[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5910652B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5910652B2
JP5910652B2 JP2014053443A JP2014053443A JP5910652B2 JP 5910652 B2 JP5910652 B2 JP 5910652B2 JP 2014053443 A JP2014053443 A JP 2014053443A JP 2014053443 A JP2014053443 A JP 2014053443A JP 5910652 B2 JP5910652 B2 JP 5910652B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode active
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014053443A
Other languages
Japanese (ja)
Other versions
JP2014112563A (en
Inventor
川瀬 賢一
賢一 川瀬
小西池 勇
勇 小西池
正之 岩間
正之 岩間
貴一 廣瀬
貴一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2014053443A priority Critical patent/JP5910652B2/en
Publication of JP2014112563A publication Critical patent/JP2014112563A/en
Application granted granted Critical
Publication of JP5910652B2 publication Critical patent/JP5910652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、構成元素としてケイ素(Si)を含む負極活物質層を有するリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery having a negative electrode active material layer containing silicon (Si) as a constituent element.

近年、モバイル機器の高性能化および多機能化に伴い、それらの電源である二次電池の高容量化が要求されている。この要求に応える二次電池としてはリチウムイオン二次電池があるが、現在実用化されているものは負極に黒鉛を用いているので、電池容量は飽和状態にあり、大幅な高容量化は難しい。そこで、負極にケイ素などを用いることが検討されており、最近では、気相法などにより負極集電体に負極活物質層を形成することも報告されている(例えば、特許文献1〜3参照)。ケイ素などは充放電に伴う膨張収縮が大きいので、微粉化によるサイクル特性の低下が問題であったが、気相法などによれば、微細化を抑制することができると共に、負極集電体と負極活物質層とを一体化することができるので負極における電子伝導性が極めて良好となり、容量的にもサイクル寿命的にも高性能化が期待されている。   In recent years, as mobile devices have higher performance and more functions, there is a demand for higher capacities of secondary batteries serving as power sources thereof. Secondary batteries that meet this requirement include lithium ion secondary batteries, but those currently in practical use use graphite for the negative electrode, so the battery capacity is saturated and it is difficult to achieve significant increases in capacity. . Therefore, it has been studied to use silicon or the like for the negative electrode, and recently, it has been reported that a negative electrode active material layer is formed on the negative electrode current collector by a vapor phase method or the like (see, for example, Patent Documents 1 to 3). ). Since silicon and the like have a large expansion / contraction due to charging / discharging, deterioration of cycle characteristics due to pulverization has been a problem. However, according to a vapor phase method or the like, miniaturization can be suppressed and a negative electrode current collector and Since the negative electrode active material layer can be integrated, the electron conductivity in the negative electrode becomes extremely good, and high performance is expected in terms of capacity and cycle life.

特開平8−50922号公報JP-A-8-50922 特許第2948205号公報Japanese Patent No. 2948205 特開平11−135115号公報Japanese Patent Laid-Open No. 11-135115

しかしながら、この負極でも、充放電に伴うケイ素の膨張収縮により充放電効率が低下し、十分なサイクル特性を得ることが難しいという問題があった。   However, even this negative electrode has a problem that charge and discharge efficiency is lowered due to expansion and contraction of silicon accompanying charge and discharge, and it is difficult to obtain sufficient cycle characteristics.

本発明はかかる問題点に鑑みてなされたもので、その目的は、充放電効率を向上させることができるリチウムイオン二次電池を提供することにある。   This invention is made | formed in view of this problem, The objective is to provide the lithium ion secondary battery which can improve charging / discharging efficiency.

本発明によるリチウムイオン二次電池は、正極および負極と共に電解質を備えたものであって、負極は、表面粗度Ra値が0.2μm以上である負極集電体と、この負極集電体と界面の少なくとも一部において合金化し、ケイ素を構成元素として含む負極活物質層とを有する。ここで、負極の満充電状態における単位面積当たりのリチウムの吸蔵量をA、負極の単位面積当たりにおける電気化学的に吸蔵可能なリチウムの量をBとしたとき、(A/B)×100で定義される最大利用率C%が40%以上60%以下である。 A lithium ion secondary battery according to the present invention includes an electrolyte together with a positive electrode and a negative electrode. The negative electrode includes a negative electrode current collector having a surface roughness Ra value of 0.2 μm or more, and the negative electrode current collector. An anode active material layer which is alloyed at least at a part of the interface and contains silicon as a constituent element. Here, when the amount of occlusion of lithium per unit area in the fully charged state of the negative electrode is A and the amount of lithium that can be occluded electrochemically per unit area of the negative electrode is B, (A / B) × 100 The maximum utilization rate C% defined is 40% or more and 60% or less .

本発明のリチウムイオン二次電池によれば、負極の最大利用率C%を60%以下とするようにしたので、負極活物質層の膨張収縮を抑制することができ、負極活物質層の脱落を抑制することができる。また、負極の最大利用率C%を40%以上とするようにしたので、使用されないケイ素による副反応を抑制することができると共に、充電状態における負極の電位を低くすることにより表面に良質な被膜を形成することができる。よって、充放電効率を向上させることができる。 According to the lithium ion secondary battery of the present invention, since the maximum utilization rate C% of the negative electrode is set to 60% or less , the expansion and contraction of the negative electrode active material layer can be suppressed, and the negative electrode active material layer is detached. Can be suppressed. In addition, since the maximum utilization C% of the negative electrode is set to 40% or more, side reactions caused by silicon that is not used can be suppressed, and a high-quality film can be formed on the surface by lowering the potential of the negative electrode in a charged state. Can be formed. Therefore, charge / discharge efficiency can be improved.

特に、負極活物質層における酸素の含有量を3原子数%以上とするようにすれば、また、第1層よりも酸素の含有量が多い第2層を少なくとも第1層の間に1層以上有するようにすれば、充放電効率をより向上させることができる。   In particular, if the oxygen content in the negative electrode active material layer is 3 atomic% or more, the second layer having a higher oxygen content than the first layer is at least one layer between the first layers. If it has it above, charging / discharging efficiency can be improved more.

本発明の第1の実施の形態に係る二次電池の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る二次電池の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery which concerns on the 2nd Embodiment of this invention. 図2に示した電極巻回体のI−I線に沿った構成を表す断面図である。It is sectional drawing showing the structure along the II line | wire of the electrode winding body shown in FIG.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る二次電池の構成を表すものである。この二次電池は、いわゆるコイン型といわれるものであり、外装カップ11に収容された負極12と、外装缶13に収容された正極14とを、液状の電解質である電解液を含浸させたセパレータ15を介して積層したものである。
(First embodiment)
FIG. 1 shows the configuration of the secondary battery according to the first embodiment of the present invention. This secondary battery is a so-called coin-type battery, and is a separator in which a negative electrode 12 accommodated in an exterior cup 11 and a positive electrode 14 accommodated in an exterior can 13 are impregnated with an electrolytic solution that is a liquid electrolyte. 15 are stacked.

外装カップ11および外装缶13の周縁部は絶縁性のガスケット16を介してかしめることにより密閉されている。外装カップ11および外装缶13は、例えば、ステンレスあるいはアルミニウムなどの金属によりそれぞれ構成されている。   The peripheral portions of the outer cup 11 and the outer can 13 are sealed by caulking through an insulating gasket 16. The exterior cup 11 and the exterior can 13 are made of, for example, a metal such as stainless steel or aluminum.

負極12は、例えば、負極集電体12Aと、負極集電体12Aに設けられた負極活物質層12Bとを有している。負極集電体12Aは、リチウムと金属間化合物を形成しない金属元素の少なくとも1種を含む金属材料により構成されていることが好ましい。リチウムと金属間化合物を形成すると、充放電に伴い膨張および収縮し、構造破壊が起こって、集電性が低下する他、負極活物質層12Bを支える能力が小さくなり負極活物質層12Bが負極集電体12Aから脱落し易いからである。リチウムと金属間化合物を形成しない金属元素としては、例えば、銅(Cu),ニッケル(Ni),チタン(Ti),鉄(Fe)あるいはクロム(Cr)が挙げられる。   The negative electrode 12 includes, for example, a negative electrode current collector 12A and a negative electrode active material layer 12B provided on the negative electrode current collector 12A. The anode current collector 12A is preferably made of a metal material containing at least one metal element that does not form an intermetallic compound with lithium. When lithium and an intermetallic compound are formed, they expand and contract with charge / discharge, structural breakdown occurs, current collection performance decreases, and the ability to support the negative electrode active material layer 12B decreases, so that the negative electrode active material layer 12B becomes a negative electrode. This is because it is easy to drop off from the current collector 12A. Examples of the metal element that does not form an intermetallic compound with lithium include copper (Cu), nickel (Ni), titanium (Ti), iron (Fe), and chromium (Cr).

負極集電体12Aを構成する金属材料としては、また、負極活物質層12Bと合金化する金属元素を含むものが好ましい。負極活物質層12Bと負極集電体12Aとの密着性を向上させることができ、負極活物質層12Bの脱落を抑制することができるからである。後述するように負極活物質層12Bが構成元素としてケイ素を含む場合には、リチウムと金属間化合物を形成せず、負極活物質層12Bと合金化する金属元素としては、銅,ニッケル,鉄が挙げられる。中でも、銅は十分な強度および導電性を得ることができるので好ましい。   As the metal material constituting the negative electrode current collector 12A, a material containing a metal element that forms an alloy with the negative electrode active material layer 12B is preferable. This is because the adhesion between the negative electrode active material layer 12B and the negative electrode current collector 12A can be improved, and the loss of the negative electrode active material layer 12B can be suppressed. As will be described later, when the negative electrode active material layer 12B contains silicon as a constituent element, copper, nickel, and iron are used as metal elements that do not form an intermetallic compound with lithium and alloy with the negative electrode active material layer 12B. Can be mentioned. Among these, copper is preferable because sufficient strength and conductivity can be obtained.

負極集電体12Aは、単層により構成してもよいが、複数層により構成してもよい。その場合、負極活物質層12Bと接する層をケイ素と合金化する金属材料により構成し、他の層を他の金属材料により構成するようにしてもよい。   The negative electrode current collector 12A may be composed of a single layer, but may be composed of a plurality of layers. In that case, the layer in contact with the negative electrode active material layer 12B may be made of a metal material alloyed with silicon, and the other layers may be made of another metal material.

負極集電体12Aの表面粗度Ra値は0.2μm以上であることが好ましい。負極活物質層12Bと負極集電体12Aとの密着性をより向上させることができるからである。また、負極集電体12Aの表面粗度Ra値は5μm以下であることが好ましい。表面粗度Ra値が高すぎると、負極活物質層12Bの膨張に伴い負極集電体12Aに亀裂が生じやすくなる恐れがあるからである。なお、表面粗度Ra値というのはJIS B0601に規定される算術平均粗さRaのことであり、負極集電体12Aのうち少なくとも負極活物質層12Bが設けられている領域の表面粗度Raが上述した範囲内であればよい。   The surface roughness Ra value of the negative electrode current collector 12A is preferably 0.2 μm or more. This is because the adhesion between the negative electrode active material layer 12B and the negative electrode current collector 12A can be further improved. Further, the surface roughness Ra value of the negative electrode current collector 12A is preferably 5 μm or less. This is because if the surface roughness Ra value is too high, the negative electrode current collector 12A is likely to be cracked as the negative electrode active material layer 12B expands. The surface roughness Ra value is the arithmetic average roughness Ra defined in JIS B0601, and the surface roughness Ra of the region where at least the negative electrode active material layer 12B is provided in the negative electrode current collector 12A. May be within the above-described range.

負極活物質層12Bは、構成元素としてケイ素を含んでいる。リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。ケイ素は、単体で含まれていてもよく、合金で含まれていてもよく、化合物で含まれていてもよい。   The negative electrode active material layer 12B contains silicon as a constituent element. This is because the ability to occlude and release lithium is large, and a high energy density can be obtained. Silicon may be contained as a simple substance, may be contained as an alloy, or may be contained as a compound.

負極活物質層12Bは、例えば、気相法,鍍金法,焼成法および溶射法からなる群のうちの少なくとも1つの方法により形成されたものであることが好ましい。充放電に伴う負極活物質層12の膨張・収縮による破壊を抑制することができると共に、負極集電体11と負極活物質層12とを一体化することができ、負極活物質層12における電子伝導性を向上させることができるからである。なお、「焼成法」というのは、活物質を含む粉末とバインダーとを混合し成形した層を、非酸化性雰囲気下等で熱処理することにより、熱処理前よりも体積密度が高く、より緻密な層を形成する方法を意味する。   The negative electrode active material layer 12B is preferably formed by at least one method selected from the group consisting of, for example, a vapor phase method, a plating method, a firing method, and a thermal spray method. Breakage due to expansion / contraction of the negative electrode active material layer 12 due to charge / discharge can be suppressed, the negative electrode current collector 11 and the negative electrode active material layer 12 can be integrated, and electrons in the negative electrode active material layer 12 can be integrated. This is because the conductivity can be improved. Note that the “firing method” means that a layer formed by mixing a powder containing an active material and a binder is heat-treated in a non-oxidizing atmosphere or the like, so that the volume density is higher than that before the heat treatment and the denser. It means the method of forming a layer.

負極活物質層12Bは、また、負極集電体12Aとの界面の少なくとも一部において負極集電体12Aと合金化していることが好ましい。上述したように、負極活物質層12Bと負極集電体12Aとの密着性を向上させることができるからである。具体的には、界面において負極集電体12Aの構成元素が負極活物質層12Bに、または負極活物質層12Bの構成元素が負極集電体12Aに、またはそれらが互いに拡散していることが好ましい。なお、本願では、上述した元素の拡散も合金化の一形態に含める。   The negative electrode active material layer 12B is preferably alloyed with the negative electrode current collector 12A at least at a part of the interface with the negative electrode current collector 12A. This is because the adhesion between the negative electrode active material layer 12B and the negative electrode current collector 12A can be improved as described above. Specifically, the constituent elements of the negative electrode current collector 12A are diffused into the negative electrode active material layer 12B, the constituent elements of the negative electrode active material layer 12B are diffused into the negative electrode current collector 12A, or they are mutually diffused at the interface. preferable. In the present application, the above-described element diffusion is included in one form of alloying.

負極活物質層12Bは、更に、構成元素として酸素を含んでいることが好ましい。負極活物質層12Bの膨張・収縮を抑制することができるからである。負極活物質層12Bに含まれる酸素の少なくとも一部は、ケイ素と結合していることが好ましく、結合の状態は一酸化ケイ素でも二酸化ケイ素でも、あるいはそれ以外の準安定状態でもよい。負極活物質層12Bにおける酸素の含有量は3原子数%以上であることが好ましい。より高い効果を得ることができるからである。また、負極活物質層12Bにおける酸素の含有量は40原子数%以下であることが好ましい。酸素の含有量が多くなりすぎると、負極12の抵抗が上昇して負荷特性が低下したり、あるいは電池容量が低下してしまうからである。なお、負極活物質層12Bには、充放電により電解液などが分解して負極活物質層12Bの表面に形成される被膜は含めない。よって、負極活物質層12Bにおける酸素の含有量を算出する際には、この被膜に含まれる酸素は含めない。   The negative electrode active material layer 12B further preferably contains oxygen as a constituent element. This is because the expansion / contraction of the negative electrode active material layer 12B can be suppressed. It is preferable that at least a part of oxygen contained in the negative electrode active material layer 12B is bonded to silicon, and the bonding state may be silicon monoxide, silicon dioxide, or other metastable state. The oxygen content in the negative electrode active material layer 12B is preferably 3 atomic% or more. This is because a higher effect can be obtained. The oxygen content in the negative electrode active material layer 12B is preferably 40 atomic% or less. This is because if the oxygen content is excessively high, the resistance of the negative electrode 12 increases and the load characteristics decrease, or the battery capacity decreases. Note that the negative electrode active material layer 12B does not include a coating film that is formed on the surface of the negative electrode active material layer 12B due to decomposition of the electrolytic solution by charge and discharge. Therefore, when the oxygen content in the negative electrode active material layer 12B is calculated, oxygen contained in the coating is not included.

加えて、負極活物質層12Bは、酸素の含有量が少ない第1層と、酸素の含有量が第1層よりも多い第2層とを交互に積層して有していることが好ましく、第2層は少なくとも第1層の間に1層以上存在することが好ましい。充放電に伴う膨張・収縮をより効果的に抑制することができるからである。例えば、第1層におけるケイ素の含有量は90原子数%以上であることが好ましく、酸素は含まれていても含まれていなくてもよいが、酸素の含有量はなるべく少ない方が好ましく、全く酸素を含んでおらず、含有量が零であればより好ましい。より高い容量を得ることができるからである。一方、第2層におけるケイ素の含有量は90原子数%以下、酸素の含有量は10原子数%以上であることが好ましい。膨張・収縮による構造破壊をより効果的に抑制することができるからである。第1層と第2層とは、負極集電体12Aの側から、第1層、第2層の順で積層されていてもよいが、第2層、第1層の順で積層されていてもよく、表面は第1層でも第2層でもよい。また、酸素の含有量は、第1層と第2層との間において段階的あるいは連続的に変化していることが好ましい。酸素の含有量が急激に変化すると、リチウムイオンの拡散性が低下し、抵抗が上昇してしまう場合があるからである。   In addition, the negative electrode active material layer 12B preferably has alternately stacked first layers having a low oxygen content and second layers having a higher oxygen content than the first layer. It is preferable that at least one second layer exists between at least the first layer. This is because expansion / contraction associated with charge / discharge can be more effectively suppressed. For example, the silicon content in the first layer is preferably 90 atomic% or more, and oxygen may or may not be contained, but the oxygen content is preferably as low as possible, More preferably, it does not contain oxygen and its content is zero. This is because a higher capacity can be obtained. On the other hand, the silicon content in the second layer is preferably 90 atomic% or less, and the oxygen content is preferably 10 atomic% or more. This is because structural destruction due to expansion / contraction can be more effectively suppressed. The first layer and the second layer may be laminated in the order of the first layer and the second layer from the negative electrode current collector 12A side, but are laminated in the order of the second layer and the first layer. The surface may be the first layer or the second layer. Moreover, it is preferable that the oxygen content changes stepwise or continuously between the first layer and the second layer. This is because, if the oxygen content changes abruptly, the diffusibility of lithium ions decreases and the resistance may increase.

この二次電池は、また、負極12の容量と正極14の容量との割合を調節することにより、負極12の最大利用率C%が35%以上85%以下の範囲内とされている。負極12の最大利用率C%を85%以下とすることにより、充放電に伴う負極活物質層12Bの膨張・収縮を抑制することができ、負極活物質層12Bの脱落を抑制することができるからである。また、負極12の最大利用率C%が35%よりも小さいと、使用されないケイ素による副反応が増大し、初回充放電効率が低下してしまう共に、充電状態における負極12の電位が高くなるので、負極12の表面に電解液の分解による良質な被膜が形成されにくくなり、副反応を十分に抑制することができないからである。この負極12の最大利用率C%は40%以上80%以下であればより好ましい。より高い効果を得ることができるからである。   In this secondary battery, the maximum utilization ratio C% of the negative electrode 12 is set in the range of 35% to 85% by adjusting the ratio between the capacity of the negative electrode 12 and the capacity of the positive electrode 14. By setting the maximum utilization rate C% of the negative electrode 12 to 85% or less, expansion / contraction of the negative electrode active material layer 12B accompanying charge / discharge can be suppressed, and dropping of the negative electrode active material layer 12B can be suppressed. Because. Further, if the maximum utilization ratio C% of the negative electrode 12 is smaller than 35%, side reaction due to unused silicon increases, and the initial charge / discharge efficiency decreases, and the potential of the negative electrode 12 in the charged state increases. This is because a good-quality film due to the decomposition of the electrolytic solution is hardly formed on the surface of the negative electrode 12, and the side reaction cannot be sufficiently suppressed. The maximum utilization C% of the negative electrode 12 is more preferably 40% or more and 80% or less. This is because a higher effect can be obtained.

なお、負極12の最大利用率C%というのは、負極12の満充電状態における単位面積当たりのリチウムの吸蔵量をA、負極12の単位面積当たりにおける電気化学的に吸蔵可能なリチウムの量をBとすると、C=(A/B)×100で定義されるものである。   Note that the maximum utilization ratio C% of the negative electrode 12 is the amount of lithium occluded per unit area when the negative electrode 12 is fully charged, and the amount of lithium that can be electrochemically occluded per unit area of the negative electrode 12. When B is defined, C = (A / B) × 100.

このうち負極12の満充電状態における単位面積当たりのリチウムの吸蔵量Aは、例えば、対応する充電機により満充電となるまで充電した電池を解体して、正極14と対向している部分の負極12の一部を検査負極として切り出し、金属リチウムを対極として評価電池を組み立てたのち、この評価電池について放電を行い、初放電における容量値を検査負極の面積で割ることにより求めることができる。この場合、放電というのは、検査負極からリチウムイオンが放出される方向へ通電することを意味している。また、負極12の単位面積当たりにおける電気化学的に吸蔵可能なリチウムの量Bは、例えば、上述した評価電池について放電を行ったのち、電池電圧が0Vになるまで定電流定電圧充電を行い、得られた容量値を検査負極の面積で割ることにより求めることができる。この場合、充電というのは、検査負極にリチウムイオンが吸蔵される方向へ通電することを意味している。このような評価において、通常、通電電流値は1mA/cm2 程度とし、放電は評価電池の電池電圧が1.5Vに達するまで行い、充電は電池電圧が0Vにおける定電圧充電において電流値が0.05mA以下となるまで行う。 Among these, the lithium storage amount A per unit area in the fully charged state of the negative electrode 12 is, for example, a part of the negative electrode facing the positive electrode 14 by disassembling a battery charged until it is fully charged by a corresponding charger. After a part of 12 is cut out as an inspection negative electrode and an evaluation battery is assembled using metallic lithium as a counter electrode, the evaluation battery is discharged, and the capacity value in the initial discharge is divided by the area of the inspection negative electrode. In this case, discharging means energizing in the direction in which lithium ions are released from the inspection negative electrode. Further, the amount B of electrochemically occluded lithium per unit area of the negative electrode 12 is, for example, after discharging the evaluation battery described above, performing constant current constant voltage charging until the battery voltage becomes 0 V, It can be obtained by dividing the obtained capacitance value by the area of the inspection negative electrode. In this case, charging means energizing in the direction in which lithium ions are occluded in the inspection negative electrode. In such an evaluation, normally, the energization current value is about 1 mA / cm 2 , discharging is performed until the battery voltage of the evaluation battery reaches 1.5V, and charging is performed at a constant voltage charge at a battery voltage of 0V. Continue until 0.05 mA or less.

正極14は、例えば、正極集電体14Aと、正極集電体14Aに設けられた正極活物質層14Bとを有しており、正極活物質層14Bの側が負極活物質層12Bと対向するように配置されている。正極集電体14Aは、例えば、アルミニウム,ニッケルあるいはステンレスなどにより構成されている。   The positive electrode 14 includes, for example, a positive electrode current collector 14A and a positive electrode active material layer 14B provided on the positive electrode current collector 14A so that the positive electrode active material layer 14B side faces the negative electrode active material layer 12B. Is arranged. The positive electrode current collector 14A is made of, for example, aluminum, nickel, stainless steel, or the like.

正極活物質層14Bは、例えば、正極活物質としてリチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて炭素材料などの導電材およびポリフッ化ビニリデンなどの結着材を含んでいてもよい。リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウムを含まないカルコゲン化物、またはリチウムを含有するリチウム複合酸化物が挙げられる。リチウム複合酸化物としては、例えば、一般式Lix MO2 で表されるものが好ましい。高電圧を発生可能であると共に、高エネルギー密度を得ることができるからである。なお、Mは1種類以上の遷移金属元素を含むことが好ましく、例えばコバルトおよびニッケルのうちの少なくとも一方を含むことが好ましい。xは電池の充放電状態によって異なり、通常0.05≦x≦1.10の範囲内の値である。このようなリチウム含有金属複合酸化物の具体例としては、LiCoO2 あるいはLiNiO2 などが挙げられる。 The positive electrode active material layer 14B includes, for example, any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a conductive material such as a carbon material and the like as necessary. A binder such as polyvinylidene fluoride may be included. Examples of the positive electrode material capable of inserting and extracting lithium include chalcogenides that do not contain lithium, or lithium composite oxides that contain lithium. As the lithium composite oxide, for example, one represented by the general formula Li x MO 2 is preferable. This is because a high voltage can be generated and a high energy density can be obtained. Note that M preferably contains one or more transition metal elements, and preferably contains at least one of cobalt and nickel, for example. x varies depending on the charge / discharge state of the battery and is usually a value in the range of 0.05 ≦ x ≦ 1.10. Specific examples of such a lithium-containing metal composite oxide include LiCoO 2 and LiNiO 2 .

セパレータ15は、負極12と正極14とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものであり、例えば、ポリエチレンやポリプロピレンにより構成されている。   The separator 15 separates the negative electrode 12 and the positive electrode 14 and allows lithium ions to pass while preventing a short circuit of current due to contact between both electrodes, and is made of, for example, polyethylene or polypropylene.

セパレータ15に含浸されている電解液は、例えば、溶媒と、この溶媒に溶解された電解質塩とを含んでおり、必要に応じて添加剤を含んでいてもよい。溶媒としては、例えば、炭酸エチレン,炭酸プロピレン,炭酸ジメチル,炭酸ジエチルあるいは炭酸エチルメチルなどの非水溶媒が挙げられる。溶媒にはいずれか1種を単独で用いてもよいが、2種以上を混合して用いてもよい。例えば、炭酸エチレンあるいは炭酸プロピレンなどの高沸点溶媒と、炭酸ジメチル,炭酸ジエチルあるいは炭酸エチルメチルなどの低沸点溶媒とを混合して用いるようにすれば、高いイオン伝導度を得ることができるので好ましい。   The electrolytic solution impregnated in the separator 15 includes, for example, a solvent and an electrolyte salt dissolved in the solvent, and may include an additive as necessary. Examples of the solvent include nonaqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Any one of the solvents may be used alone, or two or more of them may be mixed and used. For example, it is preferable to use a high boiling point solvent such as ethylene carbonate or propylene carbonate and a low boiling point solvent such as dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate because high ionic conductivity can be obtained. .

溶媒としては、また、ハロゲン原子を有する炭酸エステル誘導体も挙げられ、これを用いるようにすれば充放電効率をより向上させることができるので好ましい。その場合、上述したような他の溶媒と混合して用いてもよいが、単独で用いてもよい。ハロゲン原子を有する炭酸エステル誘導体は、環式化合物でも鎖式化合物でもよいが、環式化合物の方がより高い効果を得ることができるので好ましい。このような環式化合物としては、4−フルオロ−1,3−ジオキソラン−2−オン、4−クロロ−1,3−ジオキソラン−2−オン、4−ブロモ−1,3−ジオキソラン−2−オン、あるいは4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどが挙げられ、中でも、4−フルオロ−1,3−ジオキソラン−2−オンが好ましい。より高い効果を得ることができるからである。   Examples of the solvent also include a carbonic acid ester derivative having a halogen atom, and it is preferable to use this because the charge / discharge efficiency can be further improved. In that case, it may be used by mixing with other solvents as described above, or may be used alone. The carbonic acid ester derivative having a halogen atom may be either a cyclic compound or a chain compound, but the cyclic compound is preferable because a higher effect can be obtained. Such cyclic compounds include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, 4-bromo-1,3-dioxolan-2-one Or 4,5-difluoro-1,3-dioxolan-2-one, among which 4-fluoro-1,3-dioxolan-2-one is preferred. This is because a higher effect can be obtained.

溶媒としては、更に、不飽和結合を有する環式炭酸エステルも挙げられ、他の溶媒と混合して用いることが好ましい。充放電効率をより向上させることができるからである。不飽和結合を有する環状炭酸エステルとしては、1,3−ジオキソール−2−オンあるいは4−ビニル−1,3−ジオキソラン−2−オンなどが挙げられる。   Examples of the solvent further include a cyclic carbonate having an unsaturated bond, and it is preferable to use a mixture with another solvent. This is because the charge / discharge efficiency can be further improved. Examples of the cyclic carbonate having an unsaturated bond include 1,3-dioxol-2-one and 4-vinyl-1,3-dioxolan-2-one.

電解質塩としては、例えば、LiPF6 ,LiCF3 SO3 あるいはLiClO4 などのリチウム塩が挙げられる。電解質塩は、いずれか1種を単独で用いてもよいが、2種以上を混合して用いてもよい。 Examples of the electrolyte salt include lithium salts such as LiPF 6 , LiCF 3 SO 3, and LiClO 4 . Any one electrolyte salt may be used alone, or two or more electrolyte salts may be mixed and used.

この電池は、例えば、次のようにして製造することができる。   This battery can be manufactured, for example, as follows.

まず、負極集電体12Aに、気相法,鍍金法,焼成法あるいは溶射法により負極活物質層12Bを成膜することにより負極12を作製する。また、それらの2以上の方法を組み合わせて負極活物質層12Bを成膜するようにしてもよい。気相法としては、例えば、物理堆積法あるいは化学堆積法が挙げられ、具体的には、真空蒸着法,スパッタ法,イオンプレーティング法,レーザーアブレーション法,あるいはCVD(Chemical Vapor Deposition ;化学気相成長)法などが挙げられる。液相法としては例えば鍍金が挙げられる。   First, the negative electrode 12 is fabricated by forming the negative electrode active material layer 12B on the negative electrode current collector 12A by a vapor phase method, a plating method, a firing method, or a thermal spraying method. Further, the negative electrode active material layer 12B may be formed by combining these two or more methods. Examples of the vapor phase method include a physical deposition method or a chemical deposition method. Specifically, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, or a CVD (Chemical Vapor Deposition; chemical vapor phase). (Growth) method. Examples of the liquid phase method include plating.

負極活物質層12Bにおける酸素の含有量は、例えば、負極活物質層12Bを形成する際の雰囲気中に酸素を含有させたり、焼成時あるいは熱処理時の雰囲気中に酸素を含有させたり、または用いる負極活物質粒子の酸素濃度により調節する。また、上述したように、酸素の含有量が少ない第1層と、酸素の含有量が第1層よりも多い第2層とを交互に積層して負極活物質層12Bを形成する場合には、雰囲気中における酸素濃度を変化させることにより調節するようにしてもよく、また、第1層を形成したのち、その表面を酸化させることにより第2層を形成するようにしてもよい。   The oxygen content in the negative electrode active material layer 12B is, for example, that oxygen is contained in the atmosphere when the negative electrode active material layer 12B is formed, or that oxygen is contained or used in the atmosphere during firing or heat treatment. It adjusts with the oxygen concentration of a negative electrode active material particle. Further, as described above, when the negative electrode active material layer 12B is formed by alternately stacking the first layer having a low oxygen content and the second layer having a higher oxygen content than the first layer. The oxygen concentration in the atmosphere may be changed, or the first layer may be formed and then the surface may be oxidized to form the second layer.

なお、負極活物質層12Bを形成したのちに、真空雰囲気下または非酸化性雰囲気下で熱処理を行い、負極集電体12Aと負極活物質層12Bとの界面をより合金化させるようにしてもよい。   In addition, after forming the negative electrode active material layer 12B, heat treatment may be performed in a vacuum atmosphere or a non-oxidizing atmosphere to further alloy the interface between the negative electrode current collector 12A and the negative electrode active material layer 12B. Good.

次いで、例えば、正極活物質と導電材とバインダーとを混合して合剤を調製し、これをN−メチル−2−ピロリドンなどの分散媒に分散させて合剤スラリーとして正極集電体14Aに塗布したのち、圧縮成型して正極活物質層14Bを形成することにより正極14を作製する。その際、負極12の最大利用率C%が上述した範囲内となるように、負極活物質の量と正極活物質の量とを調節する。   Next, for example, a positive electrode active material, a conductive material, and a binder are mixed to prepare a mixture, and this is dispersed in a dispersion medium such as N-methyl-2-pyrrolidone to form a mixture slurry on the positive electrode current collector 14A. After coating, the positive electrode 14 is produced by compression molding to form the positive electrode active material layer 14B. At that time, the amount of the negative electrode active material and the amount of the positive electrode active material are adjusted so that the maximum utilization ratio C% of the negative electrode 12 falls within the above-described range.

続いて、例えば、正極14、電解液を含浸させたセパレータ15および負極12を積層して、外装缶13と外装カップ11との中に入れ、それらをかしめる。これにより図1に示した二次電池が得られる。   Subsequently, for example, the positive electrode 14, the separator 15 impregnated with the electrolytic solution, and the negative electrode 12 are stacked, put into the outer can 13 and the outer cup 11, and caulked. Thereby, the secondary battery shown in FIG. 1 is obtained.

この二次電池では、充電を行うと、例えば、正極14からリチウムイオンが放出され、電解液を介して負極12に吸蔵される。放電を行うと、例えば、負極12からリチウムイオンが放出され、電解液を介して正極14に吸蔵される。その際、負極12の最大利用率C%が85%以下とされているので、負極活物質層12Bの膨張・収縮が抑制され、負極活物質層12Bの脱落が抑制される。また、負極12の最大利用率C%が35%以上とされているので、使用されないケイ素による副反応が抑制されると共に、充電状態における負極12の電位が低くなり、負極12の表面に良好な被膜が形成される。よって、充放電効率が向上する。   In the secondary battery, when charged, for example, lithium ions are released from the positive electrode 14 and inserted in the negative electrode 12 through the electrolytic solution. When the discharge is performed, for example, lithium ions are released from the negative electrode 12 and inserted in the positive electrode 14 through the electrolytic solution. At that time, since the maximum utilization rate C% of the negative electrode 12 is 85% or less, the expansion / contraction of the negative electrode active material layer 12B is suppressed, and the falling off of the negative electrode active material layer 12B is suppressed. Further, since the maximum utilization C% of the negative electrode 12 is 35% or more, side reactions due to unused silicon are suppressed, and the potential of the negative electrode 12 in a charged state is lowered, and the surface of the negative electrode 12 is favorable. A film is formed. Therefore, the charge / discharge efficiency is improved.

このように本実施の形態によれば、負極集電体12Aの表面粗度Ra値を0.2μm以上とし、かつ、負極12の最大利用率C%を35%以上85%以下とするようにしたので、負極活物質層12Bの膨張・収縮を抑制することができると共に、負極12における副反応を抑制することができる。よって、充放電効率を向上させることができ、サイクル特性を向上させることができる。   Thus, according to the present embodiment, the surface roughness Ra value of the negative electrode current collector 12A is set to 0.2 μm or more, and the maximum utilization rate C% of the negative electrode 12 is set to 35% or more and 85% or less. Therefore, expansion and contraction of the negative electrode active material layer 12B can be suppressed, and side reactions in the negative electrode 12 can be suppressed. Therefore, charge / discharge efficiency can be improved and cycle characteristics can be improved.

また、負極活物質層12Bにおける酸素の含有量を3原子数%以上とするようにすれば、または、第1層よりも酸素の含有量が多い第2層を少なくとも第1層の間に1層以上有するようにすれば、充放電効率をより向上させることができる。   Further, if the oxygen content in the negative electrode active material layer 12B is set to 3 atomic% or more, or the second layer having a higher oxygen content than the first layer is at least 1 between the first layers. If it is made to have more than one layer, the charge / discharge efficiency can be further improved.

更に、電解液にハロゲン原子を有する炭酸エステル誘導体を含むようにすれば、充放電効率をより向上させることができる。   Furthermore, if the electrolytic solution contains a carbonic acid ester derivative having a halogen atom, the charge / discharge efficiency can be further improved.

(第2の実施の形態)
図2は、本発明の第2の実施の形態に係る二次電池の構成を表すものである。この二次電池は、リード21,22が取り付けられた電極巻回体20をフィルム状の外装部材31の内部に収容したものであり、小型化,軽量化および薄型化が可能となっている。
(Second Embodiment)
FIG. 2 shows a configuration of a secondary battery according to the second embodiment of the present invention. In this secondary battery, the wound electrode body 20 to which the leads 21 and 22 are attached is housed in a film-like exterior member 31 and can be reduced in size, weight, and thickness.

リード21,22は、それぞれ、外装部材31の内部から外部に向かい例えば同一方向に導出されている。リード21,22は、例えば、アルミニウム,銅,ニッケルあるいはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。   The leads 21 and 22 are led out from the inside of the exterior member 31 to the outside, for example, in the same direction. The leads 21 and 22 are made of a metal material such as aluminum, copper, nickel, or stainless steel, respectively, and have a thin plate shape or a mesh shape, respectively.

外装部材31は、例えば、ナイロンフィルム,アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材31は、例えば、ポリエチレンフィルム側と電極巻回体20とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材31とリード21,22との間には、外気の侵入を防止するための密着フィルム32が挿入されている。密着フィルム32は、リード21,22に対して密着性を有する材料、例えば、ポリエチレン,ポリプロピレン,変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。   The exterior member 31 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 31 is disposed, for example, so that the polyethylene film side and the electrode winding body 20 face each other, and the outer edge portions are in close contact with each other by fusion bonding or an adhesive. An adhesion film 32 for preventing the entry of outside air is inserted between the exterior member 31 and the leads 21 and 22. The adhesion film 32 is made of a material having adhesion to the leads 21 and 22, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.

なお、外装部材31は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム,ポリプロピレンなどの高分子フィルムあるいは金属フィルムにより構成するようにしてもよい。   The exterior member 31 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-described aluminum laminated film.

図3は、図2に示した電極巻回体20のI−I線に沿った断面構造を表すものである。電極巻回体20は、負極23と正極24とをセパレータ25および電解質26を介して積層し、巻回したものであり、最外周部は保護テープ27により保護されている。   FIG. 3 shows a cross-sectional structure taken along line II of the electrode winding body 20 shown in FIG. The electrode winding body 20 is obtained by laminating a negative electrode 23 and a positive electrode 24 via a separator 25 and an electrolyte 26 and winding them, and the outermost periphery is protected by a protective tape 27.

負極23は、負極集電体23Aの両面に負極活物質層23Bが設けられた構造を有している。正極24も、正極集電体24Aの両面に正極活物質層24Bが設けられた構造を有しており、正極活物質層24Bが負極活物質層23Bと対向するように配置されている。負極集電体23A,負極活物質層24B,正極集電体24A,正極活物質層24Bおよびセパレータ25の構成は、第1の実施の形態における負極集電体12A,負極活物質層12B,正極集電体14A,正極活物質層14Bおよびセパレータ15と同様である。   The negative electrode 23 has a structure in which a negative electrode active material layer 23B is provided on both surfaces of a negative electrode current collector 23A. The positive electrode 24 also has a structure in which the positive electrode active material layer 24B is provided on both surfaces of the positive electrode current collector 24A, and the positive electrode active material layer 24B is disposed so as to face the negative electrode active material layer 23B. The configuration of the negative electrode current collector 23A, the negative electrode active material layer 24B, the positive electrode current collector 24A, the positive electrode active material layer 24B, and the separator 25 is the same as that of the negative electrode current collector 12A, the negative electrode active material layer 12B, and the positive electrode in the first embodiment. The same as the current collector 14A, the positive electrode active material layer 14B, and the separator 15.

電解質26は、電解液を高分子化合物に保持させたいわゆるゲル状の電解質により構成されている。電解液(すなわち溶媒および電解質塩など)の構成は、第1の実施の形態と同様である。高分子材料としては、例えば、フッ化ビニリデンを含む重合体が好ましく挙げられる。酸化還元安定性が高いからである。高分子化合物としては、また、重合性化合物が重合されることにより形成されたものも挙げられる。重合性化合物としては、例えば、ビニル基あるいはその一部の水素をメチル基などの置換基で置換した基を含有するものが挙げられる。具体的には、アクリル酸エステルなどの単官能アクリレート、メタクリル酸エステルなどの単官能メタクリレート、ジアクリル酸エステル,あるいはトリアクリル酸エステルなどの多官能アクリレート、ジメタクリル酸エステルあるいはトリメタクリル酸エステルなどの多官能メタクリレート、アクリロニトリル、またはメタクリロニトリルなどがあり、中でも、アクリレート基あるいはメタクリレート基を有するエステルが好ましい。重合が進行しやすく、重合性化合物の反応率が高いからである。   The electrolyte 26 is constituted by a so-called gel electrolyte in which an electrolytic solution is held in a polymer compound. The configuration of the electrolytic solution (that is, the solvent, the electrolyte salt, and the like) is the same as that in the first embodiment. As the polymer material, for example, a polymer containing vinylidene fluoride is preferably exemplified. This is because the redox stability is high. Examples of the polymer compound include those formed by polymerizing a polymerizable compound. Examples of the polymerizable compound include those containing a vinyl group or a group obtained by substituting a part of hydrogen with a substituent such as a methyl group. Specifically, monofunctional acrylates such as acrylic acid esters, monofunctional methacrylates such as methacrylic acid esters, polyfunctional acrylates such as diacrylic acid esters or triacrylic acid esters, and polyfunctional acrylates such as dimethacrylic acid esters or trimethacrylic acid esters. There are functional methacrylate, acrylonitrile, methacrylonitrile, and the like. Among them, an ester having an acrylate group or a methacrylate group is preferable. This is because the polymerization proceeds easily and the reaction rate of the polymerizable compound is high.

この二次電池は、例えば、次のようにして製造することができる。   For example, the secondary battery can be manufactured as follows.

まず、負極23および正極24を第1の実施の形態と同様にして作製したのち、負極23および正極24にそれぞれ、高分子化合物に電解液を保持させた電解質26を形成する。次いで、負極集電体23Aおよび正極集電体24Aにリード21,22をそれぞれ取り付ける。続いて、負極23と正極24とをセパレータ25を介して積層し積層体としたのち、この積層体をその長手方向に巻回して、最外周部に保護テープ27を接着して電極巻回体20を形成する。そののち、例えば、外装部材31の間に電極巻回体20を挟み込み、外装部材31の外縁部同士を熱融着などにより密着させて封入する。その際、リード21,22と外装部材31との間には密着フィルム32を挿入する。これにより、図2,3に示した二次電池が完成する。   First, the negative electrode 23 and the positive electrode 24 are produced in the same manner as in the first embodiment, and then the electrolyte 26 in which the electrolytic solution is held in the polymer compound is formed on the negative electrode 23 and the positive electrode 24, respectively. Next, the leads 21 and 22 are attached to the negative electrode current collector 23A and the positive electrode current collector 24A, respectively. Subsequently, the negative electrode 23 and the positive electrode 24 are laminated via the separator 25 to form a laminated body, and then the laminated body is wound in the longitudinal direction, and the protective tape 27 is adhered to the outermost peripheral portion to wrap the electrode wound body. 20 is formed. After that, for example, the electrode winding body 20 is sandwiched between the exterior members 31, and the outer edges of the exterior members 31 are in close contact with each other by thermal fusion or the like and sealed. At that time, an adhesive film 32 is inserted between the leads 21 and 22 and the exterior member 31. Thereby, the secondary battery shown in FIGS. 2 and 3 is completed.

なお、電解質26は次のようにして形成してもよい。例えば、負極23および正極24に重合性化合物と電解液とを含む電解質用組成物を塗布し、セパレータ25を介して巻回して外装部材31の内部に封入したのち、重合性化合物を重合させることにより形成するようにしてもよく、また、負極23と正極24とをセパレータ25を介して巻回して外装部材31の内部に封入したのち、外装部材31の内部に重合性化合物と電解液とを含む電解質用組成物を注入し、重合性化合物を重合させることにより形成するようにしてもよい。   The electrolyte 26 may be formed as follows. For example, an electrolyte composition containing a polymerizable compound and an electrolytic solution is applied to the negative electrode 23 and the positive electrode 24, wound through a separator 25 and sealed in the exterior member 31, and then the polymerizable compound is polymerized. Alternatively, the negative electrode 23 and the positive electrode 24 may be wound around the separator 25 and sealed in the exterior member 31, and then the polymerizable compound and the electrolyte may be contained in the exterior member 31. You may make it form by inject | pouring the composition for electrolyte containing and polymerizing a polymeric compound.

この二次電池の作用および効果は、第1の実施の形態と同様である。   The operation and effect of the secondary battery are the same as those in the first embodiment.

更に、本発明の具体的な実施例について図面を参照して詳細に説明する。なお、以下の実施例では、上記実施の形態において用いた符号および記号をそのまま対応させて用いる。   Further, specific embodiments of the present invention will be described in detail with reference to the drawings. In the following examples, the symbols and symbols used in the above embodiment are used in correspondence.

(実施例1−1〜1−7)
図2,3に示したラミネートフィルム型の二次電池を作製した。まず、正極活物質としてコバルト酸リチウム(LiCoO2 )と、導電材としてカーボンブラックと結着材としてポリフッ化ビニリデンとを混合し、分散媒としてN−メチル−2−ピロリドンに分散させたのち、アルミニウム箔よりなる正極集電体24Aに塗布し乾燥させることにより正極活物質層24Bを形成し、正極24を作製した。そののち、リード22を取り付けた。
(Examples 1-1 to 1-7)
The laminate film type secondary battery shown in FIGS. First, lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride as a binder are mixed and dispersed in N-methyl-2-pyrrolidone as a dispersion medium, and then aluminum. The positive electrode active material layer 24 </ b> B was formed by applying to a positive electrode current collector 24 </ b> A made of foil and drying to prepare a positive electrode 24. After that, the lead 22 was attached.

次いで、厚みが18μm、表面粗度Ra値が0.4μmの電解銅箔よりなる負極集電体23Aの上に、電子ビーム蒸着法によりケイ素を蒸着したのち、280℃で24時間アニール処理を行うことにより、負極活物質層23Bを形成し、負極23を作製した。その際、ケイ素の蒸着はアルゴン(Ar)で希釈した酸素ガスをフローしながら行った。また、負極活物質層23Bの厚みを6μmとした際に、負極23の最大利用率Cが50%となるように設計し、負極活物質層23Bの厚みを変化させることにより所望の最大利用率Cとなるようにした。そののち、リード21を取り付けた。   Next, silicon is deposited on the negative electrode current collector 23A made of an electrolytic copper foil having a thickness of 18 μm and a surface roughness Ra value of 0.4 μm by an electron beam deposition method, and then annealed at 280 ° C. for 24 hours. Thereby, the negative electrode active material layer 23B was formed, and the negative electrode 23 was produced. At that time, silicon was deposited while flowing oxygen gas diluted with argon (Ar). Further, when the thickness of the negative electrode active material layer 23B is 6 μm, the maximum utilization factor C of the negative electrode 23 is designed to be 50%, and the desired maximum utilization factor is changed by changing the thickness of the negative electrode active material layer 23B. C. After that, the lead 21 was attached.

続いて、電解液100質量部に対して、重合性化合物溶液を5質量部、重合開始剤を0.1質量部の割合で混合して電解質用組成物を作製した。重合性化合物溶液は、化1に示したトリメチロールプロパントリアクリレートと、化2に示したネオペンチルグリコールジアクリレートとを、トリメチロールプロパントリアクリレート:ネオペンチルグリコールジアクリレート=3:7の質量比で混合したものとした。重合開始剤は、パーオキシエステル系重合開始剤であるt−ブチルパーオキシネオデカノエートとした。電解液は、溶媒として炭酸エチレン(EC)と炭酸ジメチル(DMC)とを、炭酸エチレン:炭酸ジメチル=3:7の質量比で混合し、更に、電解質塩としてLiPF6 を溶解させたものとした。電解液におけるLiPF6 の濃度は1mol/lとした。 Subsequently, 5 parts by mass of the polymerizable compound solution and 0.1 parts by mass of the polymerization initiator were mixed with 100 parts by mass of the electrolytic solution to prepare an electrolyte composition. A polymerizable compound solution is obtained by combining trimethylolpropane triacrylate shown in Chemical Formula 1 and neopentyl glycol diacrylate shown in Chemical Formula 2 with a mass ratio of trimethylolpropane triacrylate: neopentyl glycol diacrylate = 3: 7. Mixed. The polymerization initiator was t-butyl peroxyneodecanoate which is a peroxy ester polymerization initiator. The electrolytic solution was prepared by mixing ethylene carbonate (EC) and dimethyl carbonate (DMC) as a solvent in a mass ratio of ethylene carbonate: dimethyl carbonate = 3: 7 and further dissolving LiPF 6 as an electrolyte salt. . The concentration of LiPF 6 in the electrolytic solution was 1 mol / l.

Figure 0005910652
Figure 0005910652

Figure 0005910652
Figure 0005910652

作製した電解質用組成物を正極24および負極23に塗布し、これらを厚み25μmの微孔性ポリエチレンフィルムよりなるセパレータ25を介して密着させ、巻回して巻回電極体20の前駆体である巻回体とした。   The produced electrolyte composition was applied to the positive electrode 24 and the negative electrode 23, and these were closely adhered via a separator 25 made of a microporous polyethylene film having a thickness of 25 μm, and wound to be a precursor of the wound electrode body 20. It was a round body.

次いで、巻回体を防湿性のアルミラミネートフィルムよりなる外装部材31の間に挟み込んだのち、外装部材31の外縁部同士を貼り合わせた。その際、リード21,22を外装部材31の外部に導出させるようにした。アルミラミネートフィルムは、最外層から順に、厚み25μmのナイロンフィルムと、厚み40μmのアルミニウム箔と、厚み30μmのポリプロピレンとが積層されたものとした。そののち、これをガラス板に挟んで75℃で30分間加熱し、重合性化合物を重合することにより、電解質用組成物をゲル化して電解質26を形成し、二次電池作製した。   Next, after sandwiching the wound body between the exterior members 31 made of a moisture-proof aluminum laminate film, the outer edges of the exterior members 31 were bonded together. At that time, the leads 21 and 22 are led out of the exterior member 31. The aluminum laminate film was formed by laminating a 25 μm thick nylon film, a 40 μm thick aluminum foil, and a 30 μm thick polypropylene in order from the outermost layer. Thereafter, this was sandwiched between glass plates and heated at 75 ° C. for 30 minutes to polymerize the polymerizable compound, whereby the electrolyte composition was gelled to form the electrolyte 26, thereby producing a secondary battery.

作製した実施例1−1〜1−7の二次電池について、実施の形態で説明したようにして負極23の満充電状態における単位体積当たりのリチウムの吸蔵量A、および負極23の単位体積当たりにおける電気化学的に吸蔵可能なリチウムの量Bを測定し、負極23の最大利用率Cを求めた。結果を表1に示す。   For the fabricated secondary batteries of Examples 1-1 to 1-7, as described in the embodiment, the lithium storage amount A per unit volume in the fully charged state of the negative electrode 23 and the unit volume of the negative electrode 23 The amount B of electrochemically occluded lithium was measured, and the maximum utilization rate C of the negative electrode 23 was determined. The results are shown in Table 1.

また、作製した二次電池について、充放電試験を行い、初回充放電効率およびサイクル特性を調べた。充電は、電流500mA、上限電圧4.2Vとして定電流定電圧充電を行い、放電は、500mAの定電流で電池電圧が2.7Vに達するまで行った。初回充放電効率は、初回充電容量(1サイクル目の充電容量)に対する初回放電容量(1サイクル目の放電容量)の割合、すなわち、(初回放電容量/初回充電容量)×100(%)から求めた。また、サイクル特性は、1サイクル目の放電容量に対する100サイクル目の放電容量の割合、すなわち、(100サイクル目の放電容量/1サイクル目の放電容量)×100(%)から求めた。結果を表1に示す。   Moreover, about the produced secondary battery, the charge / discharge test was done and the first time charge / discharge efficiency and cycling characteristics were investigated. Charging was performed at a constant current and constant voltage with a current of 500 mA and an upper limit voltage of 4.2 V, and discharging was performed at a constant current of 500 mA until the battery voltage reached 2.7 V. The initial charge / discharge efficiency is obtained from the ratio of the initial discharge capacity (discharge capacity at the first cycle) to the initial charge capacity (charge capacity at the first cycle), that is, (initial discharge capacity / initial charge capacity) × 100 (%). It was. The cycle characteristics were obtained from the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle, that is, (discharge capacity at the 100th cycle / discharge capacity at the first cycle) × 100 (%). The results are shown in Table 1.

更に、作製した二次電池について、上述した条件で1サイクル目の充放電を行ったのち、解体して負極23を取り出した。この負極23の断面について、SEM(Scanning Electron Microscope;走査電子顕微鏡)像解析を行ったところ、負極集電体23Aと負極活物質層23Bとが界面において接着していることが確認された。また、この界面について、AES(オージェ電子分光法;Auger electron spectroscopy )のスポット分析を行ったところ、負極活物質層23Bに負極集電体23Aの成分である銅の成分が拡散されていることが確認された。すなわち、負極集電体23Aと負極活物質層23Bとが合金化していることが確認された。   Further, the fabricated secondary battery was charged and discharged in the first cycle under the above-described conditions, and then disassembled and the negative electrode 23 was taken out. When the cross section of the negative electrode 23 was subjected to SEM (Scanning Electron Microscope) image analysis, it was confirmed that the negative electrode current collector 23A and the negative electrode active material layer 23B were adhered to each other at the interface. Further, when spot analysis of AES (Auger electron spectroscopy) was performed on this interface, it was found that the copper component as the component of the negative electrode current collector 23A was diffused in the negative electrode active material layer 23B. confirmed. That is, it was confirmed that the negative electrode current collector 23A and the negative electrode active material layer 23B were alloyed.

実施例1−1〜1−7に対する比較例1−1〜1−4として、負極の最大利用率Cが35%未満または85%超となるように、負極活物質層の厚みを変化させて負極を作製したことを除き、他は実施例1−1〜1−7と同様にして二次電池を作製した。また、比較例1−5〜1−7として、負極集電体として表面粗度Ra値が0.05μmの電解銅箔を用い、負極の最大利用率Cが20%〜90%となるように、負極活物質層の厚みを変化させて負極を作製したことを除き、他は実施例1−1〜1−7と同様にして二次電池を作製した。   As Comparative Examples 1-1 to 1-4 for Examples 1-1 to 1-7, the thickness of the negative electrode active material layer was changed so that the maximum utilization rate C of the negative electrode was less than 35% or more than 85%. A secondary battery was fabricated in the same manner as in Examples 1-1 to 1-7, except that a negative electrode was fabricated. Moreover, as Comparative Examples 1-5 to 1-7, an electrolytic copper foil having a surface roughness Ra value of 0.05 μm was used as the negative electrode current collector, and the maximum utilization rate C of the negative electrode was 20% to 90%. A secondary battery was fabricated in the same manner as in Examples 1-1 to 1-7, except that the negative electrode was fabricated by changing the thickness of the negative electrode active material layer.

作製した比較例1−1〜1−7の二次電池についても、実施例1−1〜1−7と同様にして負極の最大利用率C、初回充放電効率およびサイクル特性を調べた。結果を表1に示す。   For the fabricated secondary batteries of Comparative Examples 1-1 to 1-7, the maximum utilization factor C, the initial charge / discharge efficiency, and the cycle characteristics of the negative electrode were examined in the same manner as in Examples 1-1 to 1-7. The results are shown in Table 1.

また、比較例1−6の二次電池について、実施例1−1〜1−7と同様にして負極の断面について、SEM像解析を行ったところ、負極集電体と負極活物質層との界面において、多数の剥離が確認された。   Further, regarding the secondary battery of Comparative Example 1-6, when the SEM image analysis was performed on the cross section of the negative electrode in the same manner as in Examples 1-1 to 1-7, the negative electrode current collector and the negative electrode active material layer Numerous peeling was confirmed at the interface.

Figure 0005910652
Figure 0005910652

表1から分かるように、負極集電体23Aの表面粗度Ra値を0.2μm以上とし、負極23の最大利用率Cを35%以上85%以下とした実施例1−1〜1−7によれば、負極の最大利用率Cが85%超の比較例1−1,1−2よりも放電容量維持率が向上し、負極の最大利用率Cが35%未満である比較例1−3,1−4よりも初回充放電効率が向上した。特に、負極の最大利用率Cを40%以上80%以下とした実施例1−2〜1−6において、高い値が得られた。   As can be seen from Table 1, Examples 1-1 to 1-7 in which the surface roughness Ra value of the negative electrode current collector 23A was 0.2 μm or more and the maximum utilization rate C of the negative electrode 23 was 35% or more and 85% or less. According to the comparative example 1-1, the maximum capacity utilization C of the negative electrode is more improved than the comparative examples 1-1 and 1-2 in which the maximum utilization ratio C exceeds 85%, and the maximum utilization ratio C of the negative electrode is less than 35% The initial charge / discharge efficiency was improved as compared with 3,1-4. In particular, in Examples 1-2 to 1-6 in which the maximum utilization rate C of the negative electrode was 40% or more and 80% or less, a high value was obtained.

一方、負極集電体の表面粗度Ra値を0.2μm未満とした比較例1−5〜1−7では、負極の最大利用率Cを35%以上85%以下としても、放電容量維持率の改善効果は観られなかった。   On the other hand, in Comparative Examples 1-5 to 1-7 in which the surface roughness Ra value of the negative electrode current collector was less than 0.2 μm, even if the maximum utilization rate C of the negative electrode was 35% or more and 85% or less, the discharge capacity maintenance rate No improvement effect was observed.

すなわち、負極集電体23Aにおける表面粗度Ra値を0.2μm以上とし、負極23の最大利用率Cを35%以上85%以下とするようにすれば、初回充放電効率およびサイクル特性を向上させることができることが分かった。   That is, if the surface roughness Ra value of the negative electrode current collector 23A is 0.2 μm or more and the maximum utilization rate C of the negative electrode 23 is 35% or more and 85% or less, the initial charge / discharge efficiency and cycle characteristics are improved. I found out that

(実施例2−1〜2−4)
表面粗度Ra値が0.2μm、1.0μm、3.0μm、または5.0μmである電解銅箔よりなる負極集電体23Aを用いたことを除き、他は実施例1−5と同様にして二次電池を作製した。その際、負極23の最大利用率Cは50%となるように設計した。
(Examples 2-1 to 2-4)
Except that the negative electrode current collector 23A made of an electrolytic copper foil having a surface roughness Ra value of 0.2 μm, 1.0 μm, 3.0 μm, or 5.0 μm was used, the others were the same as in Example 1-5 Thus, a secondary battery was produced. At that time, the maximum utilization rate C of the negative electrode 23 was designed to be 50%.

実施例2−1〜2−4に対する比較例2−1として、表面粗度Ra値が0.1μmである電解銅箔よりなる負極集電体を用いたことを除き、他は実施例2−1〜2−4と同様にして二次電池を作製した。その際、負極の最大利用率Cは50%となるように設計した。   As Comparative Example 2-1 with respect to Examples 2-1 to 2-4, except that a negative electrode current collector made of an electrolytic copper foil having a surface roughness Ra value of 0.1 μm was used, the others were Example 2- Secondary batteries were produced in the same manner as in 1-2-4. At that time, the maximum utilization factor C of the negative electrode was designed to be 50%.

作製した実施例2−1〜2−4および比較例2−1の二次電池について、実施例1−1〜1−7と同様にして初回充放電効率およびサイクル特性を調べた。結果を実施例1−5および比較例1−6の結果と共に表2に示す。   For the fabricated secondary batteries of Examples 2-1 to 2-4 and Comparative Example 2-1, the initial charge and discharge efficiency and the cycle characteristics were examined in the same manner as in Examples 1-1 to 1-7. The results are shown in Table 2 together with the results of Example 1-5 and Comparative example 1-6.

Figure 0005910652
Figure 0005910652

表2から分かるように、負極集電体23Aの表面粗度Ra値を0.2μm以上とした実施例1−5,2−1〜2−4において、初回充放電効率および放電容量維持率が飛躍的に向上した。   As can be seen from Table 2, in Examples 1-5, 2-1 to 2-4 in which the surface roughness Ra value of the negative electrode current collector 23A was 0.2 μm or more, the initial charge / discharge efficiency and the discharge capacity retention ratio were Dramatically improved.

すなわち、負極集電体23Aの表面粗度Ra値を0.2μm以上とするようにすれば、好ましいことが分かった。   That is, it has been found that it is preferable that the surface roughness Ra value of the negative electrode current collector 23A be 0.2 μm or more.

(実施例3−1〜3−6)
ケイ素を蒸着する際に、アルゴンで希釈した酸素ガスのフロー条件を適宜変化することにより、負極活物質層23Bにおける酸素含有量を変化させたことを除き、他は実施例1−5と同様にして二次電池を作製した。その際、負極23の最大利用率Cは50%となるように設計した。
(Examples 3-1 to 3-6)
Except that the oxygen content in the negative electrode active material layer 23B was changed by appropriately changing the flow conditions of oxygen gas diluted with argon when depositing silicon, the others were the same as in Example 1-5. A secondary battery was manufactured. At that time, the maximum utilization rate C of the negative electrode 23 was designed to be 50%.

実施例3−1〜3−6に対する比較例3−1として、表面粗度Ra値が0.05μmの電解銅箔よりなる負極集電体を用い、アルゴンで希釈した酸素ガスのフロー条件を変化させたことを除き、他は実施例3−1〜3−6と同様にして二次電池を作製した。   As Comparative Example 3-1 with respect to Examples 3-1 to 3-6, a negative electrode current collector made of an electrolytic copper foil having a surface roughness Ra value of 0.05 μm was used, and the flow condition of oxygen gas diluted with argon was changed. A secondary battery was fabricated in the same manner as in Examples 3-1 to 3-6, except for the above.

作製した実施例3−1〜3−6および比較例3−1の二次電池について、実施例1−1〜1−7と同様にして初回充放電効率およびサイクル特性を調べた。結果を実施例1−5および比較例1−6の結果と共に表3に示す。   For the fabricated secondary batteries of Examples 3-1 to 3-6 and Comparative example 3-1, the initial charge and discharge efficiency and the cycle characteristics were examined in the same manner as in Examples 1-1 to 1-7. The results are shown in Table 3 together with the results of Example 1-5 and Comparative example 1-6.

また、実施例1−5,3−1〜3−6および比較例1−6,3−1の二次電池を実施例1−1〜1−7と同様の条件で1サイクル目の充放電を行ったのち、解体して負極23を取り出し、酸素濃度分析計により負極活物質層23Bにおける酸素含有量を測定した。その際、負極23の表面を炭酸ジエチルで洗浄し、表面に形成されている被膜を除去した。結果を表3に示す。   In addition, the secondary batteries of Examples 1-5, 3-1 to 3-6 and Comparative Examples 1-6 and 3-1, were charged and discharged in the first cycle under the same conditions as in Examples 1-1 to 1-7. Then, the negative electrode 23 was taken out, and the oxygen content in the negative electrode active material layer 23B was measured with an oxygen concentration analyzer. At that time, the surface of the negative electrode 23 was washed with diethyl carbonate to remove the film formed on the surface. The results are shown in Table 3.

Figure 0005910652
Figure 0005910652

表3から分かるように、実施例1−5,3−1〜3−6によれば、負極活物質層23Bにおける酸素の含有量が多くなるに伴い、初回充放電効率および放電容量維持率は共に向上し、極大値を示したのち低下する傾向が見られた。一方、表面粗度Ra値が0.2μm未満である比較例1−6,3−1によれば、負極活物質層における酸素の含有量が多くなると放電容量維持率は向上するが、初回充放電効率は著しく低下し、更に、これらの値は十分ではなかった。   As can be seen from Table 3, according to Examples 1-5, 3-1 to 3-6, as the oxygen content in the negative electrode active material layer 23B increases, the initial charge / discharge efficiency and the discharge capacity retention rate are Both improved, showed a tendency to decrease after showing the maximum value. On the other hand, according to Comparative Examples 1-6 and 3-1, in which the surface roughness Ra value is less than 0.2 μm, the discharge capacity retention ratio is improved when the oxygen content in the negative electrode active material layer is increased. The discharge efficiency was significantly reduced, and these values were not sufficient.

すなわち、表面粗度Ra値が0.2μm以上の負極集電体23Aを用いた場合に、負極活物質層23Bにおける酸素含有量を3原子数%以上とするようにすれば、より好ましいことが分かった。   That is, when the negative electrode current collector 23A having a surface roughness Ra value of 0.2 μm or more is used, it is more preferable that the oxygen content in the negative electrode active material layer 23B is 3 atomic% or more. I understood.

(実施例4−1〜4−4)
酸素の含有量が少ない第1層と、酸素の含有量を多くした第2層とを交互に積層して負極活物質層23Bを形成したことを除き、他は実施例3−4と同様にして二次電池を作製した。その際、第1層は電子ビーム蒸着により成膜し、第2層は第1層の成膜を中断し、アルゴンで希釈した酸素ガスをフローさせて第1層の表面を酸化することにより形成した。実施例4−1では、第1層、第2層、第1層の順に成膜し、実施例4−2では、第1層、第2層の順に3層ずつ積層し、更に第1層を形成した。実施例4−3では、第1層、第2層の順に5層ずつ積層し、更に第1層を形成した。実施例4−4では、第1層、第2層の順に10層ずつ積層し、更に第1層を形成した。なお、負極活物質層23Bにおけるトータルの酸素含有量は実施例3−4と同様に約11原子数%となるようにすると共に、負極23の最大利用率Cは50%となるように設計した。
(Examples 4-1 to 4-4)
Except that the negative electrode active material layer 23B was formed by alternately laminating the first layer with a low oxygen content and the second layer with a high oxygen content, the others were the same as in Example 3-4. A secondary battery was manufactured. At that time, the first layer is formed by electron beam evaporation, and the second layer is formed by interrupting the formation of the first layer and oxidizing the surface of the first layer by flowing an oxygen gas diluted with argon. did. In Example 4-1, the first layer, the second layer, and the first layer are formed in this order. In Example 4-2, the first layer and the second layer are stacked in this order, and the first layer is further stacked. Formed. In Example 4-3, five layers were stacked in the order of the first layer and the second layer, and the first layer was further formed. In Example 4-4, 10 layers were laminated in order of the first layer and the second layer, and the first layer was further formed. The total oxygen content in the negative electrode active material layer 23B was designed to be about 11 atomic% as in Example 3-4, and the maximum utilization rate C of the negative electrode 23 was designed to be 50%. .

作製した実施例4−1〜4−4の二次電池について、実施例1−1〜1−7と同様にして初回充放電効率およびサイクル特性を調べた。結果を実施例3−4の結果と共に表4に示す。   For the fabricated secondary batteries of Examples 4-1 to 4-4, the initial charge and discharge efficiency and the cycle characteristics were examined in the same manner as in Examples 1-1 to 1-7. The results are shown in Table 4 together with the results of Example 3-4.

Figure 0005910652
Figure 0005910652

表4から分かるように、第1層と第2層とを設けた実施例4−1〜4−4によれば、設けていない実施例3−4に比べて初回充放電効率および放電容量維持率が向上した。また、それらの積層数を増加させるに従い、初回充放電効率および放電容量維持率は共に向上する傾向が見られた。すなわち、酸素の含有量が少ない第1層の間に酸素の含有量が多い第2層を少なくとも1層以上設けるようにすれば、より好ましいことが分かった。   As can be seen from Table 4, according to Examples 4-1 to 4-4 in which the first layer and the second layer are provided, the initial charge / discharge efficiency and the discharge capacity are maintained compared to Example 3-4 in which the first layer and the second layer are not provided. The rate has improved. In addition, as the number of layers increased, the initial charge / discharge efficiency and the discharge capacity retention rate tended to improve. That is, it has been found that it is more preferable to provide at least one second layer having a high oxygen content between the first layers having a low oxygen content.

(実施例5−1)
炭酸エチレンに代えてハロゲン原子を有する炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オン(FEC)を用いたことを除き、他は実施例1−5と同様にして二次電池を作製した。
(Example 5-1)
The secondary reaction was carried out in the same manner as in Example 1-5 except that 4-fluoro-1,3-dioxolan-2-one (FEC), which is a carbonate ester derivative having a halogen atom, was used instead of ethylene carbonate. A battery was produced.

実施例5−1に対する比較例5−1として、負極集電体として表面粗度Ra値が0.05μmである電解銅箔を用いたことを除き、他は実施例5−1と同様にして二次電池を作製した。その際、負極の最大利用率Cが50%となるように設計した。   As Comparative Example 5-1 with respect to Example 5-1, except that an electrolytic copper foil having a surface roughness Ra value of 0.05 μm was used as the negative electrode current collector, the others were the same as Example 5-1. A secondary battery was produced. At that time, the maximum utilization factor C of the negative electrode was designed to be 50%.

作製した実施例5−1および比較例5−1の二次電池について、実施例1−1〜1−7と同様にして初回充放電効率およびサイクル特性を調べた。結果を実施例1−5および比較例1−6の結果と共に表5に示す。   For the fabricated secondary batteries of Example 5-1 and Comparative Example 5-1, the initial charge and discharge efficiency and the cycle characteristics were examined in the same manner as in Examples 1-1 to 1-7. The results are shown in Table 5 together with the results of Example 1-5 and Comparative Example 1-6.

Figure 0005910652
Figure 0005910652

表5から分かるように、4−フルオロ−1,3−ジオキソラン−2−オンを用いた実施例5−1によれば、これを用いていない実施例1−5よりも放電容量維持率が向上した。一方、負極集電体における表面粗度Ra値を0.05とした比較例5−1では、4−フルオロ−1,3−ジオキソラン−2−オンを用いることにより、これを用いていない比較例1−6よりも、放電容量維持率は向上したが、初回充放電効率が低下した。   As can be seen from Table 5, according to Example 5-1 using 4-fluoro-1,3-dioxolan-2-one, the discharge capacity retention rate is improved as compared with Example 1-5 not using this. did. On the other hand, in Comparative Example 5-1, in which the surface roughness Ra value of the negative electrode current collector was 0.05, a comparative example in which 4-fluoro-1,3-dioxolan-2-one was used and this was not used Although the discharge capacity retention rate was improved from 1-6, the initial charge / discharge efficiency was lowered.

すなわち、表面粗度Ra値が0.2μm以上の負極集電体を用いた場合に、ハロゲン原子を有する環式炭酸エステル誘導体を用いるようにすれば、高い初回充放電効率を保ちつつ、サイクル特性を更に向上させることができることが分かった。   That is, when a negative electrode current collector having a surface roughness Ra value of 0.2 μm or more is used, if a cyclic carbonate derivative having a halogen atom is used, cycle characteristics are maintained while maintaining high initial charge / discharge efficiency. It was found that can be further improved.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例では、電解質として、電解液または電解液を高分子化合物に保持させたゲル状の電解質を用いる場合について説明したが、他の電解質を用いるようにしてもよい。他の電解質としては、窒化リチウムあるいはリン酸リチウムなどを含む無機伝導体、あるいはイオン伝導性を有する高分子化合物に電解質塩を分散させた高分子固体電解質、またはこれらと電解液とを混合したものなどが挙げられる。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, in the above-described embodiments and examples, the case where an electrolyte or a gel electrolyte in which an electrolytic solution is held in a polymer compound is used as the electrolyte has been described, but other electrolytes may be used. Other electrolytes include inorganic conductors containing lithium nitride or lithium phosphate, polymer solid electrolytes in which an electrolyte salt is dispersed in a polymer compound having ionic conductivity, or a mixture of these and an electrolyte. Etc.

また、上記実施の形態および実施例では、コイン型、または巻回ラミネート型の二次電池について説明したが、本発明は、円筒型、角型、ボタン型、薄型、大型、積層ラミネート型の二次電池についても同様に適用することができる。また、二次電池に限らず、一次電池についても適用することができる。   In the above embodiments and examples, a coin type or wound laminate type secondary battery has been described. However, the present invention is not limited to a cylindrical type, a square type, a button type, a thin type, a large type, and a laminated laminate type. The same applies to the secondary battery. Moreover, not only a secondary battery but a primary battery is applicable.

11…外装カップ、12,23…負極、12A,23A…負極集電体、12B,23B…負極活物質層、13…外装缶、14,24…正極、14A,24A…正極集電体、14B,24B…正極活物質層、15,25…セパレータ、16…ガスケット、20…電極巻回体、21,22…リード、26…電解質、27…保護テープ。   DESCRIPTION OF SYMBOLS 11 ... Exterior cup, 12, 23 ... Negative electrode, 12A, 23A ... Negative electrode current collector, 12B, 23B ... Negative electrode active material layer, 13 ... Outer can, 14, 24 ... Positive electrode, 14A, 24A ... Positive electrode current collector, 14B , 24B ... positive electrode active material layer, 15, 25 ... separator, 16 ... gasket, 20 ... wound electrode body, 21, 22 ... lead, 26 ... electrolyte, 27 ... protective tape.

Claims (6)

正極および負極と共に電解質を備えたリチウムイオン二次電池であって、
前記負極は、
表面粗度Ra値が0.2μm以上である負極集電体と、前記負極集電体と界面の少なくとも一部において合金化した、ケイ素(Si)を構成元素として含む負極活物質からなる負極活物質層とを有し、
前記負極の満充電状態における単位面積当たりのリチウム(Li)の吸蔵量をA、前記負極の単位面積当たりにおける電気化学的に吸蔵可能なリチウムの量をBとしたとき、(A/B)×100で定義される最大利用率C%が40%以上60%以下である
リチウムイオン二次電池。
(ただし、Aは、対応する充電機により満充電となるまで充電した電池を解体して、正極と対向している部分の負極の一部を検査負極として切り出し、金属リチウムを対極として評価電池を組み立てたのち、この評価電池について放電(検査負極からリチウムイオンが放出される方向へ通電すること)を行い、初放電における容量値を検査負極の面積で割ることにより求めることができるものであり、Bは、この評価電池について放電を行ったのち、電池電圧が0Vになるまで定電流定電圧での充電(検査負極にリチウムイオンが吸蔵される方向へ通電すること)を行い、得られた容量値を検査負極の面積で割ることにより求めることができるものである。ここで、通電電流値は1mA/cm 2 とし、放電は評価電池の電池電圧が1.5Vに達するまで行い、充電は電池電圧が0Vにおける定電圧充電において電流値が0.05mA以下となるまで行う。)
A lithium ion secondary battery comprising an electrolyte together with a positive electrode and a negative electrode,
The negative electrode is
The anode active surface roughness Ra is made of a negative electrode active material comprising as constituent elements and the negative electrode current collector, the alloyed in at least part of the negative electrode current collector and the interface, the silicon (Si) which is 0.2μm or more A material layer,
When the storage amount of lithium (Li) per unit area in the fully charged state of the negative electrode is A, and the amount of lithium that can be stored electrochemically per unit area of the negative electrode is B, (A / B) × A lithium ion secondary battery having a maximum utilization rate C% defined by 100 of 40% or more and 60% or less.
(However, A disassembles the battery that is charged until it is fully charged by the corresponding charger, cuts out a part of the negative electrode facing the positive electrode as the inspection negative electrode, and evaluates the evaluation battery using metallic lithium as the counter electrode. After assembling, this evaluation battery is discharged (by energizing in the direction in which lithium ions are released from the inspection negative electrode), and can be obtained by dividing the capacity value in the initial discharge by the area of the inspection negative electrode, B was discharged for this evaluation battery, and then charged at a constant current and a constant voltage until the battery voltage reached 0 V (energization in the direction in which lithium ions were occluded in the inspection negative electrode). those which can be obtained by dividing the value by the area of the inspection anode. here, the energization current is set to 1 mA / cm 2, discharge the battery voltage of the evaluation battery is 1.5V Performed until the charging is performed until the current value becomes less 0.05mA battery voltage in the constant voltage charging at 0V.)
前記負極集電体と前記負極活物質層との界面において、前記負極集電体を構成する一以上の元素が前記負極活物質の一部に拡散しているAt an interface between the negative electrode current collector and the negative electrode active material layer, one or more elements constituting the negative electrode current collector are diffused in a part of the negative electrode active material.
請求項1記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1.
前記負極活物質層は、構成元素として更に酸素(O)を含み、負極活物質層における酸素の含有量が3原子数%以上である
請求項1または請求項2に記載のリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1, wherein the negative electrode active material layer further contains oxygen (O) as a constituent element, and the content of oxygen in the negative electrode active material layer is 3 atomic% or more. .
前記負極活物質層に含まれる酸素の少なくとも一部は、ケイ素と結合して存在している
請求項記載のリチウムイオン二次電池。
The lithium ion secondary battery according to claim 3, wherein at least a part of oxygen contained in the negative electrode active material layer is bonded to silicon.
前記負極活物質層は、酸素の含有量が異なる第1層と第2層とを交互に積層して有し、
前記第2層は前記第1層よりも酸素の含有量が多く、
前記第2層は、2つの前記第1層の間に1層以上存在する
請求項3または請求項4記載のリチウムイオン二次電池。
The negative electrode active material layer has alternately stacked first and second layers having different oxygen contents,
The second layer has a higher oxygen content than the first layer,
5. The lithium ion secondary battery according to claim 3 , wherein one or more of the second layers exist between the two first layers.
前記電解質は、ハロゲン原子を有する炭酸エステル誘導体を含む
請求項1から請求項5のいずれか1項に記載のリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 5, wherein the electrolyte includes a carbonate ester derivative having a halogen atom.
JP2014053443A 2014-03-17 2014-03-17 Lithium ion secondary battery Active JP5910652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014053443A JP5910652B2 (en) 2014-03-17 2014-03-17 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014053443A JP5910652B2 (en) 2014-03-17 2014-03-17 Lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005210622A Division JP5758560B2 (en) 2005-07-20 2005-07-20 Charging method of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014112563A JP2014112563A (en) 2014-06-19
JP5910652B2 true JP5910652B2 (en) 2016-04-27

Family

ID=51169536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053443A Active JP5910652B2 (en) 2014-03-17 2014-03-17 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5910652B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012864A1 (en) * 2017-07-10 2019-01-17 株式会社村田製作所 Lithium ion secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318025B2 (en) * 2003-05-23 2009-08-19 ソニー株式会社 Negative electrode, battery using the same, and manufacturing method thereof
JP4671589B2 (en) * 2003-07-15 2011-04-20 三星エスディアイ株式会社 Electrolyte for lithium secondary battery and lithium secondary battery
JP4212458B2 (en) * 2003-11-19 2009-01-21 三洋電機株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2014112563A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
US7682742B2 (en) Battery
JP4635978B2 (en) Negative electrode and secondary battery
JP4367311B2 (en) battery
JP5018173B2 (en) Lithium ion secondary battery
US8956758B2 (en) Anode active material and battery
JP4816180B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5135712B2 (en) Secondary battery
JP5364230B2 (en) Negative electrode and battery
JP4655976B2 (en) Negative electrode and battery
JP4984553B2 (en) Secondary battery negative electrode and secondary battery using the same
JP4622803B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
JP2005235734A (en) Battery, its charge and discharge method, and its charge and discharge control element
JP2011258351A (en) Lithium ion secondary battery
JP4892931B2 (en) Lithium ion secondary battery
JP5045977B2 (en) battery
JP5135716B2 (en) Secondary battery electrode, method for manufacturing the same, and secondary battery
JP5304666B2 (en) Method for manufacturing battery electrode
JP4849307B2 (en) Negative electrode and battery
JP5082266B2 (en) Negative electrode and secondary battery
JP5910652B2 (en) Lithium ion secondary battery
JP5098144B2 (en) Negative electrode and battery
JP2006155958A (en) Battery
JP4240312B2 (en) battery
JP5429209B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2007128724A (en) Anode and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R151 Written notification of patent or utility model registration

Ref document number: 5910652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250