JP5900412B2 - Method for producing wear-resistant steel slab and method for producing wear-resistant steel obtained from the slab - Google Patents
Method for producing wear-resistant steel slab and method for producing wear-resistant steel obtained from the slab Download PDFInfo
- Publication number
- JP5900412B2 JP5900412B2 JP2013102762A JP2013102762A JP5900412B2 JP 5900412 B2 JP5900412 B2 JP 5900412B2 JP 2013102762 A JP2013102762 A JP 2013102762A JP 2013102762 A JP2013102762 A JP 2013102762A JP 5900412 B2 JP5900412 B2 JP 5900412B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- slab
- wear
- resistant steel
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 87
- 239000010959 steel Substances 0.000 title claims description 87
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000009749 continuous casting Methods 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 24
- 238000005098 hot rolling Methods 0.000 claims description 9
- 238000010583 slow cooling Methods 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 238000005266 casting Methods 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 claims description 2
- 230000003628 erosive effect Effects 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 18
- 239000000843 powder Substances 0.000 description 14
- 230000007547 defect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000008646 thermal stress Effects 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 208000001840 Dandruff Diseases 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Description
本発明は、産業機械,土木機械,運搬機器等に使用される耐摩耗鋼材の製造方法、およびその耐摩耗鋼材を得るために熱間圧延を施す素材となる鋳片の製造方法に関するものである。 The present invention relates to a method for producing a wear-resistant steel used for industrial machines, civil engineering machines, transportation equipment, and the like, and a method for producing a cast slab that is a material subjected to hot rolling to obtain the wear-resistant steel. .
土や砂等による摩擦を受ける土木機械や運搬機器、あるいは金属部品による摩擦を受ける産業機械を構成する部材には、摩耗を軽減して寿命を延長する観点から、耐摩耗性に優れた鋼材つまり耐摩耗鋼材が広く使用されている。耐摩耗鋼材は、硬度を高めることによって耐摩耗性を向上するものであり、CrやMo等の合金元素を大量に添加し、さらに焼入れ等の熱処理を施して、硬度を高めた鋼材が実用化されている。 For civil engineering machinery and transportation equipment that receives friction due to earth and sand, etc., or for members that constitute industrial machinery that receives friction due to metal parts, steel materials with excellent wear resistance, from the viewpoint of reducing wear and extending life Wear-resistant steel is widely used. Abrasion-resistant steel improves wear resistance by increasing hardness, and steels with increased hardness are put into practical use by adding a large amount of alloying elements such as Cr and Mo, followed by heat treatment such as quenching. Has been.
たとえば特許文献1には、Cを0.10〜0.19%含有し、さらに適正量のSi、Mnを含有して炭素等量Ceqを0.35〜0.44とした素材を熱間圧延し、その熱間圧延から直接、または冷却して900〜950℃に再加熱した後に、焼入れを行ない、さらに引き続き300〜500℃で焼戻しを行なうことによって、表面硬さを300Hv(ビッカース硬さ)以上とする耐摩耗鋼板の製造方法が提案されている。 For example, in Patent Document 1, a material containing 0.10 to 0.19% C, further containing appropriate amounts of Si and Mn, and having a carbon equivalent Ceq of 0.35 to 0.44 is hot-rolled directly from the hot rolling. Or by cooling and reheating to 900-950 ° C, followed by quenching, followed by tempering at 300-500 ° C to produce a wear-resistant steel sheet with a surface hardness of 300 Hv (Vickers hardness) or higher A method has been proposed.
また特許文献2には、Cを0.10〜0.20%含有し、さらに適正量のSi、Mn、P、S、N、Al、Oを含有し、あるいはさらにCu、Ni、Cr、Mo、Bのうちの1種以上を含有する素材を熱間圧延し、その熱間圧延から直接、または放冷して再加熱した後に焼入れを行なうことによって、表面硬さを340HB(ブリネル硬さ)以上とする耐摩耗鋼板の製造方法が提案されている。 Patent Document 2 contains 0.10 to 0.20% of C, and further contains appropriate amounts of Si, Mn, P, S, N, Al, O, or Cu, Ni, Cr, Mo, and B. A material containing one or more of the above is hot-rolled, and the surface hardness is increased to 340 HB (Brinell hardness) or higher by performing quenching directly from the hot-rolling or after cooling and reheating. A method for producing a worn steel sheet has been proposed.
特許文献3には、Cを0.07〜0.17%含有し、さらに適正量のSi、Mn、V、B、Alを含有し、あるいはさらにCu、Ni、Cr、Moのうちの1種以上を含有する素材を熱間圧延し、その熱間圧延から直接、または一旦空冷して再加熱した後に焼入れを行なうことによって、表面硬さを321HB以上とする耐摩耗鋼板の製造方法が提案されている。
特許文献1〜3に開示された技術は、合金元素を多量に添加し、固溶硬化,変態硬化,析出硬化等の現象を活用し、硬度を高めることによって、耐摩耗性を向上させている。しかしながら、多量の合金元素を含有し、固溶硬化,変態硬化,析出硬化等によって硬化した鋼板は溶接性および加工性が著しく低下する。
Patent Document 3 contains 0.07 to 0.17% of C, further contains an appropriate amount of Si, Mn, V, B, and Al, or further contains one or more of Cu, Ni, Cr, and Mo. There has been proposed a method for producing a wear-resistant steel sheet having a surface hardness of 321 HB or more by hot rolling a material and performing quenching directly from the hot rolling or once after air cooling and reheating.
The techniques disclosed in Patent Documents 1 to 3 improve wear resistance by adding a large amount of alloy elements and utilizing phenomena such as solid solution hardening, transformation hardening, and precipitation hardening to increase hardness. . However, a steel sheet containing a large amount of alloy elements and hardened by solid solution hardening, transformation hardening, precipitation hardening or the like has a marked decrease in weldability and workability.
これに対して特許文献4には、Cを0.10〜0.45%、Tiを0.10〜1.0%含有し、さらに適正量のSi、Mn、P、S、N、Alを含有し、あるいはさらにCu、Ni、Cr、Mo、Bのうちの1種以上を含有する溶鋼を連続鋳造して、0.5μm以上の大きさを有するTiCを主体とする析出物を1mm2あたり400個以上析出させた耐摩耗鋼が提案されている。
特許文献4に開示された技術は、連続鋳造の凝固の際に、硬度が高いTiCを主体とする粗大な析出物を生成させ、その析出物によって耐摩耗性を向上させるので、耐摩耗鋼のマトリックスの硬度を高める必要はない。そのため、加工性や溶接性に優れた耐摩耗鋼を得ることが可能である。しかし、Tiを含有する溶鋼の連続鋳造では、一般の炭素鋼に比較して、鋳片の割れやノロカミ等の表面欠陥が発生し易いという問題がある。
On the other hand, Patent Document 4 contains 0.10 to 0.45% C and 0.10 to 1.0% Ti, and further contains appropriate amounts of Si, Mn, P, S, N, Al, or further Cu, Ni. Wear resistant steel in which molten steel containing one or more of Cr, Mo and B is continuously cast to deposit more than 400 precipitates per 1 mm 2 of TiC having a size of 0.5 μm or more. Has been proposed.
The technique disclosed in Patent Document 4 generates coarse precipitates mainly composed of TiC having high hardness during solidification of continuous casting, and improves the wear resistance by the precipitates. There is no need to increase the hardness of the matrix. Therefore, it is possible to obtain wear-resistant steel excellent in workability and weldability. However, in continuous casting of molten steel containing Ti, there is a problem that surface defects such as cracking of a slab and slack are likely to occur as compared with general carbon steel.
本発明は、Tiを含有する耐摩耗鋼の溶鋼を連続鋳造することによって、表面性状の良好な鋳片を製造できる耐摩鋼鋳片の製造方法、およびその鋳片から得られる耐摩耗鋼材の製造方法を提供することを目的とする。 The present invention, by continuous casting of molten steel in wear steel containing Ti, a method of manufacturing a wear-resistant steel slabs which can be produced a good slab surface texture, and the production of wear-resistant steel material obtained from the cast slab It aims to provide a method .
発明者は、Tiを含有する耐摩耗鋼鋳片の表面性状を改善するために、連続鋳造にて表面欠陥が発生する原因について調査し、以下のような知見を得た。
高濃度のTiを含有する溶鋼の連続鋳造では、溶鋼中のTiがモールドパウダー中のSiO2を還元してTiO2を生成する。その結果、モールドパウダーの特性はSiO2の減少に伴って変化し、安定した連続鋳造を維持することが困難になる。モールドパウダー中のSiO2が減少すると、モールドパウダーの溶融状態における粘度が上昇して、モールドパウダーの消費量が減少する。つまり、連続鋳造鋳型と凝固シェルとの隙間に、溶融したモールドパウダーが流れ込み難くなり、耐摩耗鋼鋳片の表面に割れが発生するばかりでなく、連続鋳造鋳型と凝固シェルが焼き付いて、拘束性ブレークアウトが発生し易くなる。
The inventor investigated the cause of surface defects in continuous casting in order to improve the surface properties of wear-resistant steel slabs containing Ti, and obtained the following knowledge.
In continuous casting of molten steel containing a high concentration of Ti, Ti in the molten steel reduces SiO 2 in the mold powder to produce TiO 2 . As a result, the properties of the mold powder change as the SiO 2 decreases, making it difficult to maintain stable continuous casting. When SiO 2 in the mold powder decreases, the viscosity of the mold powder in the molten state increases, and the consumption of the mold powder decreases. In other words, it is difficult for molten mold powder to flow into the gap between the continuous casting mold and the solidified shell. Breakout is likely to occur.
また、モールドパウダーの特性が変化することによって、凝固シェルと溶融したモールドパウダーとの界面張力や濡れ角等の物性値が変化し、その結果、モールドパウダーが耐摩耗鋼鋳片に付着して凝固し、ノロカミと呼ばれる表面欠陥が発生し易くなる。
また連続鋳造の操業では、連続鋳造鋳型内に溶鋼を供給する浸漬ノズルの閉塞を防止するために、浸漬ノズル内に不活性ガス(たとえばArガス等)を吹き込んでいるが、モールドパウダーの溶融状態における粘度が上昇することによって、不活性ガスがパウダー溶融層へ離脱し難くなり、耐摩耗鋼鋳片の内部に捕捉される気泡が増加するので、耐摩耗鋼鋳片の表面にフクレが発生し易くなる。
In addition, changes in the properties of the mold powder change the physical properties such as the interfacial tension and wetting angle between the solidified shell and the molten mold powder. As a result, the mold powder adheres to the wear-resistant steel slab and solidifies. However, surface defects called “norokami” are likely to occur.
In continuous casting operations, inert gas (such as Ar gas) is blown into the immersion nozzle to prevent clogging of the immersion nozzle that supplies molten steel into the continuous casting mold. As the viscosity increases in the inert gas, it becomes difficult for the inert gas to separate into the powder melt layer, and air bubbles trapped inside the wear-resistant steel slab increase, which causes blisters on the surface of the wear-resistant steel slab. It becomes easy.
これらの表面欠陥は、いずれも溶鋼中のTiがモールドパウダー中のSiO2と反応してTiO2を生成することが原因となって発生するものである。これらの表面欠陥を除去するために、スラブ表面の溶削手入れが行なわれている。その一方で、高濃度のTiを含有する鋼は、他の鋼に比べて500℃未満の比較的高温でも脆化しやすく、スラブの低温時には割れが発生しやすいという欠点がある。そのため、スラブ表面の割れや介在物などの表面欠陥を除去するために、酸素と火炎によりスラブの表面を溶削して表面手入れを行なう際に、その前の冷却時にスラブ表層側と内部側で温度勾配が大きくなると、スラブ表面と内側の温度差により熱応力が発生し、スラブ表面に割れが発生する場合がある。 These surface defects are caused by Ti in the molten steel reacting with SiO 2 in the mold powder to produce TiO 2 . In order to remove these surface defects, the slab surface is subjected to thermal cutting. On the other hand, steels containing a high concentration of Ti have the disadvantage that they tend to become brittle even at relatively high temperatures of less than 500 ° C. compared to other steels, and that cracks are likely to occur when the slab is cold. Therefore, in order to remove surface defects such as cracks and inclusions on the surface of the slab, the surface of the slab should be cleaned by oxygen and flame before the surface of the slab and the internal side during cooling. When the temperature gradient becomes large, thermal stress is generated due to the temperature difference between the slab surface and the inside, and cracks may occur on the slab surface.
また、連続鋳造機内で水、または気体と水によって冷却されるスラブは、スラブ表面と内部で温度勾配が大きくなる場合があるが、このような場合にも、スラブの表面温度が低下して弾性率が増大すると、温度勾配により熱応力が増大し、高濃度のTiを含有する鋼はスラブの表面温度が500℃未満の脆化しやすい温度域になると割れが発生しやすいという欠点があった。 In addition, a slab cooled by water or gas and water in a continuous casting machine may have a large temperature gradient between the slab surface and the inside. As the rate increases, the thermal stress increases due to the temperature gradient, and the steel containing a high concentration of Ti has the disadvantage that the surface temperature of the slab tends to become brittle when the surface temperature of the slab is less than 500 ° C.
本発明はこのような事情に鑑みてなされたもので、その目的とするところは、Tiを含有する耐摩耗鋼を連続鋳造するにあたり、表面性状の良好な鋳片を鋳造することのできる、耐摩耗鋼の連続鋳造方法を提供するとともに、この連続鋳造方法によって製造される耐摩耗鋼を提供することである。
すなわち本発明は、C:0.05〜0.35質量%、Si:0.05〜1.0質量%、Mn:0.1〜2.0質量%、B:0.0003〜0.0030質量%、Al:0.002〜0.1質量%、Ti:0.1〜1.0質量%を含み、さらにCu:0.1〜1.0質量%、Ni:0.1〜2.0質量%、Cr:0.1〜1.0質量%、Mo:0.05〜1.0質量%、W:0.05〜1.0質量%のうちから選ばれた1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる溶鋼を連続鋳造機で鋳造し、連続鋳造機の出側での鋳片の表面温度を500℃以上とし、連続鋳造機から排出された後の前記鋳片の表面温度が500℃以上の時点において前記鋳片の緩冷却を開始し、500℃以下300℃以上の温度域における前記鋳片の冷却速度を0.11℃/分以下として前記鋳片を緩冷却し、前記鋳片の表面温度が250℃以上300℃以下で前記緩冷却を終了し、鋳片の表面温度が200℃以上300℃未満において手入れ用スカーファーの移動速度を10m/分以上かつ30m/分未満として鋳片の表面の溶削手入れを行なうことを特徴とする耐摩耗鋼鋳片の製造方法である。
The present invention has been made in view of such circumstances. The object of the present invention is to provide a cast-resistant slab having good surface properties when continuously casting wear-resistant steel containing Ti. The present invention is to provide a continuous casting method for wear steel and to provide wear resistant steel produced by this continuous casting method.
That is, the present invention includes C: 0.05 to 0.35 mass%, Si: 0.05 to 1.0 mass%, Mn: 0.1 to 2.0 mass%, B: 0.0003 to 0.0030 mass%, Al: 0.002 to 0.1 mass%, Ti: 0.1 to 1.0 Including Cu: 0.1-1.0% by mass, Ni: 0.1-2.0% by mass, Cr: 0.1-1.0% by mass, Mo: 0.05-1.0% by mass, W: 0.05-1.0% by mass In addition, the molten steel containing one or two or more types, with the balance being Fe and inevitable impurities, is cast by a continuous casting machine, and the surface temperature of the slab on the outlet side of the continuous casting machine is set to 500 ° C or higher. When the surface temperature of the slab after being discharged from the machine is 500 ° C or higher, the slab is slowly cooled, and the cooling rate of the slab in the temperature range of 500 ° C or lower and 300 ° C or higher is 0.11 ° C / the slab was slow cooling as min or less, the slab surface temperature by terminating the gradual cooling at 250 ° C. or higher 300 ° C. or less, the surface temperature of 200 ° C. or higher 300 ° C. less odor of the slab of The moving speed of the care Scar fur is a manufacturing method of the wear-resistant steel cast piece, characterized in that performing scarfing care of the surface of 10 m / min or more and 30 m / min under the slab.
本発明の耐摩耗鋼鋳片の製造方法においては、溶鋼が、さらにNb:0.005〜1.0質量%、V:0.005〜1.0質量%のうちから選ばれた1種または2種を含有することが好ましい。
また本発明は、上記した製造方法で製造した耐摩耗鋼鋳片に、熱間圧延を施す耐摩耗鋼材の製造方法である。
In the method for producing a wear-resistant steel slab of the present invention, the molten steel preferably further contains one or two selected from Nb: 0.005 to 1.0 mass% and V: 0.005 to 1.0 mass%. .
The present invention, wear steel slabs manufactured by the manufacturing method described above, a method of manufacturing facilities to abrasion steel hot rolling.
本発明によれば、表面性状の良好な耐摩鋼鋳片、および耐摩耗鋼材を製造できるので、産業上格段の効果を奏する。 According to the present invention, a wear-resistant steel slab having excellent surface properties and a wear-resistant steel material can be produced, and thus an industrially significant effect is achieved.
本発明で得られる耐摩耗鋼は、曲げ加工性および溶接性に優れており、連続鋳造によって高い硬度を有するTi炭化物を主体とする粗大な析出物(0.5μm以上)を鋳片に生成させ、その後に鋳片の熱間圧延を行なってもTi炭化物を可能な限り固溶させずに残留させることによって、耐摩耗性を向上するものである。ここでTi炭化物は、TiC単体、あるいはTiCとTiN、TiSとの複合化合物を指す。 The wear-resistant steel obtained by the present invention is excellent in bending workability and weldability, and generates a coarse precipitate (0.5 μm or more) mainly composed of Ti carbide having high hardness by continuous casting in the slab, Even if the slab is subsequently hot-rolled, the wear resistance is improved by allowing the Ti carbide to remain as solid solution as possible. Here, Ti carbide refers to a single compound of TiC or a composite compound of TiC, TiN, and TiS.
まず、本発明を適用する耐摩耗鋼の成分について説明する。
C:0.05〜0.35質量%
Cは、耐摩耗鋼のマトリックスの硬度を高めて、耐摩耗性を向上するとともに、硬質な第2相(以下、硬質相という)としてのTi炭化物を生成して、耐摩耗性をさらに向上する作用を有する元素である。C含有量が0.05質量%未満では、このような効果が得られない。一方、0.35質量%を超えると、硬質相としてのTi炭化物が粗大になりので、曲げ加工の際にそのTi炭化物を起点として割れが発生し易くなる。したがって、Cは0.05〜0.35質量%の範囲内とする。好ましくは0.15〜0.30質量%である。
First, the components of the wear resistant steel to which the present invention is applied will be described.
C: 0.05 to 0.35 mass%
C increases the hardness of the wear-resistant steel matrix to improve the wear resistance, and also produces Ti carbide as a hard second phase (hereinafter referred to as the hard phase) to further improve the wear resistance. It is an element having an action. If the C content is less than 0.05% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 0.35% by mass, Ti carbide as a hard phase becomes coarse, and cracking is likely to occur starting from the Ti carbide during bending. Therefore, C is in the range of 0.05 to 0.35 mass%. Preferably it is 0.15-0.30 mass%.
Si:0.05〜1.0質量%
Siは、耐摩耗鋼を溶製する工程で脱酸剤として有効であり、かつ耐摩耗鋼に固溶して固溶硬化によってマトリックスの硬度を高める作用を有する元素である。Si含有量が0.05質量%未満では、このような効果が得られない。一方、1.0質量%を超えると、耐摩耗鋼の延性,靭性が低下するばかりでなく、介在物が増加する等の問題を生じる。したがって、Siは0.05〜1.0質量%の範囲内とする。好ましくは0.05〜0.40質量%である。
Si: 0.05-1.0 mass%
Si is an element that is effective as a deoxidizer in the process of melting wear-resistant steel, and has an effect of increasing the hardness of the matrix by solid solution and solid solution hardening in the wear-resistant steel. If the Si content is less than 0.05% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 1.0 mass%, not only the ductility and toughness of the wear-resistant steel will be lowered, but also problems such as inclusions will increase. Therefore, Si is in the range of 0.05 to 1.0 mass%. Preferably it is 0.05-0.40 mass%.
Mn:0.1〜2.0質量%
Mnは、耐摩耗鋼に固溶して固溶硬化によってマトリックスの硬度を高める作用を有する元素である。Mn含有量が0.1質量%未満では、このような効果が得られない。一方、2.0質量%を超えると、耐摩耗鋼の溶接性が低下する。したがって、Mnは0.1〜2.0質量%の範囲内とする。好ましくは0.1〜1.60質量%である。
Mn: 0.1-2.0 mass%
Mn is an element having a function of increasing the hardness of the matrix by solid solution in the wear-resistant steel and solid solution hardening. If the Mn content is less than 0.1% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 2.0% by mass, the weldability of the wear-resistant steel is lowered. Therefore, Mn is in the range of 0.1 to 2.0 mass%. Preferably it is 0.1-1.60 mass%.
B:0.0003〜0.0030質量%
Bは、粒界に偏析することによって粒界を強化し、耐摩耗鋼の靭性を向上する作用を有する元素である。B含有量が0.0003質量%未満では、このような効果が得られない。一方、0.0030質量%を超えると、耐摩耗鋼の溶接性が低下する。したがって、Bは0.0003〜0.0030質量%の範囲内とする。好ましくは0.0003〜0.0015質量%である。
B: 0.0003 to 0.0030 mass%
B is an element having an action of strengthening the grain boundary by segregating at the grain boundary and improving the toughness of the wear-resistant steel. If the B content is less than 0.0003 mass%, such an effect cannot be obtained. On the other hand, if it exceeds 0.0030% by mass, the weldability of the wear-resistant steel decreases. Therefore, B is in the range of 0.0003 to 0.0030 mass%. Preferably it is 0.0003-0.0015 mass%.
Al:0.002〜0.1質量%
Alは、耐摩耗鋼を溶製する工程で脱酸剤として有効な元素である。Al含有量が0.002質量%未満では、このような効果が得られない。一方、0.1質量%を超えると、耐摩耗鋼の清浄性が低下する。したがって、Alは0.002〜0.1質量%の範囲内とする。
Ti:0.1〜1.0質量%
Tiは、硬質相としてのTi炭化物を生成して、耐摩耗性を向上する作用を有する元素である。Ti含有量が0.1質量%未満では、このような効果が得られない。一方、1.0質量%を超えると、硬質相としてのTi炭化物が粗大になるので、曲げ加工の際にそのTi炭化物を起点として割れが発生し易くなる。さらに、Ti添加量が増加することから、耐摩耗鋼の製造コストの上昇を招くとともに、モールドパウダー中のSiO2と反応してモールドパウダーの特性を変化させる原因になる。したがって、Tiは0.1〜1.0質量%の範囲内とする。好ましくは0.1〜0.5質量%である。
Al: 0.002 to 0.1% by mass
Al is an element effective as a deoxidizer in the process of melting wear-resistant steel. If the Al content is less than 0.002% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 0.1% by mass, the cleanliness of the wear-resistant steel decreases. Therefore, Al is within the range of 0.002 to 0.1% by mass.
Ti: 0.1-1.0 mass%
Ti is an element having a function of improving wear resistance by generating Ti carbide as a hard phase. If the Ti content is less than 0.1% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 1.0% by mass, Ti carbide as the hard phase becomes coarse, so that cracking is likely to occur starting from the Ti carbide during bending. Furthermore, since the Ti addition amount increases, the manufacturing cost of the wear-resistant steel is increased, and it reacts with SiO 2 in the mold powder to change the characteristics of the mold powder. Therefore, Ti is in the range of 0.1 to 1.0 mass%. Preferably it is 0.1-0.5 mass%.
Cu:0.1〜1.0質量%
Cuは、鋼中に固溶して鋼の焼入れ性を向上させる元素であり、このような効果を得るためには0.1質量%以上の含有を必要とする。一方、1.0質量%を超える含有は、熱間加工性を低下させる。このため、含有する場合には、Cuは0.1〜1.0質量%の範囲に規定した。なお、好ましくは0.1〜0.5質量%である。
Cu: 0.1 to 1.0 mass%
Cu is an element that dissolves in steel and improves the hardenability of the steel, and in order to obtain such an effect, it is necessary to contain 0.1% by mass or more. On the other hand, the content exceeding 1.0% by mass decreases the hot workability. For this reason, when it contained, Cu was prescribed | regulated in the range of 0.1-1.0 mass%. In addition, Preferably it is 0.1-0.5 mass%.
Ni:0.1〜2.0質量%
Niは、鋼中に固溶して鋼の焼入れ性を向上させる元素であり、このような効果は0.1質量%以上の含有で顕著となる。一方、2.0質量%を超える含有は、材料コストを著しく上昇させる。このため、含有す場合には、Niは0.1〜2.0質量%の範囲に規定した。なお、好ましくは0.1〜1.0質量%である。
Ni: 0.1-2.0 mass%
Ni is an element that dissolves in steel and improves the hardenability of the steel, and such an effect becomes remarkable when the content is 0.1% by mass or more. On the other hand, the content exceeding 2.0% by mass significantly increases the material cost. For this reason, Ni was specified in the range of 0.1 to 2.0 mass% when contained. In addition, Preferably it is 0.1-1.0 mass%.
Cr:0.1〜1.0質量%
Crは、耐摩耗鋼の焼入れ性を向上させる作用を有する元素である。Cr含有量が0.1質量%未満では、このような効果が得られない。一方、1.0質量%を超えると、耐摩耗鋼の溶接性が低下する。したがって、Crは0.1〜1.0質量%の範囲内とする。好ましくは0.1〜0.4質量%である。
Cr: 0.1-1.0 mass%
Cr is an element having an effect of improving the hardenability of the wear resistant steel. If the Cr content is less than 0.1% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 1.0 mass%, the weldability of the wear-resistant steel decreases. Therefore, Cr is in the range of 0.1 to 1.0 mass%. Preferably it is 0.1-0.4 mass%.
Mo:0.05〜1.0質量%
Moは、耐摩耗鋼の焼入れ性を向上させる作用を有する元素である。Mo含有量が0.05質量%未満では、このような効果が得られない。一方、1.0質量%を超えると、耐摩耗鋼の溶接性が低下する。したがって、Moは0.05〜1.0質量%の範囲内とする。好ましくは0.05〜0.4質量%である。
Mo: 0.05-1.0 mass%
Mo is an element having an effect of improving the hardenability of the wear-resistant steel. If the Mo content is less than 0.05% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 1.0 mass%, the weldability of the wear-resistant steel decreases. Therefore, Mo is in the range of 0.05 to 1.0 mass%. Preferably it is 0.05-0.4 mass%.
W:0.05〜1.0質量%
Wは、焼入れ性を向上させる元素であり、このような効果を得るためには0.05質量%以上の含有を必要とする。一方、1.0質量%を超える含有は、溶接性を低下させる。そのため、含有する場合にはWは0.05〜1.0質量%の範囲に規定した。なお、好ましくは0.05〜0.40質量%である。
W: 0.05-1.0 mass%
W is an element that improves hardenability, and in order to obtain such an effect, it needs to be contained in an amount of 0.05% by mass or more. On the other hand, the content exceeding 1.0% by mass reduces weldability. Therefore, when it contains, W was prescribed | regulated in the range of 0.05-1.0 mass%. In addition, Preferably it is 0.05-0.40 mass%.
本発明に係る耐摩耗鋳片の製造方法では、これらの焼入れ性を向上させる元素として、Cu:0.1〜1.0質量%、Ni:0.1〜2.0質量%、Cr:0.1〜1.0質量%、Mo:0.05〜1.0質量%、W:0.05〜1.0質量%のうちから選ばれた1種または2種以上を含有する溶鋼を連続鋳造するようにする。なお、MoやWは、硬質相であるTiCに固溶するため、硬質相量を増加させる効果も有する。 In the method for producing a wear-resistant slab according to the present invention, Cu: 0.1 to 1.0% by mass, Ni: 0.1 to 2.0% by mass, Cr: 0.1 to 1.0% by mass, Mo: 0.05 are used as elements for improving the hardenability. A molten steel containing one or more selected from -1.0 mass% and W: 0.05-1.0 mass% is continuously cast. Note that Mo and W have an effect of increasing the amount of the hard phase because they dissolve in the hard phase TiC.
上記した成分が基本成分であるが、本発明では、必要に応じて、Nb:0.005〜1.0質量%、V:0.005〜1.0質量%のうちから選ばれた1種または2種を選択元素として含有することができる。Nb、Vは、いずれも硬質な第2相(硬質相)を形成し、耐摩耗性の向上に寄与する元素であり、必要に応じて1種または2種を含有できる。
Nb:0.005〜1.0質量%
Nbは、Tiと複合して含有することにより、Ti、Nbの複合炭化物((NbTi)C)を形成し、硬質な第2相として基地相中に分散し、耐摩耗性に有効に寄与する元素である。このような耐摩耗性向上効果を得るためには、0.005質量%以上の含有を必要とする。一方、1.0質量%を超える含有は、硬質な第2相(炭化物)が粗大化し、曲げ加工時に硬質な第2相(炭化物)を起点として割れが発生する。このため、含有する場合には、Nbは0.005〜1.0質量%の範囲に限定することが好ましい。なお、より好ましくは0.1〜0.5質量%である。
The above-mentioned components are basic components. In the present invention, one or two selected from Nb: 0.005 to 1.0% by mass and V: 0.005 to 1.0% by mass are included as optional elements as necessary. can do. Nb and V are elements that form a hard second phase (hard phase) and contribute to the improvement of wear resistance, and can contain one or two as necessary.
Nb: 0.005 to 1.0 mass%
By containing Nb in combination with Ti, Nb forms a composite carbide of Ti and Nb ((NbTi) C) and disperses in the matrix phase as a hard second phase, which contributes effectively to wear resistance. It is an element. In order to obtain such an effect of improving wear resistance, a content of 0.005% by mass or more is required. On the other hand, when the content exceeds 1.0% by mass, the hard second phase (carbide) is coarsened, and cracks are generated starting from the hard second phase (carbide) during bending. For this reason, when it contains, it is preferable to limit Nb to the range of 0.005-1.0 mass%. In addition, More preferably, it is 0.1-0.5 mass%.
V:0.005〜1.0質量%
Vは、Nbと同様に、Tiと複合して含有することにより、Ti、Vの複合炭化物((VTi)C)を形成し、硬質な第2相として基地相中に分散し、耐摩耗性向上に有効に寄与する元素である。このような耐摩耗性向上効果を得るためには、0.005質量%以上の含有を必要とする。一方、1.0質量%を超える含有は、硬質な第2相(炭化物)が粗大化し、曲げ加工時に硬質な第2相(炭化物)を起点として割れが発生する。このため、含有する場合には、Vは0.005〜1.0質量%の範囲に限定することが好ましい。なお、より好ましくは0.1〜0.5質量%である。
V: 0.005 to 1.0 mass%
V, like Nb, is combined with Ti to form a composite carbide of Ti and V ((VTi) C), which is dispersed in the matrix phase as a hard second phase, and wear resistance It is an element that contributes effectively to improvement. In order to obtain such an effect of improving wear resistance, a content of 0.005% by mass or more is required. On the other hand, when the content exceeds 1.0% by mass, the hard second phase (carbide) is coarsened, and cracks are generated starting from the hard second phase (carbide) during bending. For this reason, when it contains, it is preferable to limit V to the range of 0.005-1.0 mass%. In addition, More preferably, it is 0.1-0.5 mass%.
本発明の耐摩耗鋼の製造方法に係る耐摩耗鋼の上記した以外の成分は、Feおよび不可避的不純物である。
本発明では、耐摩耗鋼の各成分を上記した範囲に調整する技術は、特に限定しない。たとえば、転炉による吹錬や真空脱ガス等の従来から知られている精錬技術が使用できる。
次に、耐摩耗鋼の連続鋳造について説明する。
Components other than those described above of the wear resistant steel according to the method for producing the wear resistant steel of the present invention are Fe and inevitable impurities.
In the present invention, the technique for adjusting each component of the wear-resistant steel to the above-described range is not particularly limited. For example, conventionally known refining techniques such as blowing by a converter and vacuum degassing can be used.
Next, continuous casting of wear resistant steel will be described.
連続鋳造では、連続鋳造機の出側で鋳片の表面温度が500℃以上となるように、鋳造条件(たとえば鋳込み速度,二次冷却水量等)を設定する。特に本明細書に記載の耐摩耗鋼では、連続鋳造機の出側で鋳片の表面温度が500℃未満になるまで冷却すると、鋳片の表層部と中心部の温度差に起因する熱応力による割れが発生し易くなる。鋳片の表面温度が500℃以上であれば、弾性率が低いために大きな熱応力が発生せず、割れには至らない。高濃度のTiを含有する鋼は、他の一般的な鋼に比べて延性−脆性遷移温度が高いため、500℃未満で延性が大きく低下する特徴がある。一方、表面温度の上限値については特に規定する必要はなく、鋳片の内部まで凝固が完了していれば問題はないが、スラブあるいはブルームの連続鋳造では、通常の製造条件では1000℃程度以下となる。したがって、連続鋳造機の出側における鋳片の表面温度は500〜1000℃が好ましい。 In continuous casting, casting conditions (for example, casting speed, amount of secondary cooling water, etc.) are set so that the surface temperature of the slab is 500 ° C. or higher on the exit side of the continuous casting machine. In particular, in the wear-resistant steel described in this specification, when the surface temperature of the slab is cooled to less than 500 ° C on the exit side of the continuous casting machine, the thermal stress caused by the temperature difference between the surface layer portion and the center portion of the slab It becomes easy to generate the crack by. If the surface temperature of the slab is 500 ° C. or higher, since the elastic modulus is low, a large thermal stress is not generated and cracking does not occur. Steel containing a high concentration of Ti has a characteristic that ductility is greatly reduced below 500 ° C. because the ductile-brittle transition temperature is higher than that of other general steels. On the other hand, there is no need to specify the upper limit of the surface temperature, and there is no problem as long as solidification has been completed up to the inside of the slab, but in continuous casting of slabs or blooms, about 1000 ° C or less under normal production conditions It becomes. Therefore, the surface temperature of the slab on the exit side of the continuous casting machine is preferably 500 to 1000 ° C.
次に、連続鋳造機から排出された鋳片の冷却および手入れについて説明する。
ガスカッター等で切断された後に連続鋳造機から排出された鋳片は、雰囲気への熱放散によって冷却される。鋳片の表面温度が500℃以下の温度域において、その冷却速度が0.11℃/分を超えると、冷却中に熱応力が発生して、鋳片に割れが発生し易くなる。鋳片の表面温度が300℃以下では、冷却中に発生する熱応力と強度の関係から、鋳片を放冷しても割れは発生しない。したがって、連続鋳造機から排出された鋳片の500℃以下300℃以上の温度範囲における冷却速度は0.11℃/分以下とする。冷却速度が小さい場合には、発生する熱応力が小さくなるため、冷却速度の下限を設定する必要はない。鋳片の保温などの工夫をした上で、不可避的に冷却される速度以上で問題ない。ただし、冷却速度が小さいほど緩冷却に要する時間が長くなるため、500℃以下300℃以上の温度範囲における冷却速度を0.11℃/分以下とした上で、短期間で緩冷却を行なうことが好ましい。ここで鋳片の冷却速度とは、鋳片の表面温度の低下速度を意味し、その500℃〜300℃の温度範囲における最大値が0.11℃/分を超えないように調整することが好ましい。
Next, cooling and care of the slab discharged from the continuous casting machine will be described.
The slab discharged from the continuous casting machine after being cut by a gas cutter or the like is cooled by heat dissipation to the atmosphere. In the temperature range where the surface temperature of the slab is 500 ° C. or less, if the cooling rate exceeds 0.11 ° C./min, thermal stress is generated during cooling, and cracks are likely to occur in the slab. When the surface temperature of the slab is 300 ° C. or lower, cracks do not occur even if the slab is allowed to cool because of the relationship between thermal stress and strength generated during cooling. Therefore, the cooling rate in the temperature range of 500 ° C. or lower and 300 ° C. or higher of the slab discharged from the continuous casting machine is 0.11 ° C./min or less. When the cooling rate is low, the generated thermal stress is small, so there is no need to set a lower limit for the cooling rate. There is no problem above the speed at which cooling is inevitably performed after devising measures such as keeping the slab warm. However, since the time required for slow cooling becomes longer as the cooling rate is lower, it is preferable to perform slow cooling in a short period of time after setting the cooling rate in the temperature range of 500 ° C. or lower and 300 ° C. or higher to 0.11 ° C./min or lower. . Here, the cooling rate of the slab means the rate of decrease in the surface temperature of the slab, and it is preferable to adjust so that the maximum value in the temperature range of 500 ° C. to 300 ° C. does not exceed 0.11 ° C./min.
鋳片の冷却速度の調整は、鋳片を保温カバーで覆う、あるいは熱片スラブで鋳片を挟んで保温する等の方法で行なう。
本発明の耐摩耗鋼の製造方法に係る耐摩耗鋼では、その組成条件から、鋳片の表面近傍に捕捉された気泡に起因する欠陥や、モールドパウダーの変質に起因する鋳片の表面欠陥の発生頻度が高いため、鋳片表面の手入れを実施する。
The cooling rate of the slab is adjusted by a method such as covering the slab with a heat insulating cover or holding the slab with a hot piece slab to keep the heat.
In the wear resistant steel according to the manufacturing method of the wear resistant steel of the present invention, due to the composition conditions, defects caused by bubbles trapped near the surface of the slab and surface defects of the slab caused by deterioration of the mold powder. Since the frequency of occurrence is high, the surface of the slab is cleaned.
手入れは、耐摩耗鋼の研磨や研削が困難であることから、スカーファーを用いて溶削を行なうことが好ましい。その際、溶削直前の鋳片の表面温度が200℃未満では、スカーファーによる溶削後の冷却時に表面近傍で発生する引張応力が大きくなり、割れが発生し易くなる。また、スカーファー溶削直前の表面温度が300℃以上では、溶削前の鋳片の冷却速度が500℃以下300℃以上の温度範囲において大きくなると、熱応力による割れが発生する場合がある。したがって、溶削手入れ直前における鋳片の表面温度は200℃以上300℃未満が好ましい。また、鋳片の搬送設備などの耐熱上の制約条件によっては、鋳片温度が300℃以上といった高温であると対応できない場合もある。 Since it is difficult to polish and grind the wear-resistant steel, it is preferable to perform the cutting with a scarf. At that time, if the surface temperature of the slab immediately before the cutting is less than 200 ° C., the tensile stress generated in the vicinity of the surface at the time of cooling after the cutting by the scurfer becomes large, and cracking is likely to occur. In addition, when the surface temperature immediately before the scarf cutting is 300 ° C. or higher, cracks due to thermal stress may occur if the cooling rate of the slab before the cutting becomes large in the temperature range of 500 ° C. or lower and 300 ° C. or higher. Therefore, it is preferable that the surface temperature of the slab immediately before the thermal cutting is 200 ° C. or more and less than 300 ° C. In addition, depending on the heat-resisting constraints such as the slab conveying equipment, it may not be possible to cope with the slab temperature as high as 300 ° C. or higher.
また、手入れで使用するスカーファーの移動速度が10m/分未満では、鋳片への入熱量が大きくなり、鋳片表面下の深部まで温度が上昇するため、スカーファーが通過した後の放冷時に鋳片表面下の温度勾配が増大するので、熱応力(表面の引張応力)による割れが発生し易くなる。一方、30m/分以上では、溶削量が小さ過ぎて欠陥部の除去が困難である。したがって、スカーファーの移動速度は10〜30m/分未満が好ましい。 Also, if the moving speed of the scarf used for cleaning is less than 10 m / min, the heat input to the slab increases, and the temperature rises to the deep part under the slab surface, so that the scurf after passing through the slab is allowed to cool. Since the temperature gradient below the slab surface sometimes increases, cracks due to thermal stress (surface tensile stress) tend to occur. On the other hand, at 30 m / min or more, the amount of cutting is too small and it is difficult to remove the defective portion. Therefore, the moving speed of the scarf is preferably less than 10 to 30 m / min.
垂直曲げ型連続鋳造機(機長26m)を用いて、表1に示す成分の耐摩耗鋼の連続鋳造を行ない、厚み250mm,幅1500〜1900mmの鋳片を製造した。鋳込み速度は0.6〜1.0m/分とした。 Using a vertical bending type continuous casting machine (machine length: 26 m), continuous casting of wear-resistant steel having the components shown in Table 1 was performed to produce slabs having a thickness of 250 mm and a width of 1500 to 1900 mm. The casting speed was 0.6 to 1.0 m / min.
得られた鋳片の一部は長辺面および短辺面(合計4面)を手入れせず、それぞれ面積1.95m2の領域を顕微鏡で観察して、0.5mm以上の気泡の個数を調査した。そして、気泡の密度が200個/m2未満を良好(○)、200個/m2以上を不良(×)として評価した。その結果を表2に示す。なお、気泡の密度が200個/m2以上となると、熱間圧延を施すことによって、表面性状が著しく悪化することから、評価の閾値として200個/m2を採用した。 Part of the resulting slab was not cared for the long side surface and short side surface (total of 4 surfaces), and each region with an area of 1.95m 2 was observed with a microscope to investigate the number of bubbles of 0.5mm or more. . Then, good (○) density of the bubbles is less than 200 atoms / m 2, were evaluated 200 / m 2 or more as a defective (×). The results are shown in Table 2. When the bubble density is 200 / m 2 or more, the surface property is remarkably deteriorated by performing hot rolling. Therefore, 200 / m 2 was adopted as an evaluation threshold.
この気泡の調査に使用した鋳片と連続する同じ製造条件の鋳片を保温カバーで覆って、保温カバー内に設置した熱電対による温度測定値が所定の値になるまで緩冷却し、さらに溶削手入れ(深さ約4mm)を施した後に、熱間圧延を行なって厚鋼板を製造した。その厚鋼板を目視で観察して、深さ0.2mm以上の表面欠陥の面積を調査した。そして、表面欠陥の面積(cm2)が調査した部位の面積(m2)に対して25 cm2/m2未満を良好(○)、25 cm2/m2以上を不良(×)として評価した。その結果を表2に示す。 Cover the slab under the same manufacturing conditions as the slab used for the investigation of the bubbles with a heat insulating cover, cool it slowly until the temperature measured by the thermocouple installed in the heat insulating cover reaches a predetermined value, and then melt it. After carrying out shaving (depth of about 4 mm), hot rolling was performed to produce a thick steel plate. The thick steel plate was visually observed to investigate the area of surface defects having a depth of 0.2 mm or more. The evaluation area of surface defects (cm 2) good than 25 cm 2 / m 2 is the area of the sites examined (m 2) (○), a 25 cm 2 / m 2 or more as a defective (×) did. The results are shown in Table 2.
なお、緩冷却直前における鋳片の表面温度、緩冷却直後における鋳片の表面温度、500℃〜300℃の温度範囲における鋳片の最大冷却速度、溶削手入れ直前における鋳片の表面温度、およびスカーファーの移動速度は表2に示す通りである。 The surface temperature of the slab immediately before slow cooling, the surface temperature of the slab immediately after slow cooling, the maximum cooling rate of the slab in the temperature range of 500 ° C to 300 ° C, the surface temperature of the slab immediately before cleaning and The movement speed of the scurfer is as shown in Table 2.
連続鋳造後の鋳片の緩冷却を開始した温度が500℃よりも低かった比較例1の場合、鋳片の緩冷却の冷却速度が0.11℃/分よりも大きかった比較例2の場合、および鋳片の緩冷却を終了した温度が300℃よりも高かった比較例3の場合では、いずれも厚鋼板製品での表面欠陥が発生しており、溶削手入れ前の温度履歴によっては、溶削によって完全には除去できない程度の大きな割れが発生する場合があることが分かる。 In the case of Comparative Example 1 where the temperature at which the slow cooling of the slab after continuous casting was started was lower than 500 ° C, in the case of Comparative Example 2 where the cooling rate of the slow cooling of the slab was larger than 0.11 ° C / min, and In the case of Comparative Example 3 where the temperature at which the slab was slowly cooled was higher than 300 ° C., surface defects occurred in the thick steel plate products. It can be seen that large cracks may occur that cannot be completely removed.
また、溶削手入れ前の鋳片の表面温度が200℃未満に低下した比較例4の場合、および溶削手入れ用スカーファーの移動速度が10m/分未満だった比較例5の場合にも、厚鋼板製品での表面欠陥が発生しており、溶削手入れ時の熱的条件によっては、溶削後の冷却過程においても割れが発生する問題があることが分かる。さらに、溶削手入れ用スカーファーの移動速度が30m/分以上だった比較例6の場合には、鋳片表層の気泡等の欠陥を除去しきれないことから、厚鋼板製品での表面欠陥が発生することが分かる。 Also, in the case of Comparative Example 4 in which the surface temperature of the slab before melting and cleaning was lowered to less than 200 ° C. and in the case of Comparative Example 5 in which the moving speed of the scarf for cleaning and cutting was less than 10 m / min, It can be seen that surface defects have occurred in the thick steel plate product, and there is a problem that cracks occur even in the cooling process after the welding depending on the thermal conditions during the maintenance of the welding. Furthermore, in the case of Comparative Example 6 in which the moving speed of the scarf scuffer was 30 m / min or more, defects such as bubbles on the surface of the slab could not be completely removed. It can be seen that it occurs.
表2から明らかなように、発明例は全て良好であり、本発明によって表面性状の優れた耐摩耗鋼鋳片および耐摩耗鋼材を製造できることが確かめられた。 As is apparent from Table 2, all of the inventive examples were good, and it was confirmed that the present invention can produce wear-resistant steel casts and wear-resistant steel materials having excellent surface properties.
Claims (3)
さらにCu:0.1〜1.0質量%、Ni:0.1〜2.0質量%、Cr:0.1〜1.0質量%、Mo:0.05〜1.0質量%、W:0.05〜1.0質量%のうちから選ばれた1種または2種以上を含有し、
残部がFeおよび不可避的不純物からなる溶鋼を連続鋳造機で鋳造し、該連続鋳造機の出側での鋳片の表面温度を500℃以上とし、前記連続鋳造機から排出された後の前記鋳片の表面温度が500℃以上の時点において前記鋳片の緩冷却を開始し、500℃以下300℃以上の温度範囲における前記鋳片の冷却速度を0.11℃/分以下として前記鋳片を緩冷却し、前記鋳片の表面温度が250℃以上300℃以下で前記緩冷却を終了し、前記鋳片の表面温度が200℃以上300℃未満において手入れ用スカーファーの移動速度を10m/分以上かつ30m/分未満として前記鋳片の表面の溶削手入れを行なうことを特徴とする耐摩耗鋼鋳片の製造方法。 C: 0.05-0.35% by mass, Si: 0.05-1.0% by mass, Mn: 0.1-2.0% by mass, B: 0.0003-0.0030% by mass, Al: 0.002-0.1% by mass, Ti: 0.1-1.0% by mass,
Further, one or two selected from Cu: 0.1 to 1.0 mass%, Ni: 0.1 to 2.0 mass%, Cr: 0.1 to 1.0 mass%, Mo: 0.05 to 1.0 mass%, W: 0.05 to 1.0 mass% Contains more than seeds,
Cast the molten steel consisting of Fe and unavoidable impurities with a continuous casting machine, the surface temperature of the slab on the outlet side of the continuous casting machine is 500 ° C. or more, and the casting after being discharged from the continuous casting machine Slow cooling of the slab is started when the surface temperature of the slab is 500 ° C. or higher, and the slab is cooled slowly at a cooling rate of 0.11 ° C./min or lower in a temperature range of 500 ° C. or lower and 300 ° C. or higher. And when the surface temperature of the slab is 250 ° C. or more and 300 ° C. or less, the slow cooling is finished, and when the surface temperature of the slab is 200 ° C. or more and less than 300 ° C., the moving speed of the cleaning kerf is 10 m / min or more and A method for producing a wear-resistant steel slab, characterized by performing erosion maintenance on the surface of the slab at a rate of less than 30 m / min.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013102762A JP5900412B2 (en) | 2013-05-15 | 2013-05-15 | Method for producing wear-resistant steel slab and method for producing wear-resistant steel obtained from the slab |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013102762A JP5900412B2 (en) | 2013-05-15 | 2013-05-15 | Method for producing wear-resistant steel slab and method for producing wear-resistant steel obtained from the slab |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014223635A JP2014223635A (en) | 2014-12-04 |
JP5900412B2 true JP5900412B2 (en) | 2016-04-06 |
Family
ID=52122763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013102762A Active JP5900412B2 (en) | 2013-05-15 | 2013-05-15 | Method for producing wear-resistant steel slab and method for producing wear-resistant steel obtained from the slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5900412B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3149764B2 (en) * | 1995-12-15 | 2001-03-26 | 日本鋼管株式会社 | Prevention method of placing cracks in continuous cast slabs of bearing steel |
JP4218461B2 (en) * | 2003-08-05 | 2009-02-04 | Jfeスチール株式会社 | Welding equipment |
JP2012223806A (en) * | 2011-04-21 | 2012-11-15 | Jfe Steel Corp | Continuous casting method of wear-resistant steel |
-
2013
- 2013-05-15 JP JP2013102762A patent/JP5900412B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014223635A (en) | 2014-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6036698B2 (en) | Centrifugal cast composite roll for hot rolling and manufacturing method thereof | |
JP5412851B2 (en) | Steel for plastic molds and plastic molds | |
KR102687061B1 (en) | Centrifugal casting composite roll for rolling and manufacturing method thereof | |
JP6908021B2 (en) | Outer layer for rolling rolls and composite rolls for rolling | |
JP4725216B2 (en) | Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking | |
KR20160060061A (en) | Centrifugally cast composite roll and method for manufacturing same | |
JPWO2017183057A1 (en) | Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet | |
JP2017185548A (en) | Centrifugal casting hot-rolling compound roll | |
JP6951060B2 (en) | Manufacturing method of slabs | |
JP6131833B2 (en) | Method for continuous casting of Ti deoxidized steel | |
JP2009274092A (en) | Method for manufacturing high-speed cutting cast iron product | |
JP5727400B2 (en) | Steel for plastic mold and method for producing the same | |
KR102647292B1 (en) | Composite roll for centrifugal casting and manufacturing method thereof | |
JP6028282B2 (en) | Outer layer material of rolling composite roll and rolling composite roll | |
JP6515957B2 (en) | Roll outer layer material for rolling having excellent wear resistance and composite roll for rolling | |
JP6793574B2 (en) | Low thermal expansion alloy | |
JP4922971B2 (en) | Composite roll for hot rolling and manufacturing method thereof | |
JP2018099704A (en) | Continuous casting method for steel | |
JP5900412B2 (en) | Method for producing wear-resistant steel slab and method for producing wear-resistant steel obtained from the slab | |
JP2012223806A (en) | Continuous casting method of wear-resistant steel | |
JP6455287B2 (en) | Manufacturing method of continuous cast slab | |
JP6534240B2 (en) | Continuous cast slab of B-containing steel | |
JP6286001B2 (en) | Method for producing outer layer material of composite roll for rolling and method for producing composite roll for rolling | |
CN111492082B (en) | Steel material having excellent wear resistance and method for producing same | |
JP2019143236A (en) | Non-heat-treated forged component and non-heat-treated forging steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5900412 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |