JP5915331B2 - Method for producing biomass-modified phenolic resin, biomass-modified phenolic resin, biomass-modified phenolic resin composition, and biomass-modified phenolic resin cured product - Google Patents
Method for producing biomass-modified phenolic resin, biomass-modified phenolic resin, biomass-modified phenolic resin composition, and biomass-modified phenolic resin cured product Download PDFInfo
- Publication number
- JP5915331B2 JP5915331B2 JP2012078720A JP2012078720A JP5915331B2 JP 5915331 B2 JP5915331 B2 JP 5915331B2 JP 2012078720 A JP2012078720 A JP 2012078720A JP 2012078720 A JP2012078720 A JP 2012078720A JP 5915331 B2 JP5915331 B2 JP 5915331B2
- Authority
- JP
- Japan
- Prior art keywords
- biomass
- phenolic resin
- modified phenolic
- alkyl chain
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Description
本発明は、バイオマス変性フェノール樹脂の製造方法、バイオマス変性フェノール樹脂、バイオマス変性フェノール樹脂組成物及びバイオマス変性フェノール樹脂硬化物に関する。とりわけ、既存のフェノール樹脂と同等の耐熱性を有し、且つ優れた柔軟性と低弾性率を有するバイオマス変性フェノール樹脂の製造方法、バイオマス変性フェノール樹脂、バイオマス変性フェノール樹脂組成物及びバイオマス変性フェノール樹脂硬化物に関する。 The present invention relates to a method for producing a biomass-modified phenol resin, a biomass-modified phenol resin, a biomass-modified phenol resin composition, and a cured biomass-modified phenol resin. In particular, a method for producing a biomass-modified phenol resin having heat resistance equivalent to that of an existing phenol resin and having excellent flexibility and low elastic modulus, biomass-modified phenol resin, biomass-modified phenol resin composition, and biomass-modified phenol resin It relates to a cured product.
現在、合成樹脂はその優れた性質から、さまざまな分野に広く用いられている。一方で、合成樹脂のほとんどは化石資源である石油、石炭、天然ガスを原料としているため、資源枯渇や地球温暖化の観点より、脱化石資源の必要性が高まってきている。近年、動植物由来のバイオマスを原料とした合成樹脂が検討され、ポリ乳酸を代表として実用化が進んできている。一方で、これらバイオマス由来の樹脂は熱可塑型の樹脂が多く、耐久性、特に耐熱性に劣り、これまで適用アイテムが限定されていた。 At present, synthetic resins are widely used in various fields because of their excellent properties. On the other hand, since most synthetic resins are made from petroleum, coal, and natural gas, which are fossil resources, the need for fossil resources is increasing from the viewpoint of resource depletion and global warming. In recent years, synthetic resins using biomass derived from animals and plants as a raw material have been studied, and their practical application has been progressing with polylactic acid as a representative. On the other hand, many of these biomass-derived resins are thermoplastic resins, which are inferior in durability, particularly heat resistance, and so far, applicable items have been limited.
バイオマス由来の合成樹脂で比較的耐熱性の高い樹脂としては、例えば熱硬化型の油変性フェノール樹脂が挙げられる。特にカシューオイル変性フェノール樹脂はフェノール性水酸基を持つ芳香族化合物であるため、硬化時に樹脂骨格に組み込まれ、他のバイオマス由来合成樹脂と比べて高い耐熱性を示すため、比較的耐熱性が要求される用途にも用いられてきた(例えば特許文献1、2、3、4)。しかし、例えば油等のバイオマスで変性されていない、未変性フェノール樹脂のような石油由来の原料を用いて得られる合成樹脂と比較すると、油変性フェノール樹脂はバイオマス含有率が高くなるほど耐熱性が悪化する傾向にあった。したがって、熱可塑型のバイオマス樹脂と比較して適用できる部位は多いものの、高い耐熱性が要求される既存の合成樹脂の用途においては、主に耐久性の問題から適用範囲が限られてきた。また、主に環境への配慮からバイオマスの含有率を高める要求が増加しているが、生物の代謝系に由来するバイオマス原料の複雑な構造、特に不飽和結合を有することにより、バイオマス含有率を高めると合成中に自己重合によるゲル化が起きやすく、バイオマス含有率の高い樹脂を工業的に安定して得ることが困難であった。 An example of a biomass-derived synthetic resin having a relatively high heat resistance is a thermosetting oil-modified phenol resin. In particular, cashew oil-modified phenolic resin is an aromatic compound having a phenolic hydroxyl group, so it is incorporated into the resin skeleton when cured and exhibits higher heat resistance than other biomass-derived synthetic resins. (For example, Patent Documents 1, 2, 3, and 4). However, when compared with synthetic resins obtained using petroleum-derived raw materials such as unmodified phenolic resins that are not modified with biomass such as oil, the heat resistance of the oil-modified phenolic resins deteriorates as the biomass content increases. Tended to be. Therefore, although there are many parts that can be applied as compared with thermoplastic biomass resins, the range of application has been limited mainly due to durability problems in the use of existing synthetic resins that require high heat resistance. In addition, there is an increasing demand to increase the biomass content mainly due to environmental considerations, but the biomass content is reduced by having a complex structure of biomass raw materials derived from biological metabolic systems, particularly unsaturated bonds. When it is increased, gelation due to self-polymerization is likely to occur during synthesis, and it has been difficult to industrially obtain a resin having a high biomass content.
高バイオマス含有率の樹脂や誘導体を得る方法としては、たとえば植物油脂等から得られる乾性油に、フェノール類を付加させてバイオマス誘導体を得る方法(例えば特許文献5、6)が挙げられる。一方で、耐熱性は未変性のフェノール樹脂と比較して悪く、高温での耐久性に劣るという問題があるため、合成樹脂に一部添加するに留まるなど、使用範囲が限定されていた。また、これらの樹脂は軟化点が低く、取り扱いが難しいために成形品を得にくいという問題があった。 Examples of a method for obtaining a resin or derivative having a high biomass content include a method for obtaining a biomass derivative by adding phenols to a drying oil obtained from vegetable oil or the like (for example, Patent Documents 5 and 6). On the other hand, the heat resistance is poor compared to the unmodified phenol resin, and there is a problem that the durability at high temperature is inferior, so that the range of use is limited, such as being only partially added to the synthetic resin. Further, these resins have a problem that it is difficult to obtain a molded product because they have a low softening point and are difficult to handle.
本発明は、既存のフェノール樹脂と同等の耐熱性を有し、且つ優れた柔軟性と低弾性率を有するバイオマス変性フェノール樹脂、ならびに、これを用いて得られるバイオマス変性フェノール樹脂組成物及びその硬化物を提供するものである。 The present invention is a biomass-modified phenolic resin having heat resistance equivalent to that of an existing phenolic resin and having excellent flexibility and low elastic modulus, and a biomass-modified phenolic resin composition obtained by using the same and a cured product thereof It provides things.
このような目的は、下記の本発明(1)〜(8)により達成される。
(1) アルキル鎖不飽和結合を含むバイオマス(a)、フェノール類(b)、アルデヒド源(d)を用いて得られるバイオマス変性フェノール樹脂であって、前記アルキル鎖不飽和結合を含むバイオマス(a)が芳香族化合物であり、前記アルキル鎖不飽和結合を含むバイオマス(a)に由来する構造を50質量%以上、95質量%以下の割合で含有し、 1H−NMRスペクトルにおける前記アルキル鎖不飽和結合に由来するピーク(4.5〜6.0ppmのピーク)の割合が、炭素原子に結合した水素に由来するピーク(0.2〜7.5ppmのp−ク)の積算値合計の1%未満であって、軟化点が60℃以上であることを特徴とするバイオマス変性フェノール樹脂。
(2) 前記フェノール類(b)が、フェノール、クレゾール、レゾルシン、カテコール
、ヒドロキノン、ピロガロール、フロログルシノール及びアルキル鎖炭素数2〜9の飽和アルキルフェノールから選ばれる少なくとも1種以上を含むものである(1)に記載のバイオマス変性フェノール樹脂。
(3) 前記アルキル鎖不飽和結合を含むバイオマス(a)が、フェノール性水酸基を含むバイオマス由来不飽和アルキルフェノール類である(1)又は(2)のいずれか1項に記載のバイオマス変性フェノール樹脂。
(4) 前記バイオマス由来不飽和アルキルフェノール類が、カシューナット殻液、ウルシ抽出物、カルダノール、カードル、メチルカードル、アナカルド酸、ウルシオール、ラッコール、チチオール及びそれらの精製物から選ばれる少なくとも1種以上を含むものである(3)に記載のバイオマス変性フェノール樹脂。
(5) 前記アルデヒド源(d)がホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、パラアルデヒド、グリオキザール及びヘキサメチレンテトラミンから選ばれる少なくとも1種以上を含むものである(1)ないし(4)のいずれか1項に記載のバイオマス変性フェノール樹脂。
(6) (1)ないし(5)のいずれか1項に記載のバイオマス変性フェノール樹脂と、硬化剤(e)とを含むことを特徴とするバイオマス変性フェノール樹脂組成物。
(7) 前記硬化剤(e)がヘキサメチレンテトラミン及びレゾール型フェノール樹脂から選ばれる少なくとも1種以上を含むものである(6)に記載のバイオマス変性フェノール樹脂組成物。
(8) (6)又は(7)に記載のバイオマス変性フェノール樹脂組成物を加熱硬化してなることを特徴とするバイオマス変性フェノール樹脂硬化物。
(9) (I)アルキル鎖不飽和結合を含むバイオマス(a)にフェノール類(b)を付加させてバイオマス誘導体(c)を得る工程と、(II)得られたバイオマス誘導体(c)及びフェノール類(b)と、アルデヒド源(d)とを反応させる工程(IIa)、あるいは得られたバイオマス誘導体(c)とアルデヒド源(d)とを反応させる工程(IIb)と、
を含むことを特徴とするバイオマス変性フェノール樹脂の製造方法。
Such an object is achieved by the following present inventions (1) to (8).
(1) A biomass-modified phenolic resin obtained using a biomass (a) containing an alkyl chain unsaturated bond, a phenol (b), and an aldehyde source (d), wherein the biomass (a ) is an aromatic compound, wherein the biomass containing the alkyl chain unsaturated bond (a) the derived structure 50 mass% or more, in a proportion of 95 wt% or less, wherein in the IH-NMR spectra alkyl chain unsaturated The proportion of peaks derived from bonding (peaks of 4.5 to 6.0 ppm) is 1% of the total integrated value of peaks derived from hydrogen bonded to carbon atoms (0.2 to 7.5 ppm peak). A biomass-modified phenol resin having a softening point of 60 ° C. or higher .
( 2 ) The phenol (b) contains at least one selected from phenol, cresol, resorcin, catechol, hydroquinone, pyrogallol, phloroglucinol, and a saturated alkylphenol having 2 to 9 alkyl chain carbon atoms (1) The biomass-modified phenol resin described in 1.
( 3 ) The biomass-modified phenol resin according to any one of (1) and (2) , wherein the biomass (a) containing the alkyl chain unsaturated bond is a biomass-derived unsaturated alkylphenol containing a phenolic hydroxyl group.
( 4 ) The biomass-derived unsaturated alkylphenol is at least one selected from cashew nut shell liquid, urushi extract, cardanol, curdle, methyl curdal, anacardic acid, urushiol, laccol, thiol, and purified products thereof. The biomass-modified phenolic resin according to (3) , comprising:
( 5 ) In any one of (1) to (4) , the aldehyde source (d) contains at least one selected from formaldehyde, paraformaldehyde, trioxane, acetaldehyde, paraaldehyde, glyoxal, and hexamethylenetetramine. The biomass-modified phenolic resin described.
( 6 ) A biomass-modified phenolic resin composition comprising the biomass-modified phenolic resin according to any one of (1) to (5) and a curing agent (e).
( 7 ) The biomass-modified phenolic resin composition according to (6) , wherein the curing agent (e) contains at least one selected from hexamethylenetetramine and a resol type phenolic resin.
( 8 ) A biomass-modified phenolic resin cured product obtained by heating and curing the biomass-modified phenolic resin composition according to (6) or (7) .
( 9 ) (I) A step of adding a phenol (b) to a biomass (a) containing an alkyl chain unsaturated bond to obtain a biomass derivative (c), and (II) the obtained biomass derivative (c) and phenol A step (IIa) of reacting the class (b) with the aldehyde source (d), or a step (IIb) of reacting the obtained biomass derivative (c) with the aldehyde source (d);
A method for producing a biomass-modified phenolic resin, comprising:
本発明に従うと、バイオマス含有率の高いにもかかわらず、既存のフェノール樹脂と同等の耐熱性を有し、且つ優れた柔軟性と低弾性率を有するバイオマス変性フェノール樹脂を得ることができる。また、バイオマス含有率が高いにもかかわらず、熱分解を受けにくく、耐熱性を要求する部位についても広く使用できるバイオマス変性フェノール樹脂組成物及びその硬化物を得ることができる。 According to the present invention, it is possible to obtain a biomass-modified phenolic resin having heat resistance equivalent to that of an existing phenolic resin and having excellent flexibility and low elastic modulus even though the biomass content is high. In addition, despite the high biomass content, it is possible to obtain a biomass-modified phenolic resin composition and a cured product thereof that are difficult to undergo thermal decomposition and that can be widely used for parts that require heat resistance.
最初に、本発明のバイオマス変性フェノール樹脂について説明する。本発明のバイオマス変性フェノール樹脂は、アルキル鎖不飽和結合を含むバイオマス(a)、フェノール類(b)、アルデヒド源(d)を用いて得られるバイオマス変性フェノール樹脂であって、アルキル鎖不飽和結合を含むバイオマス(a)が芳香族化合物であり、アルキル鎖不飽和結合を含むバイオマス(a)に由来する構造を50質量%以上、95質量%以下の割合で含有することを特徴とする。アルキル鎖不飽和結合を含むバイオマス(a)に由来する構造の含有率を測定する方法としては、アイソトープ分析によりアルキル鎖不飽和結合を含むバイオマス(a)由来の14Cの量を定量する方法を用いることができるが、簡易的には用いたアルキル鎖不飽和結合を含むバイオマス(a)の質量を得られたバイオマス変性フェノール樹脂の質量で除算して求めても良い。アルキル鎖不飽和結合を含むバイオマス(a)に由来する構造の含有割合を上記範囲とすることで、ヘキサメチレンテトラミン、レゾール型フェノール樹脂等の硬化剤との反応性が良く、硬化成形後に良好な耐熱性を有する樹脂硬化物を得ることができる。上記下限値よりもアルキル鎖不飽和結合を含むバイオマス(a)に由来する構造の含有率が少ない場合には、環境面からのバイオマス含有率の要求に答えることができないことがある。上記上限値よりもアルキル鎖不飽和結合を含むバイオマス(a)に由来する構造の含有率の多い場合は、ヘキサメチレンテトラミン、レゾール型フェノール樹脂等の硬化剤との良好な反応性を有するバイオマス変性フェノール樹脂を得ることが難しく、また反応中にゲル化が起こり、樹脂硬化物が得られないことがある。 First, the biomass-modified phenolic resin of the present invention will be described. The biomass-modified phenolic resin of the present invention is a biomass-modified phenolic resin obtained using a biomass (a) containing an alkyl chain unsaturated bond, a phenol (b), and an aldehyde source (d), and comprising an alkyl chain unsaturated bond The biomass (a) containing is an aromatic compound and contains a structure derived from the biomass (a) containing an alkyl chain unsaturated bond in a proportion of 50% by mass or more and 95% by mass or less. As a method for measuring the content of the structure derived from biomass (a) containing an alkyl chain unsaturated bond, a method for quantifying the amount of 14 C derived from biomass (a) containing an alkyl chain unsaturated bond by isotope analysis Although it can be used, the mass of the biomass (a) containing the alkyl chain unsaturated bond used may be simply calculated by dividing the mass of the obtained biomass-modified phenol resin. By setting the content ratio of the structure derived from the biomass (a) containing an alkyl chain unsaturated bond within the above range, the reactivity with a curing agent such as hexamethylenetetramine and a resol type phenol resin is good and good after curing molding. A cured resin having heat resistance can be obtained. When the content rate of the structure derived from the biomass (a) containing an alkyl chain unsaturated bond is less than the lower limit, it may not be possible to meet the demand for the biomass content rate from the environmental aspect. When the content of the structure derived from biomass (a) containing an alkyl chain unsaturated bond is higher than the above upper limit, biomass modification having good reactivity with a curing agent such as hexamethylenetetramine and resol type phenol resin It is difficult to obtain a phenol resin, and gelation may occur during the reaction, and a cured resin product may not be obtained.
また、本発明のバイオマス変性フェノール樹脂は、樹脂中に、アルキル鎖不飽和結合を含むバイオマス(a)由来のアルキル鎖不飽和結合が少ないことが好ましい。アルキル鎖不飽和結合の量は、1H−NMRスペクトルにより定量することができ、本発明のバイオマス変性フェノール樹脂中の1H−NMRスペクトルにおけるアルキル鎖不飽和結合水素に由来するピーク(4.5〜6.0ppmのピーク)の割合が、炭素原子に結合した水素に由来するピーク(0.2〜7.5ppmのピーク)の積算値合計の1%以下であることがより好ましい。特に好ましくは0.5%以下である。アルキル鎖不飽和結合は実質的に含まれなくても良い。アルキル鎖不飽和結合水素に由来するピークの割合が上記上限値以下であれば、バイオマス含有率の高いバイオマス変性フェノール樹脂を容易に得ることができ、硬化剤と混合し反応させて得られる硬化物は耐熱性に優れる。不飽和結合のピーク割合が上記上限値よりも多い場合には、耐熱性が低下することがあるだけでなく、反応中に不飽和結合の重合によるゲル化が起こりやすくなり、工業的に安定してバイオマス変性フェノール樹脂を得られないことがある。得られるバイオマス変性フェノール樹脂をヘキサメチレンテトラミン、レゾール型フェノール樹脂等の硬化剤と反応、硬化させた樹脂硬化物の耐熱性が高い理由は定かではないが、アルキル鎖不飽和結合を含むバイオマス(a)自体が芳香族化合物であるため樹脂骨格が耐熱性に優れること、得られるバイオマス変性フェノール樹脂の不飽和結合が少ないことにより不飽和結合部位での熱分解が抑制されること、及びアルキル鎖に直接フェノール類を導入することにより、熱分解時に発生するラジカルをフェノール類がトラップし、連鎖的な分解を抑制するためと考えられる。 Moreover, it is preferable that the biomass modified phenolic resin of this invention has few alkyl chain unsaturated bonds derived from biomass (a) containing an alkyl chain unsaturated bond in resin. The amount of the alkyl chain unsaturation, 1 H-NMR spectrum can be determined by a peak derived from an alkyl chain unsaturated bond hydrogen in the 1 H-NMR spectrum of the biomass modified phenolic resin of the present invention (4.5 It is more preferable that the ratio of the peak of ˜6.0 ppm is 1% or less of the total integrated value of the peaks derived from hydrogen bonded to carbon atoms (peaks of 0.2 to 7.5 ppm). Particularly preferably, it is 0.5% or less. Alkyl chain unsaturated bonds may not be substantially contained. If the ratio of the peak derived from the alkyl chain unsaturated bond hydrogen is not more than the above upper limit, a biomass-modified phenol resin having a high biomass content can be easily obtained, and a cured product obtained by mixing and reacting with a curing agent. Is excellent in heat resistance. When the peak ratio of unsaturated bonds is higher than the above upper limit, not only the heat resistance may be lowered, but gelation due to polymerization of unsaturated bonds is likely to occur during the reaction, which is industrially stable. As a result, biomass-modified phenolic resin may not be obtained. The reason why the obtained biomass-modified phenolic resin is reacted with a curing agent such as hexamethylenetetramine, resol type phenolic resin, and cured resin is high in heat resistance, but it is not clear why the biomass (a ) Since the resin itself is an aromatic compound, the resin skeleton is excellent in heat resistance, the resulting biomass-modified phenol resin has less unsaturated bonds, so that thermal decomposition at unsaturated bond sites is suppressed, and the alkyl chain It is considered that by introducing phenols directly, the phenols trap radicals generated at the time of thermal decomposition and suppress chain decomposition.
本発明のバイオマス変性フェノール樹脂は、特に限定するものではないが、例えば、ア
ルキル鎖不飽和結合を含むバイオマス(a)にフェノール類(b)を付加させてアルキル鎖不飽和結合を低減させたバイオマス誘導体(c)を得た後、バイオマス誘導体(c)をアルデヒド源(d)と反応させることで得ることができる。各製造工程の詳細については、後述する。
The biomass-modified phenol resin of the present invention is not particularly limited. For example, biomass in which phenols (b) are added to biomass (a) containing alkyl chain unsaturated bonds to reduce alkyl chain unsaturated bonds. After obtaining the derivative (c), the biomass derivative (c) can be obtained by reacting with the aldehyde source (d). Details of each manufacturing process will be described later.
本発明のバイオマス変性フェノール樹脂に用いるアルキル鎖不飽和結合を含むバイオマス(a)としては、特に限定するものではないが、例えば、ケイ皮酸、シンナムアルデヒド、コーヒー酸、フェルラ酸、クマル酸やそれらの誘導体、フェノール性水酸基を含むバイオマス由来不飽和アルキルフェノール類等のアルキル鎖不飽和結合を含むバイオマス由来芳香族化合物が挙げられる。好ましくはフェノール性水酸基を含むバイオマス由来不飽和アルキルフェノール類であり、例えば、カシューナット殻液(カシューオイル)、ウルシ抽出物、カルダノール、カードル、メチルカードル、アナカルド酸、ウルシオール、ラッコール、チチオール及びそれらの精製物などが挙げられる。さらに好ましくはカルダノール、カードル、メチルカードル、カシューナット殻液及びそれらの精製物である。コストの点から、特に好ましくはカシューナット殻液及びその精製物である。これらを単独または2種類以上組み合わせて使用することができる。アルキル鎖不飽和結合を含むバイオマス(a)が芳香族化合物であることにより、高いバイオマス導入率のバイオマス変性フェノール樹脂を容易に得ることができ、その硬化物は耐熱性に優れたものが得られる。さらに、フェノール性水酸基を含むバイオマス由来不飽和アルキルフェノール類であることにより、バイオマス自身にフェノール類を含むため、フェノール類の導入量が少なくても反応点を多く取ることができ、高いバイオマス導入率でありながら反応性に優れる。また、フェノール類の付加によって生成する比較的熱分解を受けやすい脂肪族三級炭素結合部位を少なくすることができること、バイオマス由来構造においてもフェノール構造が熱分解時に発生するラジカルをトラップし分解を抑制できること、他の動植物油脂と異なりエステル基のような易分解性の官能基が無いため、硬化させた成形物は耐熱性の優れたものを得ることができる。 The biomass (a) containing an alkyl chain unsaturated bond used in the biomass-modified phenolic resin of the present invention is not particularly limited, and examples thereof include cinnamic acid, cinnamaldehyde, caffeic acid, ferulic acid, coumaric acid and the like. And a biomass-derived aromatic compound containing an alkyl chain unsaturated bond such as a biomass-derived unsaturated alkylphenol containing a phenolic hydroxyl group. Preferred are biomass-derived unsaturated alkylphenols containing phenolic hydroxyl groups, such as cashew nut shell liquid (cashew oil), urushi extract, cardanol, curdall, methyl curdal, anacardic acid, urushiol, laccol, thiol, and the like. And a purified product thereof. More preferred are cardanol, curdle, methyl curdle, cashew nut shell liquid, and purified products thereof. From the viewpoint of cost, cashew nut shell liquid and its purified product are particularly preferable. These can be used alone or in combination of two or more. When the biomass (a) containing an alkyl chain unsaturated bond is an aromatic compound, a biomass-modified phenol resin having a high biomass introduction rate can be easily obtained, and a cured product having excellent heat resistance can be obtained. . Furthermore, because it is a biomass-derived unsaturated alkylphenol containing a phenolic hydroxyl group, the biomass itself contains phenol, so it can take many reaction points even if the amount of phenol introduced is small, with a high biomass introduction rate. Excellent reactivity. In addition, it is possible to reduce the number of aliphatic tertiary carbon binding sites that are relatively susceptible to thermal decomposition generated by the addition of phenols, and even in biomass-derived structures, the phenol structure traps radicals generated during thermal decomposition and suppresses decomposition. Unlike other animal and vegetable oils and fats, since there is no easily decomposable functional group such as an ester group, a cured molded product can be obtained with excellent heat resistance.
本発明のバイオマス変性フェノール樹脂に用いるフェノール類(b)としては、フェノール、クレゾール、レゾルシン、カテコール、ヒドロキノン、ピロガロール、フロログルシノール及びアルキル鎖炭素数2〜9の飽和アルキルフェノールから選ばれる少なくとも1種以上を含むものであることが好ましい。飽和アルキル鎖であって上記炭素数以内であればアルキル鎖に分岐鎖を有していても良いし、またアルキル鎖の置換位はオルト、メタ、パラ置換アルキルフェノールのいずれの化合物でも用いることができる。アルキル鎖炭素数2〜9の飽和アルキルフェノールとしては、例えば、エチルフェノール、プロピルフェノール、イソプロピルフェノール、ブチルフェノール、セカンダリーブチルフェノール、ターシャリーブチルフェノール、アミルフェノール、ターシャリーアミノフェノール、ヘキシルフェノール、へプチルフェノール、オクチルフェノール、ターシャリーオクチルフェノール、ノニルフェノール、ターシャリーノニルフェノールである。反応性の点から、フェノール、クレゾール、レゾルシン、カテコール、ヒドロキノン、フェノール核にアルキル鎖が1個置換した炭素数2〜9のモノ飽和アルキル化合物であることが好ましい。バイオマス含有率の点から、さらに好ましくはフェノール、クレゾール、レゾルシン、カテコール、ヒドロキノンである。これらを単独または2種類以上組み合わせて使用することができる。 As the phenols (b) used in the biomass-modified phenol resin of the present invention, at least one selected from phenol, cresol, resorcin, catechol, hydroquinone, pyrogallol, phloroglucinol, and a saturated alkylphenol having 2 to 9 alkyl chain carbon atoms. It is preferable that it contains. A saturated alkyl chain having a carbon number within the above range may have a branched chain in the alkyl chain, and the substitution position of the alkyl chain can be any of ortho, meta, and para-substituted alkylphenol compounds. . Examples of the saturated alkylphenol having 2 to 9 alkyl chain carbon atoms include ethylphenol, propylphenol, isopropylphenol, butylphenol, secondary butylphenol, tertiary butylphenol, amylphenol, tertiary aminophenol, hexylphenol, heptylphenol, octylphenol, Tertiary octylphenol, nonylphenol, and tertiary nonylphenol. From the viewpoint of reactivity, phenol, cresol, resorcin, catechol, hydroquinone, and a monosaturated alkyl compound having 2 to 9 carbon atoms in which one alkyl chain is substituted on the phenol nucleus are preferable. From the viewpoint of biomass content, more preferred are phenol, cresol, resorcin, catechol, and hydroquinone. These can be used alone or in combination of two or more.
アルキル鎖不飽和結合を含むバイオマス(a)のアルキル鎖不飽和結合にフェノール類(b)を付加させてバイオマス誘導体(c)を得る方法としては、特に限定されないが、例えば、強酸触媒の存在下、アルキル鎖不飽和結合を含むバイオマス(a)とフェノール類(b)の混合物を50〜200℃で加熱する方法などが挙げられる。強酸触媒としては、特に限定されないが、例えば、塩化アルミニウム、臭化アルミニウム、塩化第二鉄、塩化亜鉛、三フッ化ホウ素、塩化第二スズ、塩化アンチモン、塩化ガリウム、臭化ガリウム
、塩化水素、臭化水素などのルイス酸や、フッ化水素、塩化水素、臭化水素、硫酸、リン酸などのプロトン酸などが挙げられる。必要に応じて強酸触媒を中和除去しても良いし、触媒がバイオマス誘導体(c)中にそのまま残存していてもかまわない。また、加工後の製品形態に合わせて、その後余分なフェノール類(b)を真空下で蒸留除去してもかまわないし、フェノール類(b)がバイオマス誘導体(c)中に残存していても良い。フェノール類(b)の配合量は、特に限定するものではないが、得られるバイオマス誘導体(c)の1H−NMRスペクトルにおけるアルキル鎖不飽和結合水素に由来するピーク(4.5〜6.0ppmのピーク)の割合が、炭素原子に結合した水素に由来するピーク(0.2〜7.5ppmのピーク)の積算値合計の1%以下となるよう、不足しない範囲とすることが好ましい。
A method for obtaining a biomass derivative (c) by adding a phenol (b) to an alkyl chain unsaturated bond of a biomass (a) containing an alkyl chain unsaturated bond is not particularly limited. For example, in the presence of a strong acid catalyst. And a method of heating a mixture of biomass (a) containing an alkyl chain unsaturated bond and phenols (b) at 50 to 200 ° C. The strong acid catalyst is not particularly limited. For example, aluminum chloride, aluminum bromide, ferric chloride, zinc chloride, boron trifluoride, stannic chloride, antimony chloride, gallium chloride, gallium bromide, hydrogen chloride, Examples include Lewis acids such as hydrogen bromide and protonic acids such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, sulfuric acid, and phosphoric acid. If necessary, the strong acid catalyst may be neutralized and removed, or the catalyst may remain in the biomass derivative (c) as it is. Moreover, according to the product form after processing, excess phenols (b) may be distilled off under vacuum thereafter, or phenols (b) may remain in the biomass derivative (c). . The amount of phenol (b), the peak is not particularly limited, derived from an alkyl chain unsaturated bond hydrogen in the 1 H-NMR spectrum of the resulting biomass derivative (c) (4.5~6.0ppm It is preferable that the ratio is such that the ratio is not less than 1% of the total integrated value of peaks derived from hydrogen bonded to carbon atoms (peaks of 0.2 to 7.5 ppm).
本発明のバイオマス変性フェノール樹脂に用いるアルデヒド源(d)としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンナルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルルデヒド等が挙げられる。これらを単独または2種類以上組み合わせて使用することができる。これらのアルデヒドの中でも、ホルムアルデヒド及びパラホルムアルデヒドから選ばれるものが好ましい。これにより、フェノール樹脂を合成する際の反応性を高くすることができる。 Examples of the aldehyde source (d) used in the biomass-modified phenolic resin of the present invention include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, and n-butyraldehyde. , Caproaldehyde, allyl aldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicyl aldehyde and the like. These can be used alone or in combination of two or more. Among these aldehydes, those selected from formaldehyde and paraformaldehyde are preferable. Thereby, the reactivity at the time of synthesize | combining a phenol resin can be made high.
本発明のバイオマス変性フェノール樹脂の合成方法としては、例えば、ノボラック型であれば、上述の方法により得られたバイオマス誘導体(c)及びフェノール類(b)と、アルデヒド源(d)とを、酸性触媒の存在下で反応させた後、脱水工程により水を除去する方法や、バイオマス誘導体(c)とアルデヒド源(d)とを、酸性触媒の存在下で反応させた後、脱水工程により水を除去する方法、などにより得ることができる。また、レゾール型であれば、上述の方法により得られたバイオマス誘導体(c)及びフェノール類(b)とアルデヒド源(c)とを、アルカリ性触媒の存在下で反応させた後、脱水工程により水を除去する方法や、バイオマス誘導体(c)とアルデヒド源(d)とを、アルカリ性触媒の存在下で反応させた後、脱水工程により水を除去する方法、などによって得ることができる。また、必要に応じて、上記の反応後に脱モノマー工程により未反応モノマーを除去する方法も追加してよい。 As a method for synthesizing the biomass-modified phenolic resin of the present invention, for example, in the case of a novolak type, the biomass derivative (c) and phenols (b) obtained by the above-described method and the aldehyde source (d) are acidified. After reacting in the presence of a catalyst, water is removed by a dehydration step, or after reacting the biomass derivative (c) and the aldehyde source (d) in the presence of an acidic catalyst, water is removed by a dehydration step. It can be obtained by a method of removing, etc. In the case of the resol type, the biomass derivative (c) and phenols (b) obtained by the above-described method are reacted with the aldehyde source (c) in the presence of an alkaline catalyst, and then water is removed by a dehydration step. Can be obtained by a method of removing water, a method of removing water by a dehydration step after reacting the biomass derivative (c) and the aldehyde source (d) in the presence of an alkaline catalyst. Moreover, you may add the method of removing an unreacted monomer by a demonomer process after said reaction as needed.
ノボラック型のバイオマス変性フェノール樹脂を合成する際に用いる酸性触媒としては、特に限定するものではないが、例えば、蓚酸、塩酸、硫酸、ジエチル硫酸、パラトルエンスルホン酸等の酸類、酢酸亜鉛等の金属塩類が挙げられ、これらを単独または2種類以上併用して使用できる。前記酸性触媒の使用量としては特に限定されないが、バイオマス変性フェノール樹脂全体に対して、0.1質量%以上、10質量%以下とすることができる。 The acidic catalyst used when synthesizing the novolac-type biomass-modified phenolic resin is not particularly limited. For example, acids such as oxalic acid, hydrochloric acid, sulfuric acid, diethylsulfuric acid, paratoluenesulfonic acid, and metals such as zinc acetate Examples thereof include salts, and these can be used alone or in combination of two or more. Although it does not specifically limit as the usage-amount of the said acidic catalyst, It can be 0.1 mass% or more and 10 mass% or less with respect to the biomass modified phenol resin whole.
レゾール型のバイオマス変性フェノール樹脂を合成する際に用いるアルカリ性触媒としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなどのアルカリ金属の水酸化物、アンモニア水、トリエチルアミンなどの第3級アミン、カルシウム、マグネシウム、バリウムなどアルカリ土類金属の酸化物及び水酸化物、炭酸ナトリウム、ヘキサメチレンテトラミンなどのアルカリ性物質等が挙げられ、これらを単独または2種類以上併用することができる。前記アルカリ性触媒の使用量としては特に限定されないが、バイオマス変性フェノール樹脂全体に対して、0.1質量%以上、20質量%以下とすることができる。 The alkaline catalyst used when synthesizing the resole-type biomass-modified phenolic resin is not particularly limited, and examples thereof include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide, potassium hydroxide, and aqueous ammonia. , Tertiary amines such as triethylamine, alkaline earth metal oxides and hydroxides such as calcium, magnesium and barium, and alkaline substances such as sodium carbonate and hexamethylenetetramine. These may be used alone or in combination of two or more. can do. Although it does not specifically limit as the usage-amount of the said alkaline catalyst, It can be 0.1 mass% or more and 20 mass% or less with respect to the biomass modified phenol resin whole.
バイオマス誘導体(c)を用いたノボラック型のバイオマス変性フェノール樹脂の合成
において、バイオマス誘導体(c)とフェノール類(b)に対する、アルデヒド源(d)との配合割合としては、バイオマス誘導体(c)とフェノール類を1000質量部とした場合、これに対しアルデヒド源(d)は特に限定されないが、5質量部以上、700質量部以下とすることが好ましい。
In the synthesis of the novolak-type biomass-modified phenol resin using the biomass derivative (c), the blending ratio of the aldehyde source (d) to the biomass derivative (c) and the phenols (b) is as follows: When phenols are 1000 parts by mass, the aldehyde source (d) is not particularly limited, but is preferably 5 parts by mass or more and 700 parts by mass or less.
バイオマス誘導体(c)を用いたレゾール型のバイオマス変性フェノール樹脂の合成において、バイオマス誘導体(c)とフェノール類(b)に対する、アルデヒド源(d)との配合割合としては、バイオマス誘導体(a)とフェノール類を1000質量部とした場合、これに対しアルデヒド源(d)は特に限定されないが、20質量部以上、2000部質量以下とすることが好ましい。 In the synthesis of a resole-type biomass-modified phenol resin using a biomass derivative (c), the blending ratio of the aldehyde source (d) to the biomass derivative (c) and the phenols (b) is as follows: When phenols are 1000 parts by mass, the aldehyde source (d) is not particularly limited, but is preferably 20 parts by mass or more and 2000 parts by mass or less.
本発明のバイオマス変性フェノール樹脂の軟化点は、60℃以上であることが好ましく、65〜140℃であることがより好ましい。上記下限値未満では成形時の取り扱いが難しく、上記上限値を超えると、成形条件が厳しくなるため、用途範囲が限定されてしまう。 The softening point of the biomass-modified phenolic resin of the present invention is preferably 60 ° C. or higher, and more preferably 65 to 140 ° C. If it is less than the lower limit, it is difficult to handle at the time of molding, and if it exceeds the upper limit, the molding conditions become severe, so the range of use is limited.
次に、本発明のバイオマス変性フェノール樹脂組成物及びバイオマス変性フェノール樹脂硬化物について説明する。本発明のバイオマス変性フェノール樹脂組成物は、本発明のバイオマス変性フェノール樹脂を含むものであるが、バイオマス変性フェノール樹脂がノボラック型の場合、硬化剤(e)をさらに含むことが好ましい。尚、バイオマス変性フェノール樹脂がレゾール型の場合、硬化剤(e)を含まなくても良い。 Next, the biomass-modified phenol resin composition and the biomass-modified phenol resin cured product of the present invention will be described. The biomass-modified phenolic resin composition of the present invention includes the biomass-modified phenolic resin of the present invention. However, when the biomass-modified phenolic resin is a novolak type, it is preferable to further include a curing agent (e). In addition, when biomass modified phenol resin is a resol type, it is not necessary to contain a hardening | curing agent (e).
本発明のバイオマス変性フェノール樹脂組成物に用いる硬化剤(e)としては、特に限定するものではないが、例えば、ヘキサメチレンテトラミン、レゾール型フェノール樹脂等が挙げられる。これらの中では、硬化物の耐熱性、バイオマス含有率の観点から、ヘキサメチレンテトラミンが好ましい。 Although it does not specifically limit as a hardening | curing agent (e) used for the biomass modified phenol resin composition of this invention, For example, a hexamethylenetetramine, a resol type phenol resin, etc. are mentioned. Among these, hexamethylenetetramine is preferable from the viewpoint of the heat resistance of the cured product and the biomass content.
硬化剤(e)の含有量は、特に限定されるものではないが、硬化剤(e)がヘキサメチレンテトラミンである場合、バイオマス変性フェノール樹脂100質量部に対し、1質量部以上、40質量部以下が好ましい。更に好ましくは2質量部以上、30質量部以下である。上記上限値を超えると、未反応へミサメチレンテトラミンが残存し強度に影響を与えることがあり、上記下限値未満では架橋が不十分で硬化物の強度が低下することがある。硬化剤(e)がレゾール型フェノール樹脂である場合、バイオマス誘導体100質量部に対し、5質量部以上、50質量部以下が好ましい。更に好ましくは10質量部以上、50質量部以下である。上記上限値を超えると、耐熱性の低下及び環境面からのバイオマス含有率の要求に答えることができないことがあり、上記下限値未満では架橋が不十分で硬化物の強度が低下することがある。 The content of the curing agent (e) is not particularly limited, but when the curing agent (e) is hexamethylenetetramine, 1 part by mass or more and 40 parts by mass with respect to 100 parts by mass of the biomass-modified phenol resin. The following is preferred. More preferably, it is 2 to 30 mass parts. If the above upper limit is exceeded, unreacted misamethylenetetramine may remain and affect the strength, and if it is less than the lower limit, crosslinking may be insufficient and the strength of the cured product may be reduced. When the curing agent (e) is a resol type phenol resin, the amount is preferably 5 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the biomass derivative. More preferably, it is 10 to 50 mass parts. When the above upper limit is exceeded, it may not be possible to answer the demand for reduced heat resistance and environmental biomass content, and below the lower limit, crosslinking may be insufficient and the strength of the cured product may be reduced. .
本発明のバイオマス変性フェノール樹脂組成物には、各種充填材を配合することができる。各種充填材としては特に限定されないが、例えば、シリカ、アルミナ、マグネシア、カーボン、炭化ケイ素、窒化ホウ素、窒化アルミ、窒化ケイ素、炭酸カルシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、クレー、タルク、マイカ、水酸化マグネシウム、水酸化アルミニウム、ウォラストナイト、金属粉等の無機粉末充填材や、ガラス繊維、炭素繊維、アラミド繊維、ナイロン繊維、金属繊維等の強化繊維が挙げられる。これらの充填材は、単独で用いても、二種類以上を併用しても差し支えない。また、本発明のバイオマス誘導体組成物には、必要に応じて、着色剤、離型剤、硬化触媒、硬化助剤、カップリング剤、低応力化剤、難燃剤、溶剤等を適宜添加することができる。 Various fillers can be mix | blended with the biomass modified phenolic resin composition of this invention. Various fillers are not particularly limited, for example, silica, alumina, magnesia, carbon, silicon carbide, boron nitride, aluminum nitride, silicon nitride, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, clay, talc, mica, Examples thereof include inorganic powder fillers such as magnesium hydroxide, aluminum hydroxide, wollastonite, and metal powder, and reinforcing fibers such as glass fiber, carbon fiber, aramid fiber, nylon fiber, and metal fiber. These fillers may be used alone or in combination of two or more. In addition, a colorant, a release agent, a curing catalyst, a curing aid, a coupling agent, a stress reducing agent, a flame retardant, a solvent, and the like are appropriately added to the biomass derivative composition of the present invention as necessary. Can do.
本発明のバイオマス変性フェノール樹脂組成物を得る方法としては、特に限定されないが、例えば、上記配合物を所定の配合割合で混合し、加熱ロール、コニーダ、二軸押出機
等の混練機を使用して溶融混練した後、冷却・粉砕又は造粒する方法、あるいは、上記配合物をそのまま又は上記配合物に溶剤等を添加して、乾式又は湿式のミキサーを用いて混合する方法などにより得ることができる。本発明のバイオマス変性フェノール樹脂硬化物は、圧縮成形、移送成形、射出成形等の通常の成形方法により、本発明のバイオマス変性フェノール樹脂組成物を硬化成形することで得ることができる。このようにして得られたバイオマス変性フェノール樹脂硬化物(成形品)は、既存のフェノール樹脂と同等の耐熱性を有し、高温での耐久性に優れるため、自動車用、汎用機械用、家庭電化製品用及びその周辺機器用等、広範な用途に適用できる。
The method for obtaining the biomass-modified phenolic resin composition of the present invention is not particularly limited. For example, the above-mentioned compound is mixed at a predetermined compounding ratio, and a kneader such as a heating roll, a kneader, or a twin screw extruder is used. After being melt-kneaded and then cooled, pulverized or granulated, or obtained by mixing the above blend as it is or adding a solvent or the like to the above blend and using a dry or wet mixer. it can. The biomass-modified phenolic resin cured product of the present invention can be obtained by curing and molding the biomass-modified phenolic resin composition of the present invention by an ordinary molding method such as compression molding, transfer molding, injection molding or the like. The biomass-modified phenolic resin cured product (molded article) obtained in this way has the same heat resistance as existing phenolic resins and has excellent durability at high temperatures. Applicable to a wide range of applications such as products and peripheral equipment.
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら制約されるものではない。また、実施例、比較例で示される「部」および「%」は全て「質量部」および「質量%」である。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited by these examples. Further, “parts” and “%” shown in Examples and Comparative Examples are “parts by mass” and “% by mass”.
(実施例1)
フェノール1000部とカシューオイル(東北化工製、LB−7000)1000部を混合し、酸触媒として三フッ化ホウ素ジエチルエーテル錯体30部を添加し、120℃で6時間、反応を行った。その後、水酸化カルシウム100部を添加して中和後、濾過し触媒の除去を行って、バイオマス誘導体Aを含む反応物を得た。得られたバイオマス誘導体Aと未反応フェノールとを含んだ反応物2000部に37%ホルマリン水溶液212部を混合し、触媒として蓚酸20部を添加し、100℃で2時間反応させた。続いて反応混合物の温度が130℃になるまで常圧蒸留で脱水した。その後、未反応フェノールを除去するために反応混合物の温度が170℃になるまで減圧蒸留を行った。続いて0.9kPaのまま水蒸気を吹き込み、水蒸気蒸留により未反応のフェノールを蒸留除去し、バイオマス変性フェノール樹脂A1560部を得た。得られた樹脂の軟化点は83℃、遊離フェノールは0.1%で、未反応フェノール類を除いたバイオマス含有率は62%であった。また、NMRより求めたアルキル鎖不飽和結合水素に由来するピークの割合は、炭素原子に結合した水素に由来するピークの積算値合計に対して、0.1%以下であった。
Example 1
1000 parts of phenol and 1000 parts of cashew oil (manufactured by Tohoku Kako, LB-7000) were mixed, 30 parts of boron trifluoride diethyl ether complex was added as an acid catalyst, and the reaction was performed at 120 ° C. for 6 hours. Thereafter, 100 parts of calcium hydroxide was added and neutralized, followed by filtration to remove the catalyst to obtain a reaction product containing biomass derivative A. To 2000 parts of the reaction product containing the obtained biomass derivative A and unreacted phenol, 212 parts of 37% formalin aqueous solution was mixed, 20 parts of oxalic acid was added as a catalyst, and reacted at 100 ° C. for 2 hours. Subsequently, dehydration was performed by atmospheric distillation until the temperature of the reaction mixture reached 130 ° C. Thereafter, vacuum distillation was performed until the temperature of the reaction mixture reached 170 ° C. in order to remove unreacted phenol. Subsequently, steam was blown in at 0.9 kPa, and unreacted phenol was removed by distillation by steam distillation to obtain 1560 parts of biomass-modified phenol resin A. The softening point of the obtained resin was 83 ° C., the free phenol was 0.1%, and the biomass content excluding unreacted phenols was 62%. Moreover, the ratio of the peak derived from the alkyl chain unsaturated bond hydrogen calculated | required from NMR was 0.1% or less with respect to the sum total of the peak derived from the hydrogen couple | bonded with the carbon atom.
(実施例2)
フェノール1000部とカシューオイル(東北化工製、LB−7000)1000部を混合し、96%濃硫酸60部を添加し、150℃で3時間、反応を行って、バイオマス誘導体Bを含む反応物を得た。得られたバイオマス誘導体Bと未反応フェノールとを含んだ反応物2000部に37%ホルマリン水溶液212部を混合し、触媒として蓚酸20部を添加し、100℃で2時間反応させた。続いて反応混合物の温度が130℃になるまで常圧蒸留で脱水した。その後、未反応フェノールを除去するために反応混合物の温度が170℃になるまで減圧蒸留を行った。続いて0.9kPaのまま水蒸気を吹き込み、水蒸気蒸留により未反応のフェノールを蒸留除去し、バイオマス変性フェノール樹脂B1660部を得た。得られた樹脂の軟化点は87℃、遊離フェノールは0.1%で、未反応フェノール類を除いたバイオマス含有率は59%であった。また、NMRより求めたアルキル鎖不飽和結合水素に由来するピークの割合は、炭素原子に結合した水素に由来するピークの積算値合計に対して、0.1%であった。
(Example 2)
1000 parts of phenol and 1000 parts of cashew oil (manufactured by Tohoku Chemical Co., Ltd., LB-7000) are mixed, 60 parts of 96% concentrated sulfuric acid is added, and the reaction is carried out at 150 ° C. for 3 hours. Obtained. To 2000 parts of the reaction product containing the obtained biomass derivative B and unreacted phenol, 212 parts of 37% formalin aqueous solution was mixed, 20 parts of oxalic acid was added as a catalyst, and reacted at 100 ° C. for 2 hours. Subsequently, dehydration was performed by atmospheric distillation until the temperature of the reaction mixture reached 130 ° C. Thereafter, vacuum distillation was performed until the temperature of the reaction mixture reached 170 ° C. in order to remove unreacted phenol. Subsequently, steam was blown in at 0.9 kPa, and unreacted phenol was distilled off by steam distillation to obtain 1660 parts of biomass-modified phenol resin B. The softening point of the obtained resin was 87 ° C., the free phenol was 0.1%, and the biomass content excluding unreacted phenols was 59%. Moreover, the ratio of the peak derived from the alkyl chain unsaturated bond hydrogen calculated | required from NMR was 0.1% with respect to the total integrated value of the peak derived from the hydrogen couple | bonded with the carbon atom.
(比較例1)
フェノール1000部、カシューオイル(東北化工製、LB−7000)500部、37%ホルマリン水溶液600部を混合し、触媒として96%濃硫酸20部を添加し、100℃で2時間反応させた。続いて反応混合物の温度が130℃になるまで常圧蒸留で脱水した。その後、未反応フェノールを除去するために反応混合物の温度が170℃になるまで減圧蒸留を行った。続いて0.9kPaのまま水蒸気を吹き込み、水蒸気蒸留により未反応のフェノールを蒸留除去し、バイオマス変性フェノール樹脂C1333部を得た。得
られた樹脂の軟化点は95℃、遊離フェノールは0.1%で、未反応フェノール類を除いたバイオマス含有率は38%であった。また、NMRより求めたアルキル鎖不飽和結合水素に由来するピークの割合は、炭素原子に結合した水素に由来するピークの積算値合計に対して、1.6%であった。
(Comparative Example 1)
1000 parts of phenol, 500 parts of cashew oil (manufactured by Tohoku Chemical Co., Ltd., LB-7000) and 600 parts of 37% formalin aqueous solution were mixed, 20 parts of 96% concentrated sulfuric acid was added as a catalyst, and reacted at 100 ° C. for 2 hours. Subsequently, dehydration was performed by atmospheric distillation until the temperature of the reaction mixture reached 130 ° C. Thereafter, vacuum distillation was performed until the temperature of the reaction mixture reached 170 ° C. in order to remove unreacted phenol. Subsequently, steam was blown in at 0.9 kPa, and unreacted phenol was distilled off by steam distillation to obtain biomass-modified phenolic resin C1333 parts. The softening point of the obtained resin was 95 ° C., the free phenol was 0.1%, and the biomass content excluding unreacted phenols was 38%. Moreover, the ratio of the peak derived from the alkyl chain unsaturated bond hydrogen calculated | required from NMR was 1.6% with respect to the sum total of the peak derived from the hydrogen couple | bonded with the carbon atom.
(比較例2)
フェノール1000部、カシューオイル(東北化工製、LB−7000)1000部、37%ホルマリン水溶液600部を混合し、触媒として96%濃硫酸20部を添加し、100℃で2時間反応させた。続いて反応混合物の温度が130℃になるまで常圧蒸留で脱水した。その後、未反応フェノールを除去するために反応混合物の温度が170℃になるまで減圧蒸留を行おうとしたが、加熱中にゲル化が起こり、樹脂を得ることができなかった。
(Comparative Example 2)
1000 parts of phenol, 1000 parts of cashew oil (manufactured by Tohoku Chemical Co., Ltd., LB-7000) and 600 parts of 37% formalin aqueous solution were mixed, 20 parts of 96% concentrated sulfuric acid was added as a catalyst, and reacted at 100 ° C. for 2 hours. Subsequently, dehydration was performed by atmospheric distillation until the temperature of the reaction mixture reached 130 ° C. Thereafter, in order to remove unreacted phenol, distillation under reduced pressure was attempted until the temperature of the reaction mixture reached 170 ° C. However, gelation occurred during heating, and a resin could not be obtained.
(比較例3)
フェノール1000部、37%ホルマリン水溶液690部を混合し、触媒として蓚酸10部を添加し、100℃で2時間反応させた。続いて反応混合物の温度が130℃になるまで常圧蒸留で脱水した。その後、未反応フェノールを除去するためにさらに反応物を0.9kPaまで徐々に減圧しながら、反応混合物の温度が170℃になるまで加熱して減圧蒸留を行った。続いて0.9kPaのまま水蒸気を吹き込み、水蒸気蒸留により未反応のフェノールを蒸留除去し、フェノール樹脂D933部を得た。得られた樹脂の軟化点は121℃、遊離フェノールは0.1%であった。
(Comparative Example 3)
1000 parts of phenol and 690 parts of 37% formalin aqueous solution were mixed, 10 parts of oxalic acid was added as a catalyst, and the mixture was reacted at 100 ° C. for 2 hours. Subsequently, dehydration was performed by atmospheric distillation until the temperature of the reaction mixture reached 130 ° C. Thereafter, in order to remove the unreacted phenol, the reaction product was further reduced in pressure to 0.9 kPa, and heated until the temperature of the reaction mixture reached 170 ° C., followed by distillation under reduced pressure. Subsequently, steam was blown in at 0.9 kPa, and unreacted phenol was distilled off by steam distillation to obtain P933 parts of phenol resin. The resulting resin had a softening point of 121 ° C. and free phenol of 0.1%.
(評価)
実施例及び比較例で得られたバイオマス変性フェノール樹脂の評価を下記の要領で行った。得られたバイオマス変性フェノール樹脂及びフェノール樹各100部に対してヘキサメチレンテトラミン10部を配合し、ラボプラストミルを用いて混合した。混合物を175℃、圧力10MPaで成形を行い、硬化物を得た。得られた硬化物を熱重量分析(セイコーインスツル社製、EXTRA TG/DTA6300、空気気流下250ml/分)により熱重量減少を測定し、5%熱重量減少温度を熱分解開始温度として評価を行った。また、硬化物の弾性率はJIS K 6911「硬質プラスチックの曲げ試験方法」に準拠し、室温で測定した。また、樹脂の軟化点は、環球式軟化点試験法によって測定した。表1に評価結果を示す。
(Evaluation)
Evaluation of the biomass-modified phenol resin obtained in Examples and Comparative Examples was performed as follows. 10 parts of hexamethylenetetramine was blended with each 100 parts of the obtained biomass-modified phenol resin and phenol tree, and mixed using a lab plast mill. The mixture was molded at 175 ° C. and a pressure of 10 MPa to obtain a cured product. The obtained cured product was measured for thermogravimetric analysis by thermogravimetric analysis (Seiko Instruments Inc., EXTRA TG / DTA6300, 250 ml / min under air flow), and the 5% thermogravimetric decrease temperature was evaluated as the thermal decomposition start temperature. went. Further, the elastic modulus of the cured product was measured at room temperature in accordance with JIS K 6911 “Bending test method of hard plastic”. The softening point of the resin was measured by a ring and ball softening point test method. Table 1 shows the evaluation results.
表1に示すように、本発明によって得られたバイオマス変性フェノール樹脂をヘキサメチレンテトラミンで硬化させた実施例1、2の硬化物は、アルキル鎖不飽和結合を含む芳香族化合物のバイオマスを用いたものの不飽和結合を多量に有するカシュー変性フェノール樹脂をヘキサメチレンテトラミンで硬化させた比較例1の硬化物や、バイオマスを用いていない一般のフェノール樹脂をヘキサメチレンテトラミンで硬化させた比較例3よりもバイオマス含有率が高いにもかかわらず、比較例1や比較例3と同程度に熱分解開始温度
が高くなっており、耐熱性に優れていることが判った。また、実施例1、2の硬化物は、比較例1や比較例3の硬化物と比較して弾性率が低くなっており、柔軟性と低弾性に優れていることが判った。また、比較例2の結果から、従来の方法では高いバイオマス含有率のバイオマス変性フェノール樹脂を得ることは困難であることが判った。これらの結果より、本発明のバイオマス誘導体は、バイオマス含有率が高いにもかかわらず、得られる硬化物は既存のフェノール樹脂と同等の高い耐熱性を有し、且つ優れた柔軟性と低弾性率を有するため、各種用途に好適に使用できるものである。
As shown in Table 1, the cured products of Examples 1 and 2 in which the biomass-modified phenol resin obtained by the present invention was cured with hexamethylenetetramine used an aromatic compound biomass containing an alkyl chain unsaturated bond. Compared to the cured product of Comparative Example 1 in which a cashew-modified phenolic resin having a large amount of unsaturated bonds was cured with hexamethylenetetramine, and Comparative Example 3 in which a general phenolic resin not using biomass was cured with hexamethylenetetramine. Although the biomass content was high, the thermal decomposition start temperature was as high as in Comparative Example 1 and Comparative Example 3, and it was found that heat resistance was excellent. Moreover, it turned out that the cured | curing material of Example 1, 2 has a low elasticity modulus compared with the cured | curing material of the comparative example 1 or the comparative example 3, and is excellent in a softness | flexibility and low elasticity. From the results of Comparative Example 2, it was found that it was difficult to obtain a biomass-modified phenol resin having a high biomass content by the conventional method. From these results, although the biomass derivative of the present invention has a high biomass content, the obtained cured product has high heat resistance equivalent to that of the existing phenol resin, and has excellent flexibility and low elastic modulus. Therefore, it can be suitably used for various applications.
本発明に従うと、既存のフェノール樹脂と同等の耐熱性を有し、且つ優れた柔軟性と低弾性率を有するバイオマス変性フェノール樹脂、ならびに、これを用いて得られるバイオマス変性フェノール樹脂組成物及びその硬化物が得られるため、高い耐熱分解性や耐熱性が要求され、且つ柔軟性や低弾性が求められる用途にも、好適に用いることができる。
According to the present invention, a biomass-modified phenolic resin having heat resistance equivalent to that of an existing phenolic resin and having excellent flexibility and low elastic modulus, and a biomass-modified phenolic resin composition obtained by using the same, and its Since a cured product can be obtained, it can be suitably used in applications that require high heat resistance and heat resistance and are required to have flexibility and low elasticity.
Claims (9)
d)を用いて得られるバイオマス変性フェノール樹脂であって、
前記アルキル鎖不飽和結合を含むバイオマス(a)が芳香族化合物であり、
前記アルキル鎖不飽和結合を含むバイオマス(a)に由来する構造を50質量%以上、95質量%以下の割合で含有し、
1H−NMRスペクトルにおける前記アルキル鎖不飽和結合に由来するピーク(4.5〜6.0ppmのピーク)の割合が、炭素原子に結合した水素に由来するピーク(0.2〜7.5ppmのp−ク)の積算値合計の1%未満であって、
軟化点が60℃以上であることを特徴とするバイオマス変性フェノール樹脂。 Biomass (a) containing an alkyl chain unsaturated bond, phenols (b), aldehyde source (
d) a biomass-modified phenolic resin obtained using
The biomass (a) containing the alkyl chain unsaturated bond is an aromatic compound,
The structure derived from the biomass (a) containing the alkyl chain unsaturated bond is contained in a proportion of 50% by mass or more and 95% by mass or less ,
The peak derived from the alkyl chain unsaturated bond (peak of 4.5 to 6.0 ppm) in the 1H-NMR spectrum is a peak derived from hydrogen bonded to a carbon atom (0.2 to 7.5 ppm p). -H) less than 1% of the total integrated value,
A biomass-modified phenol resin having a softening point of 60 ° C or higher .
e)とを含むことを特徴とするバイオマス変性フェノール樹脂組成物。 A biomass-modified phenolic resin according to any one of claims 1 to 5 and a curing agent (
e) and a biomass-modified phenolic resin composition.
(II)得られたバイオマス誘導体(c)及びフェノール類(b)と、アルデヒド源(d
)とを反応させる工程(IIa)、あるいは得られたバイオマス誘導体(c)とアルデヒド源(d)とを反応させる工程(IIb)と、
を含むことを特徴とするバイオマス変性フェノール樹脂の製造方法。
(I) adding a phenol (b) to a biomass (a) containing an alkyl chain unsaturated bond to obtain a biomass derivative (c);
(II) The obtained biomass derivative (c) and phenols (b) and the aldehyde source (d
And (IIb), or the step (IIb) of reacting the obtained biomass derivative (c) with the aldehyde source (d),
A method for producing a biomass-modified phenolic resin, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012078720A JP5915331B2 (en) | 2012-03-30 | 2012-03-30 | Method for producing biomass-modified phenolic resin, biomass-modified phenolic resin, biomass-modified phenolic resin composition, and biomass-modified phenolic resin cured product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012078720A JP5915331B2 (en) | 2012-03-30 | 2012-03-30 | Method for producing biomass-modified phenolic resin, biomass-modified phenolic resin, biomass-modified phenolic resin composition, and biomass-modified phenolic resin cured product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013209439A JP2013209439A (en) | 2013-10-10 |
JP5915331B2 true JP5915331B2 (en) | 2016-05-11 |
Family
ID=49527597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012078720A Active JP5915331B2 (en) | 2012-03-30 | 2012-03-30 | Method for producing biomass-modified phenolic resin, biomass-modified phenolic resin, biomass-modified phenolic resin composition, and biomass-modified phenolic resin cured product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5915331B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6390581B2 (en) * | 2015-10-21 | 2018-09-19 | 住友ベークライト株式会社 | Method for producing liquid resol type phenolic resin, and method for producing wet paper friction material |
CN105348459B (en) * | 2015-12-11 | 2017-08-25 | 华奇(中国)化工有限公司 | Abietyl modified resorcinol formaldehyde resin and its preparation method and application |
JP6744093B2 (en) * | 2015-12-28 | 2020-08-19 | 株式会社ブリヂストン | Phenolic resin, rubber composition and tire |
CN106397746A (en) * | 2016-09-09 | 2017-02-15 | 珠海万通化工有限公司 | PBAT resin and preparation method thereof |
JPWO2018150708A1 (en) * | 2017-02-15 | 2019-02-21 | 住友ベークライト株式会社 | Method for producing biomass derivative, method for producing biomass-modified phenolic resin, and method for producing biomass-modified phenolic resin composition |
JP2019147921A (en) * | 2018-02-28 | 2019-09-05 | 住友ベークライト株式会社 | Biomass modified phenolic resin composition and structure |
CN110105515A (en) * | 2019-04-28 | 2019-08-09 | 闽江学院 | Modified urushiol phenolic resin and preparation method thereof, application |
CN114044866B (en) * | 2021-11-01 | 2023-06-27 | 山西省应用化学研究所(有限公司) | Novolac resin curing agent for semiconductor packaging material and preparation method thereof |
CN115785612B (en) * | 2022-12-14 | 2023-06-27 | 广西北海翰鑫木业科技有限公司 | Quartz rubber cloth fiber board and production process thereof |
CN117402307B (en) * | 2023-12-15 | 2024-02-09 | 山东永创材料科技有限公司 | Biomass oil modified phenolic resin and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57198719A (en) * | 1981-05-30 | 1982-12-06 | Fujikura Rubber Ltd | Phenolic resin from cashew shell liquid |
JPH0832816B2 (en) * | 1989-06-08 | 1996-03-29 | 住友デュレズ株式会社 | Method for producing phenolic resin composition and rubber composition applying the same |
JP2007002032A (en) * | 2005-06-22 | 2007-01-11 | Sumitomo Bakelite Co Ltd | Modified phenol resin, method for producing the same, and modified phenol resin composition |
JP2009067921A (en) * | 2007-09-14 | 2009-04-02 | Sumitomo Bakelite Co Ltd | Oil-modified phenolic resin emulsion |
JP5466362B2 (en) * | 2007-11-29 | 2014-04-09 | 昭和電工株式会社 | Cashew novolac resin, method for producing the same, and curing agent for epoxy resin |
JP2012229330A (en) * | 2011-04-26 | 2012-11-22 | Gun Ei Chem Ind Co Ltd | Tackifier, rubber composition, and tire |
-
2012
- 2012-03-30 JP JP2012078720A patent/JP5915331B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013209439A (en) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5915331B2 (en) | Method for producing biomass-modified phenolic resin, biomass-modified phenolic resin, biomass-modified phenolic resin composition, and biomass-modified phenolic resin cured product | |
JP2020050814A (en) | Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body | |
US9862823B2 (en) | Resin composition for wet friction material, phenolic resin for wet friction material and wet friction material | |
JP2020050815A (en) | Production method of resin material comprising phenol-modified lignin resin, and production method of structure body by using the same | |
US10259902B2 (en) | Resol phenolic resin for friction material, method for producing the same, adhesive for friction material, and wet friction plate | |
JP5849771B2 (en) | Biomass derivative, biomass derivative composition, and cured biomass derivative | |
JP2008189749A (en) | Phenolic resin for wet type paper friction material, and wet type paper friction material | |
JP2007246689A (en) | Phenolic resin composition for friction material, and friction material | |
JP4661087B2 (en) | Method for producing solid resol type phenolic resin | |
JP6009871B2 (en) | Friction material manufacturing method | |
JP4618037B2 (en) | Phenolic resin compositions having excellent curability and cured products thereof | |
JP2019147921A (en) | Biomass modified phenolic resin composition and structure | |
JP5682128B2 (en) | Phenolic resin composition | |
JP6652050B2 (en) | Phenol resin composition and cured phenol resin | |
JP2012067209A (en) | Phenol resin composition, method for producing the same, and friction material | |
JP2010235671A (en) | Phenol resin composition | |
JPWO2018150708A1 (en) | Method for producing biomass derivative, method for producing biomass-modified phenolic resin, and method for producing biomass-modified phenolic resin composition | |
JP2019044134A (en) | Resin composition for brake pad friction material, and brake pad friction material | |
JP2012072217A (en) | Phenol resin composition and phenol resin composition for heat insulating material | |
JP5023625B2 (en) | Liquid phenolic resin composition | |
JP2009227817A (en) | Phenol resin composition, its manufacturing method, and friction material | |
JP2012111806A (en) | Phenol resin composition for friction material, method for producing phenol resin for friction material and friction material | |
JP2022089312A (en) | Phenol resin composition | |
JP2007191568A (en) | Phenol resin composition | |
KR20220005481A (en) | Resin material and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160321 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5915331 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |