JP5908796B2 - Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same - Google Patents
Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same Download PDFInfo
- Publication number
- JP5908796B2 JP5908796B2 JP2012127898A JP2012127898A JP5908796B2 JP 5908796 B2 JP5908796 B2 JP 5908796B2 JP 2012127898 A JP2012127898 A JP 2012127898A JP 2012127898 A JP2012127898 A JP 2012127898A JP 5908796 B2 JP5908796 B2 JP 5908796B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- plane
- rolling
- alloy plate
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、機械的な成形性に優れたCu−Mg−P系銅合金板に関し、特に詳しくは、エリクセン値の良好な張出し成形性に優れたCu−Mg−P系銅合金板及びその製造方法に関する。 The present invention relates to a Cu-Mg-P-based copper alloy sheet excellent in mechanical formability, and in particular, a Cu-Mg-P-based copper alloy sheet excellent in Erichsen value and excellent in stretch formability and its production. Regarding the method.
電気及び電子用機器の端子及びコネクタ用の材料としては、黄銅やリン青銅が一般的に使用されていたが、最近の携帯電話やノートPCなどの電子機器の小型、薄型化、軽量化の進行により、その端子及びコネクタ部品もより小型で電極間ピッチの狭いものが使用される様になっている。また、自動車のエンジン回りの使用等では、高温で厳しい条件下での信頼性も要求されている。これに伴い、その電気的接続の信頼性を保つ必要性から、強度、導電率、ばね限界値、応力緩和特性、機械加工性、耐疲労性等の更なる向上が要求され、黄銅やリン青銅では対応出来なくなり、その代替えとして、出願人は、特許文献1〜5に示される様なCu−Mg−P系銅合金に着目し、優れた特性を有する高品質で高信頼性の端子及びコネクタ用の銅合金板(商品名「MSP1」)を市場に提供している。 As materials for terminals and connectors of electrical and electronic equipment, brass and phosphor bronze were generally used. Recently, electronic equipment such as mobile phones and notebook PCs are becoming smaller, thinner and lighter. Accordingly, the terminals and connector parts are also made smaller and have a narrow pitch between the electrodes. In addition, reliability around severe conditions at high temperatures is also required for use around automobile engines. Along with this, due to the necessity of maintaining the reliability of the electrical connection, further improvements in strength, conductivity, spring limit value, stress relaxation characteristics, machinability, fatigue resistance, etc. are required. Brass and phosphor bronze However, as an alternative, the applicant pays attention to Cu-Mg-P-based copper alloys as disclosed in Patent Documents 1 to 5, and has high quality and high reliability terminals and connectors having excellent characteristics. Copper alloy plate (trade name “MSP1”) for the market.
特許文献1には、Mg:0.3〜2重量%、P:0.001〜0.02重量%、C:0.0002〜0.0013重量%、酸素:0.0002〜0.001重量%を含有し、残りがCuおよび不可避不純物からなる組成、並びに、素地中に粒径:3μm以下の微細なMgを含む酸化物粒子が均一分散している組織を有する銅合金で構成されているコネクタ製造用銅合金薄板が開示されている。 In Patent Document 1, Mg: 0.3 to 2 wt%, P: 0.001 to 0.02 wt%, C: 0.0002 to 0.0013 wt%, oxygen: 0.0002 to 0.001 wt% %, The remainder consisting of Cu and inevitable impurities, and a copper alloy having a structure in which oxide particles containing fine Mg having a particle size of 3 μm or less are uniformly dispersed in the substrate A copper alloy sheet for manufacturing a connector is disclosed.
特許文献2には、重量%で、Mg:0.1〜1.0%、P:0.001〜0.02%を含有し、残りがCuおよび不可避不純物からなる条材であって、表面結晶粒が長円形状をなし、この長円形状結晶粒の平均短径が5〜20μm、平均長径/平均短径の値が1.5〜6.0なる寸法を有し、かかる長円形状結晶粒を形成するには、最終冷間圧延直前の最終焼鈍において平均結晶粒径が5〜20μmの範囲内になるように調整し、ついで最終冷間圧延工程において圧延率を30〜85%の範囲内とする金型を摩耗させることの少ない伸銅合金条材が開示されている。 Patent Document 2 contains, by weight, Mg: 0.1 to 1.0%, P: 0.001 to 0.02%, and the rest is a strip made of Cu and inevitable impurities, The crystal grains have an oval shape, the average minor axis of the elliptical crystal grains is 5 to 20 μm, and the average major axis / average minor axis value is 1.5 to 6.0. In order to form crystal grains, the average grain size is adjusted to be in the range of 5 to 20 μm in the final annealing immediately before the final cold rolling, and then the rolling rate is 30 to 85% in the final cold rolling step. A copper-stretched alloy strip that does not wear the mold within the range is disclosed.
特許文献3には、質量%で、Mg:0.3〜2%、P:0.001〜0.1%、残部がCuおよび不可避的不純物である組成を有する銅合金条材であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界としたみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、引張強さが641〜708N/mm2であり、ばね限界値が472〜503N/mm2である引張り強さとばね限界値が高レベルでバランスの取れたCu−Mg−P系銅合金及びその製造方法が開示されている。 Patent Document 3 discloses a copper alloy strip having a composition in which Mg is 0.3 to 2%, P is 0.001 to 0.1%, and the balance is Cu and inevitable impurities. The orientation of all pixels within the measurement area of the surface of the copper alloy strip is measured by an EBSD method using a scanning electron microscope with a scattered electron diffraction image system, and the orientation difference between adjacent pixels is 5 ° or more. When the boundary is regarded as the grain boundary, the area ratio of the crystal grains in which the average orientation difference between all the pixels in the crystal grains is less than 4 ° is 45 to 55% of the measurement area, and the tensile strength There was 641~708N / mm 2, Cu-Mg -P -based copper alloy and a method of manufacturing the spring limit value is taken 472~503N / mm 2 at a tensile strength and spring limit value of the balance at a high level disclosed Has been.
特許文献4には、 質量%で、Mg:0.3〜2%、P:0.001〜0.1%、残部がCuおよび不可避的不純物である組成を有する銅合金条材であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、全結晶粒における結晶粒内の全ピクセル間の平均方位差の平均値が3.8〜4.2°であり、引張強さが641〜708N/mm2であり、ばね限界値が472〜503N/mm2であり、200℃で1000時間の熱処理後の応力緩和率が12〜19%である銅合金条材およびその製造方法が開示されている。 Patent Document 4 discloses a copper alloy strip having a composition of Mg: 0.3 to 2%, P: 0.001 to 0.1%, the balance being Cu and inevitable impurities. Measure the orientation of all the pixels within the measurement area of the surface of the copper alloy strip with a step size of 0.5 μm by the EBSD method using a scanning electron microscope with a scattered electron diffraction image system, and the orientation between adjacent pixels. When a boundary having a difference of 5 ° or more is regarded as a crystal grain boundary, the average value of the average orientation difference between all the pixels in the crystal grains in all the crystal grains is 3.8 to 4.2 °, and the tensile strength Copper alloy strip having a thickness of 641 to 708 N / mm 2 , a spring limit value of 472 to 503 N / mm 2 , and a stress relaxation rate of 12 to 19% after heat treatment at 200 ° C. for 1000 hours, and its production A method is disclosed.
特許文献5には、質量%で、Mg:0.3〜2%、P:0.001〜0.1%、残部がCuおよび不可避的不純物である組成を有する銅合金条材であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて、ステップサイズ0.5μmにて前記銅合金条材の表面の測定面積内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が5°以上である境界を結晶粒界とみなした場合の、結晶粒内の全ピクセル間の平均方位差が4°未満である結晶粒の面積割合が、前記測定面積の45〜55%であり、前記測定面積内に存在する結晶粒の面積平均GAMが2.2〜3.0°であり、引張強さが641〜708N/mm2であり、ばね限界値が472〜503N/mm2であり、1×106回の繰り返し回数における両振り平面曲げ疲れ限度が300〜350N/mm2である銅合金条材およびその製造方法が開示されている。 Patent Document 5 describes a copper alloy strip having a composition in which Mg is 0.3 to 2%, P is 0.001 to 0.1%, and the balance is Cu and inevitable impurities. Measure the orientation of all the pixels within the measurement area of the surface of the copper alloy strip with a step size of 0.5 μm by the EBSD method using a scanning electron microscope with a scattered electron diffraction image system, and the orientation between adjacent pixels. When the boundary where the difference is 5 ° or more is regarded as a crystal grain boundary, the area ratio of crystal grains having an average orientation difference between all pixels in the crystal grains of less than 4 ° is 45 to 55% of the measurement area. The area average GAM of the crystal grains existing in the measurement area is 2.2 to 3.0 °, the tensile strength is 641 to 708 N / mm 2 , and the spring limit value is 472 to 503 N / mm. 2, both swing plane song in the number of repetitions of 1 × 106 times Fatigue limit copper alloy strip material and its manufacturing method are disclosed a 300~350N / mm 2.
また、特許文献6には、高導電性および高強度を維持しながら、通常の曲げ加工性だけでなくノッチング後の曲げ加工性にも優れ、且つ、耐応力緩和特性に優れた安価な銅合金板材およびその製造方法として、0.2〜1.2質量%のMgと0.001〜0.2質量%のPを含み、残部がCuおよび不可避不純物である組成を有し、その銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI0{420}とすると、I{420}/I0{420}>1.0を満たし、銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI0{220}とすると、1.0≦I{220}/I0{220}≦3.5を満たす結晶配向を有す銅合金板材が開示されている。
特許文献1〜5に基づく優れた品質を有するCu−Mg−P系銅合金板は、出願人の商品名「MSP1」として製造及び販売されており、表面処理、機械加工(主にプレス加工)等が施された後に、端子及びコネクタ材料として広範に使用されている。
最近の複雑で多様な端子及びコネクタの形状に対応するために、Cu−Mg−P系銅合金板も、曲げ加工性やプレス打ち抜き性と共に、複雑な機械加工に対する更なる成形性(プレス加工時の絞り、或いは、張出し成形性等)の良さが求められている。特に、張出し成形性には高い寸法精度が求められることが多く、低コスト化と共に、その成形性を示すエリクセン値の良好なCu−Mg−P系銅合金板が求められている。
本発明では、出願人の商品名「MSP1」を改良し、その優れた諸特性を保持しながら、機械的な成形性、特にエリクセン値が良好で優れた張出し成形性を有するCu−Mg−P系銅合金板及びその製造方法を提供することを目的とする。
Cu-Mg-P-based copper alloy sheets having excellent quality based on Patent Documents 1 to 5 are manufactured and sold under the trade name “MSP1” of the applicant, and are subjected to surface treatment and machining (mainly press working). After being applied, etc., it is widely used as a terminal and connector material.
Cu-Mg-P-based copper alloy plates are also capable of bending and press punching, as well as more formability for complex machining (to deal with recent complex and diverse terminal and connector shapes) Squeezing or stretch formability) is required. In particular, a high dimensional accuracy is often required for the stretch formability, and a Cu—Mg—P-based copper alloy sheet having a good Erichsen value indicating the formability is demanded along with cost reduction.
In the present invention, Cu-Mg-P having improved mechanical formability, particularly excellent Erichsen value and excellent stretch formability, while improving the applicant's trade name "MSP1" and maintaining its excellent properties. An object of the present invention is to provide a copper alloy sheet and a method for producing the same.
従前より、本発明者らは、X線、或いは、SEM・EBSD法にて、出願人の商品名「MSP1」の銅合金組織表面の各結晶方位面、特に、{110}面、{123}面、{111}面、{100}面に着目して種々の解析を実施しており、それらを基に鋭意検討の結果、質量%で、Mg:0.2〜1.2%、P:0.001〜0.2%、残部がCuおよび不可避的不純物である組成を有する銅合金板において、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて圧延面に平行な表面の結晶面の回折強度分布(逆極点図形)を測定し、測定面積内の{123}面の回折強度をI1、{110}面の回折強度をI2、{100}面の回折強度をI3とした場合、I1/I3が15.0〜20.0であり、I2/I3が15.0〜20.0であり、測定面積内の結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率が75%以上であると、その優れた諸特性を保持しながら、機械的な成形性、特にエリクセン値が良好となり、優れた張出し成形性を有することを見出した。
即ち、この張出し成形性を向上させるには、Cu−Mg−P系銅合金の表面の組織を最適な条件に緻密化する必要があり、[{110}面及び{123}面の形成を増加し、{100}面の形成を減じて、{110}面及び{123}面と{100}面との回折強度比を最適な範囲内に収め、更には、結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率が75%以上であることにより達成される。
Conventionally, the present inventors have used the X-ray or SEM / EBSD method for each crystal orientation plane of the copper alloy structure surface of the applicant's trade name “MSP1”, particularly the {110} plane, {123} Various analyzes have been conducted focusing on the {111} plane, {100} plane, and as a result of intensive studies based on them, Mg: 0.2-1.2%, P: In a copper alloy plate having a composition of 0.001 to 0.2%, the balance being Cu and inevitable impurities, the surface parallel to the rolling surface is measured by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. The diffraction intensity distribution (reverse pole figure) of the crystal plane is measured, the diffraction intensity of the {123} plane within the measurement area is I 1 , the diffraction intensity of the {110} plane is I 2 , and the diffraction intensity of the {100} plane is I When I is 3 , I 1 / I 3 is 15.0 to 20.0 and I 2 / I 3 is 15.0 to 2 0.0, the grain size of the crystal grains within the measurement area is 10 μm or less, and the area ratio of the crystal grains having a grain size of 5 μm or less is 75% or more while maintaining its excellent characteristics. The present inventors have found that the mechanical formability, particularly the Erichsen value, is good and has excellent stretch formability.
In other words, in order to improve the stretch formability, it is necessary to densify the surface structure of the Cu—Mg—P-based copper alloy under optimum conditions, increasing the formation of [{110} plane and {123} plane. Then, the formation of the {100} plane is reduced, and the diffraction intensity ratio of the {110} plane and the {123} plane and the {100} plane is within the optimum range, and the crystal grain size is 10 μm or less. It is achieved when the area ratio of crystal grains having a grain size of 5 μm or less is 75% or more.
また、本発明者らは、溶解・鋳造、熱間圧延、冷間圧延、連続焼鈍、仕上げ冷間圧延、テンションレベリングをこの順序で行い、次の(1)〜(3)の条件にて、熱間圧延、冷間圧延、連続焼鈍、テンションレベリングを実施することにより、本発明のCu−Mg−P系銅合金板が最適に製造されることも見出した。
(1)所定成分の銅合金を溶解・鋳造して銅合金鋳塊板を作製し、その銅合金鋳塊板の熱間圧延を、圧延開始温度;700℃〜800℃、総熱間圧延率;80%以上、1パス当りの平均圧延率;15%〜30%にて実施し、冷間圧延を、圧延率;50%以上にて実施することにより、{123}面及び{110}面と{100}面の回折強度比、結晶粒径が規定値内に収まる素地を作る(特に、{110}の形成を増長させる)。
(2)連続焼鈍を、温度;300℃〜550℃、時間;0.1分〜10分にて実施することにより、焼鈍での再結晶化を極力抑えて、{100}面の形成を抑制して規定値内に収める。
(3)テンションレベリングを、ラインテンション;10N/mm2〜140N/mm2で実施することにより、{110}面の形成を増加して規定値内に収め、ローラーレベラーのロールの表面粗さ(Ra);0.01〜0.10μmで実施することにより、ローラーレベラーのロールと銅合金板との摩擦を抑えて、銅合金板のローラーレベラーのロールと接触している側の圧縮ひずみを大きくすることにより、銅合金板表面の組織を緻密化し、{123}面の形成を増加して規定値内に収め、結晶粒径も規定値内に収める。
In addition, the present inventors perform melting / casting, hot rolling, cold rolling, continuous annealing, finish cold rolling, and tension leveling in this order, under the following conditions (1) to (3): It has also been found that the Cu—Mg—P based copper alloy sheet of the present invention is optimally manufactured by carrying out hot rolling, cold rolling, continuous annealing, and tension leveling.
(1) A copper alloy ingot plate is prepared by melting and casting a predetermined component copper alloy, and hot rolling of the copper alloy ingot plate is performed at a rolling start temperature: 700 ° C. to 800 ° C., total hot rolling rate 80% or more, average rolling rate per pass; 15% to 30%, cold rolling, rolling rate; 50% or more, {123} plane and {110} plane And {100} plane diffraction intensity ratio and crystal grain size are made within the specified values (particularly, the formation of {110} is increased).
(2) By performing continuous annealing at a temperature of 300 ° C. to 550 ° C., time; 0.1 minutes to 10 minutes, recrystallization during annealing is suppressed as much as possible, and formation of {100} planes is suppressed. Within the specified value.
(3) the tension leveling, the line tension; 10N / mm 2 ~140N / by performing in mm 2, {110} by increasing the formation of surface housed within a prescribed value, the roller leveler surface roughness of the roll ( Ra): By carrying out at 0.01-0.10 micrometer, the friction of the roll of a roller leveler and a copper alloy plate is suppressed, and the compression strain of the side which is in contact with the roll of a roller leveler of a copper alloy plate is enlarged. By doing so, the structure of the copper alloy plate surface is densified, the formation of {123} planes is increased to fall within the specified value, and the crystal grain size also falls within the specified value.
即ち、本発明のCu−Mg−P系銅合金板は、質量%で、Mg:0.2〜1.2%、P:0.001〜0.2%、残部がCuおよび不可避的不純物である組成を有する銅合金板であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて圧延面に平行な表面の結晶面の回折強度分布(逆極点図形)を測定し、測定面積内の{123}面の回折強度をI1、[110}面の回折強度をI2、{100}面の回折強度をI3とした場合、I1/I3が15.0〜20.0であり、I2/I3が15.0〜20.0であり、測定面積内の結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率が75%以上であることを特徴とする。
Mgは、Cuの素地に固溶して導電性を損なうことなく、強度を向上させる。また、Pは、溶解鋳造時に脱酸作用があり、Mg成分と共存した状態で強度を向上させる。これらMg、Pは、上記範囲内で含有することにより、その特性を有効に発揮することができる。
That is, the Cu-Mg-P-based copper alloy plate of the present invention is, in mass%, Mg: 0.2-1.2%, P: 0.001-0.2%, the balance being Cu and inevitable impurities. This is a copper alloy plate having a certain composition, and the diffraction intensity distribution (reverse pole figure) of the crystal plane on the surface parallel to the rolling surface is measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. When the diffraction intensity of the {123} plane within the area is I 1 , the diffraction intensity of the [110} plane is I 2 , and the diffraction intensity of the {100} plane is I 3 , I 1 / I 3 is 15.0 to 20 0.0, I 2 / I 3 is 15.0 to 20.0, the grain size of the crystal grains within the measurement area is 10 μm or less, and the area ratio of crystal grains having a grain size of 5 μm or less is 75 % Or more.
Mg improves the strength without being dissolved in the Cu substrate and impairing conductivity. Further, P has a deoxidizing action at the time of melt casting, and improves the strength in the state of coexisting with the Mg component. When these Mg and P are contained within the above ranges, their characteristics can be effectively exhibited.
特許文献6には、0.2〜1.2質量%のMgと0.001〜0.2質量%のPを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI0{420}とすると、I{420}/I0{420}>1.0を満たし、銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI0{220}とすると、1.0≦I{220}/I0{220}≦3.5を満たす結晶配向を有すると、通常の曲げ加工性のみでなく、ノッチング後の曲げ加工性にも優れ、耐応力緩和特性に優れることが開示されている。
この文献では、Cu−Mg−P系銅合金の板面(圧延面)からのX線回折パターンは、一般に{111}、{200}、{220}、{311}の4つの結晶面の回折ピークで構成されており、他の結晶面からのX線回折強度は、これらの結晶面からのX線回折強度に比べて非常に小さく、通常の製造方法によって製造されたCu−Mg−P系銅合金の板材では、{420}面からのX線回折強度は、無視される程度に弱くなるが、この文献による銅合金板材の製造方法の実施の形態によれば、{420}を主方位成分とする集合組織を有するCu−Mg−P系銅合金板材を製造することができ、この集合組織が強く発達している程、曲げ加工性の向上に有利となることが開示されている。
In this document, the X-ray diffraction pattern from the plate surface (rolled surface) of a Cu—Mg—P-based copper alloy generally has diffraction of four crystal planes {111}, {200}, {220}, and {311}. The Cu-Mg-P system is composed of peaks, and the X-ray diffraction intensity from other crystal planes is very small compared to the X-ray diffraction intensities from these crystal planes. In the copper alloy plate material, the X-ray diffraction intensity from the {420} plane is so weak as to be neglected, but according to the embodiment of the method for producing a copper alloy plate material according to this document, {420} is the main orientation. It is disclosed that a Cu—Mg—P-based copper alloy sheet having a texture as a component can be produced, and that the stronger the texture is developed, the more advantageous is the bending workability.
本発明では、この文献の考え方とは異なり、出願人の商品名「MSP1」の機械的成形性の改善を進めて行く過程で、Mgが0.2〜1.2質量%、Pが0.001〜0.2質量%、残部がCuおよび不可避的不純物である組成を有する銅合金板について、該銅合金板の後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて圧延面に平行な表面の結晶面の回折強度分布(逆極点図形)を測定し、測定面積内の{123}面の回折強度をI1、{110}面の回折強度をI2、{100}面の回折強度をI3とした場合、I1/I3が15.0〜20.0であり、I2/I3が15.0〜20.0とする、即ち、{123}面と{110}面の形成を増長し、{100}面の形成を極力抑制し、更に、結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率が75%以上とすることにより、銅合金板は、従来の諸特性を維持しながら、機械的成形性、特にエリクセン値が良好で優れた張出し成形性を有することを見出した。
これらの3つの条件(I1/I3、I2/I3、結晶粒径)を全て満たしていないと、その効果は得られない。
従来の諸特性とは、出願人の商品名「MSP1」の1/4H材、1/2H材、H材、EH材、SH材に該当する物理的、機械的、各種特性を意味する。
また、{110}面は、張出し成形性のみでなく、出願人のPCT/JP2012/ 59257で開示されるように、高温での耐疲労特性の向上にも関与する重要な因子でもある。
I1/I3及びI2/I3の値は大きいことが好ましいが、抑制したい{100}面の形成を皆無にすることは、製造技術の問題点から難しく、I1/I3及びI2/I3が20を超えることはない。
結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率を75%以上とすることにより、結晶粒が最適範囲となり表面の緻密化されるが、面積比率が75%未満であると、表面の緻密化が充分ではなく、期待する効果は得られない。この場合、面積比率とは、測定面積内の全結晶粒に占める粒径が5μm以下の結晶粒の割合である。
In the present invention, unlike the concept of this document, in the process of improving the mechanical formability of the applicant's trade name “MSP1”, Mg is 0.2 to 1.2 mass% and P is 0.2%. A copper alloy plate having a composition of 001 to 0.2% by mass, the balance being Cu and inevitable impurities, on the rolled surface by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system of the copper alloy plate The diffraction intensity distribution (inverse pole figure) of the crystal plane of the parallel surface is measured, the diffraction intensity of the {123} plane within the measurement area is I 1 , the diffraction intensity of the {110} plane is I 2 , and the {100} plane When the diffraction intensity is I 3 , I 1 / I 3 is 15.0 to 20.0 and I 2 / I 3 is 15.0 to 20.0, that is, {123} plane and {110 } The formation of the surface is increased, the formation of the {100} surface is suppressed as much as possible, and the crystal grain size is 10 μm or less. Thus, by setting the area ratio of the crystal grains having a grain size of 5 μm or less to 75% or more, the copper alloy sheet has excellent mechanical formability, in particular, an Erichsen value, while maintaining the conventional characteristics. It has been found that it has stretch formability.
The effect cannot be obtained unless all of these three conditions (I 1 / I 3 , I 2 / I 3 , crystal grain size) are satisfied.
The conventional properties mean physical, mechanical, and various properties corresponding to 1 / 4H material, 1 / 2H material, H material, EH material, and SH material of the applicant's trade name “MSP1”.
Further, the {110} plane is an important factor involved in improving fatigue resistance at high temperatures, as disclosed in the applicant's PCT / JP2012 / 59257, as well as the stretch formability.
It is preferable that the values of I 1 / I 3 and I 2 / I 3 are large, but it is difficult to eliminate the formation of {100} planes to be suppressed because of problems in manufacturing technology, and I 1 / I 3 and I 2 / I 3 never exceeds 20.
By setting the area ratio of the crystal grains having a grain size of 10 μm or less and a grain size of 5 μm or less to 75% or more, the crystal grains have an optimum range and the surface is densified. If it is less than%, the surface is not sufficiently densified, and the expected effect cannot be obtained. In this case, the area ratio is a ratio of crystal grains having a grain size of 5 μm or less in all crystal grains within the measurement area.
本発明では、各結晶面の回折強度分布(逆極点図形)の測定は、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて実施した。
各結晶面の分布等を表示する方法としては、正極点図形と逆極点図形とがあり、正極点図形は、測定試料の試料軸を固定した平面図形表示であり、結晶面の3次元的な状態を読み取ることができる。逆極点図形は、測定試料の結晶軸を固定した平面図形表示であり、本発明では、この逆極点図形を用い、{123}面、[110}面、{100}面の回折強度に着目した。
また、本発明では、張出し成形性の評価をエリクセン値(銅合金薄膜を円環状の台において、中心を球状の突起で押し、銅合金薄膜が破壊するまでに球状突起が侵入した深さをmm単位で表した数値)にて評価した。
In the present invention, the diffraction intensity distribution (reverse pole figure) of each crystal plane was measured by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system.
As a method for displaying the distribution of each crystal plane, there are a positive pole figure and an inverse pole figure, and the positive pole figure is a plane figure display in which the sample axis of the measurement sample is fixed, and the three-dimensional crystal plane is displayed. The status can be read. The inverted pole figure is a plane figure display in which the crystal axis of the measurement sample is fixed. In the present invention, this inverted pole figure is used to focus on the diffraction intensity of the {123} plane, the [110} plane, and the {100} plane. .
In addition, in the present invention, the evaluation of the stretch formability was performed using an Erichsen value (the depth at which the spherical protrusion penetrated until the center of the copper alloy thin film was pushed by the spherical protrusion and the copper alloy thin film was broken. (Numerical values expressed in units).
また、本発明の優れた耐疲労特性を有するCu−Mg−P系銅合金板は、更に、0.0002〜0.0013質量%のCと0.0002〜0.001質量%の酸素を含有することを特徴とする。
Cは、純銅に対して非常に入りにくい元素であるが、微量に含まれることにより、Mgを含む酸化物が大きく成長するのを抑制する作用がある。しかし、その含有量が0.0001質量%未満ではその効果が十分でなく、一方、0.0013質量%を越えて含有すると、固溶限度を越えて結晶粒界に析出し、粒界割れを発生させて脆化し、曲げ加工中に割れが発生することがあるので好ましくない。より好ましい範囲は、0.0003〜0.0010質量%である。
酸素は、Mgとともに酸化物を作り、この酸化物が微細で微量存在すると、打抜き金型の摩耗低減に有効であるが、その含有量が0.0002質量%未満ではその効果が十分でなく、一方、0.001質量%を越えて含有するとMgを含む酸化物が大きく成長するので好ましくない。より好ましい範囲は0.0003〜0.008質量%である。
また、本発明の優れた耐疲労特性を有するCu−Mg−P系銅合金板は、更に、0.001〜0.03質量%のZrを含有することを特徴とする。
Zrは、0.001〜0.03質量%の添加により、引張強さ及びばね限界値の向上に寄与し、その添加範囲外では、効果は望めない。Further, the Cu—Mg—P-based copper alloy sheet having excellent fatigue resistance characteristics of the present invention further contains 0.0002 to 0.0013 mass% of C and 0.0002 to 0.001 mass% of oxygen. It is characterized by doing.
C is an element that is very difficult to enter into pure copper. However, when contained in a trace amount, C has an effect of suppressing the growth of oxide containing Mg. However, if the content is less than 0.0001% by mass, the effect is not sufficient. On the other hand, if the content exceeds 0.0013% by mass, it exceeds the solid solution limit and precipitates at the crystal grain boundary, causing intergranular cracking. It is not preferable because it causes embrittlement and cracking during bending. A more preferable range is 0.0003 to 0.0010 mass%.
Oxygen forms an oxide together with Mg, and if this oxide is fine and present in a very small amount, it is effective for reducing the wear of the punching die, but if its content is less than 0.0002% by mass, its effect is not sufficient, On the other hand, if the content exceeds 0.001% by mass, an oxide containing Mg grows greatly, which is not preferable. A more preferable range is 0.0003 to 0.008 mass%.
In addition, the Cu—Mg—P-based copper alloy sheet having excellent fatigue resistance characteristics of the present invention is further characterized by containing 0.001 to 0.03 mass% of Zr.
Zr contributes to the improvement of the tensile strength and the spring limit value by adding 0.001 to 0.03% by mass, and no effect can be expected outside the addition range.
本発明のCu−Mg−P系銅合金板の製造方法は、熱間圧延、冷間圧延、連続焼鈍、仕上げ冷間圧延、テンションレベリングをこの順序で行う工程で前記銅合金板を製造するに際し、前記熱間圧延を、圧延開始温度;700℃〜800℃、総熱間圧延率;80%以上、1パス当りの平均圧延率;15%〜30%にて実施し、前記冷間圧延を、圧延率;50%以上にて実施し、前記連続焼鈍を、温度;300℃〜550℃、時間;0.1分〜10分にて実施し、テンションレベリングを、ラインテンション;10N/mm2〜140N/mm2、ローラーレベラーのロールの表面粗さ(Ra);0.01〜0.10μmにて実施することを特徴とする。 The method for producing a Cu-Mg-P-based copper alloy sheet of the present invention is a method for producing the copper alloy sheet in a process of performing hot rolling, cold rolling, continuous annealing, finish cold rolling, and tension leveling in this order. The hot rolling is performed at a rolling start temperature: 700 ° C. to 800 ° C., a total hot rolling rate: 80% or more, an average rolling rate per pass: 15% to 30%, and the cold rolling is performed. The rolling annealing is performed at 50% or more, and the continuous annealing is performed at a temperature of 300 ° C. to 550 ° C., a time of 0.1 minutes to 10 minutes, and tension leveling is performed with a line tension of 10 N / mm 2. ~ 140 N / mm < 2 >, surface roughness (Ra) of roll of roller leveler; 0.01-0.10 [mu] m.
出願人の特許文献3、特許文献4、特許文献5では、Cu−Mg−P系銅合金板の製造方法として、熱間圧延、溶体化処理、仕上げ冷間圧延、低温焼鈍をこの順序で含む工程で銅合金を製造するに際して、熱間圧延開始温度が700℃〜800℃で、総熱間圧延率が90%以上であり、1パス当りの平均圧延率が10%〜35%として前記熱間圧延を行い、前記溶体化処理後の銅合金板のビッカース硬さを80〜100Hvに調整し、前記低温焼鈍を250〜450℃にて30秒〜180秒にて実施することを開示しており、出願人の特許文献4では、更に、仕上げ冷間圧延における総圧延率を50〜80%にて実施することが開示されている。
また、特許文献6には、Cu−Mg−P系銅合金板の製造方法として、900℃〜300℃における熱間圧延として900℃〜600℃で最初の圧延パスを行った後に600℃未満〜300℃で圧延率40%以上の圧延を行い、次いで、圧延率85%以上で冷間圧延を行い、その後、400〜700℃における再結晶焼鈍と、圧延率20〜70%の仕上げ冷間圧延を順次行うことにより、銅合金板材を製造することが開示されている。
In the applicant's patent document 3, patent document 4, and patent document 5, as a manufacturing method of a Cu-Mg-P type copper alloy plate, hot rolling, solution treatment, finish cold rolling, and low temperature annealing are included in this order. When producing the copper alloy in the process, the hot rolling start temperature is 700 ° C. to 800 ° C., the total hot rolling rate is 90% or more, and the average rolling rate per pass is 10% to 35%. It is disclosed that the Vickers hardness of the copper alloy sheet after the solution treatment is adjusted to 80 to 100 Hv, and the low temperature annealing is performed at 250 to 450 ° C. for 30 seconds to 180 seconds. In Patent Document 4 of the applicant, it is further disclosed that the total rolling rate in finish cold rolling is 50 to 80%.
Moreover, in
本発明のCu−Mg−P系銅合金板の製造方法は、出願人の特許文献3、特許文献4、特許文献5の製造方法を改良し、テンションレベリングにより、{110}面、{123}面及び結晶粒径を規定範囲値内に収める、即ち、最適なテンションレベリングにて、銅合金板に繰り返し曲げ加工、引張り応力を与えて、結晶粒径を調整し、{110}面及び{123}面の形成を増加させて、表面組織を緻密化し個々の粒界に作用する応力を低下させることにより、優れた張出し成形性を有するCu−Mg−P系銅合金板を得ることが大きな特徴である。
テンションレベリングとは、ローラーレベラー(千鳥にならぶロールに銅合金板を挿入して繰り返し逆方向に曲げ加工する装置)に対して、前後方向に張力を与えることにより、銅合金板の平坦度を矯正する加工であり、ラインテンションとは、入側および巻取側テンション負荷装置によりローラーレベラー内の銅合金板に負荷される張力である。このラインテンションと共に、ローラーレベラーの各ロールの表面粗さ(Ra)も、銅合金の表面組織の緻密化に大きな影響を及ぼす。
The manufacturing method of the Cu—Mg—P-based copper alloy sheet of the present invention is improved from the manufacturing method of the applicant's Patent Document 3, Patent Document 4, and Patent Document 5, and {110} plane, {123} by tension leveling The crystal grain size is adjusted by repetitively bending and applying tensile stress to the copper alloy plate by adjusting the crystal grain size by keeping the plane and crystal grain size within the specified range values, that is, with optimum tension leveling. } A major feature is to obtain a Cu-Mg-P-based copper alloy sheet having excellent stretch formability by increasing the surface formation and reducing the stress acting on individual grain boundaries by densifying the surface structure. It is.
Tension leveling corrects the flatness of the copper alloy plate by applying tension in the front-rear direction to the roller leveler (a device that repeatedly inserts a copper alloy plate into a roll following a zigzag and bends it in the opposite direction). The line tension is the tension applied to the copper alloy plate in the roller leveler by the inlet side and winding side tension load devices. Along with this line tension, the surface roughness (Ra) of each roll of the roller leveler also has a great influence on the densification of the surface structure of the copper alloy.
具体的には、次の製造方法と理由により、本発明のCu−Mg−P系銅合金板が最適に製造される。
(1)所定成分の銅合金を溶解・鋳造して銅合金鋳塊板を作製し、その銅合金鋳塊板の熱間圧延を、圧延開始温度;700℃〜800℃、総熱間圧延率;80%以上、1パス当りの平均圧延率;15%〜30%にて実施し、冷間圧延を、圧延率;50%以上にて実施することにより、{123}面及び{110}面と{100}面の回折強度比、結晶粒径が規定値内に収まる素地を作る(特に、{110}の形成を増長させる)。
(2)連続焼鈍を、温度;300℃〜550℃、時間;0.1分〜10分にて実施することにより、焼鈍での再結晶化を極力抑えて、{100}面の形成を抑制して規定値内に収める。
(3)テンションレベリングを、ラインテンション;10N/mm2〜140N/mm2で実施することにより、{110}面の形成を増加して規定値内に収め、ローラーレベラーのロールの表面粗さ(Ra);0.01〜0.10μmで実施することにより、ローラーレベラーローのロールと銅合金板との摩擦を抑えて、銅合金板のローラーレベラーのロールと接触している側の圧縮ひずみを大きくすることにより、銅合金板表面の組織を緻密化し、{123}面の形成を増加して規定値内に収め、結晶粒径も規定値内に収める。
これらの熱間圧延、冷間圧延、連続焼鈍、テンションレベリングの製造条件の何れか一つが外れても、3つの条件(I1/I3、I2/I3、結晶粒径)を全て満たした機械的な成形性に優れたCu−Mg−P系銅合金板を得ることはできない。
Specifically, the Cu—Mg—P-based copper alloy sheet of the present invention is optimally manufactured for the following manufacturing method and reason.
(1) A copper alloy ingot plate is prepared by melting and casting a predetermined component copper alloy, and hot rolling of the copper alloy ingot plate is performed at a rolling start temperature: 700 ° C. to 800 ° C., total hot rolling rate 80% or more, average rolling rate per pass; 15% to 30%, cold rolling, rolling rate; 50% or more, {123} plane and {110} plane And {100} plane diffraction intensity ratio and crystal grain size are made within the specified values (particularly, the formation of {110} is increased).
(2) By performing continuous annealing at a temperature of 300 ° C. to 550 ° C., time; 0.1 minutes to 10 minutes, recrystallization during annealing is suppressed as much as possible, and formation of {100} planes is suppressed. Within the specified value.
(3) the tension leveling, the line tension; 10N / mm 2 ~140N / by performing in mm 2, {110} by increasing the formation of surface housed within a prescribed value, the roller leveler surface roughness of the roll ( Ra); By carrying out at 0.01-0.10 micrometer, the friction with the roll of a roller leveler row and a copper alloy board is suppressed, and the compression strain of the side which is in contact with the roll of a roller leveler of a copper alloy board is carried out. By enlarging, the structure of the copper alloy plate surface is densified, the formation of {123} planes is increased to fall within the specified value, and the crystal grain size also falls within the specified value.
All three conditions (I 1 / I 3 , I 2 / I 3 , crystal grain size) are satisfied even if any one of these hot rolling, cold rolling, continuous annealing, and tension leveling manufacturing conditions is removed. In addition, it is not possible to obtain a Cu—Mg—P-based copper alloy plate excellent in mechanical formability.
本発明により、機械的な成形性、特にエリクセン値が良好で優れた張出し成形性を有するCu−Mg−P系銅合金板及びその製造方法が提供される。 The present invention provides a Cu-Mg-P-based copper alloy sheet having excellent mechanical formability, in particular, excellent Erichsen value and excellent stretch formability, and a method for producing the same.
以下、本発明の実施形態について詳細に説明する。
[銅合金板の成分組成]
本発明のCu−Mg−P系銅合金板は、0.2〜1.2質量%のMgと0.001〜0.2質量%のPを含み、残部がCuおよび不可避不純物である基本組成を有する。
Mgは、Cuの素地に固溶して導電性を損なうことなく、強度を向上させる。また、Pは、溶解鋳造時に脱酸作用があり、Mg成分と共存した状態で強度を向上させる。これらMg、Pは上記の範囲で含有することにより、その特性を有効に発揮することができる。
また、本発明のCu−Mg−P系銅合金板は、上記の基本組成に対して、更に0.0002〜0.0013質量%のCと0.0002〜0.001質量%の酸素を含有するのが好ましい。
Cは、純銅に対して非常に入りにくい元素であるが、微量に含まれることにより、Mgを含む酸化物が大きく成長するのを抑制する作用がある。しかし、その含有量が0.0001質量%未満ではその効果が十分でなく、一方、0.0013質量%を越えて含有すると、固溶限度を越えて結晶粒界に析出し、粒界割れを発生させて脆化し、曲げ加工中に割れが発生することがあるので好ましくない。より好ましい範囲は、0.0003〜0.0010質量%である。
酸素は、Mgとともに酸化物を作り、この酸化物が微細で微量存在すると、打抜き金型の摩耗低減に有効であるが、その含有量が0.0002質量%未満ではその効果が十分でなく、一方、0.001質量%を越えて含有するとMgを含む酸化物が大きく成長するので好ましくない。より好ましい範囲は0.0003〜0.008質量%である。
また、本発明のCu−Mg−P系銅合金板は、上記の基本組成に対して、或いは、上記の基本組成に上記のC及び酸素を含む組成に対して、更に、0.001〜0.03質量%のZrを含有するのが好ましい。
Zrは、0.001〜0.03質量%の添加により、引張強さ及びばね限界値の向上に寄与し、その添加範囲外では、効果は望めない。Hereinafter, embodiments of the present invention will be described in detail.
[Component composition of copper alloy sheet]
The Cu—Mg—P-based copper alloy sheet of the present invention contains 0.2 to 1.2 mass% Mg and 0.001 to 0.2 mass% P, with the balance being Cu and inevitable impurities. Have
Mg improves the strength without being dissolved in the Cu substrate and impairing conductivity. Further, P has a deoxidizing action at the time of melt casting, and improves the strength in the state of coexisting with the Mg component. By containing these Mg and P in the above ranges, the characteristics can be effectively exhibited.
Further, the Cu—Mg—P-based copper alloy sheet of the present invention further contains 0.0002 to 0.0013 mass% C and 0.0002 to 0.001 mass% oxygen with respect to the above basic composition. It is preferable to do this.
C is an element that is very difficult to enter into pure copper. However, when contained in a trace amount, C has an effect of suppressing the growth of oxide containing Mg. However, if the content is less than 0.0001% by mass, the effect is not sufficient. On the other hand, if the content exceeds 0.0013% by mass, it exceeds the solid solution limit and precipitates at the crystal grain boundary, causing intergranular cracking. It is not preferable because it causes embrittlement and cracking during bending. A more preferable range is 0.0003 to 0.0010 mass%.
Oxygen forms an oxide together with Mg, and if this oxide is fine and present in a very small amount, it is effective for reducing the wear of the punching die, but if its content is less than 0.0002% by mass, its effect is not sufficient, On the other hand, if the content exceeds 0.001% by mass, an oxide containing Mg grows greatly, which is not preferable. A more preferable range is 0.0003 to 0.008 mass%.
Further, the Cu—Mg—P-based copper alloy plate of the present invention is further 0.001 to 0 with respect to the above basic composition or with respect to the above composition containing C and oxygen. It is preferable to contain 0.03% by mass of Zr.
Zr contributes to the improvement of the tensile strength and the spring limit value by adding 0.001 to 0.03% by mass, and no effect can be expected outside the addition range.
[銅合金板の集合組織]
本発明のCu−Mg−P系銅合金板は、質量%で、Mg:0.2〜1.2%、P:0.001〜0.2%、残部がCuおよび不可避的不純物である組成を有する銅合金板であり、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて圧延面に平行な表面の結晶面の回折強度分布(逆極点図形)を測定し、測定面積内の{123}面の回折強度をI1、[110}面の回折強度をI2、{100}面の回折強度をI3とした場合、I1/I3が15.0〜20.0であり、I2/I3が15.0〜20.0であり、測定面積内の結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率が75%以上である。
[A texture of copper alloy sheet]
The Cu-Mg-P-based copper alloy sheet of the present invention is a composition in which Mg is 0.2 to 1.2%, P is 0.001 to 0.2%, and the balance is Cu and inevitable impurities. This is a copper alloy plate with a backscattered electron diffraction image system, and the diffraction intensity distribution (reverse pole figure) of the crystal plane on the surface parallel to the rolling surface is measured by the EBSD method using a scanning electron microscope. When the diffraction intensity of the {123} plane is I 1 , the diffraction intensity of the [110} plane is I 2 , and the diffraction intensity of the {100} plane is I 3 , I 1 / I 3 is 15.0 to 20.0. I 2 / I 3 is 15.0 to 20.0, the grain size of the crystal grains in the measurement area is 10 μm or less, and the area ratio of the crystal grains whose grain size is 5 μm or less is 75% or more It is.
特許文献6には、0.2〜1.2質量%のMgと0.001〜0.2質量%のPを含み、残部がCuおよび不可避不純物である組成を有する銅合金板材において、銅合金板材の板面における{420}結晶面のX線回折強度をI{420}とし、純銅標準粉末の{420}結晶面のX線回折強度をI0{420}とすると、I{420}/I0{420}>1.0を満たし、銅合金板材の板面における{220}結晶面のX線回折強度をI{220}とし、純銅標準粉末の{220}結晶面のX線回折強度をI0{220}とすると、1.0≦I{220}/I0{220}≦3.5を満たす結晶配向を有すると、通常の曲げ加工性のみでなく、ノッチング後の曲げ加工性にも優れ、耐応力緩和特性に優れることが開示されている。
この文献では、Cu−Mg−P系銅合金の板面(圧延面)からのX線回折パターンは、一般に{111}、{200}、{220}、{311}の4つの結晶面の回折ピークで構成されており、他の結晶面からのX線回折強度は、これらの結晶面からのX線回折強度に比べて非常に小さく、通常の製造方法によって製造されたCu−Mg−P系銅合金の板材では、{420}面からのX線回折強度は、無視される程度に弱くなるが、この文献による銅合金板材の製造方法の実施の形態によれば、{420}を主方位成分とする集合組織を有するCu−Mg−P系銅合金板材を製造することができ、この集合組織が強く発達している程、曲げ加工性の向上に有利となることが開示されている。
In this document, the X-ray diffraction pattern from the plate surface (rolled surface) of a Cu—Mg—P-based copper alloy generally has diffraction of four crystal planes {111}, {200}, {220}, and {311}. The Cu-Mg-P system is composed of peaks, and the X-ray diffraction intensity from other crystal planes is very small compared to the X-ray diffraction intensities from these crystal planes. In the copper alloy plate material, the X-ray diffraction intensity from the {420} plane is so weak as to be neglected, but according to the embodiment of the method for producing a copper alloy plate material according to this document, {420} is the main orientation. It is disclosed that a Cu—Mg—P-based copper alloy sheet having a texture as a component can be produced, and that the stronger the texture is developed, the more advantageous is the bending workability.
本発明では、この文献の考え方とは異なり、出願人の商品名「MSP1」の機械的成形性の改善を進めて行く過程で、銅合金板の後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて圧延面に平行な表面の結晶面の回折強度分布(逆極点図形)を測定し、測定面積内の{123}面の回折強度をI1、{110}面の回折強度をI2、{100}面の回折強度をI3とした場合、I1/I3が15.0〜20.0であり、I2/I3が15.0〜20.0とする、即ち、{123}面と{110}面の形成を増長し、{100}面の形成を極力抑制し、更に、結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率が75%以上とすることにより、銅合金板は、従来の諸特性を維持しながら、機械的成形性、特にエリクセン値が良好で優れた張出し成形性を有することを見出している。
これらの3つの条件(I1/I3、I2/I3、結晶粒径)を全て満たしていないと、その効果は期待できない。
従来の諸特性とは、出願人の商品名「MSP1」の1/4H材、1/2H材、H材、EH材、SH材に該当する物理的、機械的、各種特性を意味する。
また、[110}面は、張出し成形性のみでなく、出願人のPCT/JP2012/ 59257で開示されるように、高温での耐疲労特性の向上にも関与する重要な因子でもある。
I1/I3及びI2/I3の値は大きいことが好ましいが、抑制したい{100}面の形成を皆無にすることは、製造技術の問題点から難しく、I1/I3及びI2/I3が20を超えることはない。
結晶粒の粒径が10μm以下であり、粒径が5μm以下である結晶粒の面積比率を75%以上とすることにより、結晶粒が最適範囲となり表面の緻密化されるが、面積比率が75%未満であると、表面の緻密化が充分ではなく、期待する効果は得られない。この場合、面積比率とは、測定面積内の全結晶粒に占める粒径が5μm以下の結晶粒の割合である。
In the present invention, unlike the concept of this document, in the process of improving the mechanical formability of the applicant's trade name “MSP1”, a scanning electron microscope with a backscattered electron diffraction image system of a copper alloy plate is used. The diffraction intensity distribution (reverse pole figure) of the crystal plane parallel to the rolling surface is measured by the EBSD method according to, and the diffraction intensity of the {123} plane within the measurement area is I 1 and the diffraction intensity of the {110} plane is When the diffraction intensity of the I 2 and {100} planes is I 3 , I 1 / I 3 is 15.0 to 20.0, and I 2 / I 3 is 15.0 to 20.0. , The formation of {123} plane and {110} plane is increased, the formation of {100} plane is suppressed as much as possible, and the crystal grain size is 10 μm or less and the grain size is 5 μm or less. By setting the area ratio to 75% or more, the copper alloy sheet can be mechanically grown while maintaining the conventional characteristics. It has been found that the formability, particularly the Erichsen value, is good and has excellent stretch formability.
The effect cannot be expected unless all of these three conditions (I 1 / I 3 , I 2 / I 3 , crystal grain size) are satisfied.
The conventional properties mean physical, mechanical, and various properties corresponding to 1 / 4H material, 1 / 2H material, H material, EH material, and SH material of the applicant's trade name “MSP1”.
Further, the [110} plane is an important factor involved not only in the stretch formability but also in improving the fatigue resistance at high temperatures as disclosed in the applicant's PCT / JP2012 / 59257.
It is preferable that the values of I 1 / I 3 and I 2 / I 3 are large, but it is difficult to eliminate the formation of {100} planes to be suppressed because of problems in manufacturing technology, and I 1 / I 3 and I 2 / I 3 never exceeds 20.
By setting the area ratio of the crystal grains having a grain size of 10 μm or less and a grain size of 5 μm or less to 75% or more, the crystal grains have an optimum range and the surface is densified. If it is less than%, the surface is not sufficiently densified, and the expected effect cannot be obtained. In this case, the area ratio is a ratio of crystal grains having a grain size of 5 μm or less in all crystal grains within the measurement area.
[銅合金板の各結晶面の回折強度分布(逆極点図形)の測定、エリクセン値]
本発明では、各結晶面の回折強度分布(逆極点図形)の測定は、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて実施した。
各結晶面の分布等を表示する方法としては、正極点図形と逆極点図形とがあり、正極点図形は、測定試料の試料軸を固定した平面図形表示であり、結晶面の3次元的な状態を読み取ることができる。逆極点図形は、測定試料の結晶軸を固定した平面図形表示であり、本発明では、この逆極点図形を用い、{123}面、{110}面、{100}面の回折強度に着目した。
また、本発明では、張出し成形性の評価をエリクセン値(銅合金薄板を円環状の台において、中心を球状の突起で押し、銅合金薄板が破壊するまでに球状突起が侵入した深さをmm単位で表した数値)にて評価した。
[Measurement of diffraction intensity distribution (reverse pole figure) of each crystal plane of copper alloy sheet, Erichsen value]
In the present invention, the diffraction intensity distribution (reverse pole figure) of each crystal plane was measured by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system.
As a method for displaying the distribution of each crystal plane, there are a positive pole figure and an inverse pole figure, and the positive pole figure is a plane figure display in which the sample axis of the measurement sample is fixed, and the three-dimensional crystal plane is displayed. The status can be read. The inverse pole figure is a plane figure display in which the crystal axis of the measurement sample is fixed. In the present invention, the inverse pole figure is used and attention is paid to the diffraction intensity of the {123} plane, the {110} plane, and the {100} plane. .
In addition, in the present invention, the evaluation of the stretch formability is performed using an Erichsen value (the depth at which the spherical protrusion penetrates until the copper alloy sheet is broken by pressing the center with a spherical protrusion on the annular base of the copper alloy sheet) (Numerical values expressed in units).
[銅合金板の製造方法]
本発明のCu−Mg−P系銅合金板の製造方法は、熱間圧延、冷間圧延、連続焼鈍、仕上げ冷間圧延、テンションレベリングをこの順序で行う工程で前記銅合金板を製造するに際し、前記熱間圧延を、圧延開始温度;700℃〜800℃、総熱間圧延率;80%以上、1パス当りの平均圧延率;15%〜30%にて実施し、前記冷間圧延を、圧延率;50%以上にて実施し、前記連続焼鈍を、温度;300℃〜550℃、時間;0.1分〜10分にて実施し、テンションレベリングを、ラインテンション;10N/mm2〜140N/mm2、ローラーレベラーのロールの表面粗さ(Ra);0.01〜0.10μmにて実施することを特徴とする。
[Method for producing copper alloy sheet]
The method for producing a Cu-Mg-P-based copper alloy sheet of the present invention is a method for producing the copper alloy sheet in a process of performing hot rolling, cold rolling, continuous annealing, finish cold rolling, and tension leveling in this order. The hot rolling is performed at a rolling start temperature: 700 ° C. to 800 ° C., a total hot rolling rate: 80% or more, an average rolling rate per pass: 15% to 30%, and the cold rolling is performed. The rolling annealing is performed at 50% or more, and the continuous annealing is performed at a temperature of 300 ° C. to 550 ° C., a time of 0.1 minutes to 10 minutes, and tension leveling is performed with a line tension of 10 N / mm 2. ~ 140 N / mm < 2 >, surface roughness (Ra) of roll of roller leveler; 0.01-0.10 [mu] m.
出願人の特許文献3、特許文献4、特許文献5では、Cu−Mg−P系銅合金板の製造方法として、熱間圧延、溶体化処理、仕上げ冷間圧延、低温焼鈍をこの順序で含む工程で銅合金を製造するに際して、熱間圧延開始温度が700℃〜800℃で、総熱間圧延率が90%以上であり、1パス当りの平均圧延率が10%〜35%として前記熱間圧延を行い、前記溶体化処理後の銅合金板のビッカース硬さを80〜100Hvに調整し、前記低温焼鈍を250〜450℃にて30秒〜180秒にて実施することを開示しており、出願人の特許文献4では、更に、仕上げ冷間圧延における総圧延率を50〜80%にて実施することを開示している。
また、特許文献6には、Cu−Mg−P系銅合金板の製造方法として、900℃〜300℃における熱間圧延として900℃〜600℃で最初の圧延パスを行った後に600℃未満〜300℃で圧延率40%以上の圧延を行い、次いで、圧延率85%以上で冷間圧延を行い、その後、400〜700℃における再結晶焼鈍と、圧延率20〜70%の仕上げ冷間圧延を順次行うことにより、銅合金板材を製造することが開示されている。
In the applicant's patent document 3, patent document 4, and patent document 5, as a manufacturing method of a Cu-Mg-P type copper alloy plate, hot rolling, solution treatment, finish cold rolling, and low temperature annealing are included in this order. When producing the copper alloy in the process, the hot rolling start temperature is 700 ° C. to 800 ° C., the total hot rolling rate is 90% or more, and the average rolling rate per pass is 10% to 35%. It is disclosed that the Vickers hardness of the copper alloy sheet after the solution treatment is adjusted to 80 to 100 Hv, and the low temperature annealing is performed at 250 to 450 ° C. for 30 seconds to 180 seconds. In the patent document 4 of the applicant, it is further disclosed that the total rolling rate in the finish cold rolling is performed at 50 to 80%.
Moreover, in
本発明のCu−Mg−P系銅合金板の製造方法は、出願人の特許文献3、特許文献4、特許文献5の製造方法を改良し、テンションレベリングにより、{110}面、{123}面及び結晶粒径を規定範囲値内に収める、即ち、最適なテンションレベリングにて、銅合金板に繰り返し曲げ加工、引張り応力を与えて、結晶粒径を調整し、{110}面及び{123}面の形成を増加させて、表面組織を緻密化し個々の粒界に作用する応力を低下させることにより、優れた張出し成形性を有するCu−Mg−P系銅合金板を得ることが大きな特徴である。
テンションレベリングとは、千鳥に並ぶロールに材料を通して繰り返し逆方向に曲げ加工するローラーレベラーに前後方向に張力を与えることにより、材料の平坦度を矯正する加工である。このテンションレベリングでは、材料に、バックテンション、ラインテンション、フロントテンションの張力が負荷される。バックテンションとは、アンコイラーと入側テンション負荷装置との間の材料に負荷される張力であり、ラインテンションとは、入側および巻取側テンション負荷装置によりローラーレベラー内の材料に負荷される張力であり、フロントテンションとはリコイラーと巻取側テンション負荷装置との間の材料に負荷される張力である。
図1に示すように、アンコイラー9に巻かれた銅合金板6は、テンションレベラ10の入側テンション負荷装置11を通過し、ローラーレベラー13により繰り返し曲げ加工されて銅合金板7となり、巻取側テンション負荷装置12を通過後、銅合金板8となりリコイラー14に巻き取られる。この際、バックテンションB1はアンコイラー9と入側テンション負荷装置11との間の銅合金板6に負荷される。ラインテンションLは入側テンション負荷装置11と巻取側テンション負荷装置12の間の銅合金板7に負荷される(ローラーレベラー13内では均一な張力である)。フロントテンションF1はリコイラー14と巻取側テンション負荷装置12との間の銅合金板8に負荷される張力である。
このラインテンションLと共に、ローラーレベラー13の各ロールの表面粗さ(Ra)が、銅合金の表面組織の緻密化に大きな影響を及ぼす。
The manufacturing method of the Cu—Mg—P-based copper alloy sheet of the present invention is improved from the manufacturing method of the applicant's Patent Document 3, Patent Document 4, and Patent Document 5, and {110} plane, {123} by tension leveling The crystal grain size is adjusted by repetitively bending and applying tensile stress to the copper alloy plate by adjusting the crystal grain size by keeping the plane and crystal grain size within the specified range values, that is, with optimum tension leveling. } A major feature is to obtain a Cu-Mg-P-based copper alloy sheet having excellent stretch formability by increasing the surface formation and reducing the stress acting on individual grain boundaries by densifying the surface structure. It is.
Tension leveling is a process of correcting the flatness of a material by applying tension in the front-rear direction to a roller leveler that repeatedly bends the material in rolls arranged in a staggered manner in the reverse direction. In this tension leveling, a back tension, a line tension, and a front tension are applied to the material. The back tension is the tension applied to the material between the uncoiler and the input side tension load device, and the line tension is the tension applied to the material in the roller leveler by the input side and winding side tension load devices. The front tension is the tension applied to the material between the recoiler and the winding side tension load device.
As shown in FIG. 1, the
Along with the line tension L, the surface roughness (Ra) of each roll of the
具体的には、次の製造方法と理由により、本発明のCu−Mg−P系銅合金板が最適に製造される。
(1)所定成分の銅合金を溶解・鋳造して銅合金鋳塊板を作製し、その銅合金鋳塊板の熱間圧延を、圧延開始温度;700℃〜800℃、総熱間圧延率;80%以上、1パス当りの平均圧延率;15%〜30%にて実施し、冷間圧延を、圧延率;50%以上にて実施することにより、{123}面及び{110}面と{100}面の回折強度比、結晶粒径が規定値内に収まる素地を作る(特に、{110}の形成を増長させる)。
(2)連続焼鈍を、温度;300℃〜550℃、時間;0.1分〜10分にて実施することにより、焼鈍での再結晶化を極力抑えて、{100}面の形成を抑制して規定値内に収める。
(3)テンションレベリングを、ラインテンション;10N/mm2〜140N/mm2で実施することにより、{110}面の形成を増加して規定値内に収め、ローラーレベラーのロールの表面粗さ(Ra);0.01〜0.10μmで実施することにより、ローラーレベラーローのロールと銅合金板との摩擦を抑えて、銅合金板のローラーレベラーのロールと接触している側の圧縮ひずみを大きくすることにより、銅合金板表面の組織を緻密化し、{123}面の形成を増加して規定値内に収め、結晶粒径も規定値内に収める。
これらの熱間圧延、冷間圧延、連続焼鈍、テンションレベリングの製造条件の何れか一つが外れても、3つの条件(I1/I3、I2/I3、結晶粒径)を全て満たした機械的な成形性に優れたCu−Mg−P系銅合金板を得ることはできない。
Specifically, the Cu—Mg—P-based copper alloy sheet of the present invention is optimally manufactured for the following manufacturing method and reason.
(1) A copper alloy ingot plate is prepared by melting and casting a predetermined component copper alloy, and hot rolling of the copper alloy ingot plate is performed at a rolling start temperature: 700 ° C. to 800 ° C., total hot rolling rate 80% or more, average rolling rate per pass; 15% to 30%, cold rolling, rolling rate; 50% or more, {123} plane and {110} plane And {100} plane diffraction intensity ratio and crystal grain size are made within the specified values (particularly, the formation of {110} is increased).
(2) By performing continuous annealing at a temperature of 300 ° C. to 550 ° C., time; 0.1 minutes to 10 minutes, recrystallization during annealing is suppressed as much as possible, and formation of {100} planes is suppressed. Within the specified value.
(3) the tension leveling, the line tension; 10N / mm 2 ~140N / by performing in mm 2, {110} by increasing the formation of surface housed within a prescribed value, the roller leveler surface roughness of the roll ( Ra); By carrying out at 0.01-0.10 micrometer, the friction with the roll of a roller leveler row and a copper alloy board is suppressed, and the compression strain of the side which is in contact with the roll of a roller leveler of a copper alloy board is carried out. By enlarging, the structure of the copper alloy plate surface is densified, the formation of {123} planes is increased to fall within the specified value, and the crystal grain size also falls within the specified value.
All three conditions (I 1 / I 3 , I 2 / I 3 , crystal grain size) are satisfied even if any one of these hot rolling, cold rolling, continuous annealing, and tension leveling manufacturing conditions is removed. In addition, it is not possible to obtain a Cu—Mg—P-based copper alloy plate excellent in mechanical formability.
表1に示す組成の銅合金を、電気炉により還元性雰囲気下で溶解し、厚さが150mm、幅が500mm、長さが3000mmの鋳塊を溶製した。この溶製した鋳塊を、表1に示す、圧延開始温度、総熱間圧延率、1パス当たりの平均圧延率にて熱間圧延を行い、銅合金板とした。この銅合金板の両表面の酸化スケールをフライスで0.5mm除去した後、表1に示す圧延率で冷間圧延を施し、表1に示す連続焼鈍を施し、圧延率が70%〜85%の仕上げ冷間圧延を実施し、表1に示すテンションレベリングを施し、厚さ0.2mm程度の実施例1〜10及び比較例1〜7に示すCu−Mg−P系銅合金薄板を作製した。実施例1〜10は、出願人の商品名「MSP1」の質別「H材」相当品である。 The copper alloy having the composition shown in Table 1 was melted in a reducing atmosphere with an electric furnace to produce an ingot having a thickness of 150 mm, a width of 500 mm, and a length of 3000 mm. The melted ingot was hot rolled at a rolling start temperature, a total hot rolling rate, and an average rolling rate per pass shown in Table 1 to obtain a copper alloy sheet. After removing 0.5 mm of oxide scale on both surfaces of this copper alloy sheet with a mill, cold rolling was performed at the rolling rate shown in Table 1, and continuous annealing shown in Table 1 was performed, and the rolling rate was 70% to 85%. The finish cold rolling was performed, tension leveling shown in Table 1 was performed, and Cu—Mg—P-based copper alloy thin plates shown in Examples 1 to 10 and Comparative Examples 1 to 7 having a thickness of about 0.2 mm were manufactured. . Examples 1 to 10 are the "H material" equivalent products according to the product name "MSP1" of the applicant.
これらの銅合金薄板から試料を切出し、圧延面に平行な表面の各結晶面の回折強度分布(逆極点図形)を後方散乱電子回折像システム付の走査型電子顕微鏡(日立製型式:SU−70)によるEBSD(株式会社TSLソリューションズ製)法にて測定し、{123}面、[110}面、{100}面の各々の回折強度から、I1/I3、I2/I3を算出した。測定制御ソフトは、OIM Data Collection Ver.5(株式会社TSLソリューションズ製)を使用した。
また、各試料の結晶粒径は、銅合金板の板面(圧延面)を研磨した後にエッチンし、その面を光学顕微鏡で観察して、JISH0501の切断法により測定した。
その結果を表2に示す。
Samples were cut from these copper alloy thin plates, and the diffraction intensity distribution (reverse pole figure) of each crystal plane parallel to the rolling surface was measured with a scanning electron microscope with a backscattered electron diffraction image system (Hitachi model: SU-70). ) By EBSD (manufactured by TSL Solutions Co., Ltd.), and I 1 / I 3 and I 2 / I 3 are calculated from the diffraction intensities of the {123}, [110}, and {100} planes. did. As the measurement control software, OIM Data Collection Ver.5 (manufactured by TSL Solutions Inc.) was used.
Further, the crystal grain size of each sample was measured by the cutting method of JISH0501 after etching the plate surface (rolled surface) of the copper alloy plate, etching the surface, and observing the surface with an optical microscope.
The results are shown in Table 2.
次に、各試料の導電率、引張り強さ、応力緩和率、ばね限界値を測定した。
導電率は、JISH0505の導電率測定方法に従って測定した。
引張り強さは、LD(圧延方向)およびTD(圧延方向および板厚方向に対して垂直な方向)の引張試験用の試験片(JISZ2201の5号試験片)をそれぞれ5個ずつ採取し、それぞれの試験片についてJISZ2241に準拠した引張試験を行い、平均値によってLDおよびTDの引張強さを求めた。
応力緩和率は、幅12.7mm、長さ120mm(以下、この長さを120mmをL0とする)の寸法を持った試験片を使用し、この試験片を長さ:110mm、深さ:3mmの水平縦長溝を有する治具に前記試験片の中央部が上方に膨出するように湾曲セットし(この時の試験片の両端部の距離:110mmをL1とする)、この状態で温度:170℃にて1000時間保持し、加熱後、前記治具から取り外した状態に置ける前記試験片の両端部間の距離(以下、L2とする)を測定し、計算式:(L0−L2)/(L0−L1)×100%によって算出することにより求めた。
ばね限界値は、JIS−H3130に基づき、モーメント式試験により永久たわみ量を測定し、R.T.におけるKb0.1(永久たわみ量0.1mmに対応する固定端における表面最大応力値)を算出した。
次に、各試料の張り出し加工性を、JISZ2247A法により、エリクセン値にて評価した。
これらの結果を表3に示す。
Next, the electrical conductivity, tensile strength, stress relaxation rate, and spring limit value of each sample were measured.
The electrical conductivity was measured according to the electrical conductivity measurement method of JISH0505.
Tensile strength was obtained by collecting five test pieces (JISZ2201 No. 5 test piece) for LD (rolling direction) and TD (direction perpendicular to the rolling direction and the plate thickness direction), respectively. A tensile test based on JISZ2241 was performed on the test piece, and the tensile strengths of LD and TD were determined by average values.
For the stress relaxation rate, a test piece having a width of 12.7 mm and a length of 120 mm (hereinafter, this length is defined as L0) is used. The test piece has a length of 110 mm and a depth of 3 mm. The test piece is curvedly set in a jig having a horizontal longitudinal groove so that the center portion of the test piece bulges upward (distance between both end portions of the test piece at this time: 110 mm is L1). Hold at 1000C for 1000 hours, measure the distance (hereinafter referred to as L2) between both ends of the test piece that can be placed in a state removed from the jig after heating, and calculate: (L0-L2) / It calculated | required by calculating by (L0-L1) * 100%.
The spring limit value is determined based on JIS-H3130 by measuring the amount of permanent deflection by a moment type test. T. T. et al. Kb0.1 (maximum surface stress value at the fixed end corresponding to a permanent deflection of 0.1 mm) was calculated.
Next, the overhang processability of each sample was evaluated by the Erichsen value by the JISZ2247A method.
These results are shown in Table 3.
表2および表3に示すように、実施例1〜10は、I1/I3およびI2/I3の回折強度が何れも15.0〜20.0であり、最大結晶粒径が10μm以下、粒径5μm以下の結晶粒の面積比率が75%以上である。
この結果、引張り強さは510〜575N/mm2、ばね限界値は385〜389Kb0.1と高く、一方、応力緩和率は12〜18と低く、エリクセン値は8.8以上の高い値を有している。
一方、比較例1〜7は、I1/I3およびI2/I3の回折強度が何れも15.0未満であり、最大結晶粒径が10μmより大きく、粒径5μm以下の結晶粒の面積比率が75%未満である。このため、引張り強さは515N/mm2以下、ばね限界値は386Kb0.1以下であり、応力緩和率は比較例1を除き何れも20以上であり、このためエリクセン値は8.6以下にとどまる。
As shown in Table 2 and Table 3, in Examples 1 to 10, the diffraction intensities of I 1 / I 3 and I 2 / I 3 are both 15.0 to 20.0, and the maximum crystal grain size is 10 μm. Hereinafter, the area ratio of crystal grains having a grain size of 5 μm or less is 75% or more.
As a result, the tensile strength is as high as 510 to 575 N / mm 2 , the spring limit value is as high as 385 to 389 Kb0.1, while the stress relaxation rate is as low as 12 to 18 and the Erichsen value is as high as 8.8 or more. doing.
On the other hand, in Comparative Examples 1 to 7, the diffraction intensities of I 1 / I 3 and I 2 / I 3 are both less than 15.0, the maximum crystal grain size is larger than 10 μm, and the grain size is 5 μm or less. The area ratio is less than 75%. For this reason, the tensile strength is 515 N / mm 2 or less, the spring limit value is 386 Kb 0.1 or less, and the stress relaxation rate is 20 or more except for Comparative Example 1, and the Erichsen value is 8.6 or less. Stay.
これらの結果より、本発明の製造方法により製造されたCu−Mg−P系銅合金板は、比較例と比べて、エリクセン値が良好であり優れた張出し成形性を有することがわかる。 From these results, it can be seen that the Cu—Mg—P-based copper alloy plate produced by the production method of the present invention has a good Erichsen value and excellent stretch formability as compared with the comparative example.
以上、本発明の実施形態について説明したが、本発明はこの記載に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、製造方法にて、冷間圧延と連続焼鈍を繰返し実施する、テンションレベリング後に歪取り焼鈍を実施する等である。 Although the embodiment of the present invention has been described above, the present invention is not limited to this description, and various modifications can be made without departing from the spirit of the present invention. For example, cold rolling and continuous annealing are repeatedly performed in the manufacturing method, and strain relief annealing is performed after tension leveling.
6 銅合金板
7 銅合金板
8 銅合金板
9 アンコイラー
10 テンションレベラ
11 入側テンション負荷装置
12 巻取側テンション負荷装置
13 ローラーレベラー
14 リコイラー
B1 バックテンション
F1 フロントテンション
L ラインテンショ
6
Claims (4)
Backscattered electron diffraction image system comprising, by mass%, a copper alloy plate having a composition of Mg: 0.2-1.2%, P: 0.001-0.2%, the balance being Cu and inevitable impurities The diffraction intensity distribution (reverse pole figure) of the crystal plane parallel to the rolling surface is measured by the EBSD method using the attached scanning electron microscope, and the diffraction intensity of the {123} plane within the measurement area is represented by I 1 , {110 } When the diffraction intensity of the plane is I 2 and the diffraction intensity of the {100} plane is I 3 , I 1 / I 3 is 15.0 to 20.0, and I 2 / I 3 is 15.0 to 20 Cu—Mg—P-based copper having a crystal grain size within a measurement area of 10 μm or less and an area ratio of crystal grains having a grain size of 5 μm or less of 75% or more. Alloy plate.
The Cu-Mg-P-based copper alloy plate according to claim 1, further comprising 0.0002 to 0.0013 mass% C and 0.0002 to 0.001 mass% oxygen. .
Furthermore, 0.001-0.03 mass% Zr is contained, The Cu-Mg-P type copper alloy plate of Claim 1 or Claim 2 characterized by the above-mentioned.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012127898A JP5908796B2 (en) | 2012-06-05 | 2012-06-05 | Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same |
TW102119922A TWI515311B (en) | 2012-06-05 | 2013-06-05 | Cu-Mg-P-based copper alloy sheet excellent in mechanical formability and a method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012127898A JP5908796B2 (en) | 2012-06-05 | 2012-06-05 | Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013253267A JP2013253267A (en) | 2013-12-19 |
JP5908796B2 true JP5908796B2 (en) | 2016-04-26 |
Family
ID=49951028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012127898A Active JP5908796B2 (en) | 2012-06-05 | 2012-06-05 | Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5908796B2 (en) |
TW (1) | TWI515311B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11781234B2 (en) | 2018-12-26 | 2023-10-10 | Mitsubishi Materials Corporation | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6054085B2 (en) * | 2012-07-24 | 2016-12-27 | 三菱伸銅株式会社 | Cu-Mg-P-based copper alloy sheet excellent in spring limit value characteristics and fatigue resistance after bending and method for producing the same |
US10453582B2 (en) | 2015-09-09 | 2019-10-22 | Mitsubishi Materials Corporation | Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar |
JP6187629B1 (en) * | 2016-03-30 | 2017-08-30 | 三菱マテリアル株式会社 | Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars |
WO2017043559A1 (en) | 2015-09-09 | 2017-03-16 | 三菱マテリアル株式会社 | Copper alloy for electronic/electrical device, member for plastically deforming copper alloy for electronic/electrical device, component for electronic/electrical device, terminal, and bus bar |
CN107636179B (en) * | 2015-09-09 | 2020-06-16 | 三菱综合材料株式会社 | Copper alloy for electronic and electrical equipment, copper alloy plastic working material for electronic and electrical equipment, module for electronic and electrical equipment, terminal, and bus bar |
JP6187630B1 (en) * | 2016-03-30 | 2017-08-30 | 三菱マテリアル株式会社 | Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars |
WO2017043556A1 (en) * | 2015-09-09 | 2017-03-16 | 三菱マテリアル株式会社 | Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar |
WO2017170699A1 (en) | 2016-03-30 | 2017-10-05 | 三菱マテリアル株式会社 | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays |
US11319615B2 (en) | 2016-03-30 | 2022-05-03 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay |
JP6226098B2 (en) * | 2016-03-30 | 2017-11-08 | 三菱マテリアル株式会社 | Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays |
JP6780187B2 (en) | 2018-03-30 | 2020-11-04 | 三菱マテリアル株式会社 | Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars |
KR20200134215A (en) | 2018-03-30 | 2020-12-01 | 미쓰비시 마테리알 가부시키가이샤 | Copper alloy for electronic and electric equipment, copper alloy plate strip for electronic and electric equipment, parts for electronic and electric equipment, terminals, and busbars |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01180930A (en) * | 1988-01-12 | 1989-07-18 | Mitsubishi Shindo Kk | Cu alloy for terminal and connector |
JP3353324B2 (en) * | 1992-02-10 | 2002-12-03 | 三菱伸銅株式会社 | Copper alloy cold-rolled strip with low abrasion of stamping die and method of manufacturing the same |
JP3796784B2 (en) * | 1995-12-01 | 2006-07-12 | 三菱伸銅株式会社 | Copper alloy thin plate for manufacturing connectors and connectors manufactured with the thin plates |
JP5260992B2 (en) * | 2008-03-19 | 2013-08-14 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
JP4516154B1 (en) * | 2009-12-23 | 2010-08-04 | 三菱伸銅株式会社 | Cu-Mg-P copper alloy strip and method for producing the same |
JP4563508B1 (en) * | 2010-02-24 | 2010-10-13 | 三菱伸銅株式会社 | Cu-Mg-P-based copper alloy strip and method for producing the same |
JP5067817B2 (en) * | 2010-05-27 | 2012-11-07 | 三菱伸銅株式会社 | Cu-Fe-P-based copper alloy plate excellent in conductivity and heat resistance and method for producing the same |
JP5054160B2 (en) * | 2010-06-28 | 2012-10-24 | 三菱伸銅株式会社 | Cu-Mg-P-based copper alloy strip and method for producing the same |
CN103502486B (en) * | 2012-04-04 | 2016-06-22 | 三菱伸铜株式会社 | There is Cu-Mg-P series copper alloy plate and the manufacture method thereof of the fatigue-resistance characteristics of excellence |
-
2012
- 2012-06-05 JP JP2012127898A patent/JP5908796B2/en active Active
-
2013
- 2013-06-05 TW TW102119922A patent/TWI515311B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11781234B2 (en) | 2018-12-26 | 2023-10-10 | Mitsubishi Materials Corporation | Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products |
Also Published As
Publication number | Publication date |
---|---|
JP2013253267A (en) | 2013-12-19 |
TW201413012A (en) | 2014-04-01 |
TWI515311B (en) | 2016-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5908796B2 (en) | Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same | |
JP5189715B1 (en) | Cu-Mg-P based copper alloy sheet having excellent fatigue resistance and method for producing the same | |
JP6054085B2 (en) | Cu-Mg-P-based copper alloy sheet excellent in spring limit value characteristics and fatigue resistance after bending and method for producing the same | |
US20120267013A1 (en) | Copper alloy sheet material and method of producing the same | |
US10294554B2 (en) | Copper alloy sheet material, connector, and method of producing a copper alloy sheet material | |
WO2015152166A1 (en) | Copper alloy wire material and manufacturing method thereof | |
JPWO2012026611A1 (en) | Copper alloy sheet and manufacturing method thereof | |
WO2011068134A1 (en) | Copper alloy sheet material having low young's modulus and method for producing same | |
JP4527198B1 (en) | Method for producing copper alloy for electronic equipment | |
EP2623619A1 (en) | Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME | |
JP5189708B1 (en) | Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same | |
US10294555B2 (en) | Copper alloy sheet material, connector, and method of producing a copper alloy sheet material | |
JP4642119B2 (en) | Copper alloy and method for producing the same | |
JP6222885B2 (en) | Cu-Ni-Si-Co based copper alloy for electronic materials | |
JP5869288B2 (en) | Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same | |
JP4550148B1 (en) | Copper alloy and manufacturing method thereof | |
JP6542817B2 (en) | Copper alloy for electronic materials | |
US10358697B2 (en) | Cu—Co—Ni—Si alloy for electronic components | |
JP6310004B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
TW202035723A (en) | Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation | |
JP6522677B2 (en) | Cu-Ni-Co-Si alloy for electronic parts | |
JP6671416B2 (en) | Copper alloy for electronic materials | |
JP6816056B2 (en) | Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material | |
JP2019077890A (en) | Copper alloy for electronic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160324 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5908796 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |