[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5915293B2 - Surface-treated steel sheet - Google Patents

Surface-treated steel sheet Download PDF

Info

Publication number
JP5915293B2
JP5915293B2 JP2012060571A JP2012060571A JP5915293B2 JP 5915293 B2 JP5915293 B2 JP 5915293B2 JP 2012060571 A JP2012060571 A JP 2012060571A JP 2012060571 A JP2012060571 A JP 2012060571A JP 5915293 B2 JP5915293 B2 JP 5915293B2
Authority
JP
Japan
Prior art keywords
group
steel sheet
film
component
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012060571A
Other languages
Japanese (ja)
Other versions
JP2013194258A (en
Inventor
三好 達也
達也 三好
吉見 直人
直人 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012060571A priority Critical patent/JP5915293B2/en
Publication of JP2013194258A publication Critical patent/JP2013194258A/en
Application granted granted Critical
Publication of JP5915293B2 publication Critical patent/JP5915293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、自動車、家電、建材用途に最適な表面処理鋼板であって、皮膜形成用の表面処理組成物や表面処理皮膜中にクロムを含まず、しかも自動車、家電、建材用途などで行われる耐食性付与のための前処理やアフター塗装が省略可能な優れた耐食性を有する表面処理鋼板に関するものである。   The present invention is a surface-treated steel sheet that is most suitable for use in automobiles, home appliances, and building materials, and does not contain chromium in the surface treatment composition for forming a film and the surface treatment film, and is used in automobiles, home appliances, building materials, and the like. The present invention relates to a surface-treated steel sheet having excellent corrosion resistance capable of omitting pretreatment and after-coating for imparting corrosion resistance.

従来、金属表面の耐食性を向上させるために、クロム酸塩処理やリン酸塩処理が広く行われてきた。しかし、クロムの毒性やリン酸塩処理によるスラッジが産業廃棄物となることなどが社会問題になり、このため種々のクロメートフリー処理鋼板が開発されてきた。
クロメートフリー処理鋼板の耐食性を向上させるため、特許文献1〜3に示されるようなヒドラジン誘導体を用いた表面処理組成物が開発されてきた。しかし、特許文献1〜3のように高分子量エポキシ樹脂を使用した方法であっても、鋼板に厳しい加工を加えた場合には、十分に満足する塗膜性能が得られなかった。また、特許文献4のように中和された酸基を有する重合体とポリシロキサンセグメントを複合化した新しい樹脂も提案されているが、一次防錆としての耐食性しか得られず、鋼板に厳しい加工を加えた場合は皮膜損傷が大きく、特許文献1〜3にも満たない不十分な耐食性しか得られないという問題があった。
Conventionally, chromate treatment and phosphate treatment have been widely performed in order to improve the corrosion resistance of metal surfaces. However, the toxicity of chromium and the sludge resulting from phosphate treatment have become social problems, and various chromate-free treated steel sheets have been developed.
In order to improve the corrosion resistance of chromate-free treated steel sheets, surface treatment compositions using hydrazine derivatives as shown in Patent Documents 1 to 3 have been developed. However, even if it is a method using a high molecular weight epoxy resin like patent documents 1-3, when severe processing was added to a steel plate, fully satisfactory coating film performance was not obtained. In addition, a new resin in which a polymer having a neutralized acid group and a polysiloxane segment are combined as in Patent Document 4 has been proposed, but only corrosion resistance as primary rust prevention can be obtained, and the steel plate is severely processed. In addition, there is a problem that the film damage is large, and only insufficient corrosion resistance less than Patent Documents 1 to 3 can be obtained.

特開2001−49450号公報JP 2001-49450 A 特開2003−34713号公報JP 2003-34713 A 特開2008−80465号公報JP 2008-80465 A 特開2008−106228号公報JP 2008-106228 A

したがって本発明の目的は、クロムやリン酸塩による処理を行うことなく得ることができる表面処理鋼板であって、高度な耐食性と加工性を備え、耐食性付与を目的とした前処理やアフター塗装の省略が可能な高耐食性表面処理鋼板を提供することにある。   Accordingly, an object of the present invention is a surface-treated steel sheet that can be obtained without performing treatment with chromium or phosphate, and has high corrosion resistance and workability, and is suitable for pretreatment and after-coating for the purpose of imparting corrosion resistance. The object is to provide a highly corrosion-resistant surface-treated steel sheet that can be omitted.

本発明者らは上記課題を解決すべく検討を重ねた結果、特許文献4に示されるような中和された酸基を有する重合体とポリシロキサンセグメントを複合化した樹脂に対して、特定のエポキシ樹脂を配合して複合化させ、且つこれに非クロム系防錆添加剤を配合した表面処理組成物とし、この表面処理組成物で表面処理皮膜を形成することにより、非常に優れた耐食性と加工性が得られ、特に加工後においても高度な防食効果が得られることを見出した。   As a result of repeated studies to solve the above problems, the present inventors have identified a specific compound for a resin in which a polymer having a neutralized acid group and a polysiloxane segment are combined as shown in Patent Document 4. An epoxy resin is compounded and compounded, and a non-chromium rust preventive additive is added to the surface treatment composition. By forming a surface treatment film with this surface treatment composition, extremely excellent corrosion resistance and It was found that processability was obtained, and that a high degree of anticorrosion effect was obtained even after processing.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、下記成分(α)、(β)及び(γ)を含有し、成分(α)において複合樹脂(ABC)を構成する重合体セグメント(A)とポリシロキサンセグメント(B),(C)の固形分の質量比(A)/[(B)+(C)]が40/60〜20/80である表面処理組成物により形成される膜厚が3.0〜15μmの表面処理皮膜を有することを特徴とする表面処理鋼板。
成分(α):中和された酸基を有する重合体セグメント(A)と、ポリシロキサンセグメント(B)とが化学結合してなる複合樹脂(AB)のポリシロキサンセグメント(B)と、アルキル基の炭素数が1〜3のトリアルコキシシランの縮合物(c)由来のポリシロキサンセグメント(C)とが珪素−酸素結合を介して結合している複合樹脂(ABC)が水性媒体中に溶解又は分散してなる複合樹脂(ABC)の水性化物
成分(β):水酸基と反応する官能基を有する水性エポキシエステル樹脂
成分(γ):非クロム系防錆添加剤
[2]上記[1]の表面処理鋼板において、表面処理組成物中の成分(α)と成分(β)の固形分の質量比(α)/(β)が70/30〜40/60であることを特徴とする表面処理鋼板。
[3]上記[1]又は[2]の表面処理鋼板において、表面処理組成物中の成分(β)がディスパージョンタイプの水性エポキシエステル樹脂であることを特徴とする表面処理鋼板。
The present invention has been made on the basis of such findings and has the following gist.
[1] Polymer segment that contains the following components (α), (β) and (γ) on the surface of a zinc-based plated steel plate or an aluminum-based plated steel plate, and constitutes a composite resin (ABC) in the component (α) ( It is formed by a surface treatment composition in which the mass ratio (A) / [(B) + (C)] of the solid content of A) and the polysiloxane segments (B) and (C) is 40/60 to 20/80. A surface-treated steel sheet having a surface-treated film having a thickness of 3.0 to 15 μm.
Component (α): a polysiloxane segment (B) of a composite resin (AB) in which a polymer segment (A) having a neutralized acid group and a polysiloxane segment (B) are chemically bonded, and an alkyl group A composite resin (ABC) in which the polysiloxane segment (C) derived from the condensate (c) of trialkoxysilane having 1 to 3 carbon atoms is bonded through a silicon-oxygen bond or dissolved in an aqueous medium Component (β): Aqueous epoxy ester resin having a functional group that reacts with a hydroxyl group Component (γ): Non-chromium rust preventive additive [2] Surface of [1] above In the treated steel sheet, the mass ratio (α) / (β) of the solid content of the component (α) and the component (β) in the surface treatment composition is 70/30 to 40/60. .
[3] The surface-treated steel sheet according to [1] or [2], wherein the component (β) in the surface-treated composition is a dispersion-type aqueous epoxy ester resin.

[4]上記[1]〜[3]のいずれかの表面処理鋼板において、表面処理組成物が、成分(γ)を樹脂組成物の固形分100質量部に対する固形分の割合で1〜50質量部含有することを特徴とする表面処理鋼板。
[5]上記[1]〜[4]のいずれかの表面処理鋼板において、表面処理組成物が、成分(γ)として、下記(γ1)〜(γ5)の中から選ばれる1つ以上の防錆添加剤を含有することを特徴とする表面処理鋼板。
(γ1)酸化ケイ素
(γ2)カルシウムおよび/またはカルシウム化合物
(γ3)難溶性リン酸化合物
(γ4)モリブデン酸化合物
(γ5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
[6]上記[1]〜[5]のいずれかの表面処理鋼板において、表面処理組成物が、さらに固形潤滑剤を含有することを特徴とする表面処理鋼板。
[7]亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、第一層として、クロムを含まない膜厚が0.01〜2μmの有機系皮膜、無機系皮膜又は有機無機複合皮膜を形成し、その上層に第二層として、上記[1]〜[6]のいずれかに記載の表面処理皮膜を形成したことを特徴とする表面処理鋼板。
[4] In the surface-treated steel sheet according to any one of the above [1] to [3], the surface treatment composition contains 1 to 50 masses of the component (γ) as a solid content with respect to 100 mass parts of the solid content of the resin composition. A surface-treated steel sheet characterized by containing a part.
[5] In the surface-treated steel sheet according to any one of the above [1] to [4], the surface treatment composition is one or more prevention materials selected from the following (γ1) to (γ5) as the component (γ): A surface-treated steel sheet characterized by containing a rust additive.
(Γ1) Silicon oxide (γ2) Calcium and / or calcium compound (γ3) Slightly soluble phosphate compound (γ4) Molybdate compound (γ5) Triazoles, thiols, thiadiazoles, thiazoles, thiurams One or more organic compounds containing S atoms [6] The surface-treated steel sheet according to any one of [1] to [5] above, wherein the surface treatment composition further contains a solid lubricant. Surface treated steel sheet.
[7] On the surface of the zinc-based plated steel sheet or the aluminum-based plated steel sheet, as a first layer, an organic film, an inorganic film or an organic-inorganic composite film having a film thickness not containing chromium of 0.01 to 2 μm is formed. A surface-treated steel sheet in which the surface-treated film according to any one of [1] to [6] is formed as a second layer on the upper layer.

本発明の表面処理鋼板は、非常に優れた耐食性と加工性を備え、特に加工後においても高度な防食効果が得られる。このため、耐食性付与を目的とした前処理やアフター塗装を省略することも可能となる。   The surface-treated steel sheet of the present invention has very excellent corrosion resistance and workability, and a high degree of anticorrosion effect is obtained even after processing. For this reason, it is also possible to omit pretreatment and after-coating for the purpose of imparting corrosion resistance.

複合樹脂(ABC)のみで表面処理皮膜を形成した表面処理鋼板について、プレス加工後の皮膜表面を観察したSEM像SEM image of the surface of the surface-treated steel sheet on which the surface-treated film is formed only with the composite resin (ABC). 複合樹脂(ABC)とエポキシエステル樹脂を複合化した樹脂組成物で表面処理皮膜を形成した表面処理鋼板について、プレス加工後の皮膜表面を観察したSEM像SEM image of the surface of the steel sheet that has been surface-treated with a resin composition in which a composite resin (ABC) and an epoxy ester resin are combined, and the surface of the film after press working is observed.

本発明の表面処理鋼板は、亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、下記成分(α)、(β)及び(γ)を含有する表面処理組成物により形成される表面処理皮膜を有するものである。この表面処理皮膜は、表面処理組成物をめっき鋼板面に塗布し乾燥することにより形成される。
成分(α):中和された酸基を有する重合体セグメント(A)と、ポリシロキサンセグメント(B)とが化学結合してなる複合樹脂(AB)のポリシロキサンセグメント(B)と、アルキル基の炭素数が1〜3のトリアルコキシシランの縮合物(c)由来のポリシロキサンセグメント(C)とが珪素−酸素結合を介して結合している複合樹脂(ABC)が水性媒体中に溶解又は分散してなる複合樹脂(ABC)の水性化物
成分(β):水酸基と反応する官能基を有する水性エポキシエステル樹脂
成分(γ):非クロム系防錆添加剤
The surface-treated steel sheet of the present invention has a surface-treated film formed by a surface-treating composition containing the following components (α), (β) and (γ) on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet. Is. This surface treatment film is formed by applying the surface treatment composition to the surface of the plated steel sheet and drying it.
Component (α): a polysiloxane segment (B) of a composite resin (AB) in which a polymer segment (A) having a neutralized acid group and a polysiloxane segment (B) are chemically bonded, and an alkyl group A composite resin (ABC) in which the polysiloxane segment (C) derived from the condensate (c) of trialkoxysilane having 1 to 3 carbon atoms is bonded through a silicon-oxygen bond or dissolved in an aqueous medium Component (β): Aqueous epoxy ester resin having a functional group that reacts with a hydroxyl group Component (γ): Non-chromium rust preventive additive

本発明の表面処理鋼板のベースとなる亜鉛系めっき鋼板としては、例えば、亜鉛めっき鋼板、Zn−Ni合金めっき鋼板、Zn−Fe合金めっき鋼板(電気めっき鋼板、合金化溶融亜鉛めっき鋼板)、Zn−Cr合金めっき鋼板、Zn−Mn合金めっき鋼板、Zn−Co合金めっき鋼板、Zn−Co−Cr合金めっき鋼板、Zn−Cr−Ni合金めっき鋼板、Zn−Cr−Fe合金めっき鋼板、Zn−Al合金めっき鋼板(例えば、Zn−5%Al合金めっき鋼板、Zn−55%Al合金めっき鋼板)、Zn−Mg合金めっき鋼板、Zn−Al−Mg合金めっき鋼板(例えば、Zn−6%Al−3%Mg合金めっき鋼板、Zn−11%Al−3%Mg合金めっき鋼板)、さらにはこれらのめっき鋼板のめっき皮膜中に金属酸化物、ポリマーなどを分散した亜鉛系複合めっき鋼板(例えば、Zn−SiO分散めっき鋼板)などを用いることができる。 Examples of the galvanized steel sheet used as the base of the surface-treated steel sheet of the present invention include a galvanized steel sheet, a Zn—Ni alloy plated steel sheet, a Zn—Fe alloy plated steel sheet (electroplated steel sheet, galvannealed steel sheet), Zn -Cr alloy plated steel sheet, Zn-Mn alloy plated steel sheet, Zn-Co alloy plated steel sheet, Zn-Co-Cr alloy plated steel sheet, Zn-Cr-Ni alloy plated steel sheet, Zn-Cr-Fe alloy plated steel sheet, Zn-Al Alloy-plated steel sheet (for example, Zn-5% Al alloy-plated steel sheet, Zn-55% Al alloy-plated steel sheet), Zn-Mg alloy-plated steel sheet, Zn-Al-Mg alloy-plated steel sheet (for example, Zn-6% Al-3) % Mg alloy-plated steel sheet, Zn-11% Al-3% Mg alloy-plated steel sheet), and metal oxides and polymers in the plating film of these plated steel sheets. Or the like can be used dispersed zinc composite-plated steel sheet (for example, Zn-SiO 2 dispersion plating steel plate).

また、上記のようなめっきのうち、同種または異種のものを2層以上めっきした複層めっき鋼板を用いることもできる。
また、本発明の表面処理鋼板のベースとなるアルミニウム系めっき鋼板としては、例えば、アルミニウムめっき鋼板、Al−Si合金めっき鋼板などを用いることができる。
また、めっき鋼板としては、鋼板面に予めNiなどの薄目付めっきを施し、その上に上記のような各種めっきを施したものであってもよい。
めっき方法としては、電解法(水溶液中での電解又は非水溶媒中での電解)、溶融法、気相法のうち、実施可能ないずれの方法を採用することもできる。
さらに、めっきの黒変を防止する目的で、めっき皮膜中に1〜2000ppm程度のNi,Co,Feの微量元素を析出させたり、或いはめっき皮膜表面にNi,Co,Feを含むアルカリ性水溶液又は酸性水溶液による表面調整処理を施し、これらの元素を析出させるようにしてもよい。
In addition, among the above-described plating, a multi-layer plated steel sheet in which two or more layers of the same type or different types are plated can also be used.
Moreover, as an aluminum system plated steel plate used as the base of the surface treatment steel plate of this invention, an aluminum plating steel plate, an Al-Si alloy plating steel plate, etc. can be used, for example.
Moreover, as a plated steel plate, the steel plate surface may be previously plated with lightness such as Ni, and various plating as described above may be performed thereon.
As a plating method, any feasible method among an electrolytic method (electrolysis in an aqueous solution or electrolysis in a nonaqueous solvent), a melting method, and a vapor phase method can be adopted.
Furthermore, for the purpose of preventing blackening of the plating, about 1 to 2000 ppm of trace elements of Ni, Co, and Fe are deposited in the plating film, or an alkaline aqueous solution or acid solution containing Ni, Co, Fe on the surface of the plating film. You may make it surface-treat with an aqueous solution and precipitate these elements.

次に、上記亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に形成される表面処理皮膜とこの皮膜形成用の表面処理組成物について説明する。
まず、表面処理組成物を構成する成分(α)である複合樹脂(ABC)の水性化物(樹脂溶液)について説明する。
本発明で使用する複合樹脂(ABC)は、中和された酸基を有する重合体セグメント(A)と、ポリシロキサンセグメント(B)とが化学結合してなる複合樹脂(AB)のポリシロキサンセグメント(B)と、アルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)由来のポリシロキサンセグメント(C)とが珪素−酸素結合を介して結合している複合樹脂であればよく、例えば、ポリシロキサンセグメント(B)が中和された酸基を有する重合体セグメント(A)の側鎖に化学的に結合したグラフト構造を有する複合樹脂や、重合体セグメント(A)の末端にポリシロキサンセグメント(B)が化学的に結合したブロック構造を有する複合樹脂のポリシロキサンセグメント(B)と、アルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)由来のポリシロキサンセグメント(C)とが珪素−酸素結合を介して化学的に結合した構造を有する複合樹脂が挙げられる。
複合樹脂(ABC)が有する重合体セグメント(A)とポリシロキサンセグメント(B)との化学的な結合としては、特に限定はしないが、例えば、下記構造式(S−1)或いは下記の構造式(S−2)の結合様式等が挙げられ、なかでも、構造式(S−1)の結合様式を有する複合樹脂を使用することが、防錆性と耐候性に優れた塗膜を形成できることから好ましい。
Next, the surface treatment film formed on the surface of the zinc-based plated steel sheet or the aluminum-based plated steel sheet and the surface treatment composition for forming the film will be described.
First, an aqueous product (resin solution) of a composite resin (ABC) that is a component (α) constituting the surface treatment composition will be described.
The composite resin (ABC) used in the present invention is a polysiloxane segment of a composite resin (AB) in which a polymer segment (A) having a neutralized acid group and a polysiloxane segment (B) are chemically bonded. A composite resin in which (B) and a polysiloxane segment (C) derived from a condensate (c) of an alkyltrialkoxysilane having 1 to 3 carbon atoms of an alkyl group are bonded via a silicon-oxygen bond For example, a composite resin having a graft structure in which a polysiloxane segment (B) is chemically bonded to a side chain of a polymer segment (A) having a neutralized acid group, or a polymer segment (A) The polysiloxane segment (B) of the composite resin having a block structure in which the polysiloxane segment (B) is chemically bonded to the terminal, and an alkyl group having 1 to 3 carbon atoms. Condensates quilt trialkoxysilane (c) derived from a polysiloxane segment (C) and silicon - composite resins having a chemically bonded structure through an oxygen bond.
The chemical bond between the polymer segment (A) and the polysiloxane segment (B) included in the composite resin (ABC) is not particularly limited. For example, the following structural formula (S-1) or the following structural formula Examples include (S-2) bonding mode, among others, use of a composite resin having the bonding mode of structural formula (S-1) can form a coating film excellent in rust prevention and weather resistance. To preferred.

〔但し、構造式(S−1)中の炭素原子は重合体セグメント(A)の一部分を構成し、珪素原子と酸素原子はポリシロキサンセグメント(B)の一部分を構成するものである。〕 [However, the carbon atom in the structural formula (S-1) constitutes a part of the polymer segment (A), and the silicon atom and the oxygen atom constitute a part of the polysiloxane segment (B). ]

〔但し、構造式(S−2)中の炭素原子は重合体セグメント(A)の一部分を構成し、珪素原子はポリシロキサンセグメント(B)の一部分を構成するものである。〕 [However, the carbon atom in the structural formula (S-2) constitutes a part of the polymer segment (A), and the silicon atom constitutes a part of the polysiloxane segment (B). ]

複合樹脂(ABC)を構成する重合体セグメント(A)は、水性媒体中に複合樹脂(ABC)を分散又は溶解させるため、中和された酸基を有する重合体セグメントであることが必須であり、なかでも、ポリシロキサンセグメント(B)やその合成原料が有する珪素原子に結合した水酸基や珪素原子に結合した加水分解性基と容易に加水分解縮合して前記構造式(S−1)の結合様式で化学結合することから、酸基とともに、珪素原子に結合した水酸基及び/又は珪素原子に結合した加水分解性基(以下、説明の便宜上「珪素原子結合の水酸基及び/又は加水分解性基」という。)を有する重合体(a′)又はその中和物である重合体(a)に由来の重合体セグメントであることが好ましい。重合体(a′)及び重合体(a)は、酸基又は中和された酸基を有するポリシロキサン以外の重合体であればよく、その種類としては、例えば、アクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族ビニル重合体、ポリオレフィン重合体等のビニル系重合体、ポリウレタン重合体、ポリエステル重合体、ポリエーテル重合体などが挙げられるが、なかでも、ビニル系重合体やポリウレタン重合体が好ましく、アクリル重合体がより好ましい。   The polymer segment (A) constituting the composite resin (ABC) is essential to be a polymer segment having a neutralized acid group in order to disperse or dissolve the composite resin (ABC) in an aqueous medium. In particular, the polysiloxane segment (B) and the synthesis raw material thereof have a hydroxyl group bonded to a silicon atom or a hydrolyzable group bonded to a silicon atom, which is easily hydrolytically condensed and bonded to the structural formula (S-1). Since it is chemically bonded in a manner, a hydroxyl group bonded to a silicon atom and / or a hydrolyzable group bonded to a silicon atom together with an acid group (hereinafter referred to as “hydroxyl group and / or hydrolyzable group of silicon atom bond” for convenience of explanation) It is preferable that the polymer segment is derived from the polymer (a ′) having the above) or the polymer (a) which is a neutralized product thereof. The polymer (a ′) and the polymer (a) may be any polymer other than polysiloxane having an acid group or a neutralized acid group. Examples of the polymer include an acrylic polymer, a fluoroolefin polymer, and the like. Examples thereof include vinyl polymers such as polymers, vinyl ester polymers, aromatic vinyl polymers, polyolefin polymers, polyurethane polymers, polyester polymers, polyether polymers, among others, vinyl polymers and polyurethanes. Polymers are preferred, and acrylic polymers are more preferred.

重合体(a′)中の酸基としては、例えば、カボキシル基、燐酸基、酸性燐酸エステル基、亜燐酸基、スルホン酸基、スルフィン酸基などが挙げられ、なかでも、複合樹脂(ABC)の骨格へ導入しやすいことから、カルボキシル基が好ましい。
そして、かかる酸基を中和する際に使用する塩基性化合物としては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2−アミノエタノール、2−ジメチルアミノエタノール等の有機アミン類;アンモニア、水酸化ナトリウム、水酸化カリウム等の無機塩基性化合物;テトラメチルアンモニウムハイドロオキサイド、テトラ−n−ブチルアンモニウムハイドロオキサイド、トリメチルベンジルアンモニウムハイドロオキサイドの四級アンモニウムハイドロオキサイドなどを使用することができ、なかでも有機アミン類及びアンモニア(アンモニア水でもよい。)が好ましい。
Examples of the acid group in the polymer (a ′) include a carboxyl group, a phosphoric acid group, an acidic phosphoric acid ester group, a phosphorous acid group, a sulfonic acid group, and a sulfinic acid group. Among them, a composite resin (ABC) A carboxyl group is preferable because it can be easily introduced into the skeleton.
Examples of the basic compound used for neutralizing the acid group include organic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, 2-aminoethanol, and 2-dimethylaminoethanol. Inorganic inorganic compounds such as ammonia, sodium hydroxide and potassium hydroxide; quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetra-n-butylammonium hydroxide and trimethylbenzylammonium hydroxide can be used. Of these, organic amines and ammonia (ammonia water may be used) are preferable.

重合体(a)中の中和された酸基は、複合樹脂(ABC)が水性媒体中に分散又は溶解してなる水性分散体又は水溶液の良好な保存安定性を維持する観点から、複合樹脂(ABC)100質量%に対して、0.1〜20質量%の割合で存在していることが好ましく、特に0.2〜10質量%の割合で存在していることがより好ましい。
また、重合体(a′)中の珪素原子に結合した加水分解性基としては、加水分解されることによって珪素原子に結合した水酸基(シラノール基)を生成することが可能な官能基であればよく、例えば、珪素原子に結合したハロゲン原子、珪素原子に結合したアルコキシ基、珪素原子に結合したアシロキシ基、珪素原子に結合したフェノキシ基、珪素原子に結合したメルカプト基、珪素原子に結合したアミノ基、珪素原子に結合したアミド基、珪素原子に結合したアミノオキシ基、珪素原子に結合したイミノオキシ基、珪素原子に結合したアルケニルオキシ基等が挙げられ、なかでも、加水分解反応を容易に進行でき、また、反応後の副生成物を容易に除去できることから、珪素原子に結合したアルコキシ基が好ましい。
The neutralized acid group in the polymer (a) is a composite resin from the viewpoint of maintaining good storage stability of an aqueous dispersion or aqueous solution in which the composite resin (ABC) is dispersed or dissolved in an aqueous medium. (ABC) It is preferable that it exists in the ratio of 0.1-20 mass% with respect to 100 mass%, and it is more preferable that it exists especially in the ratio of 0.2-10 mass%.
The hydrolyzable group bonded to the silicon atom in the polymer (a ′) may be any functional group that can generate a hydroxyl group (silanol group) bonded to the silicon atom by hydrolysis. Well, for example, halogen atom bonded to silicon atom, alkoxy group bonded to silicon atom, acyloxy group bonded to silicon atom, phenoxy group bonded to silicon atom, mercapto group bonded to silicon atom, amino bonded to silicon atom Groups, amide groups bonded to silicon atoms, aminooxy groups bonded to silicon atoms, iminooxy groups bonded to silicon atoms, alkenyloxy groups bonded to silicon atoms, etc. In addition, an alkoxy group bonded to a silicon atom is preferable because a by-product after the reaction can be easily removed.

重合体セグメント(A)は、本発明が奏する効果を阻害しない範囲で、中和された酸基、珪素原子に結合した水酸基及び珪素原子に結合した加水分解性基を除くその他の官能基を有していてもよい。このようなその他の官能基としては、例えば、中和されていないカルボキシル基、ブロックされたカルボキシル基、カルボン酸無水基、水酸基、ブロックされた水酸基、シクロカーボネート基、エポキシ基、カルボニル基、1級アミド基、2級アミド基、カーバメート基、ポリエチレングリコール基、ポリプロピレングリコール基、及び、下記の構造式(S−3)で示される基等が挙げられる。   The polymer segment (A) has other functional groups other than neutralized acid groups, hydroxyl groups bonded to silicon atoms, and hydrolyzable groups bonded to silicon atoms, as long as the effects of the present invention are not impaired. You may do it. Such other functional groups include, for example, unneutralized carboxyl groups, blocked carboxyl groups, carboxylic anhydride groups, hydroxyl groups, blocked hydroxyl groups, cyclocarbonate groups, epoxy groups, carbonyl groups, primary grades. Examples include an amide group, a secondary amide group, a carbamate group, a polyethylene glycol group, a polypropylene glycol group, and a group represented by the following structural formula (S-3).

複合樹脂(ABC)を構成するポリシロキサンセグメント(B)としては、例えば、珪素原子結合の水酸基及び/又は加水分解性基を有するポリシロキサンに由来のセグメントが挙げられる。なお、この珪素原子に結合した加水分解性基としては、重合体セグメント(A)において記載した珪素原子に結合した加水分解性基と同様のものが挙げられ、好ましいものも同様である。
ポリシロキサンセグメント(B)としては、特に、下記一般式(S−4)や(S−5)で示される構造を有するものが好ましい。下記一般式(S−4)や(S−5)で示される構造を有するポリシロキサンセグメント(B)は、三次元網目状のポリシロキサン構造を有することから、得られる塗膜は耐溶剤性、耐候性などに優れたものとなる。
Examples of the polysiloxane segment (B) constituting the composite resin (ABC) include a segment derived from a polysiloxane having a silicon atom-bonded hydroxyl group and / or a hydrolyzable group. In addition, as a hydrolysable group couple | bonded with this silicon atom, the thing similar to the hydrolyzable group couple | bonded with the silicon atom described in the polymer segment (A) is mentioned, A preferable thing is also the same.
As the polysiloxane segment (B), those having a structure represented by the following general formulas (S-4) and (S-5) are particularly preferable. Since the polysiloxane segment (B) having the structure represented by the following general formula (S-4) or (S-5) has a three-dimensional network-like polysiloxane structure, the resulting coating film has solvent resistance, Excellent weather resistance.

〔但し、一般式(S−4)及び(S−5)中、Rは珪素原子に結合した炭素数が4〜12の有機基、R及びRは、それぞれ独立して珪素原子に結合したメチル基又は珪素原子に結合したエチル基である。なお、Rとしては、特に、珪素原子に結合した炭素数が4〜12の炭化水素基であることが好ましく、フェニル基又は炭素数4のアルキル基であることがより好ましい。R及びRは、いずれも珪素原子に結合したメチル基又は珪素原子に結合したエチル基であることが好ましく、いずれも珪素原子に結合したメチル基であることがより好ましい。〕 [In the general formulas (S-4) and (S-5), R 1 is an organic group having 4 to 12 carbon atoms bonded to a silicon atom, and R 2 and R 3 are each independently a silicon atom. A bonded methyl group or an ethyl group bonded to a silicon atom. In particular, R 1 is preferably a hydrocarbon group having 4 to 12 carbon atoms bonded to a silicon atom, and more preferably a phenyl group or an alkyl group having 4 carbon atoms. R 2 and R 3 are each preferably a methyl group bonded to a silicon atom or an ethyl group bonded to a silicon atom, and more preferably a methyl group bonded to a silicon atom. ]

一般式(S−4)や(S−5)で示される構造を有するポリシロキサンセグメントとしては、オルガノアルコキシシラン、好ましくは珪素原子に結合した炭素数が4〜12の有機基(以下、説明の便宜上「珪素原子結合の炭素数4〜12の有機基」という。)を有するモノオルガノトリアルコキシシラン、及び/又は、珪素原子に結合したメチル基及び/又は珪素原子に結合したエチル基(以下、説明の便宜上「珪素原子結合のメチル基及び/又はエチル基」という。)の2個を有するジオルガノジアルコキシシランを、加水分解縮合させて得られるポリシロキサンに由来のセグメントが挙げられる。これらポリシロキサンセグメントは、珪素原子結合の炭素数4〜12の有機基と珪素原子結合の水酸基及び/又は加水分解性基、及び/又は、珪素原子結合のメチル基及び/又はエチル基の2個と珪素原子結合の水酸基及び/又は加水分解性基を有するものであり、線状、分岐状、環状のうちの、いずれの構造を有するものでもよい。   As the polysiloxane segment having the structure represented by the general formula (S-4) or (S-5), an organoalkoxysilane, preferably an organic group having 4 to 12 carbon atoms bonded to a silicon atom (hereinafter, described) For convenience, a monoorganotrialkoxysilane having “an organic group having 4 to 12 carbon atoms bonded to a silicon atom”) and / or a methyl group bonded to a silicon atom and / or an ethyl group bonded to a silicon atom (hereinafter, For convenience of explanation, a segment derived from polysiloxane obtained by hydrolytic condensation of a diorganodialkoxysilane having two of “a silicon atom-bonded methyl group and / or ethyl group”) may be mentioned. These polysiloxane segments consist of two organic atom-bonded organic groups having 4 to 12 carbon atoms, silicon atom-bonded hydroxyl groups and / or hydrolyzable groups, and / or silicon atom-bonded methyl groups and / or ethyl groups. And a silicon atom-bonded hydroxyl group and / or hydrolyzable group, and may have any structure of linear, branched, and cyclic.

珪素原子結合の炭素数4〜12の有機基としては、例えば、いずれも珪素原子に結合した炭素数が4〜12の、アルキル基、シクロアルキル基、アリール基、アラルキル基などが挙げられる。なお、これらの有機基は置換基を有するものであってもよい。
このような珪素原子結合の炭素数4〜12の有機基としては、珪素原子に結合した炭化水素基が好ましく、例えば、いずれも珪素原子に結合した、n−ブチル基、iso−ブチル基、n−ヘキシル基、n−オクチル基、n−ドデシル基、シクロヘキシルメチル基等のアルキル基;シクロヘキシル基、4−メチルシクロヘキシル基等のシクロアルキル基;フェニル基、4−メチルフェニル基等のアリール基;ベンジル基等のアラルキル基などが挙げられ、なかでも、珪素原子に結合したフェニル基又は珪素原子に結合した炭素数4のアルキル基がより好ましい。
Examples of the organic group having 4 to 12 carbon atoms bonded to a silicon atom include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group each having 4 to 12 carbon atoms bonded to a silicon atom. In addition, these organic groups may have a substituent.
As such an organic group having 4 to 12 carbon atoms bonded to a silicon atom, a hydrocarbon group bonded to a silicon atom is preferable. For example, an n-butyl group, an iso-butyl group, or an n-bonded group bonded to a silicon atom. -Alkyl groups such as hexyl group, n-octyl group, n-dodecyl group and cyclohexylmethyl group; cycloalkyl groups such as cyclohexyl group and 4-methylcyclohexyl group; aryl groups such as phenyl group and 4-methylphenyl group; benzyl And an aralkyl group such as a group. Among them, a phenyl group bonded to a silicon atom or an alkyl group having 4 carbon atoms bonded to a silicon atom is more preferable.

複合樹脂(ABC)を構成するポリシロキサンセグメント(C)は、アルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)に由来のセグメントであり、ここで用いるアルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)は、珪素原子に結合した水酸基及び/又は珪素原子に結合したアルコキシ基を有している。
アルキルトリアルコキシシランの縮合物(c)としては、下記一般式(S−6)で示される構造を有することが好ましい。下記一般式(S−6)で示される構造を有するアルキルトリアルコキシシランの縮合物に由来のポリシロキサンセグメントは、三次元網目状のポリシロキサン構造を有することから、得られる塗膜は耐溶剤性、耐候性などに優れたものとなる。
The polysiloxane segment (C) constituting the composite resin (ABC) is a segment derived from a condensate (c) of an alkyltrialkoxysilane having an alkyl group having 1 to 3 carbon atoms, and the carbon of the alkyl group used here The condensate (c) of the alkyltrialkoxysilane having 1 to 3 has a hydroxyl group bonded to a silicon atom and / or an alkoxy group bonded to a silicon atom.
The alkyltrialkoxysilane condensate (c) preferably has a structure represented by the following general formula (S-6). Since the polysiloxane segment derived from the alkyltrialkoxysilane condensate having the structure represented by the following general formula (S-6) has a three-dimensional network-like polysiloxane structure, the resulting coating film is solvent resistant. In addition, the weather resistance is excellent.

〔但し、一般式(S−6)中のRは炭素数が1〜3個のアルキル基である。〕 [However, R 4 in the general formula (S-6) is an alkyl group having 1 to 3 carbon atoms. ]

複合樹脂(ABC)は、加工+アルカリ脱脂後耐食性に優れることから、重合体セグメント(A)とポリシロキサンセグメント(B),(C)の固形分の質量比(A)/[(B)+(C)]を40/60〜20/80とする。質量比(A)/[(B)+(C)]が40/60超では耐食性が劣化するため好ましくなく、一方、質量比(A)/[(B)+(C)]が20/80未満では、皮膜が硬くなるためプレス加工による皮膜損傷、クラックが多く生じ、加工後耐食性が劣化するため好ましくない。
また、複合樹脂(ABC)は、接着剤適合性に優れることから、ポリシロキサンセグメント(C)と重合体セグメント(A)及びポリシロキサンセグメント(B),(C)の固形分の質量比(C)/[(A)+(B)+(C)]が40/100〜60/100であるものが好ましい。
Since the composite resin (ABC) is excellent in corrosion resistance after processing + alkali degreasing, the mass ratio (A) / [(B) + of the solid content of the polymer segment (A) and the polysiloxane segments (B), (C) (C)] is set to 40/60 to 20/80. If the mass ratio (A) / [(B) + (C)] exceeds 40/60, corrosion resistance deteriorates, which is not preferable. On the other hand, the mass ratio (A) / [(B) + (C)] is 20/80. If it is less than 1, the film becomes hard, so that many film damages and cracks are caused by press processing, and the corrosion resistance after processing deteriorates.
In addition, since the composite resin (ABC) has excellent adhesive compatibility, the mass ratio of the solid content of the polysiloxane segment (C), the polymer segment (A), and the polysiloxane segments (B) and (C) (C ) / [(A) + (B) + (C)] is preferably 40/100 to 60/100.

複合樹脂(ABC)は各種の方法で製造できるが、特に、下記製造工程(I),(II)からなる方法で製造することが好ましい。
(I)酸基と珪素原子結合の水酸基及び/又は加水分解性基を併有する重合体(a′)と、オルガノアルコキシシラン(b)及び/又はその加水分解縮合物(b−1)とを加水分解縮合させて、重合体(a′)由来の重合体セグメント(A′)とオルガノアルコキシシラン(b)由来のポリシロキサンセグメント(B)とが化学結合してなる複合樹脂(A′B)を得る工程
The composite resin (ABC) can be produced by various methods, and in particular, it is preferably produced by a method comprising the following production steps (I) and (II).
(I) A polymer (a ′) having both an acid group and a silicon atom-bonded hydroxyl group and / or hydrolyzable group, and an organoalkoxysilane (b) and / or a hydrolysis condensate thereof (b-1). Composite resin (A'B) formed by chemical condensation of polymer segment (A ') derived from polymer (a') and polysiloxane segment (B) derived from organoalkoxysilane (b) by hydrolytic condensation The process of obtaining

(II)次いで、得られた複合樹脂(A′B)とアルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)を加水分解縮合させて、複合樹脂(A′B)のポリシロキサンセグメント(B)と、アルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)由来のポリシロキサンセグメント(C)とが珪素−酸素結合を介して結合している複合樹脂(A′BC)とした後、この複合樹脂(A′BC)中の酸基を塩基性化合物で中和して複合樹脂(ABC)を得る工程、又は、得られた複合樹脂(A′B)中の酸基を塩基性化合物で中和して複合樹脂(AB)とした後、アルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)を加水分解縮合させて、複合樹脂(AB)のポリシロキサンセグメント(B)と、アルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)由来のポリシロキサンセグメント(C)とが珪素−酸素結合を介して結合している複合樹脂(ABC)を得る工程 (II) Next, the resulting composite resin (A′B) and the alkyltrialkoxysilane condensate (c) having 1 to 3 carbon atoms in the alkyl group are hydrolytically condensed to give the composite resin (A′B). The polysiloxane segment (B) and the polysiloxane segment (C) derived from the condensate (c) of alkyltrialkoxysilane having 1 to 3 carbon atoms in the alkyl group are bonded via a silicon-oxygen bond. A step of obtaining a composite resin (ABC) by neutralizing acid groups in the composite resin (A'BC) with a basic compound after the composite resin (A'BC) is obtained, or the obtained composite resin (A'BC) After the acid group in ′ B) is neutralized with a basic compound to form a composite resin (AB), the condensation product (c) of alkyltrialkoxysilane having 1 to 3 carbon atoms in the alkyl group is hydrolyzed and condensed. Polysiloxane segment of composite resin (AB) Composite resin (B) and a polysiloxane segment (C) derived from a condensate (c) of alkyltrialkoxysilane having 1 to 3 carbon atoms of an alkyl group bonded via a silicon-oxygen bond ( Step of obtaining ABC)

前記製造工程における加水分解縮合反応は、各種の方法で反応を進行させることができるが、製造工程の途中で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。
なお、前記加水分解縮合反応とは、前記加水分解性基の一部が水などの影響で加水分解されて水酸基を形成し、次いで、該水酸基や加水分解性基の間で進行する縮合反応をいう。
The hydrolysis-condensation reaction in the production process can be progressed by various methods, but a method in which the reaction is advanced by supplying water and a catalyst during the production process is simple and preferable.
The hydrolysis condensation reaction refers to a condensation reaction in which a part of the hydrolyzable group is hydrolyzed under the influence of water or the like to form a hydroxyl group, and then proceeds between the hydroxyl group or the hydrolyzable group. Say.

重合体(a′)は、酸基と珪素原子結合の水酸基及び/又は加水分解性基を併有する重合体であり、酸基が中和されていないこと以外は、前記中和された酸基と珪素原子結合の水酸基及び/又は加水分解性基を併有する重合体(a)と全く同一である。
重合体(a′)としてビニル系重合体を使用する場合、該ビニル重合体は、例えば、酸基含有ビニル単量体と、珪素原子に結合した水酸基含有ビニル単量体及び/又は珪素原子に結合した加水分解性基含有ビニル単量体と、必要に応じてその他のビニル単量体を重合させることにより製造することができる。
前記酸基含有ビニル単量体としては、例えば、カルボキシル基、燐酸基、酸性燐酸エステル基、亜燐酸基、スルホン酸基、スルフィン酸基等の酸基を含有する各種のビニル単量体が挙げられるが、なかでも、カルボキシル基(カルボン酸無水基であってもよい。)含有ビニル単量体が好ましい。
The polymer (a ′) is a polymer having both an acid group and a silicon atom-bonded hydroxyl group and / or a hydrolyzable group, and the neutralized acid group except that the acid group is not neutralized. And a polymer (a) having both a silicon atom-bonded hydroxyl group and / or hydrolyzable group.
When a vinyl polymer is used as the polymer (a ′), the vinyl polymer may be, for example, an acid group-containing vinyl monomer, a hydroxyl group-containing vinyl monomer bonded to a silicon atom, and / or a silicon atom. It can be produced by polymerizing the combined hydrolyzable group-containing vinyl monomer and, if necessary, other vinyl monomers.
Examples of the acid group-containing vinyl monomer include various vinyl monomers containing an acid group such as a carboxyl group, a phosphoric acid group, an acidic phosphoric ester group, a phosphorous acid group, a sulfonic acid group, and a sulfinic acid group. Among them, a vinyl monomer containing a carboxyl group (which may be a carboxylic anhydride group) is preferable.

前記カルボキシル基含有ビニル単量体としては、例えば、(メタ)アクリル酸、2−カルボキシエチル(メタ)アクリレート、クロトン酸、イタコン酸、マレイン酸、フマル酸等の不飽和カルボン酸類;無水マレイン酸、無水イタコン酸等の不飽和ポリカルボン酸の無水物類;無水アクリル酸、無水メタクリル酸等の不飽和モノカルボン酸の無水物類;アクリル酸、メタクリル酸等の不飽和カルボン酸と、酢酸、プロピオン酸、安息香酸などの飽和カルボン酸との混合酸無水物;イタコン酸モノメチル、イタコン酸モノ−n−ブチル、マレイン酸モノメチル、マレイン酸モノ−n−ブチル、フマル酸モノメチル、フマル酸モノ−n−ブチル等の飽和ジカルボン酸類と、飽和1価アルコール類との各種のモノエステル類(ハーフエステル類);アジピン酸モノビニル、コハク酸モノビニル等の飽和ジカルボン酸のモノビニルエステル類;無水コハク酸、無水グルタル酸、無水フタル酸、無水トリメリット酸等の飽和ポリカルボン酸の無水物類と、炭素原子に結合した水酸基を含有するビニル系単量体類との付加反応生成物;前記カルボキシル基含有単量体類と、ラクトン類とを付加反応せしめて得られる各種の単量体類等が挙げられ、なかでも、ビニル重合体に容易に導入できることから、(メタ)アクリル酸等の不飽和カルボン酸類が好ましい。   Examples of the carboxyl group-containing vinyl monomer include (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, crotonic acid, itaconic acid, maleic acid, fumaric acid and other unsaturated carboxylic acids; maleic anhydride, Unsaturated polycarboxylic acid anhydrides such as itaconic anhydride; unsaturated monocarboxylic acid anhydrides such as acrylic acid anhydride and methacrylic anhydride; unsaturated carboxylic acid such as acrylic acid and methacrylic acid; acetic acid and propion Acid, mixed acid anhydride with saturated carboxylic acid such as benzoic acid; monomethyl itaconate, mono-n-butyl itaconate, monomethyl maleate, mono-n-butyl maleate, monomethyl fumarate, mono-n-fumarate Various monoesters (half-esters) of saturated dicarboxylic acids such as butyl and saturated monohydric alcohols; Monovinyl esters of saturated dicarboxylic acids such as monovinyl dipinate and monovinyl succinate; bonded to carbon atoms with anhydrides of saturated polycarboxylic acids such as succinic anhydride, glutaric anhydride, phthalic anhydride and trimellitic anhydride Addition reaction products with vinyl monomers containing hydroxyl groups; and various monomers obtained by addition reaction of the carboxyl group-containing monomers with lactones, among others. The unsaturated carboxylic acids such as (meth) acrylic acid are preferred because they can be easily introduced into the vinyl polymer.

また、前記カルボキシル基は、ブロックされていてもよく、このようなブロックされたカルボキシル基を有するビニル系単量体としては、例えば、トリメチルシリル(メタ)アクリレート、ジメチル−tert−ブチルシリル(メタ)アクリレート、トリメチルシリルクロトネート等のシリルエステル基含有ビニル系単量体類;1−エトキシエチル(メタ)アクリレート、2−メトキシ−2−(メタ)アクリロイルオキシプロパン、2−(メタ)アクリロイルオキシテトラヒドロフラン等のヘミアセタールエステル基ないしはヘミケタールエステル基含有単量体類;tert−ブチル(メタ)アクリレート、tert−ブチルクロトネート等のtert−ブチルエステル基含有単量体類等が挙げられる。   The carboxyl group may be blocked, and examples of the vinyl monomer having such a blocked carboxyl group include trimethylsilyl (meth) acrylate, dimethyl-tert-butylsilyl (meth) acrylate, Silyl ester group-containing vinyl monomers such as trimethylsilyl crotonate; hemiacetals such as 1-ethoxyethyl (meth) acrylate, 2-methoxy-2- (meth) acryloyloxypropane, 2- (meth) acryloyloxytetrahydrofuran Ester group or hemiketal ester group-containing monomers; tert-butyl ester group-containing monomers such as tert-butyl (meth) acrylate and tert-butyl crotonate.

前記珪素原子に結合した水酸基含有ビニル単量体としては、例えば、トリヒドロキシビニルシラン、エトキシジヒロドキシビニルシラン、ジエトキシヒドロキシビニルシラン、ジクロロヒドロキシビニルシラン、3−(メタ)アクリロイルオキシプロピルトリヒドロキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジヒドロキシシラン等が挙げられる。
前記珪素原子に結合した加水分解性基含有ビニル単量体としては、例えば、下記一般式(S−7)で示す加水分解性基を有するビニル単量体を使用することができる。
Examples of the hydroxyl group-containing vinyl monomer bonded to the silicon atom include trihydroxyvinylsilane, ethoxydihydroxyvinylsilane, diethoxyhydroxyvinylsilane, dichlorohydroxyvinylsilane, 3- (meth) acryloyloxypropyltrihydroxysilane, 3 -(Meth) acryloyloxypropylmethyldihydroxysilane and the like.
As the hydrolyzable group-containing vinyl monomer bonded to the silicon atom, for example, a vinyl monomer having a hydrolyzable group represented by the following general formula (S-7) can be used.

〔但し、一般式(S−7)中のRはアルキル基、アリール基、アラルキル基等の1価の有機基、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基又はアルケニルオキシ基である。また、bは0〜2の整数である。〕 [In the general formula (S-7), R 5 is a monovalent organic group such as an alkyl group, an aryl group, and an aralkyl group, and R 6 is a halogen atom, an alkoxy group, an acyloxy group, a phenoxy group, an aryloxy group, Mercapto group, amino group, amide group, aminooxy group, iminooxy group or alkenyloxy group. Moreover, b is an integer of 0-2. ]

一般式(S−7)で示す加水分解性基を有するビニル単量体としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2−メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2−トリメトキシシリルエチルビニルエーテル、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられ、なかでも加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することが可能なことから、ビニルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。   Examples of the vinyl monomer having a hydrolyzable group represented by formula (S-7) include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinyltri (2-methoxyethoxy) silane, and vinyltrimethoxysilane. Acetoxysilane, vinyltrichlorosilane, 2-trimethoxysilylethyl vinyl ether, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane , 3- (meth) acryloyloxypropyltrichlorosilane and the like, and among them, the hydrolysis reaction can easily proceed, and the by-product after the reaction can be easily removed. , 3- ( Data) acryloyloxypropyltrimethoxysilane are preferred.

また、前記その他のビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素数1〜22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2−フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2−メトキシエチル(メタ)アクリレート、4−メトキシブチル(メタ)アクリレート等のω−アルコキシアルキル(メタ)アクリレート類;スチレン、p−tert−ブチルスチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル系単量体類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ−n−ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα−オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n−ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N−ジメチル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン、N−(メタ)アクリロイルピロリジン、N−ビニルピロリドン等の3級アミド基含有単量体類;   Examples of the other vinyl monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert- Alkyl (meth) acrylates having an alkyl group having 1 to 22 carbon atoms such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate; benzyl (meth) acrylate, 2-phenylethyl (meta ) Aralkyl (meth) acrylates such as acrylate; Cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-methoxyethyl (meth) acrylate, 4-methoxybutyl (meth) acrylic Ω-alkoxyalkyl (meth) acrylates such as carbonates; aromatic vinyl monomers such as styrene, p-tert-butylstyrene, α-methylstyrene, vinyltoluene; vinyl acetate, vinyl propionate, pivalic acid Carboxylic acid vinyl esters such as vinyl and vinyl benzoate; alkyl esters of crotonic acid such as methyl crotonate and ethyl crotonate; Unsaturation such as dimethyl malate, di-n-butyl malate, dimethyl fumarate and dimethyl itaconate Dialkyl esters of dibasic acids; α-olefins such as ethylene and propylene; fluoroolefins such as vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene and chlorotrifluoroethylene; alkyls such as ethyl vinyl ether and n-butyl vinyl ether Nyl ethers; Cycloalkyl vinyl ethers such as cyclopentyl vinyl ether and cyclohexyl vinyl ether; Tertiary amides such as N, N-dimethyl (meth) acrylamide, N- (meth) acryloylmorpholine, N- (meth) acryloylpyrrolidine and N-vinylpyrrolidone Group-containing monomers;

2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル等の水酸基含有ビニルエーテル類;2−ヒドロキシエチルアリルエーテル、2−ヒドロキシブチルアリルエーテル等の水酸基含有アリルエーテル類;これら炭素原子に結合した水酸基を含有するビニル系単量体類とε−カプロラクトンなどのラクトン類との付加反応物; Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; hydroxyl groups such as 2-hydroxyethyl vinyl ether and 4-hydroxybutyl vinyl ether -Containing vinyl ethers; hydroxyl group-containing allyl ethers such as 2-hydroxyethyl allyl ether and 2-hydroxybutyl allyl ether; vinyl monomers containing hydroxyl groups bonded to these carbon atoms and lactones such as ε-caprolactone; Addition reaction product of

2−ジメチルアミノエチル(メタ)アクリレート、2−ジエチルアミノエチル(メタ)アクリレート、2−ジ−n−プロピルアミノエチル(メタ)アクリレート、3−ジメチルアミノプロピル(メタ)アクリレート、4−ジメチルアミノブチル(メタ)アクリレート、N−[2−(メタ)アクリロイルオキシ]エチルモルホリン等の3級アミノ基含有(メタ)アクリル酸エステル類;ビニルピリジン、N−ビニルカルバゾール、N−ビニルキノリン等の3級アミノ基含有芳香族ビニル系単量体類;N−(2−ジメチルアミノ)エチル(メタ)アクリルアミド、N−(2−ジエチルアミノ)エチル(メタ)アクリルアミド、N−(2−ジ−n−プロピルアミノ)エチル(メタ)アクリルアミド等の3級アミノ基含有(メタ)アクリルアミド類;N−(2−ジメチルアミノ)エチルクロトン酸アミド、N−(4−ジメチルアミノ)ブチルクロトン酸アミド等の3級アミノ基含有クロトン酸アミド類;2−ジメチルアミノエチルビニルエーテル、2−ジエチルアミノエチルビニルエーテル、4−ジメチルアミノブチルビニルエーテル等の3級アミノ基含有ビニルエーテル類等が挙げられる。 2-dimethylaminoethyl (meth) acrylate, 2-diethylaminoethyl (meth) acrylate, 2-di-n-propylaminoethyl (meth) acrylate, 3-dimethylaminopropyl (meth) acrylate, 4-dimethylaminobutyl (meth) ) Tertiary amino group-containing (meth) acrylic acid esters such as acrylate and N- [2- (meth) acryloyloxy] ethylmorpholine; tertiary amino group-containing vinylpyridine, N-vinylcarbazole, N-vinylquinoline, etc. Aromatic vinyl monomers: N- (2-dimethylamino) ethyl (meth) acrylamide, N- (2-diethylamino) ethyl (meth) acrylamide, N- (2-di-n-propylamino) ethyl ( Tertiary amino group-containing (meth) acrylamides such as (meth) acrylamide; Tertiary amino group-containing crotonic acid amides such as-(2-dimethylamino) ethylcrotonic acid amide, N- (4-dimethylamino) butylcrotonic acid amide; 2-dimethylaminoethyl vinyl ether, 2-diethylaminoethyl vinyl ether, 4 -Tertiary amino group-containing vinyl ethers such as dimethylaminobutyl vinyl ether.

前記その他のビニル単量体は、本発明で用いる表面処理組成物に付与する特性に応じて、本発明が奏する効果を損なわない範囲でその種類及び量を適宜選択することができる。
また、重合体(a′)には、複合樹脂(ABC)の水性媒体に対する溶解性又は分散性を向上させる目的で、アニオン性基、カチオン性基及びノニオン性基よりなる群から選ばれる少なくとも1種の親水性基を有するものを使用することができる。
The type and amount of the other vinyl monomer can be appropriately selected within a range that does not impair the effects of the present invention, depending on the properties imparted to the surface treatment composition used in the present invention.
The polymer (a ′) is at least one selected from the group consisting of an anionic group, a cationic group and a nonionic group for the purpose of improving the solubility or dispersibility of the composite resin (ABC) in an aqueous medium. Those having a kind of hydrophilic group can be used.

重合体(a′)として使用可能なビニル系重合体は、例えば、酸基含有ビニル単量体と、珪素原子に結合した水酸基含有ビニル単量体及び/又は珪素原子に結合した加水分解性基含有ビニル単量体と、必要に応じてその他のビニル単量体を、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法等の重合法によって重合させることにより製造することができる。なかでも、製造し易いことから、有機溶剤中で前記ビニル単量体をラジカル重合させることによってビニル系重合体を製造する、いわゆる溶液ラジカル重合法を適用することが好ましい。   Examples of the vinyl polymer usable as the polymer (a ′) include an acid group-containing vinyl monomer, a hydroxyl group-containing vinyl monomer bonded to a silicon atom, and / or a hydrolyzable group bonded to a silicon atom. It can be produced by polymerizing the containing vinyl monomer and, if necessary, other vinyl monomers by a polymerization method such as a bulk radical polymerization method, a solution radical polymerization method or a non-aqueous dispersion radical polymerization method. Especially, since it is easy to manufacture, it is preferable to apply a so-called solution radical polymerization method in which a vinyl polymer is manufactured by radical polymerization of the vinyl monomer in an organic solvent.

前記ラジカル重合法で前記ビニル単量体を重合させる際には、必要に応じて重合開始剤を使用することができる。かかる重合開始剤としては、例えば、2,2′−アゾビス(イソブチロニトリル)、2,2′−アゾビス(2,4−ジメチルバレロニトリル)、2,2′−アゾビス(2−メチルブチロニトリル)等のアゾ化合物類;tert−ブチルパーオキシピバレート、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシ−2−エチルヘキサノエート、ジ−tert−ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等の過酸化物類等が挙げられる。   When the vinyl monomer is polymerized by the radical polymerization method, a polymerization initiator can be used as necessary. Examples of such polymerization initiators include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2-methylbutyronitrile). Azo compounds such as nitrile); tert-butyl peroxypivalate, tert-butyl peroxybenzoate, tert-butyl peroxy-2-ethylhexanoate, di-tert-butyl peroxide, cumene hydroperoxide, diisopropyl And peroxides such as peroxycarbonate.

前記有機溶剤としては、例えば、n−ヘキサン、n−ヘプタン、n−オクタン、シクロヘキサン、シクロペンタン等の脂肪族系又は脂環族系の炭化水素類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;メタノール、エタノール、n−ブタノール、エチレングルコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;酢酸エチル、酢酸n−ブチル、酢酸n−アミル、エチレングリコールモノメチルエーテルアセテート、プロピレングルコールモノメチルエーテルアセテート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn−アミルケトン、シクロヘキサノン等のケトン類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のポリアルキレングリコールジアルキルエーテル類;1,2−ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類;N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、エチレンカーボネート等が挙げられ、これらの1種又は2種以上を使用することができる。   Examples of the organic solvent include aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, n-octane, cyclohexane, and cyclopentane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene. Alcohols such as methanol, ethanol, n-butanol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether; ethyl acetate, n-butyl acetate, n-amyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate Esters such as acetone; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl n-amyl ketone, cyclohexanone; diethylene glycol dimethyl ether, diethylene glycol dibutyl ether Such as polyalkylene glycol dialkyl ethers; ethers such as 1,2-dimethoxyethane, tetrahydrofuran, dioxane; N-methylpyrrolidone, dimethylformamide, dimethylacetamide, ethylene carbonate, etc., and one or more of these Can be used.

重合体(a′)としては、500〜200,000の範囲の数平均分子量を有するものが好ましく、700〜100,000の範囲を有するものがより好ましく、1,000〜50,000の範囲を有するものが特に好ましい。このような範囲内の数平均分子量を有する重合体(a′)を使用することによって、複合樹脂(ABC)を製造する際の増粘やゲル化を防止でき、且つ耐久性に優れた塗膜を形成することができる。   The polymer (a ') preferably has a number average molecular weight in the range of 500 to 200,000, more preferably in the range of 700 to 100,000, and in the range of 1,000 to 50,000. What has is especially preferable. By using the polymer (a ′) having a number average molecular weight within such a range, it is possible to prevent thickening and gelation during the production of the composite resin (ABC) and to have excellent durability. Can be formed.

次に、前記製造工程(I)においてポリシロキサンセグメント(B)を構成するために用いるオルガノアルコキシシラン(b)及び/又はその加水分解縮合物(b−1)について説明する。
オルガノアルコキシシラン(b)としては、特に限定はしないが、特に、分散安定性に優れる複合樹脂(ABC)を製造することができ、且つ耐久性に優れた塗膜を形成することができることから、炭素数4〜12の有機基を有するモノオルガノトリアルコキシシランと、メチル基及び/又はエチル基の2個を有するジオルガノジアルコキシシランがいずれも好ましい。
オルガノアルコキシシラン(b)の加水分解縮合物(b−1)は、オルガノアルコキシシラン(b)を加水分解縮合させたものであればよく、特に限定はしないが、珪素原子結合の炭素数4〜12の有機基を有するモノオルガノトリアルコキシシラン、及び/又は、珪素原子結合のメチル基及び/又はエチル基の2個を有するジオルガノジアルコキシシランを加水分解縮合させたものがいずれも好ましい。
Next, the organoalkoxysilane (b) and / or its hydrolysis condensate (b-1) used for constituting the polysiloxane segment (B) in the production step (I) will be described.
The organoalkoxysilane (b) is not particularly limited, but in particular, a composite resin (ABC) excellent in dispersion stability can be produced, and a coating film excellent in durability can be formed. A monoorganotrialkoxysilane having an organic group having 4 to 12 carbon atoms and a diorganodialkoxysilane having two methyl groups and / or ethyl groups are preferred.
The hydrolyzed condensate (b-1) of the organoalkoxysilane (b) is not particularly limited as long as it is a hydrolyzed condensate of the organoalkoxysilane (b). A monoorganotrialkoxysilane having 12 organic groups and / or a diorganodialkoxysilane having two silicon atom-bonded methyl and / or ethyl groups hydrolyzed and condensed are preferred.

前記珪素原子結合の炭素数4〜12の有機基を有するモノオルガノトリアルコキシシランとしては、例えば、iso−ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン等が挙げられる。
前記珪素原子結合のメチル基及び/又はエチル基の2個を有するジオルガノジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−ブトキシシラン、ジメチルジアセトキシシラン、ジエチルジメトキシシラン、ジエチルジアセトキシシラン等が挙げられる。
Examples of the monoorganotrialkoxysilane having a silicon atom-bonded organic group having 4 to 12 carbon atoms include iso-butyltrimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3- ( And (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, and the like.
Examples of the diorganodialkoxysilane having two silicon atom-bonded methyl groups and / or ethyl groups include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-butoxysilane, dimethyldiacetoxysilane, and diethyldimethoxy. Silane, diethyl diacetoxysilane, etc. are mentioned.

これらオルガノアルコキシシラン(b)のなかでは、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去できることから、iso−ブチルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシランが好ましい。また、これらオルガノアルコキシシラン(b)は、1種又は2種以上を使用することができる。
なお、前記製造工程(I)では、オルガノアルコキシシラン(b)の加水分解縮合物(b−1)を単独で用いることも十分可能であるが、加水分解縮合による複合樹脂(A′B)の製造が容易なことから、オルガノアルコキシシラン(b)の単独使用、又は、オルガノアルコキシシラン(b)とその加水分解縮合物(b−1)の併用が好ましく、オルガノアルコキシシラン(b)の単独使用が特に好ましい。ここにおいて、オルガノアルコキシシラン(b)の単独使用とは、オルガノアルコキシシラン(b)のみを用いることであり、オルガノアルコキシシラン(b)を2種以上併用する場合も含む。
Among these organoalkoxysilanes (b), the hydrolysis reaction can easily proceed and the by-products after the reaction can be easily removed. Therefore, iso-butyltrimethoxysilane, phenyltrimethoxysilane, and dimethyldimethoxysilane are used. preferable. Moreover, 1 type (s) or 2 or more types can be used for these organoalkoxysilane (b).
In addition, in the said manufacturing process (I), although it is also possible to use the hydrolysis-condensation product (b-1) of organoalkoxysilane (b) independently, of composite resin (A'B) by hydrolysis condensation is sufficient. Since it is easy to produce, it is preferable to use an organoalkoxysilane (b) alone or a combination of an organoalkoxysilane (b) and its hydrolysis condensate (b-1), and use an organoalkoxysilane (b) alone. Is particularly preferred. Here, the single use of the organoalkoxysilane (b) is to use only the organoalkoxysilane (b), and includes the case where two or more organoalkoxysilanes (b) are used in combination.

前記製造工程(I)における加水分解縮合反応は、各種の方法で反応を進行させることができるが、前記製造工程(I)の途中で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。
前記触媒としては、例えば、塩酸、硫酸、燐酸等の無機酸類;p−トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム、水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ−n−ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1−メチルイミダゾール等の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレート、ハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫、ステアリン酸錫など錫カルボン酸塩等が挙げられ、これらの1種又は2種以上を使用することができる。
The hydrolysis condensation reaction in the production step (I) can proceed by various methods, but there is a method in which the reaction is advanced by supplying water and a catalyst during the production step (I). Simple and preferable.
Examples of the catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate and acetic acid; inorganic bases such as sodium hydroxide and potassium hydroxide; tetraisopropyl titanate; Titanate esters such as tetrabutyl titanate; 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), 1, Compounds containing basic nitrogen atoms such as 4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 1-methylimidazole; tetramethylammonium Quaternary compounds such as salt, tetrabutylammonium salt, dilauryldimethylammonium salt, etc. Quaternary ammonium salts having chloride, bromide, carboxylate, hydroxide, etc. as counter anions; dibutyltin diacetate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin diacetylacetonate, tin octylate, Examples thereof include tin carboxylates such as tin stearate, and one or more of these can be used.

前記触媒は、前記オルガノアルコキシシラン(b)及び/又はその加水分解縮合物(b−1)100質量部に対して、0.0001〜10質量部の範囲で使用することが好ましく、0.0005〜3質量部の範囲で使用することがより好ましく、0.001〜1質量部の範囲で使用することが特に好ましい。
また、前記加水分解縮合反応を進行させる際に使用する水は、前記オルガノアルコキシシラン(b)及び/又はその加水分解縮合物(b−1)が有する加水分解性基及び水酸基の1モルに対して、0.05モル以上が適切であり、好ましくは0.1モル以上、特に好ましくは0.5〜3.0モルである。
前記触媒及び水は、一括供給でも逐次供給であってもよく、触媒と水とを予め混合したものを供給してもよい。
The catalyst is preferably used in the range of 0.0001 to 10 parts by mass with respect to 100 parts by mass of the organoalkoxysilane (b) and / or its hydrolysis condensate (b-1). It is more preferable to use in the range of ˜3 parts by mass, and it is particularly preferable to use in the range of 0.001 to 1 part by mass.
The water used when the hydrolysis condensation reaction proceeds is based on 1 mol of the hydrolyzable group and hydroxyl group of the organoalkoxysilane (b) and / or the hydrolysis condensate (b-1) thereof. 0.05 mol or more is appropriate, preferably 0.1 mol or more, particularly preferably 0.5 to 3.0 mol.
The catalyst and water may be supplied all at once or sequentially, or a catalyst and water mixed in advance may be supplied.

前記加水分解縮合反応の反応温度は、0〜150℃の範囲内が適切であり、好ましくは20〜100℃の範囲内である。また、反応の圧力としては、常圧、加圧下又は減圧下のいずれの条件においても行うことができる。
前記加水分解縮合反応において生成し得る副生成物であるアルコールや水は、得られる表面処理組成物の安定性等を低下させる場合には、蒸留などの方法により除去してもよい。
The reaction temperature of the hydrolysis condensation reaction is suitably in the range of 0 to 150 ° C, and preferably in the range of 20 to 100 ° C. The reaction can be carried out under normal conditions, under pressure or under reduced pressure.
Alcohol and water, which are by-products that can be generated in the hydrolysis-condensation reaction, may be removed by a method such as distillation, in order to reduce the stability of the surface treatment composition to be obtained.

次に、前記製造工程(II)においてポリシロキサンセグメント(C)を構成するために用いるアルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)について説明する。
前記アルキル基の炭素数が1〜3のアルキルトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、iso−プロピルトリメトキシシラン等が挙げられ、これらのなかでも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去できることから、メチルトリメトキシシラン、エチルトリメトキシシランが好ましい。これらアルキルトリアルコキシシランは、1種又は2種以上を使用することができる。
Next, the alkyltrialkoxysilane condensate (c) having 1 to 3 carbon atoms in the alkyl group used for constituting the polysiloxane segment (C) in the production step (II) will be described.
Examples of the alkyltrialkoxysilane having 1 to 3 carbon atoms in the alkyl group include, for example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, and iso-propyl. Examples include trimethoxysilane, and among these, methyltrimethoxysilane and ethyltrimethoxysilane are preferable because the hydrolysis reaction can easily proceed and by-products after the reaction can be easily removed. These alkyltrialkoxysilanes can be used alone or in combination of two or more.

前記アルキルトリアルコキシシランからその縮合物(c)を得る方法としては、特に限定はなく各種の方法が挙げられるが、水と触媒とを供給することで加水分解縮合反応を進行させる方法が簡便で好ましい。
その際に使用する水と触媒については、前記製造工程(I)での加水分解縮合反応と同様の条件で使用することができる。
また、前記製造工程(II)においては、アルキル基の炭素数が1〜3のアルキルトリアルコキシシランの縮合物(c)に加えて、その他のシラン化合物やその加水分解縮合物を併用することができる。
There are no particular limitations on the method for obtaining the condensate (c) from the alkyltrialkoxysilane, and various methods can be mentioned, but a method of proceeding the hydrolysis condensation reaction by supplying water and a catalyst is simple. preferable.
About the water and catalyst used in that case, it can be used on the same conditions as the hydrolysis-condensation reaction in the said manufacturing process (I).
Moreover, in the said manufacturing process (II), in addition to the condensate (c) of alkyl trialkoxysilane whose alkyl group has 1 to 3 carbon atoms, other silane compounds and hydrolysis condensates thereof may be used in combination. it can.

前記その他のシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラn−プロポキシシラン等の4官能アルコキシシラン化合物;該4官能アルコキシシラン化合物の加水分解縮合物等が挙げられる。これらは、本発明が奏する効果を損なわない範囲で併用することができる。
前記4官能アルコキシシラン化合物やその加水分解縮合物を併用する場合には、前記ポリシロキサンセグメント(B)とポリシロキサンセグメント(C)を構成する全珪素原子100モル%に対して、該4官能アルコキシシラン化合物やその加水分解縮合物の有する珪素原子が、20モル%を超えない範囲で併用することが好ましい。
Examples of the other silane compounds include tetrafunctional alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, and tetra n-propoxysilane; hydrolysis condensates of the tetrafunctional alkoxysilane compounds, and the like. These can be used in combination as long as the effects of the present invention are not impaired.
When the tetrafunctional alkoxysilane compound or a hydrolysis condensate thereof is used in combination, the tetrafunctional alkoxy is used with respect to 100 mol% of all silicon atoms constituting the polysiloxane segment (B) and the polysiloxane segment (C). It is preferable to use together in the range which the silicon atom which a silane compound and its hydrolysis condensate does not exceed 20 mol%.

本発明で使用する水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n−及びイソプロパノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール類;ポリアルキレングリコールのアルキルエーテル類;N−メチル−2−ピロリドン等のラクタム類、などが挙げられる。本発明では、水のみを用いてもよく、また水及び水と混和する有機溶剤との混合物を用いてもよく、水と混和する有機溶剤のみを用いてもよい。安全性や環境に対する負荷の点から、水のみ、又は、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。   Examples of the aqueous medium used in the present invention include water, an organic solvent miscible with water, and a mixture thereof. Examples of the organic solvent miscible with water include alcohols such as methanol, ethanol, n- and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; Alkyl ethers; lactams such as N-methyl-2-pyrrolidone, and the like. In the present invention, only water may be used, or a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and load on the environment, water alone or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable.

次に、表面処理組成物を構成する成分(β)である、水酸基と反応する官能基を有する水性エポキシエステル樹脂について説明する。
水性エポキシエステル樹脂は、エポキシ樹脂分子中の水酸基に、脂肪酸やロジンのような一塩基酸や、無水フタル酸などの二塩基酸を反応させて、エステル化したものであり、エステル化した樹脂末端のカルボキシル基の中和によるイオン化によって水分散した樹脂である。
Next, an aqueous epoxy ester resin having a functional group that reacts with a hydroxyl group, which is a component (β) constituting the surface treatment composition, will be described.
Aqueous epoxy ester resin is esterified by reacting a hydroxyl group in the epoxy resin molecule with a monobasic acid such as fatty acid or rosin or a dibasic acid such as phthalic anhydride. It is a resin dispersed in water by ionization by neutralization of the carboxyl group.

上記のようなエポキシエステル樹脂と複合樹脂(ABC)とを複合化した樹脂は、他の樹脂(ビニル系樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、エチレン樹脂など)と複合化した場合や、複合樹脂(ABC)と硬化剤(イソシアネートなど)を複合化した場合に比べて、格段に加工後耐食性が向上する複合化効果が得られることが判った。このような顕著な複合化効果が得られるメカニズムについては必ずしも明確ではないが、エポキシ樹脂が他の樹脂に比べて樹脂皮膜の酸素透過抑制性に優れており、腐食反応の起点となる酸素還元反応(O+2HO→4OH+e−)が抑制されるとともに、エポキシ樹脂に変性されたエステル樹脂末端のカルボキシル基(−COOH)が複合樹脂(ABC)の水酸基(−OH)と脱水縮合反応することで、エポキシエステル樹脂と複合樹脂(ABC)が強固に結合して緻密な複合樹脂皮膜となり、複合樹脂(ABC)のポリシロキサンセグメントによる優れた酸素透過抑制性とエポキシ樹脂の優れた酸素透過抑制性が相乗効果を発揮したものと考えられる。 When the above epoxy ester resin and composite resin (ABC) are combined with other resins (vinyl resin, polyester resin, epoxy resin, polyurethane resin, acrylic resin, ethylene resin, etc.) In addition, it was found that the composite effect that the corrosion resistance after processing is remarkably improved can be obtained as compared with the case where the composite resin (ABC) and the curing agent (such as isocyanate) are combined. The mechanism by which such a remarkable compounding effect can be obtained is not always clear, but the epoxy resin is superior in oxygen permeation suppression of the resin film compared to other resins, and the oxygen reduction reaction that is the starting point of the corrosion reaction (O 2 + 2H 2 O → 4OH + e−) is suppressed, and the carboxyl group (—COOH) at the end of the ester resin modified with the epoxy resin is dehydrated and condensed with the hydroxyl group (—OH) of the composite resin (ABC). As a result, the epoxy ester resin and the composite resin (ABC) are firmly bonded to form a dense composite resin film, and the oxygen permeation suppressive and the oxygen permeation of the epoxy resin are excellent due to the polysiloxane segment of the composite resin (ABC). It is considered that the inhibitory property exerted a synergistic effect.

これに対して、複合樹脂(ABC)単独の場合や複合樹脂(ABC)を硬化剤などで硬化させた場合は、皮膜が硬くなるためプレス加工を受けた際に皮膜損傷やクラックの発生が顕著になり、加工後耐食性が劣化する。図1は、複合樹脂(ABC)のみで表面処理皮膜を形成した表面処理鋼板について、プレス加工後の皮膜表面を観察したSEM像であるが、皮膜表面にクラックの発生が著しい。一方、エポキシエステル樹脂と複合樹脂(ABC)とを複合化させた場合は、皮膜損傷やクラックの発生が効果的に抑制される。図2は、複合樹脂(ABC)とエポキシエステル樹脂を複合化した樹脂組成物で表面処理皮膜を形成した表面処理鋼板について、プレス加工後の皮膜表面を観察したSEM像であるが、図1に較べて皮膜表面のクラックはごく僅かである。
そして、このような皮膜損傷の抑制によって、特に優れた加工後耐食性が得られるものと考えられる。
On the other hand, when the composite resin (ABC) is used alone or when the composite resin (ABC) is cured with a curing agent or the like, the film becomes hard, so that the occurrence of film damage or cracks is remarkable when subjected to press working. And the corrosion resistance deteriorates after processing. FIG. 1 is an SEM image of the surface of a surface-treated steel sheet formed with a composite resin (ABC) only, and the surface of the film after press working is observed. Cracks are remarkably generated on the surface of the film. On the other hand, when the epoxy ester resin and the composite resin (ABC) are combined, the occurrence of film damage and cracks is effectively suppressed. FIG. 2 is an SEM image obtained by observing the film surface after press working on a surface-treated steel sheet in which a surface-treated film is formed with a resin composition obtained by combining a composite resin (ABC) and an epoxy ester resin. In comparison, there are very few cracks on the coating surface.
And it is thought that the especially outstanding corrosion resistance after a process is acquired by suppression of such film | membrane damage.

水性エポキシエステル樹脂としては、例えば、DIC(株)製のウォーターゾールBM−1000P、EFD−5501P、EFD−5530、EFD−5560、EFD−5580(いずれも商品名)、(株)日本触媒製のアロロン5、7、27(いずれも商品名)、荒川化学工業(株)製のモデピクス301、302、304(いずれも商品名)などが挙げられる。これらはいずれもディスパージョンと呼ばれる水性タイプであり、水溶性樹脂に比べて耐水性が優れている。また、エマルション樹脂に比べて樹脂粒子径が小さいため、複合樹脂(ABC)と複合化した際に緻密な皮膜となることで、酸素透過抑制性や加工性に優れることから、好ましいエポキシエステル樹脂である。   Examples of the aqueous epoxy ester resin include Watersol BM-1000P, EFD-5501P, EFD-5530, EFD-5560, EFD-5580 (all trade names) manufactured by DIC Corporation, and Nippon Shokubai Co., Ltd. Examples include Alloron 5, 7, and 27 (all are trade names) and Modelix 301, 302, and 304 (all are trade names) manufactured by Arakawa Chemical Industries, Ltd. These are all water-based types called dispersions, and are superior in water resistance compared to water-soluble resins. In addition, since the resin particle size is smaller than that of the emulsion resin, it becomes a dense film when it is combined with the composite resin (ABC), so that it is excellent in oxygen permeation suppression and workability. is there.

成分(α)である複合樹脂(ABC)の水性化物と成分(β)である水性エポキシエステル樹脂との複合化の割合は、固形分の質量比(α)/(β)で70/30〜40/60であることが好ましい。質量比(α)/(β)が70/30超では、皮膜が硬くなるためプレス加工を受けた際に皮膜損傷やクラックが発生しやすくなり、加工後耐食性が低下する傾向がある。一方、質量比(α)/(β)が40/60未満では、ポリシロキサンセグメントによる酸素透過抑制性が低下しやすくなり、耐食性が劣化する傾向がある。
このように成分(α)である複合樹脂(ABC)の水性化物と成分(β)である水性エポキシエステル樹脂とを複合化することにより、硬化剤は本発明の表面処理組成物では必要としない。
The ratio of the composite of the composite resin (ABC), which is the component (α), and the aqueous epoxy ester resin, which is the component (β), is 70/30 to the solid mass ratio (α) / (β). It is preferable that it is 40/60. When the mass ratio (α) / (β) is more than 70/30, the coating becomes hard, so that coating damage or cracks are likely to occur when subjected to press working, and the post-processing corrosion resistance tends to decrease. On the other hand, if mass ratio ((alpha)) / ((beta)) is less than 40/60, the oxygen-permeation suppression property by a polysiloxane segment will fall easily, and there exists a tendency for corrosion resistance to deteriorate.
Thus, the curing agent is not required in the surface treatment composition of the present invention by complexing the aqueous product of the composite resin (ABC) as the component (α) and the aqueous epoxy ester resin as the component (β). .

次に、表面処理組成物を構成する成分(γ)である非クロム系防錆添加剤について説明する。
この非クロム系防錆添加剤は、耐食性向上を目的として表面処理組成物に配合され、これにより特に優れた防食性能(自己補修性)を得ることができる。
この非クロム系防錆添加剤としては、特に下記(γ1)〜(γ5)の中から選ばれる1つ以上を用いることが好ましい。
(γ1)酸化ケイ素
(γ2)カルシウム及び/又はカルシウム化合物
(γ3)難溶性リン酸化合物
(γ4)モリブデン酸化合物
(γ5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
これら(γ1)〜(γ5)の非クロム系防錆添加剤の詳細及び防食機構は以下の通りである。
Next, the non-chromium rust preventive additive which is the component (γ) constituting the surface treatment composition will be described.
This non-chromium-based rust preventive additive is blended in the surface treatment composition for the purpose of improving the corrosion resistance, whereby a particularly excellent anticorrosion performance (self-repairability) can be obtained.
As the non-chromium rust preventive additive, it is particularly preferable to use one or more selected from the following (γ1) to (γ5).
(Γ1) silicon oxide (γ2) calcium and / or calcium compound (γ3) poorly soluble phosphate compound (γ4) molybdate compound (γ5) selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams One or more organic compounds containing S atoms The details and anticorrosion mechanisms of these non-chromium rust preventive additives (γ1) to (γ5) are as follows.

まず、上記(γ1)の成分としては、微粒子シリカであるコロイダルシリカや乾式シリカを使用することができる。加工がない場合の耐食性の観点からは特に、カルシウムをその表面に結合させたカルシウムイオン交換シリカを使用するのが望ましいが、加工した場合には、粒子径が大きいカルシウムイオン交換シリカ(平均粒子径3μm)は、粒子径の小さいコロイダルシリカや乾式シリカ(平均粒子径4〜20nm)に比べて、加工により皮膜損傷が大きく、加工後耐食性に劣る傾向にあることから微粒子シリカのほうが好ましい。特に粒子径が14nm以下のもの、さらには8nm以下の微細なものが耐食性、加工後耐食性の観点から好ましい。   First, as the component (γ1), colloidal silica or dry silica, which is fine particle silica, can be used. From the viewpoint of corrosion resistance when there is no processing, it is particularly desirable to use calcium ion exchange silica in which calcium is bound to the surface. However, when processed, calcium ion exchange silica having a large particle size (average particle size) 3 μm) is more preferable for fine particle silica because it has a larger film damage due to processing and is inferior in corrosion resistance after processing than colloidal silica and dry silica (average particle size of 4 to 20 nm) having a small particle size. In particular, those having a particle diameter of 14 nm or less, and more preferably those having a particle diameter of 8 nm or less are preferred from the viewpoints of corrosion resistance and post-processing corrosion resistance.

コロイダルシリカとしては、例えば、日産化学(株)製のスノーテックスS、OS、NS、XS、NXS(いずれも商品名)などを用いることができる。また、ヒュームドシリカとしては、日本アエロジル(株)製のAEROSIL130、200、300、300CF(いずれも商品名)を用いることができる。また、カルシウムイオン交換シリカとしては、W.R.Grace&Co.製のSHIELDEX C303、SHIELDEX
AC3、SHIELDEX AC5(いずれも商品名)、富士シリシア化学(株)製のSHIELDEX、SHIELDEX SY710(いずれも商品名)などを用いることができる。これらシリカは、腐食環境下において緻密で安定な亜鉛の腐食生成物の生成に寄与し、この腐食生成物がめっき表面に緻密に形成されることによって、腐食の促進を抑制する。
As colloidal silica, for example, Snowtex S, OS, NS, XS, NXS (all trade names) manufactured by Nissan Chemical Co., Ltd. can be used. As fumed silica, AEROSIL130, 200, 300, 300CF (all trade names) manufactured by Nippon Aerosil Co., Ltd. can be used. As calcium ion exchange silica, WRGrace & Co. SHIELDEX C303, SHIELDEX made
AC3, SHIELDEX AC5 (all are trade names), SHIELDEX, SHIELDEX SY710 (all are trade names) manufactured by Fuji Silysia Chemical Co., Ltd., and the like can be used. These silicas contribute to the production of dense and stable zinc corrosion products in a corrosive environment, and the corrosion products are formed densely on the plating surface, thereby suppressing the promotion of corrosion.

また、上記(γ2)、(γ3)の成分は沈殿作用によって特に優れた防食性能(自己補修性)を発現する。
上記(γ2)の成分であるカルシウム化合物は、カルシウム酸化物、カルシウム水酸化物、カルシウム塩のいずれでもよく、これらの1種又は2種以上を使用できる。また、カルシウム塩の種類にも特に制限はなく、ケイ酸カルシウム、炭酸カルシウム、リン酸カルシウムなどのようなカチオンとしてカルシウムのみを含む単塩のほか、リン酸カルシウム・亜鉛、リン酸カルシウム・マグネシウムなどのようなカルシウムとカルシウム以外のカチオンを含む複塩を使用してもよい。この(γ2)の成分は、腐食環境下においてめっき金属である亜鉛やアルミニウムよりも卑なカルシウムが優先溶解し、これがカソード反応により生成したOHと緻密で難溶性の生成物として欠陥部を封鎖し、腐食反応を抑制する。また、上記のようなシリカとともに配合された場合には、表面にカルシウムイオンが吸着し、表面電荷を電気的に中和して凝集する。その結果、緻密で且つ難溶性の保護皮膜が生成して腐食が封鎖し、腐食反応を抑制する。
In addition, the above components (γ2) and (γ3) exhibit particularly excellent anticorrosion performance (self-repairing property) due to precipitation.
The calcium compound as the component (γ2) may be any of calcium oxide, calcium hydroxide, and calcium salt, and one or more of these can be used. In addition, there are no particular restrictions on the type of calcium salt. In addition to simple salts containing only calcium as a cation such as calcium silicate, calcium carbonate, and calcium phosphate, calcium and calcium such as calcium phosphate / zinc, calcium phosphate / magnesium, etc. Double salts containing other cations may be used. This (γ2) component preferentially dissolves base calcium over the plating metals zinc and aluminum in a corrosive environment, which seals the defective part as a dense and sparingly soluble product with OH produced by the cathode reaction. And suppress the corrosion reaction. Moreover, when it mix | blends with the above silicas, a calcium ion adsorb | sucks to the surface and neutralizes a surface charge electrically and aggregates. As a result, a dense and sparingly soluble protective film is formed to block the corrosion and suppress the corrosion reaction.

また、上記(γ3)である難溶性リン酸化合物としては、難溶性リン酸塩を用いることができる。この難溶性リン酸塩は単塩、複塩など全ての種類の塩を含む。また、それを構成する金属カチオンに限定はなく、難溶性のリン酸亜鉛、リン酸マグネシウム、リン酸カルシウム、リン酸アルミニウムなどのいずれの金属カチオンでもよい。また、リン酸イオンの骨格や縮合度などにも限定はなく、正塩、二水素塩、一水素塩または亜リン酸塩のいずれでもよく、さらに、正塩はオルトリン酸塩の他、ポリリン酸塩などの全ての縮合リン酸塩を含む。この難溶性リン化合物は、腐食によって溶出しためっき金属の亜鉛やアルミニウムが、加水分解により解離したリン酸イオンと錯形成反応により緻密で且つ難溶性の保護皮膜を生成して腐食起点を封鎖し、腐食反応を抑制する。   Moreover, as a poorly soluble phosphoric acid compound which is said ((gamma) 3), a poorly soluble phosphate can be used. This sparingly soluble phosphate includes all types of salts such as single salts and double salts. Moreover, there is no limitation in the metal cation which comprises it, and any metal cation, such as poorly soluble zinc phosphate, magnesium phosphate, calcium phosphate, aluminum phosphate, may be sufficient. Further, there is no limitation on the skeleton or the degree of condensation of phosphate ions, and any of normal salt, dihydrogen salt, monohydrogen salt or phosphite may be used. In addition, orthophosphate may be polyphosphate other than orthophosphate. Includes all condensed phosphates such as salts. This hardly soluble phosphorus compound is a metal plating zinc or aluminum eluted by corrosion, and forms a dense and hardly soluble protective film by complexing reaction with phosphate ions dissociated by hydrolysis, thereby blocking the origin of corrosion. Inhibits corrosion reactions.

また、上記(γ4)のモリブデン酸化合物としては、例えば、モリブデン酸塩を用いることができる。このモリブデン酸塩は、その骨格、縮合度に限定はなく、例えば、オルトモリブデン酸塩、パラモリブデン酸塩、メタモリブデン酸塩などが挙げられる。また、単塩、複塩などの全ての塩を含み、複塩としてはリン酸モリブデン酸塩などが挙げられる。モリブデン酸化合物は不動態化効果によって自己補修性を発現する。すなわち、腐食環境下で溶存酸素と共にめっき皮膜表面に緻密な酸化物を形成することで腐食起点を封鎖し、腐食反応を抑制する。   In addition, as the molybdate compound (γ4), for example, molybdate can be used. The molybdate is not limited in its skeleton and degree of condensation, and examples thereof include orthomolybdate, paramolybdate, and metamolybdate. Moreover, all salts, such as a single salt and a double salt, are included, and phosphoric acid molybdate etc. are mentioned as a double salt. Molybdate compounds exhibit self-repairing properties due to the passivating effect. That is, by forming a dense oxide on the plating film surface together with dissolved oxygen in a corrosive environment, the corrosion starting point is blocked and the corrosion reaction is suppressed.

また、上記(γ5)の有機化合物としては、例えば、以下のようなものを挙げることができる。すなわち、トリアゾール類としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、1H−ベンゾトリアゾールなどが、またチオール類としては、1,3,5−トリアジン−2,4,6−トリチオール、2−メルカプトベンツイミダゾールなどが、またチアジアゾール類としては、5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどが、またチアゾール類としては、2−N,N−ジエチルチオベンゾチアゾール、2−メルカプトベンゾチアゾール類などが、またチウラム類としては、テトラエチルチウラムジスルフィドなどが、それぞれ挙げられる。これらの有機化合物は吸着効果によって自己補修性を発現する。すなわち、腐食によって溶出した亜鉛やアルミニウムがこれらの有機化合物が有する硫黄を含む極性基に吸着して不活性皮膜を形成することで腐食起点を封鎖し、腐食反応を抑制する。   Examples of the organic compound (γ5) include the following. That is, as triazoles, 1,2,4-triazole, 3-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 5-amino-3-mercapto-1,2 1,4-triazole, 1H-benzotriazole, etc., and as thiols, 1,3,5-triazine-2,4,6-trithiol, 2-mercaptobenzimidazole, etc., and as thiadiazoles, 5- Amino-2-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole and the like, and as thiazoles, 2-N, N-diethylthiobenzothiazole, 2-mercapto Examples include benzothiazoles, and examples of thiurams include tetraethylthiuram disulfide. It is. These organic compounds exhibit self-repairing properties due to the adsorption effect. That is, zinc and aluminum eluted by corrosion are adsorbed on polar groups containing sulfur contained in these organic compounds to form an inert film, thereby blocking the corrosion starting point and suppressing the corrosion reaction.

非クロム系防錆添加剤の配合量は、成分(α)と成分(β)の合計の固形分100質量部に対して、固形分の割合で1〜50質量部、好ましくは5〜30質量部とするのが適当である。この非クロム系防錆添加剤の配合量が1質量部未満では、耐アルカリ脱脂後の耐食性向上効果が十分に得られず、一方、50質量部を超えると塗装性及び加工性が低下するだけでなく、耐食性も低下するので好ましくない。
なお、上記(γ1)〜(γ5)の防錆添加剤を2種以上複合添加してもよい。
また、表面処理皮膜(および表面処理組成物)中には、腐食抑制剤として、他の酸化物微粒子(例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなど)、リンモリブデン酸塩(例えば、リンモリブデン酸アルミニウムなど)、有機インヒビター(例えば、ヒドラジンおよびその誘導体、チオール化合物、チオカルバミン酸塩など)などの1種又は2種以上を添加できる。
The compounding amount of the non-chromium-based rust preventive additive is 1 to 50 parts by mass, preferably 5 to 30 parts by mass, based on 100 parts by mass of the total solids of the component (α) and the component (β). The part is appropriate. If the blending amount of this non-chromium rust preventive additive is less than 1 part by mass, the effect of improving the corrosion resistance after alkali degreasing cannot be sufficiently obtained. On the other hand, if it exceeds 50 parts by mass, only the paintability and workability are lowered. Moreover, since corrosion resistance also falls, it is not preferable.
Two or more rust preventive additives (γ1) to (γ5) may be added in combination.
Further, in the surface treatment film (and surface treatment composition), other oxide fine particles (for example, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, antimony oxide, etc.), phosphomolybdate as corrosion inhibitors. One or more of an organic inhibitor (for example, hydrazine and derivatives thereof, a thiol compound, a thiocarbamate, and the like) can be added.

表面処理皮膜中には、さらに必要に応じて、皮膜の加工性を向上させる目的で固形潤滑剤を配合することができる。
本発明に適用できる固形潤滑剤としては、例えば、以下のようなものが挙げられ、これらの1種又は2種以上を用いることができる。
(1)ポリオレフィンワックス、パラフィンワックス:例えば、ポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス、塩素化炭化水素など
(2)フッ素樹脂微粒子:例えば、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂など)、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂など
また、この他にも、脂肪酸アミド系化合物(例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オレイン酸アミド、エシル酸アミド、アルキレンビス脂肪酸アミドなど)、金属石けん類(例えば、ステアリン酸カルシウム、ステアリン酸鉛、ラウリン酸カルシウム、パルミチン酸カルシウムなど)、金属硫化物(例えば、二硫化モリブデン、二硫化タングステンなど)、グラファイト、フッ化黒鉛、窒化ホウ素、ポリアルキレングリコール、アルカリ金属硫酸塩などの1種又は2種以上を用いてもよい。
If necessary, a solid lubricant can be blended in the surface treatment film for the purpose of improving the workability of the film.
Examples of the solid lubricant that can be applied to the present invention include the following, and one or more of these can be used.
(1) Polyolefin wax, paraffin wax: For example, polyethylene wax, synthetic paraffin, natural paraffin, micro wax, chlorinated hydrocarbon, etc. (2) Fluororesin fine particles: For example, polyfluoroethylene resin (polytetrafluoroethylene resin, etc.) In addition to these, fatty acid amide compounds (for example, stearic acid amide, palmitic acid amide, methylene bisstearamide, ethylene bisstearamide, oleic acid amide, esyl) Acid amides, alkylene bis-fatty acid amides), metal soaps (eg, calcium stearate, lead stearate, calcium laurate, calcium palmitate), metal sulfides (eg, molybdenum disulfide, tungsten disulfide, etc.) Etc.), graphite, fluorinated graphite, boron nitride, polyalkylene glycols, may be used one or more, such as alkali metal sulfates.

本発明に好適な固形潤滑剤としては、以下のポリエチレン、ポリテトラフルオロエチレン樹脂が挙げられ、これらを複合して用いることができる。
ポリエチレンとしては、例えば、三井石油化学(株)製のケミパールW−100、ケミパールW−200、ケミパールW−500、ケミパールW−800、ケミパールW−950(いずれも商品名)などを用いることができる。
また、ポリテトラフルオロエチレンとしては、例えば、(株)喜多村製のKD−100CS、KD−120AS(いずれも商品名)、ダイキン工業(株)製のルブロンLDW−40(商品名)、三井・デュポン(株)製のテフロン30J、120J(いずれも商品名)、旭硝子(株)製のフルオンAD−1、AD−639、AD−660、AD−938L(いずれも商品名)などが好適である。
Examples of the solid lubricant suitable for the present invention include the following polyethylene and polytetrafluoroethylene resins, which can be used in combination.
As the polyethylene, for example, Chemipearl W-100, Chemipearl W-200, Chemipearl W-500, Chemipearl W-800, Chemipearl W-950 (all trade names) manufactured by Mitsui Petrochemical Co., Ltd. can be used. .
Examples of polytetrafluoroethylene include KD-100CS and KD-120AS (both trade names) manufactured by Kitamura Co., Ltd., Lubron LDW-40 (trade name) manufactured by Daikin Industries, Ltd., and Mitsui DuPont. Teflon 30J and 120J (all trade names) manufactured by Co., Ltd., and Fullon AD-1, AD-639, AD-660, and AD-938L (all trade names) manufactured by Asahi Glass Co., Ltd. are preferable.

本発明では、これらのポリエチレンとポリテトラフルオロエチレンを特定の比率で複合添加することが好ましい。これらを複合添加することにより、それぞれ単独で添加した場合に比べて優れた加工性を得ることができる。ポリエチレンとポリテトラフルオロエチレンの混合比率は、ポリエチレン/ポリテトラフルオロエチレンの質量比で5/5〜1/9が好ましい。この範囲外では加工性に関して十分な複合効果が得られず、単独添加の場合とほとんど変化がない。
表面処理皮膜中での固形潤滑剤の配合量は、成分(α)と成分(β)の合計100質量部(固形分)に対して、10〜30質量部(固形分)、好ましくは15〜30質量部(固形分)とすることが好ましい。固形潤滑剤の配合量が10質量部未満では加工性の向上効果が乏しく、一方、配合量が30質量部を超えると塗装性が低下するので好ましくない。
In the present invention, it is preferable to add these polyethylene and polytetrafluoroethylene in a specific ratio. By adding these in a composite manner, excellent processability can be obtained as compared with the case of adding them individually. The mixing ratio of polyethylene and polytetrafluoroethylene is preferably 5/5 to 1/9 in terms of the mass ratio of polyethylene / polytetrafluoroethylene. Outside this range, a sufficient combined effect on processability cannot be obtained, and there is almost no change from the case of addition alone.
The blending amount of the solid lubricant in the surface treatment film is 10 to 30 parts by mass (solid content), preferably 15 to 100 parts by mass (solid content) of the component (α) and the component (β). It is preferable to set it as 30 mass parts (solid content). If the blending amount of the solid lubricant is less than 10 parts by mass, the effect of improving the workability is poor. On the other hand, if the blending amount exceeds 30 parts by mass, the paintability is undesirably reduced.

本発明の表面処理鋼板が有する表面処理皮膜には、さらに必要に応じて、添加剤として、有機着色顔料(例えば、縮合多環系有機顔料、フタロシアニン系有機顔料など)、着色染料(例えば、有機溶剤可溶性アゾ系染料、水溶性アゾ系金属染料など)、無機顔料(例えば、酸化チタンなど)、キレート剤(例えば、チオールなど)、導電性顔料(例えば、亜鉛、アルミニウム、ニッケルなどの金属粉末、リン化鉄、アンチモンドープ型酸化錫など)、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、メラミン・シアヌル酸付加物などの1種又は2種以上を添加することができる。
表面処理皮膜の乾燥膜厚は3.0〜15μm、好ましくは5.0〜10μmとする。膜厚が3.0μm未満では耐食性が不十分であり、一方、膜厚が15μmを超えると接着接合性や上塗り塗装性が低下する。
If necessary, the surface-treated film of the surface-treated steel sheet of the present invention may further include an organic color pigment (for example, a condensed polycyclic organic pigment, a phthalocyanine-based organic pigment), a color dye (for example, organic) as an additive. Solvent-soluble azo dyes, water-soluble azo metal dyes, etc.), inorganic pigments (eg, titanium oxide), chelating agents (eg, thiols), conductive pigments (eg, metal powders such as zinc, aluminum, nickel, etc.) 1 type, or 2 or more types, such as an iron phosphide and antimony dope-type tin oxide), a coupling agent (for example, a silane coupling agent, a titanium coupling agent, etc.), a melamine cyanuric acid adduct, etc. can be added. .
The dry film thickness of the surface treatment film is 3.0 to 15 μm, preferably 5.0 to 10 μm. When the film thickness is less than 3.0 μm, the corrosion resistance is insufficient. On the other hand, when the film thickness exceeds 15 μm, adhesive bondability and top coatability are deteriorated.

本発明の高耐食性表面処理鋼板は、亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、第一層として、クロムを含まない膜厚が0.01〜2μmの有機系皮膜、無機系皮膜又は有機無機複合皮膜を形成し、その上層に第二層として、上述した表面処理皮膜を形成してもよい。
以下、この第一層皮膜とこの皮膜形成用の表面処理組成物について説明する。
第一層皮膜の機能は、亜鉛系めっきと強固な密着性を付与し、第一層皮膜−めっき界面でのめっき金属の腐食を抑制することにある。このような第一層皮膜(好ましくは反応層を有する第一層皮膜)と、上述した表面処理皮膜(第二層皮膜)との二層化により、単層の場合よりもさらに優れた耐食性を実現することができる。
第一層皮膜は、亜鉛系めっきとの反応層を形成する狙いで、非晶質性のリン酸化合物を含有することが望ましい。非晶質性のリン酸化合物は、亜鉛との密着性を確保する上で有利であるばかりでなく、皮膜中の可溶性リン酸が亜鉛を捕捉して白錆の発生を抑制する効果がある。
The highly corrosion-resistant surface-treated steel sheet of the present invention is an organic film, inorganic film or organic film having a film thickness of 0.01 to 2 μm not containing chromium as the first layer on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet. An inorganic composite film may be formed, and the above-described surface treatment film may be formed as a second layer thereon.
Hereinafter, the first layer coating and the surface treatment composition for forming the coating will be described.
The function of the first layer film is to impart strong adhesion to the zinc-based plating and to suppress corrosion of the plated metal at the first layer film-plating interface. Corrosion resistance even better than in the case of a single layer is achieved by forming the first layer film (preferably a first layer film having a reaction layer) and the surface treatment film (second layer film) described above. Can be realized.
The first layer film preferably contains an amorphous phosphate compound for the purpose of forming a reaction layer with zinc-based plating. The amorphous phosphoric acid compound is not only advantageous for ensuring adhesion with zinc, but also has an effect of suppressing the generation of white rust by the soluble phosphoric acid in the film capturing the zinc.

このような非晶質性のリン酸化合物にコロイド状無機酸化物(微粒子)などを配合することもできる。この酸化物微粒子としては、二酸化珪素が望ましく、コロイダルシリカ、例えば、日産化学(株)製のスノーテックスO、OS、OXS、OUP、AK、O40、OL、OZL(以上酸性溶液)、スノーテックスXS、S、NXS、NS、N、QAS−25、LSS−35、LSS−45、LSS−75(以上アルカリ性溶液)などを適用できる。また、触媒化成工業(株)製のカタロイドS、SI−350、SI−40、SA(以上アルカリ性溶液)、カタロイドSN(酸性溶液)、旭電化工業(株)製のアデライトAT−20〜50、AT−20N、AT−300、AT−300S(以上アルカリ性溶液)、アデライトAT20Q(酸性溶液)などを適用できる。これらのなかでも、特に粒子径が14nm以下のもの、さらには8nm以下の微細なものが耐食性の観点から好ましい。また、乾式シリカ微粒子を皮膜組成物溶液に分散させたものを用いてもよい。この乾式シリカとしては、日本アエロジル(株)製のAEROSIL200、300、300CF、380などを用いることができ、なかでも粒子径12nm以下、望ましくは7nm以下のものが好ましい。   A colloidal inorganic oxide (fine particles) can be blended with such an amorphous phosphate compound. The oxide fine particles are preferably silicon dioxide, colloidal silica such as SNOWTEX O, OS, OXS, OUP, AK, O40, OL, OZL (above acidic solution), SNOWTEX XS manufactured by Nissan Chemical Co., Ltd. , S, NXS, NS, N, QAS-25, LSS-35, LSS-45, LSS-75 (alkaline solution) and the like can be applied. Also, Cataloid S, SI-350, SI-40, SA (alkaline solution), Cataloid SN (acid solution), Adelite AT-20-50 manufactured by Asahi Denka Kogyo Co., Ltd. AT-20N, AT-300, AT-300S (above alkaline solution), Adelite AT20Q (acidic solution) and the like can be applied. Of these, particles having a particle diameter of 14 nm or less, and particularly fine particles of 8 nm or less are preferred from the viewpoint of corrosion resistance. Alternatively, dry silica fine particles dispersed in a coating composition solution may be used. As this dry silica, AEROSIL200, 300, 300CF, 380 manufactured by Nippon Aerosil Co., Ltd. can be used, and those having a particle diameter of 12 nm or less, preferably 7 nm or less are preferable.

上記のほか、酸化物微粒子としては、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなどのコロイド溶液、微粉末を用いることもできる。
なお、従来のリン酸塩処理(結晶性)は、加工性・溶接性が劣るため好ましくない。
また、第一層皮膜は、無機系皮膜、有機系皮膜、有機無機複合皮膜のいずれでもよいが、自動車用鋼板として厳しいプレス加工を配慮すると、有機樹脂を配合していることが望ましく、このため有機系皮膜又は有機無機複合皮膜が好ましい。有機樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、ポリアルキレングリコール変性エポキシ樹脂、及びこれらをさらに変性させた樹脂が好ましい。
In addition to the above, colloidal solutions and fine powders such as aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, and antimony oxide can be used as the oxide fine particles.
In addition, the conventional phosphating (crystallinity) is not preferable because workability and weldability are inferior.
In addition, the first layer film may be any of an inorganic film, an organic film, and an organic-inorganic composite film. However, in consideration of severe press working as a steel sheet for automobiles, it is desirable to incorporate an organic resin. An organic film or an organic-inorganic composite film is preferred. As the organic resin, an epoxy resin, a modified epoxy resin, a polyhydroxy polyether resin, a polyalkylene glycol-modified epoxy resin, and a resin obtained by further modifying these are preferable.

さらに、これらにシランカップリング剤などを添加することにより、耐食性をより向上させることができる。このシランカップリング剤としては、例えば、ビニルメトキシシラン、ビニルエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメエキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、p−スチリルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、γ−イソシアネートプロピルトリエトキシシラン、γ−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−(ビニルベンジルアミン)−β−アミノエチル−γ−アミノプロピルトリメトキシシランなどを挙げることができ、これらの1種を単独で又は2種類以上を混合して使用することができる。これらのシランカップリング剤を含む皮膜が耐食性に優れる理由は、水溶液中のシランカップリグ剤が加水分解することにより生じたシラノール基(Si−OH)がめっき皮膜表面と水素結合をし、さらには脱水縮合反応により優れた密着性を付与するためであると考えられる。   Furthermore, by adding a silane coupling agent or the like to these, the corrosion resistance can be further improved. Examples of the silane coupling agent include vinyl methoxy silane, vinyl ethoxy silane, vinyl trichloro silane, vinyl trimethoxy silane, vinyl triethoxy silane, β- (3,4 epoxy cyclohexyl) ethyl trimethoxy silane, and γ-glycid. Xylpropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ -Aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-me Tacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, γ -Acryloxypropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, γ-isocyanatopropyl Triethoxysilane, γ-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- (vinylbenzylamine) -β-aminoethyl-γ-aminopropyltri Etc. can be mentioned Tokishishiran can use these alone or in combination of two or more kinds. The reason why the film containing these silane coupling agents is excellent in corrosion resistance is that silanol groups (Si-OH) generated by hydrolysis of the silane coupling agent in the aqueous solution hydrogen bond with the surface of the plating film. This is considered to be due to imparting excellent adhesion by the dehydration condensation reaction.

第一層皮膜(有機系皮膜、無機系皮膜又は有機無機複合皮膜)の乾燥膜厚は0.01〜2μm、好ましくは0.1〜1.0μmとする。膜厚が0.01μm未満では耐食性が不十分であり、一方、膜厚が2μmを超えると加工性や接着接合性が低下する。
第二層となる表面処理皮膜の膜厚は、さきに述べた理由により3.0〜15μm、好ましくは5〜10μmとする。
The dry film thickness of the first layer film (organic film, inorganic film or organic-inorganic composite film) is 0.01 to 2 μm, preferably 0.1 to 1.0 μm. When the film thickness is less than 0.01 μm, the corrosion resistance is insufficient. On the other hand, when the film thickness exceeds 2 μm, the workability and adhesive bondability are lowered.
The film thickness of the surface treatment film to be the second layer is set to 3.0 to 15 μm, preferably 5 to 10 μm, for the reason described above.

次に、本発明の表面処理鋼板の製造方法について説明する。
亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に上述した表面処理皮膜を形成するには、上述した組成を有する表面処理組成物(処理液)を乾燥皮膜厚が上記範囲となるようにめっき鋼板面に塗布し、水洗することなく加熱乾燥させることが好ましい。
表面処理組成物をめっき鋼板面にコーティングする方法は、塗布法、浸漬法、スプレー法のいずれでもよい。塗布法としては、ロールコーター(3ロール方式、2ロール方式など)、スクイズコーター、ダイコーターなどいずれの方法でもよい。また、スクイズコーターなどによる塗布処理または浸漬処理、スプレー処理の後に、エアナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行うことも可能である。
Next, the manufacturing method of the surface treatment steel plate of this invention is demonstrated.
In order to form the above-mentioned surface treatment film on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet, the surface-treated composition (treatment liquid) having the above-described composition is plated steel sheet surface so that the dry film thickness is in the above range. It is preferable to apply to and heat dry without washing with water.
The method for coating the surface treatment composition on the surface of the plated steel sheet may be any of an application method, a dipping method, and a spray method. As a coating method, any method such as a roll coater (3-roll method, 2-roll method, etc.), a squeeze coater, or a die coater may be used. In addition, after the coating process or dipping process using a squeeze coater or the like, or the spray process, the coating amount can be adjusted, the appearance can be made uniform, and the film thickness can be made uniform by an air knife method or a roll drawing method.

表面処理組成物をコーティングした後は、水洗することなく加熱乾燥を行う。加熱乾燥手段としては、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥は到達板温で30〜150℃、好ましくは40℃〜140℃の範囲で行うことが望ましい。この加熱乾燥温度が30℃未満では皮膜中に水分が多量に残り、耐食性が不十分となりやすい。また、加熱乾燥温度が150℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じ耐食性が低下しやすくなる。また、加熱乾燥温度が150℃を超えるとBH鋼板に適用できなくなるため好ましくない。   After coating the surface treatment composition, drying is performed without washing with water. As the heating and drying means, a dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace or the like can be used. Heat drying is preferably performed in the range of 30 to 150 ° C., preferably 40 to 140 ° C., at the ultimate plate temperature. If the heating and drying temperature is less than 30 ° C., a large amount of moisture remains in the film, and the corrosion resistance tends to be insufficient. In addition, when the heating and drying temperature exceeds 150 ° C., not only is it uneconomical, but defects are generated in the film, and the corrosion resistance tends to be lowered. Moreover, since it becomes impossible to apply to a BH steel plate when heat drying temperature exceeds 150 degreeC, it is unpreferable.

また、亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、第一層として有機系皮膜、無機系皮膜又は有機無機複合皮膜を有し、その上層に第二層として、上述した表面処理皮膜を有する表面処理鋼板を製造する場合には、第一層形成用の表面処理組成物(処理液)を乾燥皮膜厚が上記範囲となるようにめっき鋼板面に塗布し、水洗することなく加熱乾燥させる。表面処理組成物をめっき鋼板面にコーティングする方法と加熱乾燥する方法は、上記と同様である。加熱乾燥は到達板温で30〜160℃、好ましくは50〜140℃の範囲で行うことが望ましい。加熱乾燥温度が30℃未満では、表面処理皮膜中に水分が多量に残存し、耐食性が不十分となりやすい。一方、160℃を超えると非経済的であるばかりでなく、BH鋼板に適用できなくなるため好ましくない。次いで、上述したと同様の方法で第二層である表面処理皮膜を形成する。   Moreover, it has an organic film, an inorganic film, or an organic-inorganic composite film as a first layer on the surface of a zinc-based plated steel sheet or an aluminum-based plated steel sheet, and has the above-described surface treatment film as a second layer thereon. When producing a surface-treated steel sheet, the surface treatment composition (treatment liquid) for forming the first layer is applied to the surface of the plated steel sheet so that the dry film thickness is in the above range, and is heated and dried without being washed with water. The method of coating the surface treatment composition on the surface of the plated steel plate and the method of heat drying are the same as described above. It is desirable that the heat drying is carried out in the range of 30 to 160 ° C., preferably 50 to 140 ° C., at the ultimate plate temperature. When the heating and drying temperature is less than 30 ° C., a large amount of moisture remains in the surface treatment film, and the corrosion resistance tends to be insufficient. On the other hand, if it exceeds 160 ° C., not only is it uneconomical, but it is not preferable because it cannot be applied to BH steel sheets. Next, a surface treatment film as the second layer is formed by the same method as described above.

<第一層形成用の表面処理組成物の調製>
表2に示すように、有機樹脂として水分散性エポキシ樹脂を用い、これにシランカップリング剤、リン酸などを適宜配合し、塗料用分散機(サンドグラインダー)を用いて所定時間撹拌し、第一層形成用の表面処理組成物を調製した。
<第二層形成用の表面処理組成物の調製>
樹脂組成物として、以下に示す合成例で調製された複合樹脂(ABC−1)〜(ABC−6)の水性分散体(本発明例では成分(α)に該当)と、表5に示す有機樹脂(本発明例では成分(β)に該当)を配合し、これに表6に示す非クロム系防錆添加剤(本発明例では成分(γ)に該当)、表7に示す固形潤滑剤を適宜配合し、塗料用分散機(サンドグラインダー)を用いて所定時間撹拌し、第二層形成用の表面処理組成物を調製した。以下に示す合成例1〜6の内容を表3及び表4に示す。
<Preparation of surface treatment composition for first layer formation>
As shown in Table 2, a water-dispersible epoxy resin is used as the organic resin, and a silane coupling agent, phosphoric acid, etc. are appropriately blended therein, and the mixture is stirred for a predetermined time using a paint disperser (sand grinder). A surface treatment composition for single layer formation was prepared.
<Preparation of surface treatment composition for forming second layer>
As the resin composition, an aqueous dispersion of composite resins (ABC-1) to (ABC-6) prepared in the synthesis examples shown below (corresponding to the component (α) in the present invention example) and the organics shown in Table 5 A resin (corresponding to the component (β) in the present invention example) was blended, and the non-chromium anticorrosive additive shown in Table 6 (corresponding to the component (γ) in the present invention example), and a solid lubricant shown in Table 7 Were appropriately mixed and stirred for a predetermined time using a disperser for coating (sand grinder) to prepare a surface treatment composition for forming a second layer. The contents of Synthesis Examples 1 to 6 shown below are shown in Tables 3 and 4.

・合成例1〔メチルトリメトキシシランの縮合物(c−1)の調製〕
撹拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(MTMS)1,421部(質量部。以下同様)を仕込んで、60℃まで昇温した。次いで、「A−3」(堺化学(株)製のiso−プロピルアシッドホスフェート)0.17部と脱イオン水207部との混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間撹拌して加水分解縮合反応を行なった。次いで、得られた縮合物を、300〜10mmHgの減圧下(メタノールの留去開始時の減圧条件が300mmHgで、最終的に10mmHgとなるまで減圧する条件をいう。以下、同様)、40〜60℃の温度範囲内で2時間蒸留することにより、生成したメタノール及び水を除去して、数平均分子量が1,000で、反応液中の有効成分が70質量%のメチルトリメトキシシランの縮合物(c−1)1,000部を得た。なお、前記反応液中の有効成分とは、MTMS、エチルトリメトキシシラン(ETMS)等のシランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)を縮合反応後の実収量(質量部)で除した値〔シランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)/縮合反応後の実収量(質量部)〕により算出したものである(以下、同様)。
Synthesis Example 1 [Preparation of methyltrimethoxysilane condensate (c-1)]
A reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet is charged with 1,421 parts (part by mass) of methyltrimethoxysilane (MTMS) and heated to 60 ° C. did. Next, a mixture of 0.17 part of “A-3” (iso-propyl acid phosphate manufactured by Sakai Chemical Co., Ltd.) and 207 parts of deionized water was added dropwise over 5 minutes. After completion of the dropwise addition, the temperature in the reaction vessel was raised to 80 ° C. and stirred for 4 hours to conduct a hydrolysis condensation reaction. Then, the obtained condensate is reduced under a reduced pressure of 300 to 10 mmHg (reduced pressure conditions at the start of methanol distillation are 300 mmHg and finally reduced to 10 mmHg; hereinafter the same), 40 to 60 Distilled within a temperature range of 0 ° C. for 2 hours to remove the generated methanol and water, and a methyltrimethoxysilane condensate having a number average molecular weight of 1,000 and an active ingredient in the reaction solution of 70% by mass (C-1) 1,000 parts were obtained. The active ingredient in the reaction solution is the theoretical yield (parts by mass) when all methoxy groups of silane monomers such as MTMS and ethyltrimethoxysilane (ETMS) undergo a condensation reaction. Part)) [theoretical yield when all methoxy groups of the silane monomer have undergone condensation reaction (mass part) / actual yield after condensation reaction (mass part)] (hereinafter the same).

・合成例2〔エチルトリメトキシシランの縮合物(c−2)の調製〕
合成例1と同様の反応容器に、エチルトリメトキシシラン(ETMS)1,296部を仕込んで、60℃まで昇温した。次いで、「A−3」0.14部と脱イオン水171部との混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間撹拌して加水分解縮合反応を行なった。次いで、得られた縮合物を、300〜10mmHgの減圧下、40〜60℃の温度範囲内で2時間蒸留することにより、生成したメタノール及び水を除去して、数平均分子量が1,100で、反応液中の有効成分が70質量%のエチルトリメトキシシランの縮合物(c−2)1,000部を得た。
Synthesis Example 2 [Preparation of condensate (c-2) of ethyltrimethoxysilane]
In the same reaction vessel as in Synthesis Example 1, 1,296 parts of ethyltrimethoxysilane (ETMS) was charged, and the temperature was raised to 60 ° C. Next, a mixture of 0.14 part of “A-3” and 171 parts of deionized water was added dropwise over 5 minutes. After completion of the dropwise addition, the temperature in the reaction vessel was raised to 80 ° C. and stirred for 4 hours to conduct a hydrolysis condensation reaction. Next, the obtained condensate was distilled for 2 hours in a temperature range of 40 to 60 ° C. under a reduced pressure of 300 to 10 mmHg to remove the generated methanol and water, and the number average molecular weight was 1,100. Then, 1,000 parts of an ethyltrimethoxysilane condensate (c-2) having an active ingredient content of 70% by mass in the reaction solution was obtained.

・合成例3〔複合樹脂(ABC−1)の水性分散体の調製〕
合成例1と同様の反応容器に、プロピレングリコールモノプロピルエーテル(PnP)126部、フェニルトリメトキシシラン(PTMS)59部及びジメチルジメトキシシラン(DMDMS)62部を仕込んで、80℃まで昇温した。次いで、同温度でメチルメタクリレート(MMA)21部、ブチルメタクリレート(BMA)20部、ブチルアクリレート(BA)14部、アクリル酸(AA)13部、3−メタクリルオキシプロピルトリメトキシシラン(MPTS)2部、PnP3.5部、及びtert−ブチルパーオキシ−2−エチルヘキサノエート(TBPEH)3.5部を含有する混合物を、前記反応容器中へ4時間で滴下し、滴下終了後、さらに同温度で2時間反応させてカルボキシル基と珪素原子に結合した加水分解性基を併有する数平均分子量14,000の重合体(a′−1)を得た後、「A−3」0.016部と脱イオン水45部との混合物を5分間で滴下し、さらに同温度で1時間撹拌して加水分解縮合反応を行ない、カルボキシル基と珪素原子に結合した加水分解性基を併有する重合体セグメントとPTMS及びDMDMS由来のポリシロキサンセグメントからなる複合樹脂(A′B−1)を得た。次いで、メチルトリメトキシシランの縮合物(c−1)290部を添加し、さらに、脱イオン水59部を添加して同温度で16時間撹拌し、加水分解縮合反応を行なって、前記複合樹脂(A′B−1)とメチルトリメトキシシランの縮合物(c−1)由来のポリシロキサンセグメント(C−1)が結合した複合樹脂(A′BC−1)を含有する反応液を得た。
Synthesis Example 3 [Preparation of aqueous dispersion of composite resin (ABC-1)]
In the same reaction vessel as in Synthesis Example 1, 126 parts of propylene glycol monopropyl ether (PnP), 59 parts of phenyltrimethoxysilane (PTMS) and 62 parts of dimethyldimethoxysilane (DMDMS) were charged, and the temperature was raised to 80 ° C. Next, at the same temperature, 21 parts of methyl methacrylate (MMA), 20 parts of butyl methacrylate (BMA), 14 parts of butyl acrylate (BA), 13 parts of acrylic acid (AA), 2 parts of 3-methacryloxypropyltrimethoxysilane (MPTS) A mixture containing 3.5 parts of PnP and 3.5 parts of tert-butylperoxy-2-ethylhexanoate (TBPEH) was dropped into the reaction vessel over 4 hours. To obtain a polymer (a′-1) having a number average molecular weight of 14,000 having both a carboxyl group and a hydrolyzable group bonded to a silicon atom, and then 0.016 part of “A-3”. A mixture of water and 45 parts of deionized water is added dropwise over 5 minutes, and the mixture is further stirred for 1 hour at the same temperature to carry out a hydrolytic condensation reaction to bond to a carboxyl group and a silicon atom. It was to obtain a hydrolyzable group and having both polymer segments and PTMS and DMDMS from polysiloxane segments consisting of composite resin (A'B-1). Next, 290 parts of a condensate (c-1) of methyltrimethoxysilane was added, 59 parts of deionized water was further added, and the mixture was stirred at the same temperature for 16 hours to conduct hydrolysis condensation reaction, and the composite resin A reaction solution containing a composite resin (A'BC-1) in which a polysiloxane segment (C-1) derived from a condensate (c-1) of (A'B-1) and methyltrimethoxysilane was bonded was obtained. .

次いで、得られた反応液を、300〜10mmHgの減圧下、40〜60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去した後、トリエチルアミン(TEA)15部を添加して複合樹脂(A′BC−1)中のカルボキシル基を中和して複合樹脂(ABC−1)とし、次いで、脱イオン水497部を添加することにより水性媒体中への分散を行ない、不揮発分が35質量%の複合樹脂(ABC−1)の水性分散体1,000部を得た。   Next, the obtained reaction liquid was distilled under reduced pressure of 300 to 10 mmHg for 2 hours at 40 to 60 ° C. to remove generated methanol and water, and then 15 parts of triethylamine (TEA) was added. The carboxyl group in the composite resin (A'BC-1) is neutralized to form a composite resin (ABC-1), and then dispersed in an aqueous medium by adding 497 parts of deionized water, and the non-volatile content Obtained 1,000 parts of an aqueous dispersion of 35% by mass of composite resin (ABC-1).

・合成例4〜8〔複合樹脂(ABC−2)〜(ABC−6)の水性分散体の調製〕
合成例3と同様の方法により、表4に示すように各化合物の比率を変えて、重合体セグメント(A)とポリシロキサンセグメント(B),(C)の固形分の質量比(A)/[(B)+(C)]が異なる複合樹脂(ABC−2)〜(ABC−6)を合成した。なお、合成例5と合成例6では、合成例3で使用したメチルトリメトキシシランの縮合物(c−1)に代えてエチルトリメトキシシランの縮合物(c−2)を、同じくブチルアクリレート(BA)に代えて2−エチルヘキシルメタクリレート(2−EHMA)をそれぞれ用いた。
これら複合樹脂(ABC−2)〜(ABC−6)に脱イオン水を添加することにより水性媒体中への分散を行ない、表4に示す不揮発分の複合樹脂(ABC−2)〜(ABC−6)の水性分散体1,000質量部を得た。
Synthesis Examples 4 to 8 [Preparation of aqueous dispersions of composite resins (ABC-2) to (ABC-6)]
In the same manner as in Synthesis Example 3, the ratio of each compound was changed as shown in Table 4, so that the mass ratio of the solid content of the polymer segment (A) and the polysiloxane segments (B) and (C) (A) / Composite resins (ABC-2) to (ABC-6) having different [(B) + (C)] were synthesized. In Synthesis Example 5 and Synthesis Example 6, instead of the methyltrimethoxysilane condensate (c-1) used in Synthesis Example 3, ethyltrimethoxysilane condensate (c-2) was similarly converted to butyl acrylate ( Instead of BA), 2-ethylhexyl methacrylate (2-EHMA) was used.
These composite resins (ABC-2) to (ABC-6) are dispersed in an aqueous medium by adding deionized water, and the non-volatile composite resins (ABC-2) to (ABC-) shown in Table 4 are used. 1,000 parts by weight of the aqueous dispersion 6) was obtained.

<表面処理鋼板の製造>
冷延鋼板をベースとした家電、建材、自動車部品用のめっき鋼板である、表1に示すめっき鋼板を処理原板として用いた。なお、鋼板の板厚は評価の目的に応じて所定の板厚のものを採用した。このめっき鋼板の表面をアルカリ脱脂処理、水洗乾燥した後、第一層形成用の表面処理組成物をロールコーターにより塗布し、110℃で加熱乾燥した。次いで、第二層形成用の表面処理組成物をロールコーターにより塗布し、140℃で加熱乾燥した。皮膜の膜厚は、表面処理組成物の固形分(加熱残分)または塗布条件(ロールの圧下力、回転速度など)により調整した。
<Manufacture of surface-treated steel sheets>
The plated steel sheet shown in Table 1, which is a plated steel sheet for home appliances, building materials, and automobile parts based on cold-rolled steel sheets, was used as a processing original sheet. In addition, the thing of predetermined | prescribed board thickness was employ | adopted for the board thickness of the steel plate according to the objective of evaluation. After the surface of this plated steel sheet was subjected to alkaline degreasing treatment, washed with water and dried, the surface treatment composition for forming the first layer was applied by a roll coater and dried by heating at 110 ° C. Next, the surface treatment composition for forming the second layer was applied by a roll coater and dried by heating at 140 ° C. The film thickness of the film was adjusted by the solid content (heating residue) of the surface treatment composition or coating conditions (rolling force of the roll, rotation speed, etc.).

<表面処理鋼板の品質性能の評価>
得られた表面処理鋼板の皮膜組成と品質性能(耐食性、加工後耐食性、接着接合性、上塗り塗装性)を評価した結果を表8〜表10に示す。なお、品質性能の評価は以下のようにして行った。
(1)耐食性
各サンプルについて、SAE−J2334に基づく複合サイクル試験(CCT)を施し、120サイクル経過後の白錆発生面積率及び赤錆発生面積率で評価した。
[月曜日〜金曜日]
湿潤(50℃、>95%RH):6時間

塩水浸漬(25℃):15分

乾燥(60℃・50%RH):17時間45分
[土曜日・日曜日]
乾燥(60℃・50%RH):終日
その評価基準は以下の通りである。
◎ :白錆発生面積率なし
○ :白錆発生面積率10%未満
○−:白錆発生面積率10%以上50%未満で赤錆発生なし
△ :白錆発生面積率50%以上で赤錆発生なし
× :赤錆発生あり
<Evaluation of quality performance of surface-treated steel sheet>
Tables 8 to 10 show the results of evaluating the coating composition and quality performance (corrosion resistance, post-processing corrosion resistance, adhesive bondability, top coatability) of the obtained surface-treated steel sheet. The quality performance was evaluated as follows.
(1) Corrosion resistance About each sample, the composite cycle test (CCT) based on SAE-J2334 was given, and the white rust generation | occurrence | production area ratio and red rust generation | occurrence | production area ratio after progress of 120 cycles were evaluated.
[Monday to Friday]
Wet (50 ° C,> 95% RH): 6 hours ↓
Salt water immersion (25 ° C): 15 minutes ↓
Drying (60 ° C, 50% RH): 17 hours 45 minutes [Saturday, Sunday]
Drying (60 ° C., 50% RH): all day The evaluation criteria are as follows.
◎: No white rust occurrence area rate ○: White rust occurrence area rate less than 10% ○-: White rust occurrence area rate of 10% to less than 50% No red rust occurrence △: White rust occurrence area rate of 50% or more ×: Red rust generated

(2)加工後耐食性
各サンプルに対して、下記の条件によるドロービードで変形と摺動を付加し、このサンプルを日本パーカライジング(株)製「FC−4460」を用いて、45℃、2分間の条件で脱脂した後、前記「(1)耐食性」で行ったCCTを施し、120サイクル経過後の白錆発生面積率及び赤錆発生面積率で評価した。
押付荷重:800kgf
引抜速度:1000mm/min
ビード肩R:オス側2mmR,メス側3mmR
押し込み深さ:7mm
使用油:スギムラ化学工業(株)製「プレトンR−352L」
その評価基準は以下の通りである。
◎ :白錆発生面積率10%未満
○ :白錆発生面積率10%以上30%未満
○−:白錆発生面積率30%以上50%未満で赤錆発生なし
△ :白錆発生面積率50%以上で赤錆発生なし
× :赤錆発生あり
(2) Corrosion resistance after processing For each sample, deformation and sliding were added with a draw bead under the following conditions, and this sample was used at 45 ° C. for 2 minutes using “FC-4460” manufactured by Nihon Parkerizing Co., Ltd. After degreasing under the conditions, the CCT performed in “(1) Corrosion resistance” was performed, and the white rust generation area ratio and the red rust generation area ratio after 120 cycles were evaluated.
Pressing load: 800kgf
Drawing speed: 1000mm / min
Bead shoulder R: Male side 2mmR, Female side 3mmR
Pushing depth: 7mm
Oil used: “Preton R-352L” manufactured by Sugimura Chemical Co., Ltd.
The evaluation criteria are as follows.
◎: White rust generation area rate less than 10% ○: White rust generation area rate of 10% or more and less than 30% ○-: White rust generation area rate of 30% or more and less than 50%, no red rust △: White rust generation area rate No red rust generated ×: Red rust generated

(3)接着接合性
各サンプルを25×200mmに剪断し、その表面に洗浄油(スギムラ化学工業(株)製「プレトン303P」)を1g/m塗布し、一日放置後、接着剤(アイシン化工(株)製「フェルコ5010」)をサンプルの25×100mmの範囲に塗布し、0.15mmのピアノ線を2本入れ、もう一方のサンプルを重ね合わせ、クリップで固定した。焼付処理を180℃×20分の条件で行った後、また一日放置してサンプルを作成した。接着剤を塗布していない部分の両端を、引張り試験機により5mm/minの条件で引っ張る剪断剥離試験を行い、その時の剪断強度を測定した。
その評価基準は以下の通りである。
◎ :25Mpa以上
○ :24MPa以上、25MPa未満
△ :22MPa以上、24MPa未満
× :22MPa未満
(3) Adhesive bondability Each sample was sheared to 25 × 200 mm, and 1 g / m 2 of cleaning oil (“Preton 303P” manufactured by Sugimura Chemical Industry Co., Ltd.) was applied to the surface. “Felco 5010” manufactured by Aisin Chemical Co., Ltd.) was applied to a range of 25 × 100 mm of the sample, two 0.15 mm piano wires were put, the other sample was overlapped, and fixed with a clip. After the baking treatment was performed under the conditions of 180 ° C. × 20 minutes, the sample was left again for one day to prepare a sample. A shear peeling test was conducted by pulling both ends of the portion where the adhesive was not applied under a condition of 5 mm / min with a tensile tester, and the shear strength at that time was measured.
The evaluation criteria are as follows.
◎: 25 MPa or more ○: 24 MPa or more, less than 25 MPa Δ: 22 MPa or more, less than 24 MPa ×: less than 22 MPa

(4)上塗り塗装性
各サンプルを日本パーカライジング(株)製「FC−E2001」を用いて、40℃×2分間の条件で脱脂した後、自動車用中塗り塗料(関西ペイント(株)製「TP−65−Pグレー」)を膜厚40μmとなるように塗装し、次いで、140℃×18分の焼付処理を行った。さらに、その表面に自動車用上塗り塗料(関西ペイント(株)製「ネオアミラック6000−4」)を膜厚40μmとなるように塗装した後、140℃×30分の焼付処理を行った。塗装したサンプルを40℃の純水中に500時間浸漬し、直ちに碁盤目(10×10個、2mm間隔)のカットを入れて接着テープによる貼着・剥離を行い、塗膜の剥離面積率を測定した。
その評価基準は以下の通りである。
◎ :剥離なし
○ :剥離面積率5%未満
△ :剥離面積率5%以上、20%未満
× :剥離面積率20%以上
(4) Top coat coating properties Each sample was degreased using “FC-E2001” manufactured by Nihon Parkerizing Co., Ltd. under conditions of 40 ° C. × 2 minutes, and then an intermediate coating for automobiles (“TP manufactured by Kansai Paint Co., Ltd.) −65-P gray ”) was applied to a film thickness of 40 μm, and then a baking process of 140 ° C. × 18 minutes was performed. Further, an automotive top coating (“Neoamylac 6000-4” manufactured by Kansai Paint Co., Ltd.) was applied to the surface so as to have a film thickness of 40 μm, and then subjected to a baking treatment at 140 ° C. for 30 minutes. The coated sample is immersed in pure water at 40 ° C. for 500 hours, immediately cut into grids (10 × 10, 2 mm intervals), and attached and peeled off with adhesive tape. It was measured.
The evaluation criteria are as follows.
◎: No peeling ○: Peeling area ratio less than 5% △: Peeling area ratio of 5% or more and less than 20% ×: Peeling area ratio of 20% or more

なお、表3及び表4に記載の各成分は以下のとおりである。
「MTMS」:メチルトリメトキシシラン
「ETMS」:エチルトリメトキシシラン
「PnP」:プロピレングリコールモノプロピルエーテル
「PTMS」:フェニルトリメトキシシラン
「DMDMS」:ジメチルジメトキシシラン
「MMA」:メチルメタクリレート
「BMA」:ブチルメタクリレート
「2−EHMA」:2−エチルヘキシルメタクリレート
「BA」:ブチルアクリレート
「AA」:アクリル酸
「MPTS」:3−メタクリロイルオキシプロピルトリメトキシシラン
「TBPEH」:tert−ブチルパーオキシ−2−エチルヘキサノエート
「TEA」:トリエチルアミン
In addition, each component of Table 3 and Table 4 is as follows.
“MTMS”: methyltrimethoxysilane “ETMS”: ethyltrimethoxysilane “PnP”: propylene glycol monopropyl ether “PTMS”: phenyltrimethoxysilane “DMDMS”: dimethyldimethoxysilane “MMA”: methylmethacrylate “BMA”: Butyl methacrylate “2-EHMA”: 2-ethylhexyl methacrylate “BA”: Butyl acrylate “AA”: Acrylic acid “MPTS”: 3-Methacryloyloxypropyltrimethoxysilane “TBPEH”: tert-butylperoxy-2-ethylhexa Noate "TEA": Triethylamine

なお、表8〜表10中に記載の*1〜*6は以下の内容を指す。
*1:表1に記載のめっき鋼板No.1〜9
*2:表2に記載の第1層用皮膜形成用の表面処理組成物No.1〜3
*3:表4に記載の複合樹脂(ABC)の水性分散体(ABC−1)〜(ABC−6)
*4:表5に記載の樹脂No.1〜10
*5:表6に記載の防錆添加剤No.1〜7
*6:表7に記載の固形潤滑剤No.1〜7
*7:質量部
In addition, * 1 to * 6 described in Tables 8 to 10 indicate the following contents.
* 1: Plated steel plate No. in Table 1 1-9
* 2: Surface treatment composition No. 1 for film formation for the first layer described in Table 2 1-3
* 3: Aqueous dispersions (ABC-1) to (ABC-6) of composite resins (ABC) described in Table 4
* 4: Resin No. described in Table 5 1-10
* 5: Rust preventive additive No. described in Table 6 1-7
* 6: Solid lubricant Nos. Listed in Table 7 1-7
* 7: Mass parts

Claims (7)

亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、下記成分(α)、(β)及び(γ)を含有し、成分(α)において複合樹脂(ABC)を構成する重合体セグメント(A)とポリシロキサンセグメント(B),(C)の固形分の質量比(A)/[(B)+(C)]が40/60〜20/80である表面処理組成物により形成される膜厚が3.0〜15μmの表面処理皮膜を有することを特徴とする表面処理鋼板。
成分(α):中和された酸基を有する重合体セグメント(A)と、ポリシロキサンセグメント(B)とが化学結合してなる複合樹脂(AB)のポリシロキサンセグメント(B)と、アルキル基の炭素数が1〜3のトリアルコキシシランの縮合物(c)由来のポリシロキサンセグメント(C)とが珪素−酸素結合を介して結合している複合樹脂(ABC)が水性媒体中に溶解又は分散してなる複合樹脂(ABC)の水性化物
成分(β):水酸基と反応する官能基を有する水性エポキシエステル樹脂
成分(γ):非クロム系防錆添加剤
A polymer segment (A) containing the following components (α), (β) and (γ) on the surface of a zinc-based plated steel plate or an aluminum-based plated steel plate, and constituting the composite resin (ABC) in the component (α): The film thickness formed by the surface treatment composition in which the mass ratio (A) / [(B) + (C)] of the solid content of the polysiloxane segments (B) and (C) is 40/60 to 20/80. A surface-treated steel sheet having a surface-treated film of 3.0 to 15 μm.
Component (α): a polysiloxane segment (B) of a composite resin (AB) in which a polymer segment (A) having a neutralized acid group and a polysiloxane segment (B) are chemically bonded, and an alkyl group A composite resin (ABC) in which the polysiloxane segment (C) derived from the condensate (c) of trialkoxysilane having 1 to 3 carbon atoms is bonded through a silicon-oxygen bond or dissolved in an aqueous medium Component (β): Aqueous epoxy ester resin having a functional group that reacts with a hydroxyl group Component (γ): Non-chromium rust preventive additive
表面処理組成物中の成分(α)と成分(β)の固形分の質量比(α)/(β)が70/30〜40/60であることを特徴とする請求項1に記載の表面処理鋼板。   2. The surface according to claim 1, wherein the mass ratio (α) / (β) of the solid content of the component (α) and the component (β) in the surface treatment composition is 70/30 to 40/60. Treated steel sheet. 表面処理組成物中の成分(β)がディスパージョンタイプの水性エポキシエステル樹脂であることを特徴とする請求項1又は2に記載の表面処理鋼板。   The surface-treated steel sheet according to claim 1 or 2, wherein the component (β) in the surface treatment composition is a dispersion type aqueous epoxy ester resin. 表面処理組成物が、成分(γ)を成分(α)と成分(β)の合計の固形分100質量部に対する固形分の割合で1〜50質量部含有することを特徴とする請求項1〜3のいずれかに記載の表面処理鋼板。   The surface treatment composition contains 1 to 50 parts by mass of the component (γ) in a ratio of the solid content to the total solid content of 100 parts by mass of the component (α) and the component (β). The surface-treated steel sheet according to any one of 3 above. 表面処理組成物が、成分(γ)として、下記(γ1)〜(γ5)の中から選ばれる1つ以上の防錆添加剤を含有することを特徴とする請求項1〜4のいずれかに記載の表面処理鋼板。
(γ1)酸化ケイ素
(γ2)カルシウムおよび/またはカルシウム化合物
(γ3)難溶性リン酸化合物
(γ4)モリブデン酸化合物
(γ5)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の、S原子を含有する有機化合物
The surface treatment composition contains one or more rust preventive additives selected from the following (γ1) to (γ5) as the component (γ). The surface-treated steel sheet described.
(Γ1) Silicon oxide (γ2) Calcium and / or calcium compound (γ3) Slightly soluble phosphate compound (γ4) Molybdate compound (γ5) Triazoles, thiols, thiadiazoles, thiazoles, thiurams One or more organic compounds containing S atoms
表面処理組成物が、さらに固形潤滑剤を含有することを特徴とする請求項1〜5のいずれかに記載の表面処理鋼板。   The surface-treated steel sheet according to any one of claims 1 to 5, wherein the surface treatment composition further contains a solid lubricant. 亜鉛系めっき鋼板又はアルミニウム系めっき鋼板の表面に、第一層として、クロムを含まない膜厚が0.01〜2μmの有機系皮膜、無機系皮膜又は有機無機複合皮膜を形成し、その上層に第二層として、請求項1〜6のいずれかに記載の表面処理皮膜を形成したことを特徴とする表面処理鋼板。   On the surface of the zinc-based plated steel sheet or aluminum-based plated steel sheet, an organic film, inorganic film or organic-inorganic composite film having a film thickness of 0.01 to 2 μm not containing chromium is formed as the first layer, and the upper layer is formed thereon. A surface-treated steel sheet, wherein the surface-treated film according to any one of claims 1 to 6 is formed as a second layer.
JP2012060571A 2012-03-16 2012-03-16 Surface-treated steel sheet Active JP5915293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060571A JP5915293B2 (en) 2012-03-16 2012-03-16 Surface-treated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060571A JP5915293B2 (en) 2012-03-16 2012-03-16 Surface-treated steel sheet

Publications (2)

Publication Number Publication Date
JP2013194258A JP2013194258A (en) 2013-09-30
JP5915293B2 true JP5915293B2 (en) 2016-05-11

Family

ID=49393587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060571A Active JP5915293B2 (en) 2012-03-16 2012-03-16 Surface-treated steel sheet

Country Status (1)

Country Link
JP (1) JP5915293B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911063B (en) * 2014-04-10 2016-07-27 攀钢集团攀枝花钢铁研究院有限公司 A kind of self-lubrication treatment agent compositions and hot dip aluminum zinc plate and preparation method thereof
JP6206373B2 (en) 2014-10-17 2017-10-04 信越化学工業株式会社 Method for producing organosilicon compound and metal surface treatment agent
RU2687326C1 (en) * 2015-06-04 2019-05-13 Ниппон Стил Энд Сумитомо Метал Корпорейшн Solution for surface treatment of coated steel sheet under hot pressing
KR101953952B1 (en) 2016-09-22 2019-03-04 주식회사 케이씨씨 Inorganic Zinc Paint Composition for Pretreatment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123435A (en) * 1977-04-04 1978-10-27 Kansai Paint Co Ltd Method of treating metal surface
JPH10315382A (en) * 1997-05-22 1998-12-02 Kawasaki Steel Corp Steel sheet of high corrosion resistance for fuel tank
JP2008106228A (en) * 2006-09-27 2008-05-08 Dainippon Ink & Chem Inc Aqueous composition for primary rust prevention treatment of steel sheet and primary rust prevention-treated steel sheet
JP2011105905A (en) * 2009-11-20 2011-06-02 Dic Corp Aqueous curable coating composition and method for producing the same

Also Published As

Publication number Publication date
JP2013194258A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP4922295B2 (en) Coated steel plate
JP6092786B2 (en) Aqueous binder composition for metal surface treatment agent
JP4685162B2 (en) Chromium-free low-temperature curing metal surface treatment composition and surface-treated steel sheet using the same
JP6315750B2 (en) Aqueous metal surface treatment agent
EP3730672B1 (en) Surface treatment solution composition for ternary hot-dip zinc alloy-plated steel sheet, providing excellent corrosion resistance and blackening resistance, ternary hot-dip zinc alloy-plated steel sheet surface-treated using same, and manufacturing method therefor
JP6455855B2 (en) Aqueous metal surface treatment agent
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
JP6242010B2 (en) Aqueous metal surface treatment composition
JP5915293B2 (en) Surface-treated steel sheet
WO2010007882A1 (en) Aqueous metal-surface-treating agent and surface-treated metal material
WO2015152187A1 (en) Metal surface treatment agent for zinc-plated steel material, coating method, and coated steel material
JP4879793B2 (en) High corrosion resistance surface-treated steel sheet
JP4180269B2 (en) Aqueous coating agent for steel, coating method and coated steel
JP2013119572A (en) Rust-preventive film
JP5345874B2 (en) High corrosion resistance surface-treated steel sheet
JP2012111983A (en) Metal surface treating agent and metal surface treatment method using the same
JP4180270B2 (en) Aqueous coating agent for steel, coating method and coated steel
JP2008106228A (en) Aqueous composition for primary rust prevention treatment of steel sheet and primary rust prevention-treated steel sheet
JP5900952B2 (en) Aqueous binder composition for metal surface treatment agent
JP6943870B2 (en) Aqueous metal surface treatment agent, metal surface treatment method and surface treatment metal plate
JP5441109B2 (en) High corrosion resistance surface-treated steel sheet
KR20090073635A (en) Surface treating composition of metal and method of manufacturing the same
JP6323424B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JPH0515175B2 (en)
JP5612460B2 (en) Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5915293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250