[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5924372B2 - Fluorescence imaging device for liquid analysis of material surface - Google Patents

Fluorescence imaging device for liquid analysis of material surface Download PDF

Info

Publication number
JP5924372B2
JP5924372B2 JP2014111821A JP2014111821A JP5924372B2 JP 5924372 B2 JP5924372 B2 JP 5924372B2 JP 2014111821 A JP2014111821 A JP 2014111821A JP 2014111821 A JP2014111821 A JP 2014111821A JP 5924372 B2 JP5924372 B2 JP 5924372B2
Authority
JP
Japan
Prior art keywords
fluorescence
imaging device
chloride ion
ion concentration
material surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014111821A
Other languages
Japanese (ja)
Other versions
JP2015225051A (en
Inventor
純一郎 小川
純一郎 小川
武藤 泉
泉 武藤
優 菅原
優 菅原
信義 原
信義 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2014111821A priority Critical patent/JP5924372B2/en
Publication of JP2015225051A publication Critical patent/JP2015225051A/en
Application granted granted Critical
Publication of JP5924372B2 publication Critical patent/JP5924372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、水溶液中の材料表面の水素イオン濃度(pH)と塩化物イオン濃度の分布や、その経時変化を画像や動画として計測するための蛍光イメージングデバイスに関する。   The present invention relates to a fluorescence imaging device for measuring the distribution of hydrogen ion concentration (pH) and chloride ion concentration on the surface of a material in an aqueous solution, and its change with time as an image or a moving image.

水素イオン濃度(pH)と塩化物イオン濃度は、水溶液中の電気化学反応や材料表面の電気化学的な状態を支配する重要なパラメータである。例えば、代表的な電気化学現象である金属腐食は、塩化物イオン濃度が低い場合、中性領域では不働態を示し腐食速度は非常に低いが、酸性域では活性溶解が生じ腐食速度が著しく増大する。しかし、塩化物イオンが存在すると、中性領域でも孔食やすき間腐食などの局部腐食を生じ、腐食速度が増大する。また、孔食やすき間腐食などの局部腐食が生じている部分の液性は、沖合の水溶液とは異なり、pHが極端に低下し、塩化物イオンも濃縮していると言われている。このように、水溶液中での電気化学反応を解析するためには、pHと塩化物イオン濃度を同時に計測する必要がある。しかも、pHと塩化物イオン濃度の分布や、その経時変化を静止画や動画として捉えることも必要である。   Hydrogen ion concentration (pH) and chloride ion concentration are important parameters governing the electrochemical reaction in the aqueous solution and the electrochemical state of the material surface. For example, metal corrosion, which is a typical electrochemical phenomenon, shows a passive state in the neutral region when the chloride ion concentration is low, and the corrosion rate is very low, but active dissolution occurs in the acidic region and the corrosion rate increases significantly. To do. However, the presence of chloride ions causes local corrosion such as pitting corrosion and crevice corrosion even in a neutral region and increases the corrosion rate. In addition, the liquidity of the part where local corrosion such as pitting corrosion and crevice corrosion occurs is said to be extremely low in pH and concentrated chloride ions, unlike the offshore aqueous solution. Thus, in order to analyze an electrochemical reaction in an aqueous solution, it is necessary to simultaneously measure pH and chloride ion concentration. In addition, it is also necessary to capture the distribution of pH and chloride ion concentration and its change over time as a still image or a moving image.

ところで、水溶液内のpHや塩化物イオン濃度の分布を画像化する手法としては、蛍光イメージング法が生物学の分野を中心に広く用いられている。これは、pHや塩化物イオンに感応する蛍光試薬を、水溶液中や細胞内に導入し、励起光を照射した際に生じる蛍光の強度や波長の変化からpHや塩化物イオン濃度の値や分布を画像として記録・計測するものである。   By the way, as a technique for imaging the distribution of pH and chloride ion concentration in an aqueous solution, the fluorescence imaging method is widely used mainly in the field of biology. This is because the pH and chloride ion concentration values and distribution are determined from changes in the intensity and wavelength of the fluorescence generated when a fluorescent reagent sensitive to pH and chloride ions is introduced into an aqueous solution or cell and irradiated with excitation light. Is recorded and measured as an image.

pHに感応する蛍光試薬としては、フルオレセインやフルオレセイン骨格を有する化合物が広く一般的に使用されている。例えば、特開2001-305060号公報には、フルオレセイン系化合物をプロトン感受性蛍光物質として固定化物質と化学結合させたpH値測定素子が開示されている。また、特開2010-169458号公報には、微小な窒化ホウ素にビオチン−フルオレセインを付着させたpH感知用材料が開示されている。一方、塩化物イオンに感応する蛍光試薬としては、6-メトキシ-1-エチルキノリニウム・アイオダイド、6-メトキシ-1-(3-スルホプロピル)キノリニウム、3-(10-メチルアクリジニウム-9-イル)プロピル酸四フッ化ホウ酸塩、3,6-ビス(ジメチルアミン)アクリジンなどが知られている。特開平8-128957号公報には、3,6-ビス(ジメチルアミン)アクリジン誘導体を塩化物イオン感応蛍光物質とし、これをポリアクリルアミドなどの高分子膜担体などに担持した化学センサーが開示されている。しかし、pHと塩化物イオン濃度を同時にイメージングする手法は知れていない。これは、pH感応試薬と塩化物イオン感応試薬を混合した際に想定される試薬相互の妨害現象(干渉作用)や、二つの試薬の蛍光が近いなどの問題に加え、広い濃度範囲で厳密にpHのみ、塩化物イオン濃度のみに感応する試薬が少なく、どのような試薬の組み合わせが、どのような液性条件下で、pHおよび塩化物イオン濃度に呼応した蛍光を発するのかが具体的に開示されていないためである。さらに、pH 5〜8の領域では、pHや塩化物イオンに感応する蛍光試薬は多数知られているが、酸性水溶液中で、pHや塩化物イオン濃度に感応する試薬は多くはない。   As a fluorescent reagent sensitive to pH, fluorescein and compounds having a fluorescein skeleton are widely used. For example, Japanese Patent Laid-Open No. 2001-305060 discloses a pH value measuring element in which a fluorescein compound is chemically bonded to an immobilized substance as a proton-sensitive fluorescent substance. JP 2010-169458 discloses a pH sensing material in which biotin-fluorescein is attached to minute boron nitride. On the other hand, as fluorescent reagents sensitive to chloride ions, 6-methoxy-1-ethylquinolinium iodide, 6-methoxy-1- (3-sulfopropyl) quinolinium, 3- (10-methylacridinium- 9-yl) propyl acid tetrafluoroborate, 3,6-bis (dimethylamine) acridine and the like are known. Japanese Laid-Open Patent Publication No. 8-128957 discloses a chemical sensor in which a 3,6-bis (dimethylamine) acridine derivative is used as a chloride ion-sensitive fluorescent substance and is supported on a polymer membrane carrier such as polyacrylamide. Yes. However, there is no known method for simultaneously imaging pH and chloride ion concentration. In addition to problems such as interference between reagents (interference action) assumed when mixing pH-sensitive reagents and chloride ion-sensitive reagents, the fluorescence of the two reagents is close, etc., and strictly over a wide concentration range. There are few reagents sensitive only to pH and chloride ion concentration, and it is specifically disclosed what kind of reagent combination emits fluorescence corresponding to pH and chloride ion concentration under what liquid condition This is because it has not been done. Further, in the pH range of 5 to 8, many fluorescent reagents sensitive to pH and chloride ions are known, but there are not many reagents sensitive to pH and chloride ion concentration in an acidic aqueous solution.

ところで、水溶液中の電気化学反応に及ぼすpHや塩化物イオン濃度の影響を把握するためには、電極などの材料表面の液性を解析する必要がある。材料表面の液性を解析するためには、pHや塩化物イオン濃度に感応する試薬を固体状マトリックス内に添加し、その固体状マトリックスを水溶液中において材料表面に近接させることが好ましい。しかし、pHおよび塩化物イオン濃度に呼応した蛍光を得るために、どのような固体状マトリックスと、どのような蛍光試薬の組み合わせが好適であるのかは不明である。また、材料表面の液性解析に際しては、可視光を光源とした通常の光学顕微鏡観察をpHや塩化物イオン濃度の解析と同時に行う必要がある。そのためには、固体状マトリックスが可視光に対して透明であることが好適であるが、それを達成するための具体的な試薬は明らかにされていない。   By the way, in order to grasp the influence of pH and chloride ion concentration on the electrochemical reaction in an aqueous solution, it is necessary to analyze the liquidity of the surface of a material such as an electrode. In order to analyze the liquid property of the material surface, it is preferable to add a reagent sensitive to pH and chloride ion concentration into the solid matrix and bring the solid matrix close to the material surface in an aqueous solution. However, it is unclear what solid matrix and which combination of fluorescent reagents are suitable for obtaining fluorescence in response to pH and chloride ion concentration. Further, when analyzing the liquid property of the material surface, it is necessary to perform normal optical microscope observation using visible light as a light source simultaneously with analysis of pH and chloride ion concentration. For this purpose, it is preferable that the solid matrix is transparent to visible light, but a specific reagent for achieving this is not disclosed.

本発明は上記事情に鑑みなされたもので、その目的とするところは、水溶液中の材料表面のpHと塩化物イオン濃度の分布や、その経時変化を画像や動画として計測するための蛍光イメージングデバイスの提供にある。   The present invention has been made in view of the above circumstances, and an object thereof is a fluorescence imaging device for measuring the distribution of pH and chloride ion concentration on the surface of a material in an aqueous solution and its change over time as an image or a moving image. Is in the provision of.

本発明者は、このような従来技術の限界を克服し、未解決の課題を解決するため種々の試験研究を行い、本発明を完成させた。本発明の主旨は、以下の通りである。   The present inventor has completed various aspects of the present invention by overcoming various limitations of the prior art and solving various problems. The gist of the present invention is as follows.

(1)希土類錯体と硫酸キニーネを含有し、可視光に対して透明な固体状マトリックスからなり、pH 4以下の水溶液中において、pHおよび塩化物イオン濃度に呼応した蛍光を発することを特徴とする材料表面の液性解析用蛍光イメージングデバイス。 (1) It contains a rare earth complex and quinine sulfate, is composed of a solid matrix transparent to visible light, and emits fluorescence corresponding to pH and chloride ion concentration in an aqueous solution of pH 4 or lower. Fluorescence imaging device for liquid analysis of material surfaces.

(2)上記(1)の蛍光イメージングデバイスにおいて、希土類錯体が、カルボキシル基を有する含窒素複素環式化合物を配位子とすることを特徴とする材料表面の液性解析用蛍光イメージングデバイス。 (2) The fluorescent imaging device for liquid property analysis of a material surface, wherein the rare earth complex in the fluorescent imaging device of (1) uses a nitrogen-containing heterocyclic compound having a carboxyl group as a ligand.

(3)上記(1)あるいは(2)の蛍光イメージングデバイスにおいて、固体状マトリックスが、ポリビニルアルコールを含有し、かつケイ素化合物を原料としてゾルゲル法により作製されたものであることを特徴とする材料表面の液性解析用蛍光イメージングデバイス。 (3) In the fluorescent imaging device according to the above (1) or (2), the solid matrix contains polyvinyl alcohol and is produced by a sol-gel method using a silicon compound as a raw material. Fluorescence imaging device for liquid property analysis.

(4)上記(1)〜(3)のいずれかの蛍光イメージングデバイスにおいて、ケイ素化合物として、オルトケイ酸テトラメチルを原料として含有することを特徴とする材料表面の液性解析用蛍光イメージングデバイス。 (4) The fluorescence imaging device for liquid property analysis on a material surface, characterized in that, in the fluorescence imaging device according to any one of (1) to (3), tetramethyl orthosilicate is used as a raw material as a silicon compound.

(5)上記(1)〜(4)のいずれかの蛍光イメージングデバイスにおいて、固体状マトリックスが石英上に形成された表面層であることを特徴とする材料表面の液性解析用蛍光イメージングデバイス。 (5) The fluorescence imaging device for liquid property analysis of a material surface, wherein the solid matrix is a surface layer formed on quartz in any one of the above (1) to (4).

(6)上記(1)〜(5)のいずれかの蛍光イメージングデバイスにおいて、希土類錯体が、ジピコリン酸を配位子とするテルビウムの3価のイオン(Tb3+)の錯体であることを特徴とする材料表面の液性解析用蛍光イメージングデバイス。 (6) The fluorescent imaging device according to any one of (1) to (5), wherein the rare earth complex is a complex of terbium trivalent ion (Tb 3+ ) having dipicolinic acid as a ligand. Fluorescence imaging device for liquid property analysis of material surface.

本発明は、水溶液中の材料表面のpHと塩化物イオン濃度の分布や、その経時変化を画像や動画として計測するための蛍光イメージングデバイスの提供にある。本発明によれば、pH 4以下の酸性水溶液中において、材料表面のpHと塩化物イオン濃度の分布と、その経時変化を画像として計測することが可能である。また、pHと塩化物イオン濃度の分布と共に、材料表面の外観変化も通常の可視光を光源とするカメラや実体顕微鏡、光学顕微鏡などで撮影することが可能である。   The present invention is to provide a fluorescence imaging device for measuring the distribution of pH and chloride ion concentration on the surface of a material in an aqueous solution and its change with time as an image or a moving image. According to the present invention, in an acidic aqueous solution having a pH of 4 or less, it is possible to measure the distribution of pH and chloride ion concentration on the surface of the material and its change over time as an image. In addition to the distribution of pH and chloride ion concentration, the appearance change of the material surface can be photographed with a camera, a stereomicroscope, an optical microscope or the like using ordinary visible light as a light source.

pH 3.0の硫酸キニーネ水溶液を347nmの紫外光で励起した際の蛍光スペクトルを示した図。The figure which showed the fluorescence spectrum at the time of exciting the quinine sulfate aqueous solution of pH 3.0 with the ultraviolet light of 347 nm. pH 3.0の硫酸キニーネ水溶液を347nmの紫外光で励起した際の蛍光ピーク波長457nmの相対強度と塩化物イオン濃度との関係を示した図。The figure which showed the relationship between the relative intensity | strength of the fluorescence peak wavelength of 457nm, and a chloride ion density | concentration at the time of exciting the quinine sulfate aqueous solution of pH 3.0 with the ultraviolet light of 347 nm. ジピコリン酸−テルビウム錯体の水溶液(塩化物イオンを含まない)を272nmの紫外線で励起した際の蛍光スペクトルを示した図。The figure which showed the fluorescence spectrum at the time of exciting the aqueous solution (it does not contain a chloride ion) of a dipicolinic acid terbium complex with 272 nm ultraviolet rays. ジピコリン酸−テルビウム錯体の水溶液(塩化物イオンを含まない)を272nmの紫外線で励起した際の蛍光ピーク波長544nmの相対強度とpHとの関係を示した図。The figure which showed the relationship between relative intensity of fluorescence peak wavelength 544nm, and pH at the time of exciting the aqueous solution (it does not contain a chloride ion) of a dipicolinic acid terbium complex with 272 nm ultraviolet rays. ジピコリン酸−テルビウム錯体および硫酸キニーネを含む寒天板を白金板にのせた際の外観を可視光で撮影した写真。The photograph which image | photographed the external appearance when the agar plate containing a dipicolinic acid-terbium complex and a quinine sulfate was put on a platinum plate. ジピコリン酸−テルビウム錯体および硫酸キニーネを含む寒天板の紫外線励起と蛍光画像撮影方法の概念図。The conceptual diagram of the ultraviolet excitation of the agar plate containing a dipicolinic acid terbium complex and a quinine sulfate, and the fluorescence imaging method. ジピコリン酸−テルビウム錯体および硫酸キニーネを含む寒天板の硫酸キニーネの蛍光輝度Yと塩化物イオン濃度との関係を示した図。The figure which showed the relationship between the fluorescence brightness | luminance Y of a quinine sulfate of the agar plate containing a dipicolinic acid-terbium complex and a quinine sulfate, and a chloride ion concentration. ジピコリン酸−テルビウム錯体および硫酸キニーネを含む寒天板のジピコリン酸−テルビウム錯体の蛍光輝度YとpHとの関係を示した図。The figure which showed the relationship between the fluorescence brightness | luminance Y and pH of the dipicolinic acid terbium complex of the agar plate containing a dipicolinic acid terbium complex and a quinine sulfate. ジピコリン酸−テルビウム錯体および硫酸キニーネを含むポリビニルアルコール含有含水二酸化ケイ素層を有する石英板を白金板にのせた際の外観を可視光で撮影した写真。The photograph which image | photographed the external appearance when a quartz plate which has a polyvinyl alcohol containing water-containing silicon dioxide layer containing dipicolinic acid-terbium complex and a quinine sulfate was put on a platinum plate with visible light. ジピコリン酸−テルビウム錯体および硫酸キニーネを含むポリビニルアルコール含有含水二酸化ケイ素層を有する石英板に対する紫外線励起と蛍光画像撮影方法の概念図。The conceptual diagram of the ultraviolet-ray excitation and fluorescence imaging method with respect to the quartz board which has a polyvinyl alcohol containing hydrous silicon dioxide layer containing a dipicolinic acid terbium complex and a quinine sulfate. ジピコリン酸−テルビウム錯体および硫酸キニーネを含むポリビニルアルコール含有含水二酸化ケイ素層を有する石英板の硫酸キニーネの蛍光輝度Yと塩化物イオン濃度との関係を示した図。The figure which showed the relationship between the fluorescence brightness | luminance Y of a quinine sulfate of a quartz plate which has a polyvinyl alcohol containing water-containing silicon dioxide layer containing a dipicolinic acid-terbium complex and a quinine sulfate, and chloride ion concentration. ジピコリン酸−テルビウム錯体および硫酸キニーネを含むポリビニルアルコール含有含水二酸化ケイ素層を有する石英板のジピコリン酸−テルビウム錯体の蛍光輝度YとpHとの関係を示した図。The figure which showed the relationship between the fluorescence brightness | luminance Y and pH of the dipicolinic acid terbium complex of the quartz plate which has a polyvinyl alcohol containing water-containing silicon dioxide layer containing a dipicolinic acid terbium complex and quinine sulfate.

はじめに、硫酸キニーネの塩化物イオン感応特性について述べる。硫酸キニーネの水溶液は、可視光に対して無色透明である。また、図1に示したように、pH 4以下の酸性域で、硫酸キニーネは347nmの紫外光の励起により451nmにピーク波長を有する水色の蛍光を生じる。そして、この蛍光強度は、図2に示したように、塩化物イオン濃度の増加と共に低下する。このように、硫酸キニーネはpH 4以下において、蛍光強度が塩化物イオン濃度に依存するという特性がある。しかし、蛍光強度は、pHには依存しにくい。この現象を利用することにより、硫酸キニーネの蛍光強度の変化から塩化物イオン濃度を計測することが可能である。また、硫酸キニーネは紫外線を長時間照射しても、蛍光が消光しないという特性を有している。このため、液性解析用蛍光イメージングデバイスの塩化物イオン感応蛍光試薬は、硫酸キニーネとした。   First, the chloride ion sensitivity characteristics of quinine sulfate will be described. An aqueous solution of quinine sulfate is colorless and transparent to visible light. In addition, as shown in FIG. 1, in an acidic range of pH 4 or lower, quinine sulfate generates light blue fluorescence having a peak wavelength at 451 nm by excitation with ultraviolet light at 347 nm. And this fluorescence intensity falls with the increase in a chloride ion concentration, as shown in FIG. Thus, quinine sulfate has a characteristic that the fluorescence intensity depends on the chloride ion concentration at pH 4 or lower. However, the fluorescence intensity is hardly dependent on pH. By utilizing this phenomenon, it is possible to measure the chloride ion concentration from the change in the fluorescence intensity of quinine sulfate. In addition, quinine sulfate has a characteristic that fluorescence does not quench even when irradiated with ultraviolet rays for a long time. For this reason, the chloride ion-sensitive fluorescent reagent of the fluorescence imaging device for liquid analysis was quinine sulfate.

次いで、希土類錯体のpH感応特性について述べる。一般に、希土類錯体の水溶液は、可視光に対して無色透明である。また、紫外線を照射した際に、その蛍光強度がpHに依存して変化するという特性がある。しかも、蛍光強度は、塩化物イオン濃度に依存して変化しにくいという特性もある。図3に、ジピコリン酸を配位子とするテルビウムの3価のイオンの錯体(以下、ジピコリン酸−テルビウム錯体と呼称する)の水溶液を272nmの紫外線で励起した際の蛍光スペクトルを示す。また、図4に示すように、蛍光スペクトルのピーク波長544nmの蛍光強度はpHに依存して変化する。この現象を利用することにより、塩化物イオン濃度を計測することが可能である。また、希土類錯体は紫外線を長時間照射しても、蛍光が消光しないという特性を有している。このため、液性解析用蛍光イメージングデバイスのpH感応蛍光試薬は、希土類錯体とした。   Next, the pH sensitivity characteristics of the rare earth complex will be described. In general, an aqueous solution of a rare earth complex is colorless and transparent to visible light. In addition, when irradiated with ultraviolet light, the fluorescence intensity changes depending on pH. In addition, the fluorescence intensity has a characteristic that it hardly changes depending on the chloride ion concentration. FIG. 3 shows a fluorescence spectrum when an aqueous solution of a terbium trivalent ion complex (hereinafter referred to as dipicolinic acid-terbium complex) having dipicolinic acid as a ligand is excited with ultraviolet rays of 272 nm. Further, as shown in FIG. 4, the fluorescence intensity at the peak wavelength of 544 nm of the fluorescence spectrum varies depending on the pH. By utilizing this phenomenon, it is possible to measure the chloride ion concentration. In addition, rare earth complexes have a characteristic that fluorescence does not quench even when irradiated with ultraviolet rays for a long time. For this reason, the pH sensitive fluorescent reagent of the fluorescence imaging device for liquid analysis was a rare earth complex.

本願での希土類錯体としては、金属イオンと配位子の組み合わせを限定するものではないが、特に高い感度でのpH測定を必要とする際は、ジピコリン酸を配位子とするテルビウムの3価のイオンとの錯体が最も望ましい。次いで、ピコリン酸、ニコチン酸、4-ヒドロキシ-3-ピリジンカルボン酸、6-メチル-2-ピリジンカルボン酸メチルなどのカルボキシル基を有する含窒素複素環式化合物を配位子とすることが望ましい。中心金属イオンとしては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム のいずれであっても構わない。   The rare earth complex in the present application is not limited to a combination of a metal ion and a ligand. However, when pH measurement with particularly high sensitivity is required, terbium trivalent having dipicolinic acid as a ligand is used. Most preferred are complexes with ions of Next, it is desirable to use a nitrogen-containing heterocyclic compound having a carboxyl group such as picolinic acid, nicotinic acid, 4-hydroxy-3-pyridinecarboxylic acid, methyl 6-methyl-2-pyridinecarboxylate as a ligand. The central metal ion may be any of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.

水溶液中の材料表面のpHと塩化物イオン濃度の分布や、その経時変化を画像や動画として計測するための蛍光イメージングデバイスは、可視光に対して透明な固体状マトリックスであり、これが硫酸キニーネと希土類錯体を含有している必要がある。これは、材料表面の液性解析に際しては、可視光を光源とした通常の光学顕微鏡観察をpHや塩化物イオン濃度の解析と同時に行う必要があり、そのため、固体状マトリックスが可視光に対して透明であることが必要であるためである。   Fluorescence imaging devices for measuring the distribution of pH and chloride ion concentration on the surface of materials in aqueous solutions and their changes over time as images and movies are solid matrices that are transparent to visible light. It must contain a rare earth complex. When analyzing the liquidity of the material surface, it is necessary to perform normal optical microscope observation using visible light as a light source simultaneously with the analysis of pH and chloride ion concentration. This is because it is necessary to be transparent.

可視光に対して透明な固体状マトリックスとしては、具体的には、寒天、ゼラチン、ゾルゲル法で作製したゲル状の含水二酸化ケイ素、ゲル状のポリアクリル酸ナトリウム、ポリビニルアルコール含水ゲルなどがあげられ、特定の物質に限定するものではない。しかし、特に高い精度でのpHと塩化物イオン濃度を測定する必要がある際には、ポリビニルアルコールを含有し、かつケイ素化合物を原料としてゾルゲル法により作製されたものであることが望ましく、さらにはケイ素化合物として、オルトケイ酸テトラメチルを原料として含有していることが最も好適である。ポリビニルアルコールを含有し、かつケイ素化合物を原料としてゾルゲル法により作製されたものは、pHと塩化物イオン濃度の精度向上に加え、透明な固体状マトリックスが割れにくく、材料表面の液性解析を行う上で、蛍光イメージングデバイスの取り扱いが容易で好都合であるという利点も存在する。さらに、ケイ素化合物として、オルトケイ酸テトラメチルを原料として含有している場合には、耐割れ性に加え、pHと塩化物イオン濃度に対する感度が非常に良好になると共に、pH計測の際の塩化物イオンによる妨害、塩化物イオン濃度を計測する際のpHによる妨害を受けにくくなる。   Specific examples of the solid matrix transparent to visible light include agar, gelatin, gel-like hydrous silicon dioxide prepared by the sol-gel method, gel-like sodium polyacrylate, polyvinyl alcohol-containing gel, and the like. It is not limited to a specific substance. However, when it is necessary to measure pH and chloride ion concentration with particularly high accuracy, it is desirable that the material contains polyvinyl alcohol and is produced by a sol-gel method using a silicon compound as a raw material. Most preferably, the silicon compound contains tetramethyl orthosilicate as a raw material. In addition to improving the accuracy of pH and chloride ion concentration, those that contain polyvinyl alcohol and made of silicon compound as a raw material are difficult to break, and the liquid property analysis of the material surface is performed. Above, there is also the advantage that the handling of the fluorescence imaging device is easy and convenient. Furthermore, when tetramethyl orthosilicate is used as a silicon compound as a raw material, in addition to cracking resistance, the sensitivity to pH and chloride ion concentration is very good, and chloride during pH measurement It is less susceptible to interference by ions and pH when measuring chloride ion concentration.

さらに、金属電極表面のすき間に伴う液性変化を解析する場合など、蛍光イメージングデバイスを材料表面に押しつける必要が有る場合には、固体状マトリックスが石英上に形成された表面層であることが好適である。石英は可視光に対して無色透明であり、かつ硫酸キニーネと希土類錯体の励起に使用する紫外線も透過する性質がある。また、石英は強度が高いため、ゾルゲル法で作製された表面層を担持するには好適である。   Furthermore, when it is necessary to press the fluorescence imaging device against the surface of the material, such as when analyzing a liquid change accompanying a gap on the surface of the metal electrode, it is preferable that the solid matrix is a surface layer formed on quartz. It is. Quartz is colorless and transparent to visible light, and also has the property of transmitting ultraviolet light used for excitation of quinine sulfate and rare earth complexes. Quartz is suitable for supporting a surface layer produced by a sol-gel method because of its high strength.

以下、実施例に基づき本発明を詳細に説明するが、本発明は実施例の記載に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to description of an Example.

純水40mL、0.01M水酸化ナトリウム40mL、ジピコリン酸0.0344gを混合して、すべての試薬が完全に溶解するまで撹拌した。その後、この混合溶液20mLに、硫酸テルビウム0.025gと硫酸キニーネ0.005gを加え、これらが完全に溶解するまで撹拌した。そして、寒天粉末0.4gを加えて95℃に加熱した後に、その溶液をスライドガラスの表面に滴下・冷却し、厚さ約500μmのジピコリン酸−テルビウム錯体および硫酸キニーネを含む寒天板を作製した。充分に室温まで冷却した後に、スライドガラスから、寒天板を剥離した。作製した寒天板の外観写真を、図5に示す。これは、寒天板を白金板の上にのせた状態である。寒天板が可視光に対して透明であることが分かる。   40 mL of pure water, 40 mL of 0.01 M sodium hydroxide and 0.0344 g of dipicolinic acid were mixed and stirred until all the reagents were completely dissolved. Thereafter, 0.025 g of terbium sulfate and 0.005 g of quinine sulfate were added to 20 mL of this mixed solution, and stirred until they were completely dissolved. Then, after adding 0.4 g of agar powder and heating to 95 ° C., the solution was dropped onto the surface of the slide glass and cooled to prepare an agar plate containing dipicolinic acid-terbium complex and quinine sulfate having a thickness of about 500 μm. After sufficiently cooling to room temperature, the agar plate was peeled from the slide glass. An appearance photograph of the produced agar plate is shown in FIG. This is a state where an agar plate is placed on a platinum plate. It can be seen that the agar plate is transparent to visible light.

図6に示す構成の装置で、白金板表面の水溶液膜(試験液)のpHと塩化物イオン濃度と、寒天板の蛍光色および輝度との関係を計測した。計測時の水溶液膜の厚さは、約5μmとした。試験液としては、硫酸でpHを調整した0.01M NaCl水溶液(pH 3.0、2.0、1.0、0.5)、0.1M NaCl水溶液(pH 3.0、2.0、1.0、0.5)、1M NaCl水溶液(pH 3.0、2.0、1.0、0.5)、4M NaCl水溶液(pH 3.0、2.0、1.0、0.5)を使用した。試験液を交換する際は、寒天板を白金板から剥離し、純水で洗浄し、その後、次に計測する試験液で共洗いを行った後、白金板の表面に配置した。その際、寒天板を白金板の表面に置く前に、白金板表面に試験液をのせて、寒天板と白金板で溶液を挟むようにした。   With the apparatus having the configuration shown in FIG. 6, the relationship between the pH and chloride ion concentration of the aqueous solution film (test solution) on the surface of the platinum plate, and the fluorescence color and luminance of the agar plate was measured. The thickness of the aqueous solution film at the time of measurement was about 5 μm. As test solutions, 0.01M NaCl aqueous solution (pH 3.0, 2.0, 1.0, 0.5), pH adjusted with sulfuric acid, 0.1M NaCl aqueous solution (pH 3.0, 2.0, 1.0, 0.5), 1M NaCl aqueous solution (pH 3.0, 2.0, 0.5) 1.0, 0.5), 4M NaCl aqueous solution (pH 3.0, 2.0, 1.0, 0.5) was used. When exchanging the test solution, the agar plate was peeled from the platinum plate, washed with pure water, and then co-washed with the test solution to be measured next, and then placed on the surface of the platinum plate. At that time, before placing the agar plate on the surface of the platinum plate, the test solution was placed on the surface of the platinum plate, and the solution was sandwiched between the agar plate and the platinum plate.

寒天板への紫外線の照射は、蛍光顕微鏡の光源とは異なるキセノンランプを光源とした。硫酸キニーネを励起する際は、バンドパスフィルターを通して中心波長350nmで半値幅10nmの紫外線を、ジピコリン酸−テルビウム錯体を励起する際は、バンドパスフィルターを通して中心波長270nmで半値幅10nmの紫外線を照射した。そして、寒天板からの蛍光は、蛍光顕微鏡内に配置した光学フィルターを通して、CCDカメラで画像として記録した。硫酸キニーネからの蛍光は透過域420nm以上、ジピコリン酸−テルビウム錯体からの蛍光は透過域510〜550nmの光学フィルターを使用して画像として記録した。画像のR(レッド)、G(グリーン)、B(ブルー)の各信号値から、Y=0.299R+0.587G+0.114Bの関係を使い、蛍光輝度Yを算出した。図7に、塩化物イオン濃度と硫酸キニーネの蛍光輝度Yとの関係を示す。pHが既知であれば塩化物イオン濃度を算出できることが分かる。図8に、pHと、ジピコリン酸−テルビウム錯体の蛍光輝度Yとの関係を示す。塩化物イオン濃度に関係なく、pHを算出できることが分かる。この二つの関係を利用することで、材料表面のpHと塩化物イオン濃度を解析できることが分かる。紫外線励起用のバンドパスフィルターと、特定の波長の蛍光のみを透過させる光学フィルターの切り替えは、瞬時に行うことが可能であり、ほぼ同時に水溶液中の材料表面のpHと塩化物イオン濃度を画像として解析できる。なお、本願でいう「同時」とは、蛍光励起や蛍光透過フィルターを交換する程度の時間差を含む。   The agar plate was irradiated with ultraviolet rays using a xenon lamp different from the light source of the fluorescence microscope as the light source. When exciting quinine sulfate, UV light with a center wavelength of 350 nm and a half-width of 10 nm was irradiated through a band-pass filter, and when dipicolinate-terbium complex was excited, UV light with a center wavelength of 270 nm and a half-width of 10 nm was irradiated through a band-pass filter. . The fluorescence from the agar plate was recorded as an image with a CCD camera through an optical filter arranged in a fluorescence microscope. The fluorescence from quinine sulfate was recorded as an image using an optical filter having a transmission region of 420 nm or more, and the fluorescence from dipicolinic acid-terbium complex using a transmission region of 510 to 550 nm. Fluorescence luminance Y was calculated from the signal values of R (red), G (green), and B (blue) of the image using the relationship of Y = 0.299R + 0.587G + 0.114B. FIG. 7 shows the relationship between the chloride ion concentration and the fluorescence luminance Y of quinine sulfate. It can be seen that the chloride ion concentration can be calculated if the pH is known. FIG. 8 shows the relationship between pH and fluorescence luminance Y of dipicolinic acid-terbium complex. It can be seen that the pH can be calculated regardless of the chloride ion concentration. It can be seen that the pH and chloride ion concentration on the material surface can be analyzed by using these two relationships. Switching between an ultraviolet excitation bandpass filter and an optical filter that transmits only a specific wavelength of fluorescence can be performed instantaneously, and the pH and chloride ion concentration on the surface of the material in the aqueous solution are displayed almost simultaneously. Can be analyzed. The term “simultaneously” as used in the present application includes a time difference to the extent that fluorescence excitation or a fluorescence transmission filter is replaced.

純水40mL、0.01M水酸化ナトリウム40mL、ジピコリン酸0.0344gを混合して、すべての試薬が完全に溶解するまで撹拌した。その後、この混合溶液20mLに、硫酸テルビウム0.025gと硫酸キニーネ0.005gを加え、これらが完全に溶解するまで撹拌した。この溶液をA液とする。ポリビニルアルコール0.1gを純水10mLに溶解した溶液を1mL、オルトケイ酸テトラメチル2mL、エタノール1mL、0.05M硫酸1mLを混合し、20分以上撹拌した。この溶液に、先のA液を1mL加え、10分以上撹拌した。この溶液を石英板の表面に滴下し、スピンコート法(回転数:1000回/分、30秒間)により、厚さ約10μmで、ジピコリン酸−テルビウム錯体および硫酸キニーネを含むポリビニルアルコール含有含水二酸化ケイ素層(以下、PVA含有SiO2ゲル層と呼称する)を石英板の片面に作製した。作製したゲル層を表面層とする石英板の外観写真を、図9に示す。これは、ゲル層を表面層とする石英板を白金板の上にのせた状態である。この場合、白金板の大きさは、石英板よりも小さいが、ゲル層と石英板が可視光に対して透明であるため、石英板の上に白金板が置いてあるように見える。このように、ゲル層が可視光に対して透明であることが分かる。この写真の場合、ゲル層は、白金板と接触する面に形成してある。 40 mL of pure water, 40 mL of 0.01 M sodium hydroxide and 0.0344 g of dipicolinic acid were mixed and stirred until all the reagents were completely dissolved. Thereafter, 0.025 g of terbium sulfate and 0.005 g of quinine sulfate were added to 20 mL of this mixed solution, and stirred until they were completely dissolved. This solution is designated as solution A. 1 mL of a solution obtained by dissolving 0.1 g of polyvinyl alcohol in 10 mL of pure water, 2 mL of tetramethyl orthosilicate, 1 mL of ethanol, and 1 mL of 0.05 M sulfuric acid were mixed and stirred for 20 minutes or more. To this solution, 1 mL of the previous solution A was added and stirred for 10 minutes or more. This solution is dropped on the surface of a quartz plate, and is spin coated (rotation speed: 1000 times / min, 30 seconds) to a thickness of about 10 μm and containing polyvinyl alcohol-containing hydrous silicon dioxide containing dipicolinic acid-terbium complex and quinine sulfate. A layer (hereinafter referred to as a PVA-containing SiO 2 gel layer) was prepared on one side of a quartz plate. An appearance photograph of the quartz plate having the prepared gel layer as a surface layer is shown in FIG. This is a state where a quartz plate having a gel layer as a surface layer is placed on a platinum plate. In this case, the size of the platinum plate is smaller than that of the quartz plate, but since the gel layer and the quartz plate are transparent to visible light, it appears that the platinum plate is placed on the quartz plate. Thus, it turns out that a gel layer is transparent with respect to visible light. In the case of this photograph, the gel layer is formed on the surface in contact with the platinum plate.

図10に示した構成の装置で、白金板表面の水溶液膜(試験液)のpHと塩化物イオン濃度と、PVA含有SiO2ゲル層の蛍光色および輝度との関係を計測した。計測時の水溶液膜の厚さは、約5μmとした。試験液としては、硫酸でpHを調整した0.01M NaCl水溶液(pH 3.0、2.0、1.0、0.5)、0.1M NaCl水溶液(pH 3.0、2.0、1.0、0.5)、1M NaCl水溶液(pH 3.0、2.0、1.0、0.5)、4M NaCl水溶液(pH 3.0、2.0、1.0、0.5)を使用した。試験液を交換する際は、PVA含有SiO2ゲル層を有する石英板を白金板から剥離し、純水で洗浄し、その後、次に計測する試験液で共洗いを行った後、白金板の表面に配置した。その際、PVA含有SiO2ゲル層を有する石英板を白金板の表面に置く前に、白金板表面に試験液をのせて、PVA含有SiO2ゲル層を有する石英板と白金板で溶液を挟むようにした。 With the apparatus having the configuration shown in FIG. 10, the relationship between the pH of the aqueous solution film (test solution) on the surface of the platinum plate, the chloride ion concentration, and the fluorescence color and luminance of the PVA-containing SiO 2 gel layer was measured. The thickness of the aqueous solution film at the time of measurement was about 5 μm. As test solutions, 0.01M NaCl aqueous solution (pH 3.0, 2.0, 1.0, 0.5), pH adjusted with sulfuric acid, 0.1M NaCl aqueous solution (pH 3.0, 2.0, 1.0, 0.5), 1M NaCl aqueous solution (pH 3.0, 2.0, 0.5) 1.0, 0.5), 4M NaCl aqueous solution (pH 3.0, 2.0, 1.0, 0.5) was used. When changing the test solution, peel off the quartz plate having the PVA-containing SiO 2 gel layer from the platinum plate, wash with pure water, and then wash with the test solution to be measured next. Arranged on the surface. At that time, before placing the quartz plate having the PVA-containing SiO 2 gel layer on the surface of the platinum plate, put the test solution on the surface of the platinum plate and sandwich the solution between the quartz plate having the PVA-containing SiO 2 gel layer and the platinum plate. I did it.

PVA含有SiO2ゲル層を有する石英板への紫外線の照射は、実施例1に記載したものと同じ方法で行った。そして、CCDカメラにより記録した画像のR(レッド)、G(グリーン)、B(ブルー)の各信号値から、Y=0.299R+0.587G+0.114Bの関係を使い、蛍光輝度Yを算出した。図11に、PVA含有SiO2ゲル層を有する石英板の硫酸キニーネの蛍光輝度Yと塩化物イオン濃度との関係を示す。pHに関係なく、塩化物イオン濃度を算出できることが分かる。図12に、PVA含有SiO2ゲル層を有する石英板のジピコリン酸−テルビウム錯体の蛍光輝度YとpHとの関係を示す。塩化物イオン濃度に関係なく、pHを算出できることが分かる。 The quartz plate having the PVA-containing SiO 2 gel layer was irradiated with ultraviolet rays in the same manner as described in Example 1. The fluorescence luminance Y was calculated from the R (red), G (green), and B (blue) signal values of the image recorded by the CCD camera using the relationship of Y = 0.299R + 0.587G + 0.114B. FIG. 11 shows the relationship between the fluorescence luminance Y of quinine sulfate of a quartz plate having a PVA-containing SiO 2 gel layer and the chloride ion concentration. It can be seen that the chloride ion concentration can be calculated regardless of the pH. FIG. 12 shows the relationship between the fluorescence luminance Y and pH of the dipicolinic acid-terbium complex of the quartz plate having the PVA-containing SiO 2 gel layer. It can be seen that the pH can be calculated regardless of the chloride ion concentration.

本発明の活用例としては、ステンレス鋼などの金属腐食の初期過程での材料表面のpHと塩化物イオン濃度の分布や、その経時変化を画像や動画として計測するための蛍光イメージングデバイスとして利用可能である。
As an application example of the present invention, it can be used as a fluorescence imaging device for measuring the distribution of pH and chloride ion concentration on the material surface in the initial stage of corrosion of metals such as stainless steel, and its change over time as an image or movie. It is.

Claims (6)

希土類錯体と硫酸キニーネを含有し、可視光に対して透明な固体状マトリックスからなり、pH 4以下の水溶液中において、pHおよび塩化物イオン濃度に呼応した蛍光を発することを特徴とする材料表面の液性解析用蛍光イメージングデバイス。   A material surface comprising a rare earth complex and quinine sulfate, comprising a solid matrix transparent to visible light, and emitting fluorescence corresponding to pH and chloride ion concentration in an aqueous solution of pH 4 or lower. Fluorescence imaging device for liquid analysis. 希土類錯体が、カルボキシル基を有する含窒素複素環式化合物を配位子とすることを特徴とする請求項1記載の材料表面の液性解析用蛍光イメージングデバイス。   The fluorescent imaging device for liquid property analysis of a material surface according to claim 1, wherein the rare earth complex uses a nitrogen-containing heterocyclic compound having a carboxyl group as a ligand. 固体状マトリックスが、ポリビニルアルコールを含有し、かつケイ素化合物を原料としてゾルゲル法により作製されたものであることを特徴とする請求項1あるいは2記載の材料表面の液性解析用蛍光イメージングデバイス。   3. The fluorescent imaging device for liquid property analysis of a material surface according to claim 1, wherein the solid matrix contains polyvinyl alcohol and is produced by a sol-gel method using a silicon compound as a raw material. ケイ素化合物として、オルトケイ酸テトラメチルを原料として含有することを特徴とする請求項1〜3のいずれかに記載の材料表面の液性解析用蛍光イメージングデバイス。   The fluorescent imaging device for liquid property analysis of a material surface according to any one of claims 1 to 3, wherein tetramethyl orthosilicate is used as a raw material as a silicon compound. 固体状マトリックスが石英上に形成された表面層であることを特徴とする請求項1〜4のいずれかに記載の材料表面の液性解析用蛍光イメージングデバイス。   The fluorescence imaging device for liquid property analysis of a material surface according to any one of claims 1 to 4, wherein the solid matrix is a surface layer formed on quartz. 希土類錯体が、ジピコリン酸を配位子とするテルビウムの3価のイオン(Tb3+)の錯体であることを特徴とする請求項1〜5のいずれかに記載の材料表面の液性解析用蛍光イメージングデバイス。
6. The fluorescence for liquid property analysis of a material surface according to claim 1, wherein the rare earth complex is a terbium trivalent ion (Tb 3+ ) complex having dipicolinic acid as a ligand. Imaging device.
JP2014111821A 2014-05-30 2014-05-30 Fluorescence imaging device for liquid analysis of material surface Active JP5924372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111821A JP5924372B2 (en) 2014-05-30 2014-05-30 Fluorescence imaging device for liquid analysis of material surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111821A JP5924372B2 (en) 2014-05-30 2014-05-30 Fluorescence imaging device for liquid analysis of material surface

Publications (2)

Publication Number Publication Date
JP2015225051A JP2015225051A (en) 2015-12-14
JP5924372B2 true JP5924372B2 (en) 2016-05-25

Family

ID=54841881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111821A Active JP5924372B2 (en) 2014-05-30 2014-05-30 Fluorescence imaging device for liquid analysis of material surface

Country Status (1)

Country Link
JP (1) JP5924372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107756B2 (en) * 2016-01-12 2018-10-23 Ecolab Usa Inc. Fluorescence assay for quantification of picolinate and other compounds in oxidizers and oxidizing compositions
JP2018009834A (en) * 2016-07-12 2018-01-18 国立大学法人東北大学 Imaging device for analyzing potential of metal material
CN114894759B (en) * 2022-05-07 2024-07-09 深圳大学 Method for detecting chloride ion content in concrete raw material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585279A (en) * 1986-01-23 1996-12-17 Davidson; Robert S. Time-resolved luminescence binding assays using a fluorescent transition metal label other than ruthenium
JPH0682101B2 (en) * 1988-03-25 1994-10-19 理化学研究所 Luminescent probe complex for pH measurement and pH measurement method
US6699717B1 (en) * 1997-02-12 2004-03-02 The University Of Maryland Baltimore County Method using luminescent transition metal-ligand complex for detecting polar solvents
US6265222B1 (en) * 1999-01-15 2001-07-24 Dimeo, Jr. Frank Micro-machined thin film hydrogen gas sensor, and method of making and using the same

Also Published As

Publication number Publication date
JP2015225051A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
Wang et al. Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission
Li et al. Europium (III)–β-diketonate complex-containing nanohybrid luminescent pH detector
Liu et al. A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes
Luo et al. A facile strategy for the construction of purely organic optical sensors capable of distinguishing D2O from H2O
İncel et al. Smart phone assisted detection and quantification of cyanide in drinking water by paper based sensing platform
Xie et al. A ratiometric fluorescent probe for aluminum ions based-on monomer/excimer conversion and its applications to real samples
Nishiyabu et al. A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water
CN102095711B (en) Double colour fluorescent chemical sensor used for visually detecting explosive and manufacturing method thereof
CN108572165B (en) A kind of pH flat plate optode fluorescence sensing film, preparation method and application
Zhao et al. Dual-emissive polymer dots for rapid detection of fluoride in pure water and biological systems with improved reliability and accuracy
JP5924372B2 (en) Fluorescence imaging device for liquid analysis of material surface
Xue et al. A visualized ratiometric fluorescence sensing system for copper ions based on gold nanoclusters/perovskite quantum dot@ SiO 2 nanocomposites
Wang et al. Smartphone-assisted mobile fluorescence sensor for self-calibrated detection of anthrax biomarker, Cu2+, and cysteine in food analysis
CN103745981A (en) Ultraviolet response type rare earth light conversion film and application thereof
Zheng et al. Hybrid membrane of agarose and lanthanide coordination polymer: a selective and sensitive Fe3+ sensor
Song et al. Recyclable time–temperature indicator enabled by light storage in particles
Preechakasedkit et al. Gold nanoparticle core–europium (iii) chelate fluorophore-doped silica shell hybrid nanocomposites for the lateral flow immunoassay of human thyroid stimulating hormone with a dual signal readout
Barja et al. Luminescent Eu (III) hybrid sensors for in situ copper detection
Fritz et al. p-Dimethylaminobenzaldehyde: preliminary investigations into a novel reagent for the detection of latent fingermarks on paper surfaces
Mavaei et al. A Simple Method for Developing a Hand‐Drawn Paper‐Based Sensor for Mercury; Using Green Synthesized Silver Nanoparticles and Smartphone as a Hand‐Held‐Device for Colorimetric Assay
Yu et al. Dual‐mode color‐changing pH sensor based on fluorescent MOF embedded photonic crystal hydrogel
Sainz-Gonzalo et al. A novel luminescent optical fibre probe based on immobilized tridentate bis (phosphinic amide)-phosphine oxide for europium (III) ion aqueous detection in situ
JP6837681B2 (en) Method for manufacturing high-sensitivity imaging device for corrosiveness analysis
Lu et al. Achieving Efficient Optical Thermometry in Terbium‐Doped Highly Transparent Ceramics
Balaji et al. Naked-eye detection of fluoride using Zr (IV)-EDTA complex and pyrocatechol violet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151222

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151224

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5924372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250