2000-11-22 2003-01-14 ダイダン株式会社 Variable flow control system for waste heat recovery heat source
JP5116949B2 (en) * 2005-05-09 2013-01-09 株式会社荏原製作所 Waste heat utilization system and operation method thereof
JP2007024466A (en) * 2005-07-21 2007-02-01 Tokyo Gas Co Ltd Hot water type heating system, and operation method therefor
JP5415201B2 (en) * 2009-09-28 2014-02-12 富士通株式会社 Air conditioning system and its control device

Also Published As

Publication number Publication date
JP2014059091A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
WO2013114958A1 (en) Heat source system and control method for heat source system
CN102365503A (en) Supply water temperature controller and control method therefor
JP5353498B2 (en) Hybrid hot water supply system
JP2013002757A (en) Heat source system and control method of the same
JP2012042098A (en) Operation method of air conditioner and refrigerating machine
US10527294B2 (en) Control of a pump to optimize heat transfer
JP6921876B2 (en) Heating system
JP6098994B2 (en) Heat pump hot water supply system
JP2008202934A (en) Hybrid hot water supply system
JP5996288B2 (en) Cogeneration system and method of operating cogeneration system
JP5936969B2 (en) Heat source machine operation control method in cold / hot water supply system
JP5971088B2 (en) Boiler feed water heating system
JP5950453B2 (en) Heat source machine operation control method in cold / hot water supply system
JP7260352B2 (en) energy supply system
JP5937034B2 (en) Operation control method for cold / hot water supply system
JP5291402B2 (en) Hybrid hot water supply system
JP4139826B2 (en) Hybrid hot water supply system
JP2015169367A (en) Air conditioning system and air conditioning system control method
JP2006275363A (en) Heat pump water heater
JP2007085663A (en) Heat pump water heater
JP2006349202A (en) Hybrid hot water supply system
JP2011257130A (en) Apparatus for recovering exhaust heat
JP4685553B2 (en) Cogeneration system
JP2017198425A (en) Hot water system
JP2015075321A (en) Hot water storage type heat source device, and operational method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160511

R150 Certificate of patent or registration of utility model

Ref document number: 5936969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250