JP5936423B2 - Activated carbon for water purifier and activated carbon cartridge using the same - Google Patents
Activated carbon for water purifier and activated carbon cartridge using the same Download PDFInfo
- Publication number
- JP5936423B2 JP5936423B2 JP2012095703A JP2012095703A JP5936423B2 JP 5936423 B2 JP5936423 B2 JP 5936423B2 JP 2012095703 A JP2012095703 A JP 2012095703A JP 2012095703 A JP2012095703 A JP 2012095703A JP 5936423 B2 JP5936423 B2 JP 5936423B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- water
- pore volume
- pores
- pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/306—Active carbon with molecular sieve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28064—Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28066—Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/2808—Pore diameter being less than 2 nm, i.e. micropores or nanopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28085—Pore diameter being more than 50 nm, i.e. macropores
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Description
本発明は、浄水器用活性炭及びこれを用いた活性炭カートリッジに関し、特に水に含まれる有機塩素系化合物の吸着性能を高めた浄水器用活性炭及びこれを用いた活性炭カートリッジに関する。 The present invention relates to activated carbon for water purifiers and activated carbon cartridges using the same, and more particularly to activated carbon for water purifiers having improved adsorption performance of organochlorine compounds contained in water and activated carbon cartridges using the same.
水道水等の飲料用水から残留成分や異物を除去するために用いられる浄水器は、活性炭やセラミック等の無機材料の吸着部材と、必要により濾過用の有機高分子膜等を備えた構造である。 A water purifier used to remove residual components and foreign substances from drinking water such as tap water has a structure provided with an adsorbing member made of an inorganic material such as activated carbon or ceramic, and an organic polymer membrane for filtration if necessary. .
水道水は衛生上の観点から塩素等による殺菌が義務づけられている。しかし、殺菌を目的に添加される塩素は、天然有機物の一種であるフミン質を酸化分解する際に発ガン性物質であるトリハロメタン類等の有機塩素系化合物を生成してしまう。このため、トリハロメタン類の除去に用いる活性炭として、賦活処理後に400ないし700℃でアニーリングして活性炭表面の官能基量を制御した活性炭が提案されている(特許文献1参照)。また、活性炭を不活性ガス中において1200ないし1700℃で熱処理し、細孔構造を変化させた活性炭が提案されている(特許文献2参照)。 Tap water is obligated to sterilize with chlorine from the viewpoint of hygiene. However, chlorine added for the purpose of sterilization produces organochlorine compounds such as trihalomethanes which are carcinogenic substances when humic substances which are a kind of natural organic substances are oxidatively decomposed. For this reason, activated carbon used for removing trihalomethanes has been proposed in which the functional group amount on the activated carbon surface is controlled by annealing at 400 to 700 ° C. after the activation treatment (see Patent Document 1). Further, an activated carbon in which activated carbon is heat-treated at 1200 to 1700 ° C. in an inert gas to change the pore structure has been proposed (see Patent Document 2).
さらに、近年では健康意識の高まりからより高清浄度の浄水能力を備えた浄水器の需要が高まっている。そのため、比表面積や細孔容積の改善により活性炭の性能改善は種々試みられている(例えば、特許文献3,4参照)。しかしながら、従前の活性炭を使用した浄水器では、一定の有機塩素系化合物の除去性能は向上したものの、クロロホルムや1,1,1−トリクロロエタンの吸着に満足できる種類が少なかった。 Furthermore, in recent years, the demand for water purifiers having a higher level of water purification capacity has increased due to the heightened health awareness. Therefore, various attempts have been made to improve the performance of activated carbon by improving the specific surface area and pore volume (see, for example, Patent Documents 3 and 4). However, in the conventional water purifier using activated carbon, although the performance of removing certain organochlorine compounds has been improved, there are few types that are satisfactory for adsorption of chloroform and 1,1,1-trichloroethane.
そこで、従来の有機塩素系化合物の中でもクロロホルムや1,1,1−トリクロロエタンの除去性能も高めた浄水器に使用する活性炭が求められるに至った。 Thus, activated carbon used for water purifiers having improved removal performance of chloroform and 1,1,1-trichloroethane among the conventional organic chlorine compounds has been demanded.
本発明は、前記の点に鑑みなされたものであり、浄水器に使用する活性炭において水中に含まれる有機塩素系化合物の中でも1,1,1−トリクロロエタン、クロロホルムの吸着、濾過能力を改善した浄水器用活性炭とともに、当該活性炭を用いた活性炭カートリッジを提供するものである。 The present invention has been made in view of the above points, and in the activated carbon used in the water purifier, among 1,1,1-trichloroethane and chloroform, among the organic chlorinated compounds contained in water, purified water with improved filtration capacity. The activated carbon cartridge using the activated carbon is provided together with the activated carbon for the device.
すなわち、請求項1の発明は、比表面積を900〜1100m2/gとし、MP法による細孔分布の測定において、細孔直径0〜2.0nmの細孔の全細孔容積が0.4110cc/g以上であって、細孔直径0.6nm以下の細孔の総細孔容積を当該全細孔容積の40〜45%とし、DH法による細孔分布の測定において、細孔直径1〜100nmの細孔の全細孔容積が0.1244cc/g以下であって、細孔直径2.0nm以下の細孔の総細孔容積を当該全細孔容積の20〜23%とし、表面酸化物量を0.05〜0.14meq/gとした活性炭からなり、有機塩素系化合物の中でもクロロホルムや1,1,1−トリクロロエタンの除去性能を高めたことを特徴とする浄水器用活性炭に係る。 That is, the invention of claim 1 has a specific surface area of 900 to 1100 m 2 / g, and in the measurement of pore distribution by the MP method, the total pore volume of pores having a pore diameter of 0 to 2.0 nm is 0.4110 cc. a is / g or more, a total pore volume of the following pore pore diameter 0.6nm and 40 to 45% of the total pore volume, in the measurement of the pore distribution by DH method, pore diameter 1 though the total pore volume of the pores of 100nm or less 0.1244cc / g, a total pore volume of the following pore pore diameter 2.0nm and 20 to 23% of the total pore volume, surface oxidation The present invention relates to activated carbon for water purifiers, which is made of activated carbon having a physical quantity of 0.05 to 0.14 meq / g, and has improved removal performance of chloroform and 1,1,1-trichloroethane among organochlorine compounds.
請求項2の発明は、請求項1に記載の浄水器用活性炭にバインダーを添加した状態で所定形状に成形してなることを特徴とする活性炭カートリッジに係る。 A second aspect of the present invention relates to an activated carbon cartridge, which is formed into a predetermined shape in a state where a binder is added to the activated carbon for water purifier according to the first aspect.
請求項3の発明は、請求項1に記載の浄水器用活性炭を所定形状の通水容器内に充填してなることを特徴とする活性炭カートリッジに係る。 The invention according to claim 3 relates to an activated carbon cartridge, wherein the activated carbon for water purifier according to claim 1 is filled in a water passage container having a predetermined shape.
請求項1の発明に係る浄水器用活性炭によると、比表面積を900〜1100m2/gとし、MP法による細孔分布の測定において、細孔直径0〜2.0nmの細孔の全細孔容積が0.4110cc/g以上であって、細孔直径0.6nm以下の細孔の総細孔容積を当該全細孔容積の40〜45%とし、DH法による細孔分布の測定において、細孔直径1〜100nmの細孔の全細孔容積が0.1244cc/g以下であって、細孔直径2.0nm以下の細孔の総細孔容積を当該全細孔容積の20〜23%とし、表面酸化物量を0.05〜0.14meq/gとした活性炭からなるため、既存の浄水器用活性炭として必要な濾過性能とともに、有機塩素系化合物の1,1,1−トリクロロエタン、クロロホルムの濾過能力を改善することができた。 According to the activated carbon for water purifiers according to the invention of claim 1, the specific surface area is set to 900 to 1100 m 2 / g, and in the measurement of pore distribution by the MP method, the total pore volume of pores having a pore diameter of 0 to 2.0 nm a is but 0.4110cc / g or more, a total pore volume of the following pore pore diameter 0.6nm and 40 to 45% of the total pore volume, in the measurement of the pore distribution by DH method, fine and total pore volume of pores of pore diameter 1~100nm is equal to or less than 0.1244cc / g, a total pore volume of the following pore pore diameter 2.0nm of the total pore volume from 20 to 23% In addition, it is made of activated carbon with a surface oxide amount of 0.05 to 0.14 meq / g, so that filtration of 1,1,1-trichloroethane, which is an organic chlorine compound, and chloroform, together with the filtration performance necessary as an activated carbon for existing water purifiers. To improve your ability. It was.
また、MP法及びDH法の解析領域を重複させることにより、活性炭に発達した大きさの異なる細孔容積の割合はより正確に把握でき、有機塩素系化合物の濾過性能の評価が容易となる。 In addition, by overlapping the analysis areas of the MP method and the DH method, the proportion of pore volumes with different sizes developed in activated carbon can be grasped more accurately, and the evaluation of the filtration performance of organochlorine compounds becomes easy.
請求項2の発明に係る活性炭カートリッジによると、請求項1に記載の浄水器用活性炭にバインダーを添加した状態で所定形状に成形してなるため、これまで以上に有機塩素化合物の濾過性能を高めることにつながり、浄水器自体の処理性能向上を実現することができる。 According to the activated carbon cartridge according to the invention of claim 2, since it is formed into a predetermined shape with the binder added to the activated carbon for water purifier according to claim 1, the filtration performance of the organic chlorine compound is improved more than ever. It can lead to the improvement of the treatment performance of the water purifier itself.
請求項3の発明に係る活性炭カートリッジによると、請求項1に記載の浄水器用活性炭を所定形状の通水容器内に充填してなるため、簡便にカートリッジを組み立てることができ、これまで以上に有機塩素化合物の濾過性能を高めることにつながり、浄水器自体の処理性能向上が可能となる。 According to the activated carbon cartridge according to the invention of claim 3, since the water purifier activated carbon according to claim 1 is filled in a water passage container having a predetermined shape, the cartridge can be easily assembled and more organic than ever. It leads to improving the filtration performance of the chlorine compound, and the treatment performance of the water purifier itself can be improved.
原水となる水道水を浄化する家庭用、産業用等の浄水器には、濾材として通常活性炭が使用される。活性炭は安価かつ濾過能力に優れ、品質も安定している。このような浄水器の対象物質の濾過性能は、JIS S 3201(2010)の規定において、「遊離残留塩素、濁り、2−クロロ−4,6−ビスエチルアミノ−1,3,5−トリアジン(CATと略す。)、2−メチルイソボルネオール(2−MIBと略す。)、溶解性鉛、クロロホルム、ブロモジクロロメタン、ジブロモクロロメタン、ブロモホルム、テトラクロロエチレン、トリクロロエチレン、1,1,1−トリクロロエタン、さらに総トリハロメタン」の最大で計13項目により評価される。 Activated carbon is usually used as a filter medium in water purifiers for household and industrial use that purify tap water as raw water. Activated carbon is inexpensive, has excellent filtering ability, and has a stable quality. The filtration performance of the target substance of such a water purifier is described in JIS S 3201 (2010) as “free residual chlorine, turbidity, 2-chloro-4,6-bisethylamino-1,3,5-triazine ( Abbreviated as CAT), 2-methylisoborneol (abbreviated as 2-MIB), soluble lead, chloroform, bromodichloromethane, dibromochloromethane, bromoform, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, and total trihalomethane The maximum of 13 items is evaluated.
ここに示した対象物質の中でも、有機塩素系化合物、特には、1,1,1−トリクロロエタンやクロロホルムについては、除去することが困難な物質であった。そこで、本発明の浄水器用活性炭は、1,1,1−トリクロロエタンやクロロホルムの濾過性能を高めた活性炭である。 Among the target substances shown here, organochlorine compounds, particularly 1,1,1-trichloroethane and chloroform, are difficult to remove. Then, the activated carbon for water purifiers of this invention is activated carbon which improved the filtration performance of 1,1,1-trichloroethane and chloroform.
活性炭の原料としては、木材(廃材、間伐材、オガコ)、コーヒー豆の絞りかす、椰子殻、樹皮、果物の実等の原料がある。これらの天然物由来の原料は炭化、賦活により細孔が発達しやすくなる。また廃棄物等の二次的利用であるため安価に調達可能である。なお、後記の実施例では安定調達を加味して椰子殻を原料としている。 As raw materials for activated carbon, there are raw materials such as wood (waste wood, thinned wood, sawdust), coffee beans pomace, coconut husk, bark and fruit. These raw materials derived from natural products tend to develop pores by carbonization and activation. In addition, it can be procured inexpensively because it is a secondary use of waste. In the examples described later, coconut shells are used as a raw material in consideration of stable procurement.
椰子殻等の活性炭原料は中温(200℃ないし600℃)で加熱炭化されることにより微細孔が形成し、水蒸気等を用いて高温(600℃ないし1200℃)で賦活処理されることにより細孔が発達する。賦活後、自然冷却等の冷却を経ることにより出来上がる。 Activated carbon raw materials such as coconut shells are heated and carbonized at a medium temperature (200 ° C. to 600 ° C.) to form fine pores, and activated by high temperature (600 ° C. to 1200 ° C.) using water vapor or the like, Develops. After activation, it is completed by cooling such as natural cooling.
一つ目に、当該活性炭の比表面積は900m2/gないし1100m2/gの範囲である。好ましくは950m2/gないし1050m2/gの範囲である。本明細書中、実施例の比表面積はいずれもBET法(Brunauer, Emmett & Teller法)による測定である。比表面積900m2/gを下回る場合、細孔容積が小さくなるため十分な吸着量を得ることができない。また、単一の活性炭により吸着できる物質種が限られることとなり好ましくない。比表面積1100m2/gを超える場合、細孔径が大きく広がり1,1,1−トリクロロエタンやクロロホルムの除去性能が著しく低下する。このことから前記の比表面積の範囲値が適切として導き出される。 First, the specific surface area of the activated carbon is in the range of 900 m 2 / g to 1100 m 2 / g. The range is preferably 950 m 2 / g to 1050 m 2 / g. In the present specification, the specific surface areas of the examples are all measured by the BET method (Brunauer, Emmett & Teller method). When the specific surface area is less than 900 m 2 / g, the pore volume becomes small, so that a sufficient adsorption amount cannot be obtained. Moreover, the kind of substance which can be adsorbed by a single activated carbon is limited, which is not preferable. When the specific surface area exceeds 1100 m 2 / g, the pore size increases greatly, and the removal performance of 1,1,1-trichloroethane and chloroform is significantly lowered. From this, the range value of the specific surface area is derived as appropriate.
二つ目に、活性炭の細孔分布において、どのような直径の細孔がどれほど存在するのかにより、吸着対象の吸着効率が変動する。主に、吸着対象となる分子種の大きさ等の影響を受けると考えられる。そこで、既存の浄水器用活性炭よりも1,1,1−トリクロロエタンやクロロホルムの除去性能を高めるに際し、活性炭の細孔分布を適切に制御することが重要である。 Secondly, in the pore distribution of activated carbon, the adsorption efficiency of the adsorption target varies depending on how many pores of which diameter exist. It is thought to be influenced mainly by the size of the molecular species to be adsorbed. Therefore, it is important to appropriately control the pore distribution of the activated carbon when enhancing the removal performance of 1,1,1-trichloroethane and chloroform over the existing activated carbon for water purifiers.
具体的に、MP法(Micropore法)による活性炭の細孔分布の解析において、細孔直径0.6nm以下の細孔の総細孔容積は、細孔直径0〜2nmの細孔の全細孔容積の40%ないし45%の割合、好ましくは43%ないし44%の割合に規定される。MP法は一般に2nm以下の直径のミクロ細孔の分布解析を比較的容易に把握できることから、当該直径の細孔の解析に多く用いられる。細孔直径0.6nm以下の細孔は、例えばクロロホルム等の低分子量領域の分子種の吸着、濾過と関係する。そこで、全細孔容積に占める細孔直径0.6nm以下の細孔の容積を一定数以上に保つことにより、本発明が目的とする低分子の有機塩素系化合物の濾過性能をより向上させることができる。 Specifically, in the analysis of the pore distribution of activated carbon by the MP method (Micropore method), the total pore volume of pores having a pore diameter of 0.6 nm or less is the total pore volume of pores having a pore diameter of 0 to 2 nm. The ratio is defined as 40% to 45% of the volume, preferably 43% to 44%. The MP method is generally used for analysis of pores having a diameter because it can relatively easily grasp the distribution analysis of micropores having a diameter of 2 nm or less. The pore having a pore diameter of 0.6 nm or less is related to adsorption and filtration of molecular species in a low molecular weight region such as chloroform. Therefore, by maintaining the volume of pores having a pore diameter of 0.6 nm or less in the total pore volume at a certain number or more, the filtration performance of the low-molecular organochlorine compound targeted by the present invention is further improved. Can do.
このように、MP法による細孔分布の解析において規定する前記の範囲値から上方側あるいは下方側に逸脱する場合、目的とする1,1,1−トリクロロエタンやクロロホルムの除去性能が大きく低下する。 As described above, when deviating upward or downward from the range value defined in the analysis of the pore distribution by the MP method, the intended removal performance of 1,1,1-trichloroethane and chloroform is greatly deteriorated.
三つ目に、DH法(Dollimore−Heal法)による活性炭の細孔分布の解析において、細孔直径2.0nm以下の細孔の総細孔容積は、細孔直径1〜100nmの細孔の全細孔容積の20ないし23%の割合に規定される。DH法は一般に2.0nmないし50.0nmの直径のメソ細孔の分布解析を比較的容易に把握できることから、当該直径の細孔の解析に多く用いられる。細孔直径2.0nm以下の細孔容積量も重ねて規定することにより、低分子量領域の分子種から吸着対象を広げた活性炭に設計することができる。 Thirdly, in the analysis of the pore distribution of activated carbon by the DH method (Dollimore-Heal method), the total pore volume of pores having a pore diameter of 2.0 nm or less is that of pores having a pore diameter of 1 to 100 nm. It is defined as a ratio of 20 to 23% of the total pore volume. The DH method is generally used for analysis of pores having a diameter of 2.0 nm to 50.0 nm because it can relatively easily grasp the distribution analysis of mesopores having a diameter of 2.0 nm to 50.0 nm. By defining the volume of pores having a pore diameter of 2.0 nm or less in an overlapping manner, it is possible to design activated carbon with a wide range of adsorption targets from molecular species in a low molecular weight region.
DH法による細孔分布の解析においても前記の範囲値から上方側あるいは下方側に逸脱する場合も、MP法と同様に目的とするクロロホルムや1,1,1−トリクロロエタンの除去性能が大きく低下する。また、他の吸着成分の吸着力も低下して全体的な性能を押し下げることとなり好ましくない。 Even in the analysis of the pore distribution by the DH method, when the value deviates from the above range value to the upper side or the lower side, the removal performance of the target chloroform and 1,1,1-trichloroethane is greatly reduced as in the MP method. . In addition, the adsorptive power of the other adsorbing components is also lowered, and the overall performance is lowered, which is not preferable.
活性炭の全細孔容積に占める所定の細孔直径以下の分布について、MP法及びDH法の解析領域を重複させることにより、活性炭に発達した大きさの異なる細孔の容積割合はより正確に把握される。しかも、容積割合を用いることによって、当該活性炭に存在する異なる細孔直径の存在量の均衡も比較的容易に制御できる。このことから、浄水器での利用を想定した活性炭にあっては、重要な指標である。MP法及びDH法については実施例にてさらに述べる。 By overlapping the analysis area of the MP method and DH method for the distribution below the predetermined pore diameter in the total pore volume of activated carbon, the volume ratio of pores with different sizes developed in activated carbon can be grasped more accurately. Is done. Moreover, by using the volume ratio, the balance of the abundance of different pore diameters present in the activated carbon can be controlled relatively easily. This is an important indicator for activated carbon that is intended for use in water purifiers. The MP method and DH method will be further described in Examples.
原料炭素源を焼成、賦活して得た活性炭には、活性炭表面に種々の官能基が存在する。
活性炭の表面酸化により増加する酸性官能基は主にカルボキシル基、フェノール性水酸基等の親水性基であり、吸着能力に影響を与える。これらの酸性官能基量については、表面酸化物量として把握することができる。活性炭の表面酸化物量が増加すると、活性炭表面の親水性が高まり、疎水性物質の吸着は低下しやすくなる。そこで、四つ目の物性として、当該活性炭の表面酸化物量を0.05ないし0.14meq/g、好ましくは0.06ないし0.13meq/gの範囲に規定したことである。
The activated carbon obtained by firing and activating the raw carbon source has various functional groups on the activated carbon surface.
The acidic functional groups that increase due to the surface oxidation of the activated carbon are mainly hydrophilic groups such as carboxyl groups and phenolic hydroxyl groups, and affect the adsorption capacity. The amount of these acidic functional groups can be grasped as the amount of surface oxide. As the surface oxide amount of the activated carbon increases, the hydrophilicity of the activated carbon surface increases and the adsorption of hydrophobic substances tends to decrease. Therefore, the fourth physical property is that the surface oxide amount of the activated carbon is defined in the range of 0.05 to 0.14 meq / g, preferably 0.06 to 0.13 meq / g.
表面酸化物量が0.05meq/gよりも少なくなる場合、活性炭の疎水性が高くなり過ぎて濾過対象の水との接触効率を悪くしてしまう。このことから、活性炭の細孔が活かされず吸着の対象物質の濾過性能に影響を及ぼす。表面酸化物量が0.14meq/gよりも多くなる場合、活性炭の親水性は高まり水との接触効率は好転する。しかし、トリハロメタン類等の疎水性物質については吸着効率を低下させてしまう。そこで、前記の表面酸化物量の範囲が望ましいといえる。 When the amount of surface oxide is less than 0.05 meq / g, the activated carbon becomes too hydrophobic and the contact efficiency with water to be filtered is deteriorated. For this reason, the pores of the activated carbon are not utilized and affect the filtration performance of the target substance to be adsorbed. When the surface oxide amount exceeds 0.14 meq / g, the hydrophilicity of the activated carbon increases and the contact efficiency with water improves. However, the adsorption efficiency is reduced for hydrophobic substances such as trihalomethanes. Therefore, it can be said that the range of the surface oxide amount is desirable.
上記の物性を備えた活性炭は、篩別等により均一粒径に揃えられ浄水器用活性炭として出来上がる。個々の活性炭粒子の粒径は約0.01mmから2.0mm程度である。浄水器用活性炭は、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、アラミド繊維、セルロース繊維等のいずれか、あるいは2種類以上をバインダーとして混合し所定形状に成形される。そこで、一体化したひとつの成形物となる。むろん、繊維状活性炭、銀添着活性炭等の他種類の活性炭や鉛除去剤、セラミック等を配合しても差し支えない。 Activated carbon having the above physical properties is made uniform as a particle size by sieving or the like, and is completed as activated carbon for a water purifier. The particle diameter of each activated carbon particle is about 0.01 mm to 2.0 mm. The activated carbon for water purifier is formed into a predetermined shape by mixing any one of acrylic fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, aramid fiber, cellulose fiber or the like as a binder. Therefore, it becomes one integrated molded product. Of course, other types of activated carbon such as fibrous activated carbon and silver impregnated activated carbon, lead remover, ceramic, etc. may be blended.
図1(a)は、本発明の浄水器用活性炭を用いて形成した活性炭カートリッジ10の一例である。活性炭カートリッジ10によると、円筒状の本体部11の中に長手方向に貫通する空洞部12が形成されている。被濾過水は本体部11を透過し、空洞部12を経由して活性炭カートリッジ10から流出する。活性炭カートリッジは本発明の浄水器用活性炭を単独で使用する他、他の種類の活性炭と混合して形成することもできる(後記実施例参照)。むろん、活性炭カートリッジの成形方法は、プレス成型、水中懸濁による湿式成形等であり、対象とする浄水器、用途、大きさ等に応じて適宜選択できる。
Fig.1 (a) is an example of the activated
図1(b)は活性炭カートリッジ10の適用例である。図示では、浄水器20は蛇口25の先端に装着される。水の切り換え部21の側部に濾過チャンバー23が備えられる。この中に前記の活性炭カートリッジ10が交換可能に装填される。図中の符号22は切り換えレバー、24は蓋である。むろん、浄水器20にあっては、活性炭カートリッジ10の他に、図示しないイオン交換体、中空糸フィルター、流量計等の必要部材が適式に備えられる。なお、浄水器の形態は図示の例に限られることなく種々の機器にも適用可能である。本発明の浄水器用活性炭並びに活性炭カートリッジは、据え置き型や濾過能力を高めて大型化した装置への適用も当然に可能である。
FIG. 1B shows an application example of the activated
図2の模式図は本発明の浄水器用活性炭を所定形状の通水容器内に充填した活性炭カートリッジの一例である。図2(a)では、通水容器31の内部に浄水器用活性炭Cが充填されている。この例の通水容器31は中心に導水路32を備え、胴体側面に通水孔33が設けられている。なお、通水孔を通水容器に形成することは適宜である。通水容器31内に規定量の浄水器用活性炭Cが充填された後、図2(b)のとおり、通水容器31の上部に蓋部材34が被せられる。こうして浄水器用活性炭Cは通水容器31から漏れ出すことはなくなり、活性炭カートリッジ30は出来上がる。
The schematic diagram of FIG. 2 is an example of an activated carbon cartridge in which activated carbon for a water purifier of the present invention is filled in a water passage container having a predetermined shape. In Fig.2 (a), the inside of the
本発明の浄水器用活性炭から活性炭カートリッジを形成した場合、これまで以上に有機塩素系化合物の濾過性能を高めることにつながる。このため、浄水器自体の処理性能向上を実現できる。 When an activated carbon cartridge is formed from the activated carbon for water purifiers of the present invention, it leads to higher filtration performance of organochlorine compounds than ever. For this reason, the processing performance improvement of water purifier itself is realizable.
〔浄水器用活性炭の調製〕
発明者らは椰子殻を原料とし活性炭を調製した。原料の椰子殻(焼成された椰子殻も含まれる。)を800℃ないし900℃前後まで加熱して保持し、水蒸気を導入して賦活を進めた。賦活後、室温付近まで自然放冷した。冷却後、60〜120meshの篩により篩別し、粒径約0.1mmないし0.3mmの実施例1,2,3,4、及び比較例1,2,3,4の浄水器用活性炭を得た。
[Preparation of activated carbon for water purifier]
The inventors prepared activated carbon using coconut shell as a raw material. Raw material coconut shells (including baked coconut shells) were heated to 800 ° C. to about 900 ° C. and held, and steam was introduced to promote activation. After activation, the product was naturally cooled to near room temperature. After cooling, it is sieved with a 60-120 mesh sieve to obtain activated carbon for water purifiers of Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3, 4 having a particle size of about 0.1 mm to 0.3 mm. It was.
〔浄水器用活性炭の測定項目〕
浄水器用活性炭の物性、性能について次の項目を測定した。結果は表1及び表2である。具体的に、比表面積(m2/g)、全細孔容積(cc/g)、平均細孔直径(nm)、MP法による細孔直径0nmないし2.0nmの範囲の細孔の全細孔容積(cc/g)と細孔直径0.6nm以下の細孔容積(cc/g)、DH法による細孔直径1.0nmないし100nmの範囲の細孔の全細孔容積(cc/g)と細孔直径2.0nm以下の細孔容積(cc/g)、表面酸化物量(meq/g)、よう素吸着性能(mg/g)、充填密度(g/cc)、ベンゼン吸着力(%)、60〜120meshの篩別残量(%)、1,1,1−トリクロロエタン濾過能力(L/cc)、クロロホルム濾過能力(L/cc)である。以下、詳細を述べる。
[Measurement items for activated carbon for water purifiers]
The following items were measured for the properties and performance of activated carbon for water purifiers. The results are in Table 1 and Table 2. Specifically, the specific surface area (m 2 / g), the total pore volume (cc / g), the average pore diameter (nm), the total fineness of pores in the range of pore diameters of 0 nm to 2.0 nm by the MP method. Pore volume (cc / g), pore volume with a pore diameter of 0.6 nm or less (cc / g), total pore volume (cc / g) of pores having a pore diameter in the range of 1.0 nm to 100 nm by the DH method ) And pore volume of 2.0 nm or less pore diameter (cc / g), surface oxide amount (meq / g), iodine adsorption performance (mg / g), packing density (g / cc), benzene adsorption power ( %), 60-120 mesh remaining amount (%), 1,1,1-trichloroethane filtration capacity (L / cc), chloroform filtration capacity (L / cc). Details will be described below.
比表面積(m2/g)は、日本ベル株式会社製の高精度全自動ガス吸着装置BELSORP−miniを使用して77Kにおける窒素吸着等温線を測定し、BET法により求めた。 The specific surface area (m 2 / g) was determined by measuring the nitrogen adsorption isotherm at 77K using a highly accurate fully automatic gas adsorption device BELSORP-mini manufactured by Bell Japan Co., Ltd., and obtained by the BET method.
全細孔容積(cc/g)は、細孔直径0.6nmないし100nmの範囲は、日本ベル株式会社製BELSORPminiを使用し、Gurvitschの法則を適用して相対圧0.953における窒素吸着量(V)を下記の数式(i)により液体窒素の体積(Vp)に換算して求めた。なお、数式(i)において、Mgは吸着質の分子量(窒素:28.020)、ρg(g/cm3)は吸着質の密度(窒素:0.808)である。 As for the total pore volume (cc / g), in the range of the pore diameter of 0.6 nm to 100 nm, the amount of nitrogen adsorbed at a relative pressure of 0.953 using BELSORPmini manufactured by Nippon Bell Co., Ltd. and applying Gurvitsch's law ( V) was calculated by converting into the volume (V p ) of liquid nitrogen by the following formula (i). In Equation (i), M g is the molecular weight of the adsorbate (nitrogen: 28.020), and ρ g (g / cm 3 ) is the density of the adsorbate (nitrogen: 0.808).
平均細孔直径(nm)は、細孔の形状を円筒形と仮定し、前述の測定から得た細孔容積(cc/g)及び比表面積(m2/g)の値を用いて数式(ii)より求めた。 The average pore diameter (nm) is calculated by using the pore volume (cc / g) and specific surface area (m 2 / g) values obtained from the above measurement, assuming that the pore shape is cylindrical. Obtained from ii).
細孔径分布を表すパラメータdV/dDは、日本ベル株式会社製高精度全自動ガス吸着装置BELSORPminiを使用し、窒素吸着により測定した。細孔直径1nmないし100nmの範囲におけるdV/dDの値は、窒素ガスの吸着等温線からDH法によって解析した。DH法の解析結果から、細孔直径1nmないし100nmの範囲の細孔の全細孔容積(cc/g)と細孔直径2.0nm以下の細孔の総細孔容積を求めた。そして、細孔直径1nmないし100nmの範囲の全細孔容積に占める細孔直径2.0nm以下の細孔の総細孔容積の割合(%)を算出した。 The parameter dV / dD representing the pore size distribution was measured by nitrogen adsorption using a highly accurate fully automatic gas adsorption device BELSORPmini manufactured by Bell Japan. The value of dV / dD in the pore diameter range of 1 nm to 100 nm was analyzed by the DH method from the adsorption isotherm of nitrogen gas. From the analysis results of the DH method, the total pore volume (cc / g) of pores having a pore diameter in the range of 1 nm to 100 nm and the total pore volume of pores having a pore diameter of 2.0 nm or less were obtained. Then, the ratio (%) of the total pore volume of pores having a pore diameter of 2.0 nm or less in the total pore volume in the range of pore diameters of 1 nm to 100 nm was calculated.
細孔直径0nmないし2.0nmの範囲におけるdV/dDの値は窒素ガスの吸着等温線のt−plotからMP法によって解析した。MP法の解析結果から、細孔直径0nmないし2.0nmの範囲の細孔の全細孔容積(cc/g)と細孔直径0.6nm以下の細孔の総細孔容積を求めた。そして、細孔直径0nmないし2.0nmの範囲の全細孔容積に占める細孔直径0.6nm以下の細孔の総細孔容積の割合(%)を算出した。 The value of dV / dD in the pore diameter range of 0 nm to 2.0 nm was analyzed by the MP method from the t-plot of the nitrogen gas adsorption isotherm. From the analysis result of the MP method, the total pore volume (cc / g) of pores having a pore diameter ranging from 0 nm to 2.0 nm and the total pore volume of pores having a pore diameter of 0.6 nm or less were obtained. Then, the ratio (%) of the total pore volume of pores having a pore diameter of 0.6 nm or less in the total pore volume in the range of pore diameters of 0 nm to 2.0 nm was calculated.
表面酸化物量(meq/g)は、Boehmの方法を適用し、0.05N水酸化ナトリウム水溶液中において所定量の活性炭を24時間振とう後に濾過し、その濾液を0.05N塩酸水溶液で滴定した値に基づいて測定した。 The amount of surface oxide (meq / g) was measured by applying the Boehm method, filtering a predetermined amount of activated carbon in a 0.05N aqueous sodium hydroxide solution for 24 hours, and titrating the filtrate with a 0.05N aqueous hydrochloric acid solution. Measured based on value.
よう素吸着性能(mg/g)、充填密度(g/cc)は、JIS K 1474(2007)に規定の活性炭試験方法に準拠して測定した。ベンゼン吸着力(%)はJIS K 1474(2007)に規定された溶剤蒸気の吸着性能の方法に準拠し、溶剤をベンゼンとして測定した。 Iodine adsorption performance (mg / g) and packing density (g / cc) were measured according to the activated carbon test method specified in JIS K 1474 (2007). The benzene adsorption power (%) was measured by using the solvent as benzene in accordance with the method of adsorption performance of solvent vapor specified in JIS K 1474 (2007).
60〜120meshの篩別残量(%)は、当該目開きの篩を用いて出来上がった活性炭を篩別し、篩に残った量を計量した。 The remaining amount (%) of sieving of 60 to 120 mesh was obtained by sieving the activated carbon produced using the mesh sieve and measuring the amount remaining on the sieve.
1,1,1−トリクロロエタン及びクロロホルムの濾過能力(L/cc)は、JIS S 3201(2010)に規定の家庭用浄水器試験方法に準拠し、以下の方法で測定した。 The filtration capacity (L / cc) of 1,1,1-trichloroethane and chloroform was measured by the following method in accordance with the domestic water purifier test method specified in JIS S 3201 (2010).
処理水に対し、1,1,1−トリクロロエタンを0.300±0.060mg/L、クロロホルムを0.060±0.012mg/Lの濃度に調製し、2種類の試料水を用意した。そして、内径40mm、高さ100mmの円筒形カラム内に、実施例1ないし4、比較例1ないし4のそれぞれの活性炭を50ccずつ充填した。 With respect to the treated water, 1,1,1-trichloroethane was prepared at a concentration of 0.300 ± 0.060 mg / L and chloroform was prepared at a concentration of 0.060 ± 0.012 mg / L, and two types of sample water were prepared. Then, 50 cc of each activated carbon of Examples 1 to 4 and Comparative Examples 1 to 4 was packed in a cylindrical column having an inner diameter of 40 mm and a height of 100 mm.
前記の2種類の試料水のそれぞれを20℃、SV値1200hr-1で活性炭充填カラムに通水した。活性炭充填カラムから流出した試料水を採取し、1,1,1−トリクロロエタンまたはクロロホルムの濃度をガスクロマトグラフィー(株式会社島津製作所製,ガスクロマトグラフGC−2014)を用いて定量測定した。 Each of the two types of sample water was passed through an activated carbon packed column at 20 ° C. and an SV value of 1200 hr −1 . The sample water flowing out from the activated carbon packed column was collected, and the concentration of 1,1,1-trichloroethane or chloroform was quantitatively measured using gas chromatography (manufactured by Shimadzu Corporation, gas chromatograph GC-2014).
カラム通過前の試料水とカラムの活性炭層を通過した試料水を比較した。流入側試料水に対する流出側試料水の1,1,1−トリクロロエタンの水中濃度が20%以上となった点を同物質の破過点とした。また、流入側試料水に対する流出側試料水のクロロホルムの水中濃度が20%以上となった点を同物質の破過点とした。そして、破過点に達した点の総流出水量を当該活性炭の充填体積で割った値を吸着物質に対する濾過能力性能とした。 The sample water before passing through the column and the sample water that passed through the activated carbon layer of the column were compared. The point at which the concentration of 1,1,1-trichloroethane in the outflow-side sample water with respect to the inflow-side sample water was 20% or more was defined as a breakthrough point for the same substance. Moreover, the point where the concentration of chloroform in the outflow side sample water with respect to the inflow side sample water was 20% or more was determined as the breakthrough point of the same substance. And the value which divided the total effluent amount of the point which reached the breakthrough point by the filling volume of the said activated carbon was made into the filtration capability performance with respect to an adsorbent.
〔浄水器用活性炭の結果と考察〕
表1並びに表2の結果から実施例と比較例の浄水器用活性炭を比較した場合、全細孔容積と平均細孔直径の計測値については大きな差異は生じなかった。よう素吸着性能、充填密度、及びベンゼン吸着力は、実施例、比較例ともに浄水器用活性炭として必要な性能を概ね具備する。これらの点から実施例並びに比較例は通常の浄水器用活性炭としては申し分ない。ただし、1,1,1−トリクロロエタン濾過能力、クロロホルム濾過能力において相違が生じた。
[Results and discussion of activated carbon for water purifiers]
From the results of Table 1 and Table 2, when the activated carbons for water purifiers of Examples and Comparative Examples were compared, there was no significant difference in the measured values of total pore volume and average pore diameter. Iodine adsorption performance, packing density, and benzene adsorption power generally have performance required for activated carbon for water purifiers in both Examples and Comparative Examples. From these points, the examples and comparative examples are satisfactory as ordinary activated carbons for water purifiers. However, a difference occurred in 1,1,1-trichloroethane filtration capacity and chloroform filtration capacity.
相違ある測定項目に着目すると、実施例2より、BET比表面積は900m2/gよりも少なくなると吸着能力の低下が著しく好ましくない。そこで、BET比表面積900m2/gが下限となる。また、吸着能力の安定性の観点からは実施例1より950m2/g以上が好ましい。次に各実施例と比較例3との対比から、BET比表面積の好ましい上限は1100m2/gとなり、より好ましい上限は実施例3より1050m2/gとなる。 Focusing on the different measurement items, from Example 2, if the BET specific surface area is less than 900 m 2 / g, the decrease in adsorption capacity is extremely undesirable. Therefore, the BET specific surface area 900 m 2 / g is the lower limit. Further, from the viewpoint of stability of the adsorption capacity, 950 m 2 / g or more is preferable from Example 1. Next, from the comparison between each Example and Comparative Example 3, the preferable upper limit of the BET specific surface area is 1100 m 2 / g, and the more preferable upper limit is 1050 m 2 / g from Example 3.
MP法の解析において、比表面積が近似する活性炭では細孔直径0〜2.0nmの細孔の全細孔容積は比較的揃っている。ただし、MP法解析の細孔直径0.6nm以下の細孔の総細孔容積割合に着目すると別の側面が生じる。比較例1のとおり細孔容積の割合40%を下回る例では1,1,1−トリクロロエタン及びクロロホルムの濾過能力は低下した。このことから、同割合40%以上を適切とすることができる。また、同割合45%を超過した比較例4からも濾過能力低下は明らかとなった。従って、MP法による細孔分布の測定において、細孔直径0nmないし2.0nmの細孔の全細孔容積に占める細孔直径0.6nm以下の細孔の総細孔容積は、当該全細孔容積の40%ないし45%とすることである。さらには、各実施例の数値より43%ないし44%の範囲がより好例である。
In the analysis by the MP method, the total pore volume of pores having a pore diameter of 0 to 2.0 nm is relatively uniform in the activated carbon whose specific surface area approximates. However, another aspect arises when focusing on the total pore volume ratio of pores having a pore diameter of 0.6 nm or less as analyzed by the MP method. As in Comparative Example 1, in the case where the pore volume ratio was less than 40%, the filtration capacities of 1,1,1-trichloroethane and chloroform were lowered. From this, the ratio of 40% or more can be appropriate. Moreover, the filter capacity fall became clear also from the comparative example 4 which exceeded the
DH法の解析によると、対象とする細孔直径の範囲が広いため全細孔容積に各活性炭間で多少ばらつきがある。その場合であっても、DH法による細孔直径2.0nm以下の細孔の総細孔容積割合に着目することにより、1,1,1−トリクロロエタン及びクロロホルムの濾過能力の良否を判断することができる。比較例2,4のとおり、細孔直径2.0nm以下の細孔の細孔容積の割合20%を下回る場合、総じて1,1,1−トリクロロエタン及びクロロホルムの濾過能力は悪化する。また、比較例1,3のとおり、当該細孔容積の割合が23%を超える場合も同様に1,1,1−トリクロロエタン及びクロロホルムの濾過能力は悪化する。このことから、DH法による細孔分布の測定において、細孔直径1nmないし100nmの細孔の全細孔容積に占める細孔直径2.0nm以下の細孔の総細孔容積は、当該全細孔容積の20%ないし23%に収斂する。 According to the analysis of the DH method, since the range of the pore diameter to be targeted is wide, the total pore volume varies somewhat between the activated carbons. Even in such a case, whether or not the filtration ability of 1,1,1-trichloroethane and chloroform is judged is good by paying attention to the total pore volume ratio of pores having a pore diameter of 2.0 nm or less by the DH method. Can do. As in Comparative Examples 2 and 4, when the ratio of the pore volume of pores having a pore diameter of 2.0 nm or less is less than 20%, the filtering ability of 1,1,1-trichloroethane and chloroform is deteriorated as a whole. In addition, as in Comparative Examples 1 and 3, when the ratio of the pore volume exceeds 23%, the filtration ability of 1,1,1-trichloroethane and chloroform similarly deteriorates. Therefore, in the measurement of pore distribution by the DH method, the total pore volume of pores having a pore diameter of 2.0 nm or less occupying the total pore volume of pores having a pore diameter of 1 nm to 100 nm is the total fine volume. It converges to 20% to 23% of the pore volume.
表面酸化物量の結果について、下限の実施例4と上限の実施例1より、0.05ないし0.14meq/g、さらには0.06ないし0.13meq/gの範囲を導くことができる。上限については比較例1,2より規定できる。 Regarding the result of the surface oxide amount, the lower limit of Example 4 and the upper limit of Example 1 can lead to a range of 0.05 to 0.14 meq / g, and further 0.06 to 0.13 meq / g. The upper limit can be defined from Comparative Examples 1 and 2.
上述のとおり、比表面積、MP法解析の細孔直径0.6nm以下の細孔の総細孔容積割合、DH法による細孔直径2.0nm以下の細孔の総細孔容積割合、表面酸化物量の各指標を合わせて考慮することは、1,1,1−トリクロロエタン、クロロホルム等の有機塩素系化合物の濾過性能把握に極めて有効である。それゆえ、従前の浄水器用活性炭の有機塩素系化合物の濾過性能をよりいっそう高めることができた。 As described above, the specific surface area, the total pore volume ratio of pores having a pore diameter of 0.6 nm or less analyzed by the MP method, the total pore volume ratio of pores having a pore diameter of 2.0 nm or less by the DH method, surface oxidation It is extremely effective to grasp the filtration performance of organochlorine compounds such as 1,1,1-trichloroethane, chloroform, etc., taking into account each index of the quantity. Therefore, it was possible to further improve the filtration performance of the organic chlorinated compound of the activated carbon for the conventional water purifier.
〔活性炭カートリッジの作成〕
浄水器用活性炭を含有する活性炭カートリッジについて、図3の模式図に開示の方法により作成した。実施例1の浄水器用活性炭85重量部(41)、繊維状活性炭(フタムラ化学株式会社製,商品名フェノール系繊維状活性炭)10重量部(42)、アクリル繊維(東洋紡績株式会社製,商品名ビィパル)5重量部(43)を秤量した。これらの固形分量の約20倍重量の水中に攪拌しながら分散しスラリー状物(40)とした。
[Creation of activated carbon cartridge]
About the activated carbon cartridge containing activated carbon for water purifiers, it created by the method of an indication to the schematic diagram of FIG. 85 parts by weight of activated carbon for water purifier of Example 1 (41), 10 parts by weight (42) of fibrous activated carbon (made by Phutamura Chemical Co., Ltd., trade name phenol-based fibrous activated carbon), acrylic fiber (made by Toyobo Co., Ltd., trade name) Bipal) 5 parts by weight (43) was weighed. The slurry was dispersed in water having a weight of about 20 times the solid content with stirring to obtain a slurry (40).
外直径24mm、内直径20mm、全長50mmであり直径2mmの細孔を有するポリプロピレン製の中空円筒形芯部材(44)を用意した。中空円筒形芯部材(44)内に、多孔形状のステンレス製の金型棒状部材(45)を挿入して固定するとともにスラリー状物(40)内に投入し、減圧吸引によりスラリー状物(40)内から固形分を引き寄せて中空円筒形芯部材(44)の表面に約13mm被着させ、スラリー被着部(46)を形成した。中空円筒形芯部材(44)から金型棒状部材(45)を取り外し、スラリー被着部(46)と中空円筒形芯部材(44)の一体化物となる吸着被着物(47)を得た。 A hollow cylindrical core member (44) made of polypropylene having an outer diameter of 24 mm, an inner diameter of 20 mm, a total length of 50 mm and pores having a diameter of 2 mm was prepared. A porous stainless steel metal rod member (45) is inserted and fixed in the hollow cylindrical core member (44), and is inserted into the slurry material (40). ) The solid content was drawn from the inside to deposit about 13 mm on the surface of the hollow cylindrical core member (44) to form the slurry-adhered portion (46). The die bar-like member (45) was removed from the hollow cylindrical core member (44) to obtain an adsorbed adherend (47) that was an integrated product of the slurry adherend (46) and the hollow cylindrical core member (44).
吸着被着物(47)を乾燥機に入れて100℃、12時間かけて加熱、乾燥し、活性炭カートリッジ(40)を作成した。活性炭カートリッジ(40)の寸法は、外直径50mm、内直径20mm、全高50mmである。当該活性炭カートリッジを実施例5とする。 The adsorbed adherend (47) was put in a dryer and heated and dried at 100 ° C. for 12 hours to prepare an activated carbon cartridge (40). The activated carbon cartridge (40) has an outer diameter of 50 mm, an inner diameter of 20 mm, and an overall height of 50 mm. The activated carbon cartridge is referred to as Example 5.
実施例1の浄水器用活性炭を用いて作成した活性炭カートリッジと同様の作成法により、浄水器用活性炭のみ比較例1の活性炭に変更し、対照品となる活性炭カートリッジも作成した。当該活性炭カートリッジを比較例5とする。 By the same production method as the activated carbon cartridge produced using the activated carbon for water purifier of Example 1, only the activated carbon for water purifier was changed to the activated carbon of Comparative Example 1, and an activated carbon cartridge serving as a control product was also produced. This activated carbon cartridge is referred to as Comparative Example 5.
〔活性炭カートリッジに対する通水試験〕
前記作成の活性炭カートリッジ(実施例5及び比較例5)に対し、JIS S 3201(2010)に規定の家庭用浄水器試験方法に準拠し、1,1,1−トリクロロエタン及びクロロホルムの濾過能力を測定した。
[Water flow test for activated carbon cartridge]
Measure the filtration capacity of 1,1,1-trichloroethane and chloroform in accordance with JIS S 3201 (2010) and the water purifier test method for home use for the activated carbon cartridges (Example 5 and Comparative Example 5). did.
測定に供する試料水について、1,1,1−トリクロロエタンを0.060±0.012mg/Lの濃度に調製し、クロロホルムを0.300±0.060mg/Lの濃度に調製した。活性炭カートリッジをステンレス鋼材製のハウジングに装着し、2種類の試料水のそれぞれについて、20℃、SV値800hr-1として活性炭カートリッジに通水した。活性炭カートリッジから流出した試料水を採取し、1,1,1−トリクロロエタン、クロロホルムの濃度について前記同様ガスクロマトグラフィーを用いて定量測定した。 For sample water to be used for measurement, 1,1,1-trichloroethane was prepared at a concentration of 0.060 ± 0.012 mg / L, and chloroform was prepared at a concentration of 0.300 ± 0.060 mg / L. The activated carbon cartridge was mounted on a stainless steel housing, and each of the two types of sample water was passed through the activated carbon cartridge at 20 ° C. and an SV value of 800 hr −1 . Sample water flowing out from the activated carbon cartridge was collected, and the concentration of 1,1,1-trichloroethane and chloroform was quantitatively measured using gas chromatography as described above.
活性炭カートリッジ通過前の試料水と通過後の試料水を比較し、流入側試料水に対する流出側試料水の1,1,1−トリクロロエタンの破過率が20%以上となった点を同物質の破過点とした。また、流入側試料水に対する流出側試料水のクロロホルムの破過率が20%以上となった点を同物質の破過点とした。そして、破過点に達した点の総流出水量を当該活性炭の充填体積で割った値を吸着物質に対する濾過能力性能とした。 Compare the sample water before passing through the activated carbon cartridge with the sample water after passing, and the breakthrough rate of 1,1,1-trichloroethane in the outflow side sample water with respect to the inflow side sample water was 20% or more. The breakthrough point. Moreover, the point where the breakthrough rate of the outflow side sample water with respect to the inflow side sample water was 20% or more was defined as the breakthrough point of the same substance. And the value which divided the total effluent amount of the point which reached the breakthrough point by the filling volume of the said activated carbon was made into the filtration capability performance with respect to an adsorbent.
〔通水試験の結果、考察〕
実施例1の活性炭使用の活性炭カートリッジ(実施例5)の場合、1,1,1−トリクロロエタンの破過率が20%以上となった点の通水量は12.2L/ccであり、クロロホルムの破過率が20%以上となった点の通水量は12.7L/ccであった。
[Results and consideration of water flow test]
In the case of the activated carbon cartridge (Example 5) using activated carbon of Example 1, the water flow rate at the point where the breakthrough rate of 1,1,1-trichloroethane was 20% or more was 12.2 L / cc. The water flow rate at the point where the breakthrough rate was 20% or more was 12.7 L / cc.
比較例1の活性炭使用の活性炭カートリッジ(比較例5)の場合、1,1,1−トリクロロエタンの破過率が20%以上となった点の通水量は6.9L/ccであり、クロロホルムの破過率が20%以上となった点の通水量は9.0L/ccであった。 In the case of the activated carbon cartridge using the activated carbon of Comparative Example 1 (Comparative Example 5), the water flow rate at which the breakthrough rate of 1,1,1-trichloroethane was 20% or more was 6.9 L / cc, The water flow rate at the point where the breakthrough rate was 20% or more was 9.0 L / cc.
この結果より、本発明の物性を具備する浄水器用活性炭は、1,1,1−トリクロロエタン、クロロホルムの濾過能力を大きく向上したことを実証した。さらに、本発明の浄化用活性炭を用いて活性炭カートリッジを作成した場合であっても、1,1,1−トリクロロエタン、クロロホルムの濾過能力に影響が生じていないことから、カートリッジをはじめとする各種の水処理用物品への応用も検討できる。 From this result, it was demonstrated that the activated carbon for water purifiers having the physical properties of the present invention greatly improved the filtration ability of 1,1,1-trichloroethane and chloroform. Furthermore, even when an activated carbon cartridge is made using the activated carbon for purification of the present invention, there is no effect on the filtration ability of 1,1,1-trichloroethane and chloroform. Application to water treatment products can also be considered.
本発明の浄水器用活性炭及び活性炭カートリッジは、水中に含まれる有機塩素系化合物の中でも1,1,1−トリクロロエタン、クロロホルムの濾過能力を改善したため、浄水器の性能向上につなげることができる。特に、近時求められている浄水器の高精度濾過に好適である。 Since the activated carbon for activated water and the activated carbon cartridge of the present invention have improved the filtration ability of 1,1,1-trichloroethane and chloroform among the organic chlorine compounds contained in water, the activated water cartridge and the activated carbon cartridge can improve the performance of the water purifier. In particular, it is suitable for high-precision filtration of a water purifier that has been required recently.
10,30,50 活性炭カートリッジ
11 本体部
12 空洞部
20 浄水器
21 切り換え部
23 濾過チャンバー
25 蛇口
31 通水容器
32 導水路
40 スラリー状物
41 浄水器用活性炭
43 アクリル繊維
47 吸着被着物
DESCRIPTION OF
Claims (3)
MP法による細孔分布の測定において、細孔直径0〜2.0nmの細孔の全細孔容積が0.4110cc/g以上であって、細孔直径0.6nm以下の細孔の総細孔容積を当該全細孔容積の40〜45%とし、
DH法による細孔分布の測定において、細孔直径1〜100nmの細孔の全細孔容積が0.1244cc/g以下であって、細孔直径2.0nm以下の細孔の総細孔容積を当該全細孔容積の20〜23%とし、
表面酸化物量を0.05〜0.14meq/gとした活性炭からなり、
有機塩素系化合物の中でもクロロホルムや1,1,1−トリクロロエタンの除去性能を高めた
ことを特徴とする浄水器用活性炭。 The specific surface area is 900-1100 m 2 / g,
In the measurement of the pore distribution by the MP method, the total pore volume of pores having a pore diameter of 0 to 2.0 nm is 0.4110 cc / g or more and the total fineness of pores having a pore diameter of 0.6 nm or less is used. the pore volume as a 40 to 45% of the total pore volume,
In the measurement of pore distribution by the DH method, the total pore volume of pores having a pore diameter of 1 to 100 nm is 0.1244 cc / g or less, and the total pore volume of pores having a pore diameter of 2.0 nm or less was a 20 to 23% of the total pore volume,
It consists of activated carbon with a surface oxide amount of 0.05 to 0.14 meq / g,
Among activated carbon compounds, activated carbon for water purifiers, which has improved performance for removing chloroform and 1,1,1-trichloroethane.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012095703A JP5936423B2 (en) | 2012-04-19 | 2012-04-19 | Activated carbon for water purifier and activated carbon cartridge using the same |
KR1020130041509A KR102039506B1 (en) | 2012-04-19 | 2013-04-16 | Activated carbon for water purifier and activated carbon cartridge using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012095703A JP5936423B2 (en) | 2012-04-19 | 2012-04-19 | Activated carbon for water purifier and activated carbon cartridge using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013220413A JP2013220413A (en) | 2013-10-28 |
JP5936423B2 true JP5936423B2 (en) | 2016-06-22 |
Family
ID=49591786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012095703A Active JP5936423B2 (en) | 2012-04-19 | 2012-04-19 | Activated carbon for water purifier and activated carbon cartridge using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5936423B2 (en) |
KR (1) | KR102039506B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11795066B2 (en) | 2020-06-30 | 2023-10-24 | Kuraray Co., Ltd. | Carbonaceous material and method for producing same, water purification filter, and water purifier |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6101195B2 (en) * | 2013-12-10 | 2017-03-22 | 株式会社タカギ | Molded adsorbent and water purifier using the same |
CN105555714B (en) * | 2014-04-03 | 2020-01-14 | 关西热化学株式会社 | Activated carbon for water purifier |
JP5886383B2 (en) * | 2014-07-25 | 2016-03-16 | 関西熱化学株式会社 | Activated carbon with excellent adsorption performance and method for producing the same |
JP6515470B2 (en) * | 2014-09-17 | 2019-05-22 | 東レ株式会社 | Adsorbent material |
EP3147388A1 (en) * | 2015-09-25 | 2017-03-29 | Enthone, Incorporated | Flexible color adjustment for dark cr(iii)-platings |
US10843168B2 (en) | 2016-05-17 | 2020-11-24 | Kuraray Co., Ltd. | Activated carbon, and adsorption filter and water purifier both including same |
US10987650B2 (en) * | 2017-12-28 | 2021-04-27 | Kuraray Co., Ltd. | Adsorption filter |
JP6542968B1 (en) * | 2018-09-28 | 2019-07-10 | 関西熱化学株式会社 | Activated carbon and method for producing the same |
JP6829796B1 (en) * | 2019-04-26 | 2021-02-10 | 株式会社クラレ | Carbonaceous materials and their manufacturing methods, as well as water purification filters and water purifiers |
CN110090491B (en) * | 2019-05-28 | 2023-12-05 | 上海蓝宇水处理股份有限公司 | Filter medium for water treatment and purification |
JP7541693B2 (en) | 2019-08-20 | 2024-08-29 | 国立研究開発法人産業技術総合研究所 | Activated carbon for adsorption of per- and polyfluoroalkyl compounds in water samples |
EP4019124A4 (en) * | 2019-08-20 | 2023-10-04 | Futamura Kagaku Kabushiki Kaisha | Per- and polyfluoroalkyl compound-adsorbing activated carbon |
WO2021033596A1 (en) * | 2019-08-20 | 2021-02-25 | フタムラ化学株式会社 | Active carbon for adsorbing perfluoroalkyl and polyfluoroalkyl compounds in water sample |
JP7576789B2 (en) | 2020-09-30 | 2024-11-01 | 国立研究開発法人産業技術総合研究所 | Neutral per- and polyfluoroalkyl compound-adsorbing activated carbon and method for analyzing neutral per- and polyfluoroalkyl compounds in water samples |
US20230390731A1 (en) * | 2020-10-23 | 2023-12-07 | Kuraray Co., Ltd. | Carbonaceous material and method for producing same, and fluorine-containing organic compound removing material, water purification filter, and water purifier |
JP7523838B1 (en) | 2024-02-08 | 2024-07-29 | 株式会社エム・イ-・ティ- | Activated carbon and its manufacturing method, water purifier cartridge and water purifier |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5615348B2 (en) | 1973-05-22 | 1981-04-09 | ||
JPH0826711A (en) | 1994-07-08 | 1996-01-30 | Kuraray Chem Corp | Activated carbon for removing trihalomethane |
JP3506043B2 (en) * | 1999-04-28 | 2004-03-15 | 松下電器産業株式会社 | Activated carbon and water purifier using it |
JP2001240407A (en) | 1999-12-24 | 2001-09-04 | Kuraray Chem Corp | Activated carbon and its manufacturing method |
JP4628752B2 (en) | 2004-11-17 | 2011-02-09 | クラレケミカル株式会社 | Activated carbon for treating organic halogen compounds and method for treating exhaust gas containing organic halogen compounds using the same |
-
2012
- 2012-04-19 JP JP2012095703A patent/JP5936423B2/en active Active
-
2013
- 2013-04-16 KR KR1020130041509A patent/KR102039506B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11795066B2 (en) | 2020-06-30 | 2023-10-24 | Kuraray Co., Ltd. | Carbonaceous material and method for producing same, water purification filter, and water purifier |
Also Published As
Publication number | Publication date |
---|---|
JP2013220413A (en) | 2013-10-28 |
KR102039506B1 (en) | 2019-11-01 |
KR20130118248A (en) | 2013-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5936423B2 (en) | Activated carbon for water purifier and activated carbon cartridge using the same | |
JP6283435B2 (en) | Activated carbon molded body and water purifier using the same | |
KR102311122B1 (en) | Activated carbon and adsorption filter and water purifier using the same | |
Somyanonthanakun et al. | Studies on the adsorption of Pb (II) from aqueous solutions using sugarcane bagasse-based modified activated carbon with nitric acid: kinetic, isotherm and desorption | |
US20210347642A1 (en) | Porous Carbon Material, Method for Manufacturing Same, Filter, Sheet, and Catalyst Carrier | |
MXPA04001611A (en) | Water filters and processes for using the same. | |
JP2019098324A (en) | Polar substance adsorption active carbon | |
JP4064309B2 (en) | Water purifier | |
JP2017200670A (en) | Activated carbon molded body and water purification cartridge | |
JP2000256999A (en) | Compact of activated carbon, its production and water purifier by using the same | |
TW202039073A (en) | Water purifying filter and water purifier using same | |
Abdus-Salam et al. | Adsorption of Alizarin and Fluorescein Dyes onto Palm Seeds Activated Carbon: Kinetic and Thermodynamic Studies. | |
Najafi et al. | Gemifloxacin removal from aqueous solution by rice‐straw based activated carbon: Batch adsorption and thermal regeneration | |
JP6407952B2 (en) | Removal of organic compounds and chloramine from aqueous solutions | |
KR102622510B1 (en) | Porous carbon and organic halogen compound removal device using the same | |
CA3148636A1 (en) | Activated carbon for adsorbing per-and polyfluoroalkyl compounds in water sample | |
JP2010269225A (en) | Anion adsorbent molding and water purifier using the same | |
Shaba et al. | The kinetic and thermodynamic study of the removal of selected heavy metals from a Nigerian Brewery wastewater using activated carbon from Cheese Wood (alstonia boonei) | |
JP7427849B1 (en) | Activated carbon for water treatment | |
JP2021176609A (en) | Water purification cartridge and water purifier | |
Taghizadehgan | Development of granulated activated carbon using Corner Brook pulp and paper mill fly ash for drinking water treatment | |
KR101765236B1 (en) | Ion Purifier | |
JP2024080893A (en) | Activated carbon and activated carbon filter body | |
Srisa-Ard | Preparation of activated carbon from Sindora Siamensis seed and Canarium Sublatum Guillaumin fruit for methylene blue adsorption | |
Robbins | Development of an iron-oxide coated ceramic filter for removal of As (III) and As (V) in developing nations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131209 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20131209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140305 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20140306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140522 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141007 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141007 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20141128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160510 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5936423 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |