JP5905265B2 - High production efficiency amorphous sheet manufacturing method and manufacturing equipment - Google Patents
High production efficiency amorphous sheet manufacturing method and manufacturing equipment Download PDFInfo
- Publication number
- JP5905265B2 JP5905265B2 JP2012005701A JP2012005701A JP5905265B2 JP 5905265 B2 JP5905265 B2 JP 5905265B2 JP 2012005701 A JP2012005701 A JP 2012005701A JP 2012005701 A JP2012005701 A JP 2012005701A JP 5905265 B2 JP5905265 B2 JP 5905265B2
- Authority
- JP
- Japan
- Prior art keywords
- roll
- thin plate
- base material
- amorphous
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/11—Making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/007—Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/04—Amorphous alloys with nickel or cobalt as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/14—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/02—Amorphous
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Coating By Spraying Or Casting (AREA)
- Powder Metallurgy (AREA)
- Fuel Cell (AREA)
- Continuous Casting (AREA)
Description
請求項に係る発明は、工業用材料として非晶質の薄板(金属ガラスも含む、アモルファス化率が100%でないものも含む)を大量生産するための、製造方法等に関するものである。
The claimed invention relates to a manufacturing method and the like for mass-producing amorphous thin plates (including metal glass, including those having an amorphous ratio of not 100%) as industrial materials.
アモルファス合金が世に出て50年近くになり、耐食性、靭性、耐摩耗性、磁性、水素吸蔵、触媒などで優れた特性を持つ事例が報告されている。アモルファスの製造方法としては、遠心液体急冷法、単ロール液体急冷法、双ロール液体急冷法などよる箔帯、ガス・水アトマイズ法による粉末、スパッタ法、蒸着法による膜、回転液中噴出法による線の製造などが挙げられる。 It has been nearly 50 years since amorphous alloys were introduced to the world, and there have been reports of cases with excellent properties such as corrosion resistance, toughness, wear resistance, magnetism, hydrogen storage, and catalysts. Amorphous production methods include centrifugal liquid quenching, single-roll liquid quenching, twin-roll liquid quenching and other foil strips, gas / water atomization powders, sputtering, vapor deposition, and rotating liquid jetting. For example, the production of wire.
しかし、非晶質形成能が低い組成で、大サイズ(厚さ大、幅大)の非晶質材料を製造する場合には、上記手法では冷却速度不足によるサイズ限界、または、低生産効率などの理由で工業材料として、広く非晶質材料が普及しづらい環境であった。それに対して、溶射法を応用した手法が発明され、特許文献1〜4で報告されている。 However, when manufacturing large size (large thickness, large width) amorphous materials with a composition with low amorphous forming ability, the above method is limited in size due to insufficient cooling rate or low production efficiency. For this reason, it has been an environment in which amorphous materials are not widely used as industrial materials. On the other hand, a technique applying the thermal spraying method was invented and reported in Patent Documents 1 to 4.
特許文献1では、金属ガラス粉末を原料として、高速フレーム溶射法にて金属ガラス積層体を形成する手法が報告されている。特許文献2〜4では、溶融粒子を急冷積層することにより、非晶質積層体を形成する手法が報告されている。いずれの手法でも、積層体を形成するため、サイズ限界はないとされているが、実際には割れのない高品質皮膜を効率よく生産することが困難である。さらに、基材と分離させた積層体のみ(非晶質薄板)を得たい場合には、技術的なハードルはより高くなる。 Patent Document 1 reports a method of forming a metal glass laminate by a high-speed flame spraying method using metal glass powder as a raw material. Patent Documents 2 to 4 report a method of forming an amorphous laminate by rapidly cooling and laminating molten particles. In any of the methods, since a laminate is formed, there is no size limit. However, it is actually difficult to efficiently produce a high-quality film without cracks. Furthermore, when only the laminated body (amorphous thin plate) separated from the base material is desired, the technical hurdle becomes higher.
溶射法を用いて、厚さが300μm程度の非晶質薄板を得たい場合、例えば、板状の基材表面に非晶質皮膜を形成し、意図的に基材から非晶質皮膜を剥離させる方法がある。この場合、密着性を低下させるために、溶射条件、基材の材質、基材温度、表面処理方法を調整することになるが、板端部に応力集中が発生するため、薄板の形成途中で剥離が発生する可能性が高い。図1はその写真で、剥離箇所は熱容量が小さくなるため、溶射火炎による温度上昇で結晶化してしまう。反対に、密着力が高すぎると、基材と非晶質薄板の剥離が困難となり、無理に剥離させた際に、非晶質薄板に割れが生じることもある。図2は、その状況写真である。
腐食液で、基材のみを溶解する手法も考えられるが、生産効率および環境負荷を考慮すると、大量生産には不適である。
If you want to obtain an amorphous thin plate with a thickness of about 300 μm using the thermal spraying method, for example, form an amorphous film on the surface of the plate-like substrate, and intentionally peel off the amorphous film from the substrate There is a way to make it. In this case, in order to reduce the adhesion, the thermal spraying conditions, the material of the base material, the base material temperature, and the surface treatment method will be adjusted, but stress concentration occurs at the edge of the plate. Peeling is likely to occur. Fig. 1 shows a photograph of the exfoliation site, which has a small heat capacity, and crystallizes as the temperature rises due to the thermal spray flame. On the other hand, if the adhesive force is too high, it is difficult to peel off the substrate and the amorphous thin plate, and cracking may occur in the amorphous thin plate when forcibly peeling off. Fig. 2 is a picture of the situation.
Although a method of dissolving only the base material with a corrosive solution can be considered, it is not suitable for mass production in consideration of production efficiency and environmental load.
そこで本発明では、高品質(低気孔率、高アモルファス化率)の非晶質薄板を、高い生産効率で作製するための手法を確立する。ここでは、薄板の生産効率を、目的のサイズおよび品質を満たした薄板の作製効率と定義する。 Therefore, the present invention establishes a method for producing a high-quality (low porosity, high amorphization rate) amorphous thin plate with high production efficiency. Here, the production efficiency of the thin plate is defined as the production efficiency of the thin plate satisfying the target size and quality.
本発明では、成膜途中で基材からの非晶質薄板が剥離することを防ぐため、溶射対象の基材としてロール形状のものを用いることとした。ロール形状の基材を用いることにより、成膜中の非晶質薄板に発生する集中応力発生を防止することができるので、成膜完了までの非晶質薄板の剥離発生率が低減する。基材ロールの真円度は、厳しい精度を問わないが、真円に近い方がよりよい。また、基材ロールのサイズも制限されず、目標温度までの予熱が可能であれば、大サイズとすることも可能である。 In the present invention, in order to prevent the amorphous thin plate from peeling off from the substrate during film formation, a roll-shaped substrate is used as the substrate to be sprayed. By using a roll-shaped substrate, it is possible to prevent the occurrence of concentrated stress generated in the amorphous thin plate during film formation, so that the rate of occurrence of peeling of the amorphous thin plate until the completion of film formation is reduced. The roundness of the base roll is not critical, but it is better to be close to a perfect circle. Further, the size of the base roll is not limited, and can be made large as long as preheating up to the target temperature is possible.
図3に示すように、基材ロールは、成膜時に回転させる必要がある。軸心を水平に保って回転中の基材ロールに対し、前方より溶射ガンを水平横方向(つまり基材の軸長方向)に動かす。目標の基材温度で、この溶射ガンの動作を繰り返し、目標の厚さまで成膜する。本発明では、一例として基材ロールの回転速度184rpm、溶射ガンの移動速度は90cm/minで実施した。
なお、これに関し、基材ロールの周面に接触させて別の圧下用ロールを設置し、適切な加重で圧下しながら成膜する(このとき溶射ガンは、2つのロールの、接触部近傍へ粉末材料を噴出するように、基材の軸方向で往復運動する。)のもよい。そのようにすると、作製する薄板の気孔率低減および表面平滑化を図ることができる。
また、図3に示す基材ロールは、軸心が水平方向に保たれてセッティングされているが、基材ロールを軸心が垂直となるようにセッテイング・回転させ、さらに、溶射ガンを垂直縦方向(基材の軸長方向)に繰り返し動かし、そして、一例として基材ロールの回転速度1rpm、溶射ガン移動速度9000cm/minという条件でも非晶質薄板を作製してみたが、上述の軸心を水平方向に保って、基材ロールの回転速度184rpm、溶射ガンの移動速度を90cm/minで作製した非晶質薄板と、同じ成功率・品質で作製できた。従って、基材ロールのセッティングの、軸心方向と溶射ガンの移動方向の関係は、水平横方向同士でも、垂直縦方向同士でも構わない。
As shown in FIG. 3, the base roll needs to be rotated during film formation. The spray gun is moved in the horizontal horizontal direction (that is, the axial length direction of the base material) from the front with respect to the rotating base material roll while keeping the axis horizontal. The operation of this spray gun is repeated at the target substrate temperature to form a film to the target thickness. In the present invention, as an example, the rotation speed of the substrate roll was 184 rpm, and the moving speed of the spray gun was 90 cm / min.
In this regard, another rolling roll is placed in contact with the peripheral surface of the base roll, and film formation is performed while rolling down with an appropriate load (at this time, the thermal spray gun is placed near the contact portion of the two rolls. It may be reciprocated in the axial direction of the base material so as to eject the powder material. By doing so, the porosity of the thin plate to be manufactured can be reduced and the surface can be smoothed.
The base roll shown in FIG. 3 is set with the axis maintained in the horizontal direction, but the base roll is set and rotated so that the axis is vertical, and the thermal spray gun is moved vertically and vertically. In this example, an amorphous thin plate was produced under repeated conditions (in the direction of the axial length of the base material) and, for example, a base roll rotation speed of 1 rpm and a spray gun moving speed of 9000 cm / min. Was maintained in the horizontal direction, and the same success rate and quality could be achieved as the amorphous thin plate produced at a rotation speed of the substrate roll of 184 rpm and a moving speed of the spray gun of 90 cm / min. Accordingly, the relationship between the axial direction of the setting of the base roll and the moving direction of the spray gun may be in the horizontal horizontal direction or in the vertical vertical direction.
非晶質薄板と基材の密着性には、基材表面の性状と成膜時の基材表面温度が強く影響する。密着性は、基材表面の粗さと基材表面温度に対して、正の相関がある。成膜中の薄板剥離防止と成膜後の薄板剥離を両立させるためには、適切な密着性、つまり適切な基材表面粗さと基材表面温度の組み合わせが求められる。 The adhesion between the amorphous thin plate and the substrate is strongly influenced by the properties of the substrate surface and the substrate surface temperature during film formation. Adhesion has a positive correlation with the roughness of the substrate surface and the substrate surface temperature. In order to achieve both prevention of thin plate peeling during film formation and thin plate peeling after film formation, appropriate adhesion, that is, a combination of an appropriate substrate surface roughness and substrate surface temperature is required.
通常、溶射の表面処理では、アルミナ研削材などを用いたブラストが適用される。しかし、ブラストでは表面が粗くなり、成膜後に薄板を剥離するには、密着力が高くなりすぎる。この事象は、細かいアルミナ(♯100)でブラストし、表面粗さを多少抑制しても、大きくは改善されない。本発明では、♯180のナイロン不織布タイプ研磨工具で研磨した表面が望ましいことが分かった。 Usually, blasting using an alumina abrasive or the like is applied in the surface treatment of thermal spraying. However, the surface becomes rough with blasting, and the adhesion is too high to peel the thin plate after film formation. This phenomenon is not greatly improved by blasting with fine alumina (# 100) and suppressing the surface roughness to some extent. In the present invention, it has been found that a surface polished with a # 180 nylon nonwoven fabric type polishing tool is desirable.
成膜時の基材表面温度は、密着性を左右する因子であるが、これは薄板の品質(気孔率、アモルファス化率)にも影響するので、作製した薄板の品質(気孔率、アモルファス化率)確認は重要である。本発明では、適切な表面処理と組み合わせた結果、基材温度が450℃では密着力が強くなり、成膜後、基材ロールから薄板を剥離することが難しいことが分かった。基材温度の低下とともに、密着力は低下する傾向にあるが、160℃になると薄板の気孔率が高くなるので、品質を加味すると、基材温度は180℃以上あることが望ましい。 The substrate surface temperature during film formation is a factor that affects adhesion, but this also affects the quality of the thin plate (porosity, amorphization rate), so the quality of the produced thin plate (porosity, amorphization) Rate) confirmation is important. In the present invention, as a result of combining with an appropriate surface treatment, it has been found that the adhesive strength becomes strong when the substrate temperature is 450 ° C., and it is difficult to peel the thin plate from the substrate roll after film formation. Although the adhesive force tends to decrease as the substrate temperature decreases, the porosity of the thin plate increases at 160 ° C. Therefore, considering the quality, the substrate temperature is desirably 180 ° C. or higher.
本発明の製造方法にて、高品質(低気孔率、高アモルファス化率)の非晶質薄板を、高い生産効率で作製することができる。ロール形状の基材を用いると、板形状の基材に比べて、非晶質薄板/基材の密着力調整が容易(成膜中は剥離せず、成膜完了後に容易に剥離可能)になり、非晶質薄板の歩留が向上する。基材の温度も、板形状基材に比べて、冶具等の補助設備なしで容易に安定化できる。さらに、基材ロールは再利用が可能で、連続生産設備を考慮する際の、必要面積も小さい等、コスト的にも優位である。これらより、非晶質の薄板材を工業製品として大量生産し、展開することが可能となる。 With the production method of the present invention, an amorphous thin plate of high quality (low porosity, high amorphous ratio) can be produced with high production efficiency. Using a roll-shaped base material makes it easier to adjust the adhesion of the amorphous thin plate / base material than a plate-shaped base material (it does not peel off during film formation and can be easily peeled off after film formation is complete). Thus, the yield of the amorphous thin plate is improved. The temperature of the substrate can also be easily stabilized without auxiliary equipment such as a jig as compared with the plate-shaped substrate. Furthermore, the base material roll can be reused, which is advantageous in terms of cost, such as a small required area when considering continuous production equipment. From these, amorphous thin plate materials can be mass-produced as industrial products and deployed.
本発明には、φ198mm x 幅109mmサイズで、SKD11製の基材ロールを使用した。基材ロールは、芯ぶれが発生しないように、図3に示す回転装置に取り付ける。この状態で、基材ロール表面に、アルコール洗浄、各種表面処理を実施した。その内容は、表1に示す。ただし、表1の内容欄にあるブラストだけは、基材ロールを回転装置に取り付ける前に実施している。
溶射ガンは、特許文献4で報告されている、溶融粉末粒子急冷機能を有するものを用いた。これは、不活性ガス雰囲気中で、燃焼ガスの発熱および搬送ガスの流動性を用いて原料金属粉を溶解し、所要のノズルを通して噴射して、原料金属の極微細溶解液滴噴流を創製し、この溶解液滴噴流に冷媒ガスあるいは冷媒ミストを吹き付けて、所要の基材上に噴射・衝突させて堆積させ、完全なアモルファス皮膜、あるいは、アモルファス相と結晶構造相が所定の割合で混合する皮膜を創製するものである。溶射ガンの具体的な構造は図8に示すとおりで、二重管である筒状体の内側から原料金属粉と燃焼ガスとを噴射させ、筒状体の二重管の間を通して冷却ガスまたは冷媒ミストを噴射させる。このとき、原料金属粉の組成によっては、結晶粒径が100nm未満の、ナノ結晶組織を持つ皮膜を得ることも可能である。これにあるように、冷媒に窒素ガス、燃料にはアセチレン・酸素を用いた。溶射ガンは、ロボットによる自動制御とし、成膜時の溶射ガン移動速度(基材の軸長方向への移動速度)は、90cm/minで設定した。 As the thermal spray gun, a gun having a function of rapidly cooling molten powder particles reported in Patent Document 4 was used. In an inert gas atmosphere, the raw metal powder is melted using the heat generated from the combustion gas and the fluidity of the carrier gas, and injected through a required nozzle to create an ultrafine melted droplet jet of the raw metal. Then, a refrigerant gas or a refrigerant mist is sprayed on the dissolved droplet jet and sprayed and collided on a required base material to deposit, and a complete amorphous film or an amorphous phase and a crystal structure phase are mixed at a predetermined ratio. Create a film. The specific structure of the spray gun is as shown in FIG. 8, in which the raw metal powder and the combustion gas are injected from the inside of the cylindrical body that is a double pipe, and the cooling gas or Inject refrigerant mist. At this time, depending on the composition of the raw metal powder, it is also possible to obtain a film having a nanocrystalline structure with a crystal grain size of less than 100 nm. As shown, nitrogen gas was used as the refrigerant, and acetylene / oxygen was used as the fuel. The spray gun was automatically controlled by a robot, and the spray gun moving speed (moving speed in the axial direction of the substrate) during film formation was set at 90 cm / min.
溶射用の粉末は、ガスアトマイズ法で作製し、組成は、Ni72Mo4.5Nb10B13Cu0.5(at%)で、粒径は+63/-88μmに分級されたものを用いた。なおこの粉末は、DSC装置(SII社製DSC7020)で測定した発熱エネルギー値より、アモルファス化率19%であることを確認している。 The powder for thermal spraying was prepared by a gas atomizing method, the composition was Ni 72 Mo 4.5 Nb 10 B 13 Cu 0.5 (at%), and the particle size was classified to + 63 / −88 μm. This powder has been confirmed to have an amorphization rate of 19% from the heat generation energy value measured with a DSC apparatus (DSC7020 manufactured by SII).
図3の回転装置により、基材ロールを回転させて、目標温度まで予熱を行い、直ちに溶射を行う。基材ロールの回転速度は、184rpmで一定とした。また、成膜中の基材ロールの温度上昇を防ぐため、両サイドより冷却用エアを噴出し、基材ロールが有するリム部の内周面にそのエアを当てることによって基材ロール(リム部)の外周面の温度コントロールを行った。目標の厚さまで成膜されるように、所定の溶射ガン往復回数まで溶射して、成膜作業を終了する。このときには、基材ロールの回転も停止する。なお、基材ロール温度は、ロール外周の表面を放射温度計で、連続して測定した。 The substrate roll is rotated by the rotating device shown in FIG. 3, preheating is performed up to the target temperature, and thermal spraying is immediately performed. The rotation speed of the substrate roll was constant at 184 rpm. Further, in order to prevent the temperature rise of the base roll during film formation, cooling air is jetted from both sides, and the base roll (rim section) is applied to the inner peripheral surface of the rim section of the base roll. ) Was controlled on the outer peripheral surface. Thermal spraying is performed up to a predetermined number of reciprocating spray guns so that the film is formed to the target thickness, and the film forming operation is completed. At this time, the rotation of the base material roll is also stopped. In addition, the base-material roll temperature measured the surface of the roll outer periphery continuously with the radiation thermometer.
次に、薄板剥離段階に入る。図6に示すように、エアグラインダで薄板両サイドの、基材ロール端面との接合箇所を削り、ロール外周面に形成された薄板の両サイドと基材ロールとの縁切りを行う。 Next, the thin plate peeling stage is entered. As shown in FIG. 6, the joint portion of the both sides of the thin plate with the end face of the base roll is scraped with an air grinder, and the both sides of the thin plate formed on the outer peripheral surface of the roll and the base roll are cut.
薄板を剥離するため、起点用に基材ロールに貼付していた耐熱テープを剥がす。ここで、この起点箇所の薄板/基材ロール間に、わずかな隙間ができる。図7のようにこの隙間へ、基材ロール幅以上の長さの金属箔を差しこみ、薄板/基材ロールの接合界面を連続して剥離させていく。最終的に、薄板/基材ロールを完全に分離し、非晶質薄板単体を得ることができる。本発明では、厚さが300μm x 幅105mm x 長さ600mmの非晶質薄板の作製に成功した。 In order to peel the thin plate, the heat-resistant tape attached to the base roll for the starting point is peeled off. Here, a slight gap is formed between the thin plate / base roll at the starting point. As shown in FIG. 7, a metal foil having a length equal to or greater than the width of the base roll is inserted into the gap, and the thin plate / base roll joining interface is continuously peeled off. Finally, the thin plate / base roll can be completely separated to obtain a single amorphous thin plate. In the present invention, an amorphous thin plate having a thickness of 300 μm × width 105 mm × length 600 mm was successfully produced.
ここで、基材ロールの温度と表面処理の関係が重要となる。密着強度が不足すると、成膜途中で皮膜/基材ロールの剥離が発生し、密着強度が過剰だと、成膜完了後に薄板/基材ロールの剥離ができなくなる。表2にその関係を示す。
表2にある、表面処理Noは、表1にあるものと同一である。
表2から、表面処理No3(ブラスト後に、不織布研磨を施すもの)の条件が、一番幅広い基材ロール温度領域で、成膜後に基材ロールから薄板を分離できることが分かった。また、作製する非晶質薄板の、初期20μm程度の厚さだけ基材ロール温度を200℃程度で成膜し、残りを基材ロール温度を上げて成膜する(例えば、厚さ300μmの非晶質薄板を作製する場合、非晶質薄板/基材ロール界面より、厚さ方向に20μmは基材ロール温度200℃で成膜し、その後再予熱を行い、非晶質薄板表面にかけての残り厚さ280μmは、基材ロール温度350℃で成膜をする。)ことにより、高品質(低気孔率)の非晶質薄板をより容易に、基材ロールから剥離させることも可能である。
Here, the relationship between the temperature of the base roll and the surface treatment becomes important. If the adhesion strength is insufficient, the film / substrate roll peels off during the film formation, and if the adhesion strength is excessive, the thin plate / substrate roll cannot be peeled after the film formation is completed. Table 2 shows the relationship.
The surface treatment numbers in Table 2 are the same as those in Table 1.
From Table 2, it was found that the condition of surface treatment No. 3 (those subjected to non-woven polishing after blasting) can separate the thin plate from the base material roll after film formation in the widest base material roll temperature range. Further, the amorphous thin plate to be produced is formed at a base roll temperature of about 200 ° C. for the initial thickness of about 20 μm, and the rest is formed by raising the base roll temperature (for example, a non-thickness of 300 μm in thickness). When producing an amorphous thin plate, 20 μm in the thickness direction from the amorphous thin plate / base roll interface is formed at a base roll temperature of 200 ° C., then re-preheated, and the rest on the amorphous thin plate surface. By forming a film with a thickness of 280 μm at a substrate roll temperature of 350 ° C., it is possible to more easily peel a high-quality (low porosity) amorphous thin plate from the substrate roll.
得られた薄板の組織を確認するため、DSC装置(SII社製 DSC7020)で結晶化発熱エネルギーΔH(薄板)を求めた。予め単ロール液体急冷法で作製した、アモルファス化率100%のNi72Mo4.5Nb10B13Cu0.5リボンで測定した結晶化発熱エネルギーΔH(リボン)で除し、作製した薄板のアモルファス化率を決定した。
アモルファス化率(%)=[ΔH(薄板)/ΔH(リボン)] x 100
図9には、薄板のアモルファス化率と基材ロール温度の関係を示す。ここでは、基材ロール温度が160〜400℃では、アモルファス化率が90%以上となっていることが分かる。この温度(基材ロール)範囲では、目的のアモルファス化率が達成できる。
なお、非晶質薄板のアモルファス化率を低下させる場合は、特許文献4にある溶射条件で、冷媒の量を低下させる、もしくは基材ロールの回転速度を低下させる等で達成できるので、アモルファス化率が90%未満の薄板を得ることは容易である。具体的には、特許文献4で、冷媒として用いる窒素ガスの圧力は、0.25MPa以上あることが望ましいとあるが、この窒素ガスの圧力を0.25MPa未満に低下させる。また同特許文献に、溶射ガンの移動速度として、280mm/secが例として挙げられているが、溶射ガンと基材表面の相対速度がこれよりも低くなるように、基材ロールの回転速度を低下させるというような、溶射条件を選択することとなる。
In order to confirm the structure of the obtained thin plate, crystallization heat generation energy ΔH (thin plate) was obtained with a DSC apparatus (DSC7020 manufactured by SII). Divide by the crystallization heat energy ΔH (ribbon) measured by Ni 72 Mo 4.5 Nb 10 B 13 Cu 0.5 ribbon with 100% amorphization rate, which was prepared in advance by single roll liquid quenching method, Were determined.
Amorphization rate (%) = [ΔH (thin plate) / ΔH (ribbon)] x 100
FIG. 9 shows the relationship between the amorphization rate of the thin plate and the substrate roll temperature. Here, it can be seen that when the substrate roll temperature is 160 to 400 ° C., the amorphization rate is 90% or more. In this temperature (base roll) range, the desired amorphization rate can be achieved.
In addition, when reducing the amorphousization rate of the amorphous thin plate, it can be achieved by reducing the amount of the refrigerant or reducing the rotation speed of the base roll under the thermal spraying conditions described in Patent Document 4, so It is easy to obtain a thin plate with a rate of less than 90%. Specifically, in Patent Document 4, the pressure of nitrogen gas used as a refrigerant is desirably 0.25 MPa or more, but the pressure of this nitrogen gas is reduced to less than 0.25 MPa. In the same patent document, 280 mm / sec is cited as an example of the moving speed of the spray gun, but the rotation speed of the base roll is set so that the relative speed between the spray gun and the base surface is lower than this. The spraying conditions, such as lowering, are selected.
次に、薄板の緻密さを確認するために、断面観察と気孔率の測定を行った。気孔率は、成膜時の基材ロール温度が影響する。具体的には、基材ロール温度と薄板の気孔率には、負の相関がある。図10は、基材ロール温度が160、200、300℃で作製したときの、薄板断面写真を示したものであるが、基材温度が160℃になると気孔率が5%を超えてしまい、品質面から判断すると不良品となる。従って、緻密な薄板を作製するためには、160℃を超える基材ロール温度が必要となる。 Next, in order to confirm the denseness of the thin plate, cross-sectional observation and porosity measurement were performed. The porosity is affected by the substrate roll temperature during film formation. Specifically, there is a negative correlation between the substrate roll temperature and the porosity of the thin plate. FIG. 10 shows a thin plate cross-sectional photograph when the substrate roll temperature is 160, 200, 300 ° C., but when the substrate temperature reaches 160 ° C., the porosity exceeds 5%. Judging from quality, it becomes a defective product. Therefore, in order to produce a dense thin plate, a substrate roll temperature exceeding 160 ° C. is required.
以上のように、薄板/基材ロールの分離性(生産効率面)、薄板のアモルファス化率、薄板の緻密性(品質面)より、非晶質薄板の作製条件を総合的に判断すると、アルミナ(♯20)によるブラスト後に♯180の不織布研磨で表面処理した基材ロールについて、外周面温度が160℃を超え、450℃未満(好ましくは180℃以上・400℃以下)となる予熱および温度維持を行うとともに、図8(特許文献4)に示す皮膜形成装置を使用して基材ロール上に成膜後、基材ロールと分離させると、高品質な非晶質薄板が高い生産効率で作製できる。なお、基材ロールへの表面処理として行うブラストは、1度実施すると、汚れがひどくなるまで(10回程度)は、不要となるため、その間の表面処理は、♯180の不織布研磨だけで可能となる。
この#180不織布研磨後の基材表面粗さを、基準長さ2.4mmで6回測定したところ、Raは2.5〜4.0μmであった。この値は、機械製図の仕上げ記号では、▽▽と▽▽▽の間レベルとなる。図11は、実際に測定した粗さ曲線である。
25枚の非晶質薄板(厚さ300μm x 幅105mm x 長さ600mm)を繰り返し作製したところ、成功率100%で、作製時間は、30分/枚であった。板状基材を用いて非晶質薄板を得る場合は、成膜途中の薄板/基材の剥離発生、反対に薄板/基材の過剰密着により、薄板の割れや基材への残存に繋がるため、このような生産効率を達成できなかった。上記のとおり基材ロールを用いて作製した、Ni72Mo4.5Nb10B13Cu0.5非晶質薄板の外観写真を図12に示す。
As described above, when the conditions for producing the amorphous thin plate are comprehensively judged from the separation property of the thin plate / base roll (production efficiency), the amorphous ratio of the thin plate, and the denseness of the thin plate (quality), alumina Preheating and temperature maintenance for the base roll surface-treated with # 180 non-woven cloth after blasting according to (# 20), with the outer peripheral surface temperature exceeding 160 ° C and lower than 450 ° C (preferably 180 ° C or higher and 400 ° C or lower) When a film is formed on a substrate roll using the film forming apparatus shown in FIG. 8 (Patent Document 4) and then separated from the substrate roll, a high-quality amorphous thin plate is produced with high production efficiency. it can. In addition, once blasting is performed as a surface treatment on the substrate roll, it is not necessary until the dirt becomes severe (about 10 times), so the surface treatment during that time can be done only by polishing # 180 nonwoven fabric. It becomes.
When the substrate surface roughness after polishing this # 180 nonwoven fabric was measured 6 times with a reference length of 2.4 mm, Ra was 2.5 to 4.0 μm. This value is a level between ▽▽ and ▽▽▽ in the finishing symbol of mechanical drawing. FIG. 11 is a roughness curve actually measured.
When 25 amorphous thin plates (thickness 300 μm × width 105 mm × length 600 mm) were repeatedly produced, the success rate was 100% and the production time was 30 minutes / sheet. When an amorphous thin plate is obtained using a plate-like substrate, peeling of the thin plate / base material during film formation, and conversely, excessive adhesion of the thin plate / base material leads to cracking of the thin plate or remaining on the base material. Therefore, such production efficiency could not be achieved. FIG. 12 shows a photograph of the appearance of the Ni 72 Mo 4.5 Nb 10 B 13 Cu 0.5 amorphous thin plate produced using the base roll as described above.
本発明の、基材ロールを用いた非晶質薄板の作製は、基材ロールのサイズ変更や、図8(特許文献4)に記載のアモルファス形成装置を用いた応用が可能である。すなわち、基材ロールのサイズを大きくし、アモルファス形成装置の数を増やせば、非晶質薄板の大量生産が可能となる。想定できる設備の仕様および図を、表3、図13にそれぞれ示す。図13にある設備を説明すると、まずブラシロール(粗)とブラシロール(仕上げ)にて、円筒ロール表面を適度な粗さに処理する。適度な粗さとは、円筒ノズル型溶射ガンでの成膜中は、皮膜と円筒ロールが結合し、剥離ロールとスクレパーで、非晶質薄板を円筒ロールから、容易に剥離できる程度である。ブラシロール(仕上げ)の右下にある円筒ノズル型溶射ガンより、皮膜が円筒ロール上に成膜され始め、後段にある円筒ノズル型溶射ガンにて、順次積層していく。円筒ノズル型溶射ガンの台数が多く、円筒ロールが目標温度よりも高くなることが予想されるので、温度制御のために、内部冷却エアノズルを設置し、これより噴出するエアで円筒ロールの温度上昇を抑制する。剥離ロールとスクレパーで円筒ロールから剥離された非晶質薄板は、レベラで形状修正された後の均熱炉と圧延ロールを通過する。製造する非晶質薄板が、金属ガラスである場合は、ここで、過冷却液体までの加熱とその状態での圧延により、薄板の平坦度向上と気孔率低減が可能となる。トリミングでは、必要な幅の非晶質薄板を得るために、精度よく幅切断を行い、巻取機でコイル形状に非晶質薄板を巻取る。また、必要に応じて、シャで非晶質薄板の全幅切断を行う。圧延ロールの後段で、過冷却液体温度でのプレス(非晶質薄板の成型、平坦度向上、気孔率低減)、打ち抜き加工を行えば、例えば燃料電池セパレータ等の最終製品を得ることも可能である。剥離ロールとスクレパーで露出する円筒ロール表面は、再度、ブラシロール(粗)とブラシロール(仕上げ)と接触することとなり、上述の非晶質薄板工程が繰り返される。このような設備を用いれば、高品質の非晶質薄板が、長手方向に連続して生産できる。先に記述したように、基材ロールは、軸心が水平横方向でも垂直縦方向でも、非晶質薄板の作製成功率・品質は変わらないので、設備設置環境により、円筒ロールと溶射ガンの設置方向は選択が可能である。また、円筒ノズル型溶射ガンを更に増設することで、ラインスピードの増速も可能である。
Claims (7)
当該基材を回転させるとともに当該基材の温度上昇を抑制しながら、上記の形成装置を用い、単一種類もしくは複数種類の金属粉もしくは合金粉、又はそれらの混合粉からなる原料金属粉を、基材上に直接又は間接的に連結せしめて、基材外周面に上記皮膜を形成し、
さらに、当該皮膜上に押し付けられる剥離ロールと当該皮膜の下に差し入れられるスクレパーとによって当該皮膜を基材から分離する
ことを特徴とする非晶質薄板の製造方法。 Amorphous material in which a flame containing raw metal powder is sprayed from a spray gun toward the base material, the metal powder is melted by the flame, and the metal powder and flame are cooled with a cooling gas before reaching the base material. A film forming device is arranged around a roll-shaped substrate,
While rotating the base material and suppressing the temperature rise of the base material, using the above forming apparatus, a single type or a plurality of types of metal powder or alloy powder, or raw material metal powder composed of a mixed powder thereof, Connect directly or indirectly on the substrate to form the film on the outer peripheral surface of the substrate,
Furthermore, the said membrane | film | coat is isolate | separated from a base material with the peeling roll pressed on the said membrane | film | coat, and the scraper inserted under the said membrane | film | coat, The manufacturing method of the amorphous thin plate characterized by the above-mentioned.
The method of manufacturing according to the manufacturing method described in any one of claim 1 to 6 Therefore, the amorphous thin plate, characterized in that the production of amorphous sheet which is mixed amorphous and crystalline in any ratio .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012005701A JP5905265B2 (en) | 2012-01-13 | 2012-01-13 | High production efficiency amorphous sheet manufacturing method and manufacturing equipment |
PCT/JP2012/073235 WO2013105304A1 (en) | 2012-01-13 | 2012-09-11 | Method and facility for producing amorphous sheet with high production efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012005701A JP5905265B2 (en) | 2012-01-13 | 2012-01-13 | High production efficiency amorphous sheet manufacturing method and manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013144831A JP2013144831A (en) | 2013-07-25 |
JP5905265B2 true JP5905265B2 (en) | 2016-04-20 |
Family
ID=48781269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012005701A Active JP5905265B2 (en) | 2012-01-13 | 2012-01-13 | High production efficiency amorphous sheet manufacturing method and manufacturing equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5905265B2 (en) |
WO (1) | WO2013105304A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5973790B2 (en) * | 2012-05-28 | 2016-08-23 | 株式会社中山アモルファス | Thin plate excellent in corrosion resistance, conductivity and moldability, and method for producing the same |
JP5980167B2 (en) * | 2013-05-23 | 2016-08-31 | 株式会社中山アモルファス | Separator material for polymer electrolyte fuel cell having excellent corrosion resistance, conductivity and moldability, and method for producing the same |
JP6924990B2 (en) * | 2016-06-17 | 2021-08-25 | 吉川工業株式会社 | Thermal spray coating and thermal spray coating member |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5588843A (en) * | 1978-12-27 | 1980-07-04 | Matsushita Electric Ind Co Ltd | Production of amorphous body |
JP3594123B2 (en) * | 1999-04-15 | 2004-11-24 | 日立金属株式会社 | Alloy ribbon, member using the same, and method of manufacturing the same |
JP5260847B2 (en) * | 2006-08-14 | 2013-08-14 | 株式会社中山製鋼所 | Thermal spraying apparatus for forming supercooled liquid phase metal film and method for producing supercooled liquid phase metal film |
JP4579317B2 (en) * | 2008-07-15 | 2010-11-10 | 株式会社中山製鋼所 | Amorphous film forming apparatus and method |
-
2012
- 2012-01-13 JP JP2012005701A patent/JP5905265B2/en active Active
- 2012-09-11 WO PCT/JP2012/073235 patent/WO2013105304A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2013144831A (en) | 2013-07-25 |
WO2013105304A1 (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5571152B2 (en) | Manufacturing method of sputtering target | |
US10946447B2 (en) | Systems and methods for fabricating objects including amorphous metal using techniques akin to additive manufacturing | |
JP4677050B1 (en) | Film forming method and composite material formed by the method | |
CN107636188B (en) | Method for producing tubular articles | |
JP5905265B2 (en) | High production efficiency amorphous sheet manufacturing method and manufacturing equipment | |
JP2016000849A (en) | Production method of laminate, and laminate | |
JP5605901B2 (en) | Method for repairing metal material by cold spray method, method for producing powder material for cold spray, and cold spray film | |
JP6644147B2 (en) | Metal coating method for steel sheet and metal coated steel sheet manufactured using the same | |
JP5848617B2 (en) | Amorphous plate and manufacturing method thereof | |
WO2013154183A1 (en) | Plastic working method and plastic working device for amorphous alloy | |
CN104002202B (en) | A kind of thin band continuous casting crystallization roller high cleanliness zero defect texturing surface preparation method | |
JP3233854U (en) | Pretreatment equipment and pretreatment method for structural steel | |
WO2012099284A1 (en) | Hot dipped galvanized steel sheet with excellent deep drawing properties and ultra-low temperature adhesive brittleness, and preparation method thereof | |
JP6010554B2 (en) | Method and apparatus for manufacturing amorphous plate | |
JP5305385B2 (en) | Deformation processing method of metallic glass composite material | |
GB2599541A (en) | Method and compositions for modifying an additively manufactured metal or metal-alloy object | |
JP5975661B2 (en) | Aluminum plate for forming | |
KR101543891B1 (en) | Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition | |
CN110565001A (en) | Thermal spraying powder and method for preparing thermal spraying coating by using same | |
JP6440553B2 (en) | Method for producing a film made of metal or alloy | |
CN113718093B (en) | High-speed impact large-area preparation of amorphous/nanocrystalline composite coating and preparation process thereof | |
CN115627439B (en) | Dense thick alloy coating without layered structure and preparation method thereof | |
JP3501194B2 (en) | Spray method | |
KR20090052698A (en) | Method for manufacturing thin plate using spray coating | |
KR101325400B1 (en) | Semi-alloyed hot-rolled hot-dip galvanizing steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130823 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5905265 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |