[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5993725B2 - Optical component manufacturing method, adhesive composition kit, and coating composition - Google Patents

Optical component manufacturing method, adhesive composition kit, and coating composition Download PDF

Info

Publication number
JP5993725B2
JP5993725B2 JP2012259055A JP2012259055A JP5993725B2 JP 5993725 B2 JP5993725 B2 JP 5993725B2 JP 2012259055 A JP2012259055 A JP 2012259055A JP 2012259055 A JP2012259055 A JP 2012259055A JP 5993725 B2 JP5993725 B2 JP 5993725B2
Authority
JP
Japan
Prior art keywords
optical component
reaction
resin composition
curable resin
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012259055A
Other languages
Japanese (ja)
Other versions
JP2013256638A (en
Inventor
英治 片上
英治 片上
正浩 森本
正浩 森本
田中 宏幸
宏幸 田中
白石 大輔
大輔 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Chemical and Co Ltd
Original Assignee
Kyoritsu Chemical and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Chemical and Co Ltd filed Critical Kyoritsu Chemical and Co Ltd
Priority to JP2012259055A priority Critical patent/JP5993725B2/en
Priority to KR1020147035076A priority patent/KR102038281B1/en
Priority to PCT/JP2013/063251 priority patent/WO2013172284A1/en
Priority to CN201380025058.5A priority patent/CN104284956A/en
Priority to TW102117530A priority patent/TWI584956B/en
Publication of JP2013256638A publication Critical patent/JP2013256638A/en
Application granted granted Critical
Publication of JP5993725B2 publication Critical patent/JP5993725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/04Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving separate application of adhesive ingredients to the different surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/003Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid air inclusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、光学部品の製造方法、前記光学部品の製造方法に使用される接着組成物キット及び前記接着組成物キットを構成するコーティング組成物に関する。   The present invention relates to an optical component manufacturing method, an adhesive composition kit used in the optical component manufacturing method, and a coating composition constituting the adhesive composition kit.

光学表示装置に使用される液晶表示体等の表示体は、薄いガラス基板を使用しているために、ガラス基板の保護を目的として、空気層を介して保護パネルが設置されている。また、アプリケーションの拡大に伴い、表示パネルの前面には保護パネルだけでなく、タッチパネルが設置されることが多くなった。   Since a display body such as a liquid crystal display body used in an optical display device uses a thin glass substrate, a protection panel is provided through an air layer for the purpose of protecting the glass substrate. In addition, with the expansion of applications, not only protective panels but also touch panels have been installed on the front of display panels.

近年、空気層が原因で起こる視認性の低下と表示体の補強を同時に満たす方法として、保護パネルあるいはタッチパネルを直接表示体に貼り合わせることが行われている。
貼り合わせには、シート状の両面粘着シート(特許文献1)や液状樹脂が用いられる。また、タッチパネルと保護パネルの貼り合わせも同様の方法で行われている。
In recent years, a protective panel or a touch panel is directly bonded to a display body as a method of simultaneously satisfying the reduction in visibility caused by an air layer and the reinforcement of the display body.
For pasting, a sheet-like double-sided pressure-sensitive adhesive sheet (Patent Document 1) or a liquid resin is used. Further, the touch panel and the protective panel are bonded together in the same manner.

また映像技術の多様化に伴い三次元映像(いわゆる3D映像)や三次元画像(いわゆる3D画像)を表示する光学表示装置(以下、3D表示装置ともいう)が増えているが、これらの光学表示装置の製造において、表示体、保護パネル、タッチパネル等の光学部品構成部材の貼り合せに両面粘着シートや液状樹脂が用いられている。   In addition, with the diversification of video technology, optical display devices (hereinafter also referred to as 3D display devices) that display 3D images (so-called 3D images) and 3D images (so-called 3D images) are increasing. In manufacturing the device, a double-sided pressure-sensitive adhesive sheet or a liquid resin is used for bonding optical component constituent members such as a display body, a protection panel, and a touch panel.

例えば、保護パネルとタッチパネル又は表示体との貼り合せにエネルギー線硬化型の液状樹脂を用いた場合、保護パネルの遮光印刷、タッチパネルのフレキシビリティや配線、表示パネルの配線やブラックマトリックスや光学フィルムによってエネルギー線が遮蔽されるため、液状樹脂の硬化不良が問題視されている。   For example, when energy ray curable liquid resin is used for bonding the protective panel to the touch panel or the display body, the protection panel light-shielding printing, touch panel flexibility and wiring, display panel wiring, black matrix and optical film Since energy rays are shielded, poor curing of the liquid resin is regarded as a problem.

このような遮光部の硬化不良に対して、熱硬化併用タイプの反応硬化性樹脂組成物が提案(特許文献2)されている。   A thermosetting combined type reaction curable resin composition has been proposed (Patent Document 2) for such poor curing of the light shielding portion.

特開2004−101636号公報JP 2004-101636 A 特開2010−026539号公報JP 2010-026539 A

特許文献2の熱硬化併用タイプの反応硬化性樹脂組成物では、酸素阻害による硬化不良や光学フィルムの補償条件のために熱硬化温度に上限(80℃以下)があるため十分な硬化状態を得られない場合がある。   In the thermosetting combined type reaction curable resin composition of Patent Document 2, there is an upper limit (80 ° C. or lower) in the thermosetting temperature due to poor curing due to oxygen inhibition and compensation conditions of the optical film, so that a sufficient cured state is obtained. It may not be possible.

さらに、近年急拡大している3D表示装置の製造において、エネルギー線硬化型の液状樹脂を用いた場合、視差バリア、偏光フィルム、レンズユニットや表示体の光学フィルムによって従来の光学部品以上にエネルギー線が遮蔽あるいは減衰されるため、硬化不良や硬化エネルギーが大きくなるといった課題がより重要になった。   Furthermore, in the manufacture of 3D display devices, which have been rapidly expanding in recent years, when an energy beam curable liquid resin is used, energy beams are more than conventional optical components due to the parallax barrier, the polarizing film, the lens unit, and the optical film of the display body. Since these are shielded or attenuated, problems such as poor curing and increased curing energy have become more important.

即ち、3D表示装置に液晶表示体が使用される場合、近年の液晶表示体は光配向技術によって製造されているため、過剰なエネルギー線の照射は液晶表示体の表示特性を大きく損なってしまうという課題も生じている。   That is, when a liquid crystal display is used for a 3D display device, since the recent liquid crystal display is manufactured by a photo-alignment technique, the irradiation of excessive energy rays greatly impairs the display characteristics of the liquid crystal display. There are also challenges.

一方で、エネルギー線硬化型液状樹脂で貼り合せる表示体サイズは、モバイルサイズからモニターあるいはTVサイズまで行われるように、年々大きくなっており、モニターやTVサイズの製造においては、巨大なUV装置(例えば、メタハラ光源またはLED光源を採用するコンベア式又はバッチ式エリア照射用紫外線照射装置)を必要とするため、生産設備費の上昇、ライン面積の拡大、UVプロセス時間の増加も課題となっている。   On the other hand, the size of the display body to be bonded with the energy ray curable liquid resin has been increasing year by year so that it can be performed from a mobile size to a monitor or TV size. For example, a conveyor-type or batch-type ultraviolet irradiation device for LED irradiation using a meta-hara light source or an LED light source) is required, so that an increase in production equipment costs, an increase in line area, and an increase in UV process time are also problems. .

本発明が解決しようとする課題は、光学部品構成部材を、反応硬化型樹脂組成物を介して貼り合せて光学部品を製造する際に、光が届かない箇所においても反応硬化型樹脂組成物を十分に硬化することができる光学部品の製造方法、前記光学部品の製造方法に使用される接着組成物キット及び前記接着組成物キットを構成するコーティング組成物を提供することである。   The problem to be solved by the present invention is that when producing an optical component by bonding an optical component constituent member via a reactive curable resin composition, the reactive curable resin composition is also used in a place where light does not reach. It is providing the manufacturing method of the optical component which can fully harden | cure, the adhesive composition kit used for the manufacturing method of the said optical component, and the coating composition which comprises the said adhesive composition kit.

本発明は、以下を内容とする。
本発明(1)は、光学部品構成部材Aと他の光学部品構成部材Bとを反応硬化型樹脂組成物を介して貼り合せた光学部品の製造方法であって、(1)前記光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、前記反応硬化型樹脂組成物の重合反応を開始しうる反応開始剤を含むコーティング組成物を配置する工程、(2)前記表面に配置された前記コーティング組成物の表面及び前記コーティング組成物が配置されていない前記表面の少なくとも1つの面に前記反応性樹脂組成物を配置する工程、(3)前記光学部品構成部材A及びBの間に前記反応性樹脂組成物を介して、前記コーティング組成物と前記反応硬化型樹脂組成物とが接触するように、前記光学部品構成部材A及びBを貼り合せる工程、及び(4)前記反応硬化型樹脂組成物の重合反応を前記反応開始剤によって開始させて、前記反応硬化型樹脂組成物を硬化させる工程を含むことを特徴とする光学部品の製造方法である。
本発明(2)は、反応開始剤が、前記反応硬化型樹脂組成物の重合反応を10〜60℃において開始しうる化合物である、本発明(1)の光学部品の製造方法である。
本発明(3)は、前記反応硬化型樹脂組成物が、エネルギー開裂型開始剤を含み、前記工程(4)の前に、前記反応硬化型樹脂組成物が、前記エネルギー開裂型開始剤によって、重合反応を開始させる工程を含む、本発明(1)又は(2)の光学部品の製造方法である。
本発明(4)は、前記反応開始剤が、前記エネルギー開裂型開始剤ではない、本発明(3)の光学部品の製造方法である。
本発明(5)は、前記反応開始剤が、ラジカル発生剤、カチオン発生剤、アニオン発生剤及び重縮合・重付加反応開始剤からなる群から選択される少なくとも1種の化合物である、本発明(1)〜(4)のいずれかの光学部品の製造方法である。
本発明(6)は、工程(1)が、工程(1A)〜(1B):(1A)光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、反応開始剤を含むコーティング組成物であって、熱硬化剤及び光開始剤からなる群より選択される樹脂硬化剤を更に含むコーティング組成物を配置する工程、及び(1B)熱を加える及び/又はエネルギー線を照射することにより、コーティング組成物を硬化させる工程である、本発明(1)〜(5)のいずれかの光学部品の製造方法である。
本発明(7)は、前記光学部品構成部材Aが表示パネルであり、前記光学部品構成部材Bが保護パネルである、本発明(1)〜(6)のいずれかの光学部品の製造方法である。
本発明(8)は、本発明(1)〜(7)のいずれかの光学部品の製造方法のための接着組成物キットであって、本発明(1)に定義されたコーティング組成物と反応硬化型樹脂組成物とを含むことを特徴とする本発明(1)〜(7)のいずれかの光学部品の製造方法のための接着樹脂組成物キットである。
本発明(9)は、本発明(8)の接着組成物キットのための、本発明(1)に定義されたコーティング組成物である。
本発明(10)は、本発明(1)〜(8)のいずれかの方法で製造した、光学部品である。
本発明(11)は、本発明(10)の光学部品を含む光学表示装置である。
The present invention includes the following.
The present invention (1) is an optical component manufacturing method in which an optical component component member A and another optical component component member B are bonded together via a reaction curable resin composition, and (1) the optical component configuration A step of disposing a coating composition containing a reaction initiator capable of initiating a polymerization reaction of the reactive curable resin composition on one or both of the opposing surfaces of the members A and B; (2) disposing on the surface Disposing the reactive resin composition on at least one surface of the coated composition and the surface on which the coating composition is not disposed, and (3) between the optical component components A and B. Bonding the optical component constituent members A and B so that the coating composition and the reactive curable resin composition are in contact with each other via the reactive resin composition, and (4) the reactive curing. The polymerization reaction of the resin composition was initiated by the initiator, a method of manufacturing an optical component, which comprises a step of curing the reactive curable resin composition.
This invention (2) is a manufacturing method of the optical component of this invention (1) whose reaction initiator is a compound which can start the polymerization reaction of the said reaction curable resin composition at 10-60 degreeC.
In the present invention (3), the reaction curable resin composition includes an energy cleavage type initiator, and before the step (4), the reaction curable resin composition is formed by the energy cleavage type initiator. It is a manufacturing method of the optical component of this invention (1) or (2) including the process of starting a polymerization reaction.
This invention (4) is a manufacturing method of the optical component of this invention (3) whose said reaction initiator is not the said energy cleavage type initiator.
In the present invention (5), the reaction initiator is at least one compound selected from the group consisting of a radical generator, a cation generator, an anion generator and a polycondensation / polyaddition reaction initiator. (1) It is a manufacturing method of the optical component in any one of (4).
In the present invention (6), in the step (1), the steps (1A) to (1B): (1A) The coating containing a reaction initiator on one or both of the opposing surfaces of the optical component constituent members A and B Disposing a coating composition further comprising a resin curing agent selected from the group consisting of a thermosetting agent and a photoinitiator; and (1B) applying heat and / or irradiating energy rays. The method for producing an optical component according to any one of the present inventions (1) to (5), which is a step of curing the coating composition.
This invention (7) is the manufacturing method of the optical component in any one of this invention (1)-(6) whose said optical component structural member A is a display panel and whose said optical component structural member B is a protection panel. is there.
The present invention (8) is an adhesive composition kit for the method of manufacturing an optical component of any one of the present inventions (1) to (7), and reacts with the coating composition defined in the present invention (1). It is an adhesive resin composition kit for the manufacturing method of the optical component in any one of this invention (1)-(7) characterized by including a curable resin composition.
The present invention (9) is a coating composition as defined in the present invention (1) for the adhesive composition kit of the present invention (8).
The present invention (10) is an optical component produced by any one of the present inventions (1) to (8).
The present invention (11) is an optical display device including the optical component of the present invention (10).

本発明によれば、光学部品構成部材を、反応硬化型樹脂組成物を介して貼り合せて光学部品を製造する際に、光が届かない箇所においても反応硬化型樹脂組成物を十分に硬化することができる光学部品の製造方法、前記光学部品の製造方法に使用される接着組成物キット及び前記接着組成物キットを構成するコーティング組成物を提供することができる。   According to the present invention, when an optical component is manufactured by bonding an optical component constituent member through a reaction curable resin composition, the reaction curable resin composition is sufficiently cured even in a location where light does not reach. The manufacturing method of the optical component which can be provided, the adhesive composition kit used for the manufacturing method of the said optical component, and the coating composition which comprises the said adhesive composition kit can be provided.

遮光部及び遮光インクが配置されない面にコーティング組成物を配置する工程を含む光学部品の製造方法の一例の概略を示す図である。It is a figure which shows the outline of an example of the manufacturing method of an optical component including the process of arrange | positioning a coating composition to the surface where a light-shielding part and light-shielding ink are not arrange | positioned. 遮光部及び遮光インクが配置されない面にコーティング組成物を配置する工程の一例の概略を示す図である。It is a figure which shows the outline of an example of the process of arrange | positioning a coating composition in the surface where a light-shielding part and light-shielding ink are not arrange | positioned. 遮光部のみにコーティング組成物を配置する工程を含む光学部品の製造方法の一例の概略を示す図である。It is a figure which shows the outline of an example of the manufacturing method of an optical component including the process of arrange | positioning a coating composition only to a light-shielding part. 遮光部のみにコーティング組成物を配置する工程の一例の概略を示す図である。It is a figure which shows the outline of an example of the process of arrange | positioning a coating composition only to a light-shielding part.

〔光学部品の製造方法〕
本発明の製造方法は、光学部品構成部材Aと他の光学部品構成部材Bとを反応硬化型樹脂組成物を介して貼り合せる方法であって、
(1)光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、反応硬化型樹脂組成物の重合反応を開始しうる反応開始剤を含むコーティング組成物を配置する工程、
(2)前記表面に配置された前記コーティング組成物の表面及び前記コーティング組成物が配置されていない前記表面の少なくとも1つの面に反応性樹脂組成物を配置する工程、
(3)光学部品構成部材A及びBの間に反応性樹脂組成物を介して、コーティング組成物と反応硬化型樹脂組成物とが接触するように、光学部品構成部材A及びBを貼り合せる工程、及び
(4)反応開始剤によって反応硬化型樹脂組成物の重合反応を開始させて、前記反応硬化型樹脂組成物を硬化させる工程を含む。
[Method for manufacturing optical components]
The manufacturing method of the present invention is a method of bonding an optical component constituent member A and another optical component constituent member B through a reaction curable resin composition,
(1) Disposing a coating composition containing a reaction initiator capable of initiating a polymerization reaction of a reactive curable resin composition on one or both of the opposing surfaces of the optical component constituent members A and B;
(2) disposing a reactive resin composition on at least one surface of the surface of the coating composition disposed on the surface and the surface on which the coating composition is not disposed;
(3) A process of bonding the optical component constituent members A and B so that the coating composition and the reactive curable resin composition are in contact with each other through the reactive resin composition between the optical component constituent members A and B. And (4) starting a polymerization reaction of the reaction curable resin composition with a reaction initiator to cure the reaction curable resin composition.

即ち、本発明の製造方法では、工程(1)及び(2)において、反応硬化型樹脂組成物とコーティング組成物を分離して配置させておき、工程(3)において、光学部品構成部材A及びBを貼り合せた際に、反応硬化型樹脂組成物とコーティング組成物を直接接触するように圧縮等しつつ、工程(4)において、コーティング組成物中の反応開始剤によって、反応硬化型樹脂組成物の重合反応を開始させて硬化させる点に特徴がある。   That is, in the production method of the present invention, in the steps (1) and (2), the reaction curable resin composition and the coating composition are separated and arranged, and in the step (3), the optical component constituting member A and In the step (4), the reaction curable resin composition is reacted with the reaction initiator in the coating composition while compressing the reaction curable resin composition and the coating composition so as to be in direct contact with each other. It is characterized in that the polymerization reaction of the product is started and cured.

本発明の製造方法によれば、工程(3)おける反応硬化型樹脂組成物とコーティング組成物が接触した後は、反応開始剤が反応硬化型樹脂組成物層中に拡散して、工程(4)において前述の室温近傍の温度で重合反応が進行するものと考えられる。   According to the production method of the present invention, after the reactive curable resin composition and the coating composition in step (3) are in contact, the reaction initiator diffuses into the reactive curable resin composition layer, and the process (4) It is considered that the polymerization reaction proceeds at a temperature near the room temperature described above.

本発明の製造方法によれば、工程(4)において、反応開始剤によって反応硬化型樹脂組成物の硬化反応が開始する硬化態様をとることで、光が届かない箇所においても反応硬化型樹脂組成物を十分に硬化することができる。また、従来のエネルギー線照射だけによる反応硬化型樹脂組成物の硬化方法に比べて、液晶表示体等の表示体へのダメージを大きく低減することができる。   According to the production method of the present invention, in the step (4), the reaction curable resin composition is formed even in a place where light does not reach by taking a curing mode in which the curing reaction of the reaction curable resin composition is initiated by the reaction initiator. The object can be fully cured. In addition, damage to a display body such as a liquid crystal display body can be greatly reduced as compared with a conventional method of curing a reaction curable resin composition by only irradiation with energy rays.

本発明の工程(1)〜(4)について説明する。
(1)光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、反応開始剤を含むコーティング組成物を配置する工程である。工程(1)により、反応開始剤を含むコーティグを有する表示構成部材が得られる。
The steps (1) to (4) of the present invention will be described.
(1) This is a step of disposing a coating composition containing a reaction initiator on one or both of the opposing surfaces of the optical component members A and B. By the step (1), a display constituent member having a coating containing a reaction initiator is obtained.

光学部品構成部材A及びBとして、光学部品を構成する部材であれば特に限定されず、保護パネル、タッチセンサーパネル、表示体、3Dシステム(視差バリアガラス、視差バリアフィルム、視差バリアLCD、レンズユニット)等が挙げられる。これらの光学部品構成部材A及びBは、透明板であってもよく、遮光インクによって形成される遮光部を有していてもよい。遮光インクは、公知の遮光インクであってよく、例えば、水性インク、溶剤型インク、熱硬化型インク、エネルギー線硬化性インクが挙げられる。ここで、遮光部とは、例えば、保護パネルの遮光インク下と表示体もしくはタッチセンサーパネルとによって、あるいはタッチセンサーパネルの遮光インク下と表示体とによってできるような、光が届かない箇所をいう。   The optical component constituting members A and B are not particularly limited as long as they are members constituting the optical component, and include a protective panel, a touch sensor panel, a display body, and a 3D system (parallax barrier glass, parallax barrier film, parallax barrier LCD, lens unit). ) And the like. These optical component constituent members A and B may be transparent plates or may have a light shielding portion formed by light shielding ink. The light-shielding ink may be a known light-shielding ink, and examples thereof include water-based inks, solvent-type inks, thermosetting inks, and energy ray-curable inks. Here, the light shielding portion refers to a portion where light does not reach, for example, that can be formed by the display panel or the touch sensor panel under the light shielding ink of the protective panel or by the display body or the light shielding ink of the touch sensor panel. .

本発明では、コーティング組成物は遮光部に配置されていてもよい。本発明において、「遮光部にコーティング組成物が配置される」とは、遮光インク層の表面上のみにコーティング組成物が配置されているか(例えば、図4(1))、遮光インク層が配置されていない光学部品構成部材の表面であって、もう一方の光学部品構成部材に配置された遮光インク層によって遮光部が形成される表面にのみコーティング組成物が配置されている(例えば、図4(2)及び(3))ことをいう。本発明において、コーティング組成物が、遮光インク層が配置されていない表面のみ、遮光部のみ、並びに遮光部及び遮光インク層が配置されていない表面に配置されていてもよい。   In this invention, the coating composition may be arrange | positioned at the light-shielding part. In the present invention, “the coating composition is disposed on the light shielding portion” means that the coating composition is disposed only on the surface of the light shielding ink layer (for example, FIG. 4 (1)) or the light shielding ink layer is disposed. The coating composition is disposed only on the surface of the optical component constituent member that is not formed and on which the light shielding portion is formed by the light shielding ink layer disposed on the other optical component constituent member (for example, FIG. 4). (2) and (3)). In the present invention, the coating composition may be disposed only on the surface where the light shielding ink layer is not disposed, only on the light shielding portion, and on the surface where the light shielding portion and the light shielding ink layer are not disposed.

反応開始剤として、後述する工程(2)で用いられる反応硬化型樹脂組成物の反応態様に応じた反応開始剤が挙げられる。具体的には、後述する反応開始剤が挙げられる。   As a reaction initiator, the reaction initiator according to the reaction aspect of the reaction curable resin composition used at the process (2) mentioned later is mentioned. Specifically, the reaction initiator mentioned later is mentioned.

工程(1)において、コーティング組成物は、光学部品構成部材A及びBの対向する表面の一方又は両方の表面に配置される。反応硬化型樹脂組成物の硬化性の観点から、コーティング組成物は、好ましくは光学部品構成部材A及びBの対向する表面の両方の表面に配置される。   In step (1), the coating composition is disposed on one or both of the opposing surfaces of the optical component members A and B. From the viewpoint of curability of the reaction-curable resin composition, the coating composition is preferably disposed on both surfaces of the optical component constituent members A and B facing each other.

工程(1)は、光学部品の製造ラインに対して、インラインで実施されてもよいし、オフラインで実施されてもよい。   The step (1) may be performed in-line or off-line with respect to the optical component production line.

工程(1)で、コーティング組成物を配置する方法としては、スプレー方式やコーター方式等があり、コーティング組成物の配置量は、好ましくは0.001〜100g/m、より好ましくは0.005〜10g/m、更に好ましくは0.01〜1.00g/mである。 As a method of arranging the coating composition in the step (1), there are a spray method and a coater method, and the amount of the coating composition to be arranged is preferably 0.001 to 100 g / m 2 , more preferably 0.005. to 10 g / m 2, more preferably from 0.01~1.00g / m 2.

工程(1)で、コーティング組成物は、液状のコーティング組成物を塗布により配置することもできる。この場合、コーティング組成物は、乾燥させることによりコーティング組成物に含まれる溶剤を揮発させて硬化させることもできる。このような場合は、好ましくは、40〜200℃の温度で、好ましくは、10秒〜2時間熱を加えることが挙げられる。   In step (1), the coating composition may be disposed by applying a liquid coating composition. In this case, the coating composition can be cured by evaporating the solvent contained in the coating composition by drying. In such a case, it is preferable to apply heat at a temperature of 40 to 200 ° C., preferably for 10 seconds to 2 hours.

また、工程(1)で、液状のコーティング組成物にさらに熱硬化剤及び/又はエネルギー線開始剤からなる群より選択される樹脂硬化剤を含ませ、コーティング組成物を塗布により配置した後に、熱及び/又はエネルギー線によって、コーティング組成物を硬化させてもよい。すなわち、工程(1)が、工程(1A)及び(1B):
(1A)光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、反応開始剤を含むコーティング組成物であって、熱硬化剤及び光開始剤からなる群より選択される樹脂硬化剤を更に含むコーティング組成物を配置する工程、及び
(1B)熱を加える及び/又はエネルギー線を照射することにより、コーティング組成物を硬化させる工程、
であることもできる。工程(1A)における熱硬化剤及びエネルギー線開始剤は、後述する化合物が挙げられる。ここで、工程(1A)で用いられる樹脂硬化剤は、コーティング組成物を硬化させるために用いられてもよく、コーティング組成物及び反応硬化型樹脂の両方を硬化させるために用いられてもよい。
In the step (1), the liquid coating composition is further added with a resin curing agent selected from the group consisting of a thermosetting agent and / or an energy ray initiator, and after the coating composition is disposed by coating, The coating composition may be cured by and / or energy rays. That is, step (1) is performed in steps (1A) and (1B):
(1A) A resin composition selected from the group consisting of a thermosetting agent and a photoinitiator, which is a coating composition containing a reaction initiator on one or both of the opposing surfaces of the optical component components A and B Disposing a coating composition further comprising an agent; and (1B) curing the coating composition by applying heat and / or irradiating energy rays.
It can also be. Examples of the thermosetting agent and energy beam initiator in the step (1A) include the compounds described below. Here, the resin curing agent used in the step (1A) may be used for curing the coating composition, or may be used for curing both the coating composition and the reaction curable resin.

工程(1B)において、熱を加えてコーティング組成物を硬化させる条件は、コーティング組成物に含まれる反応性硬化型樹脂の重合反応が進行する温度及び時間であれば特に限定されない。好ましくは60〜200℃、より好ましくは80〜160℃の温度で、好ましくは10秒〜24時間、より好ましくは0.1〜12時間熱を加えることが挙げられる。   In the step (1B), the condition for curing the coating composition by applying heat is not particularly limited as long as the polymerization reaction of the reactive curable resin contained in the coating composition proceeds and the time. Preferably, heat is applied at a temperature of 60 to 200 ° C, more preferably 80 to 160 ° C, preferably 10 seconds to 24 hours, more preferably 0.1 to 12 hours.

工程(1B)において、エネルギー線を照射することによりコーティング組成物を硬化させる条件は、特に限定されず、例えば、積算光量は、好ましくは50〜3,000mJ/cmであり、より好ましくは50〜2,000mJ/cmであり、さらに好ましくは50〜1,000mJ/cmである。エネルギー線としては、電子線、X線、紫外線、低波長領域の可視光等エネルギーの高い電子線若しくは電磁波が挙げられるが、通常装置の簡便性及び普及性から紫外線が好ましい。 In the step (1B), the condition for curing the coating composition by irradiating energy rays is not particularly limited. For example, the integrated light amount is preferably 50 to 3,000 mJ / cm 2 , more preferably 50. It is -2,000 mJ / cm < 2 >, More preferably, it is 50-1,000 mJ / cm < 2 >. Examples of energy rays include electron beams, X-rays, ultraviolet rays, electron beams having high energy such as visible light in a low wavelength region, or electromagnetic waves, but ultraviolet rays are preferable because of the simplicity and widespread use of ordinary devices.

工程(2)は、前記表面に配置された前記コーティング組成物の表面及び前記コーティング組成物が配置されていない前記表面の少なくとも1つの面に反応性樹脂組成物を配置する工程である。工程(2)で、反応硬化型樹脂組成物を配置する方法としては、ディスペンス方式やコーター方式等があり、反応硬化型樹脂組成物の配置量は、好ましくは10〜1000μm、より好ましくは25〜500μm、更に好ましくは50〜300μmである。   Step (2) is a step of disposing a reactive resin composition on at least one surface of the surface of the coating composition disposed on the surface and the surface on which the coating composition is not disposed. In the step (2), as a method of arranging the reaction curable resin composition, there are a dispensing method and a coater method, and the arrangement amount of the reaction curable resin composition is preferably 10 to 1000 μm, more preferably 25 to 25 μm. It is 500 μm, more preferably 50 to 300 μm.

工程(2)で用いられる反応硬化型樹脂組成物に、エネルギー開裂型開始剤を含めておき、工程(4)の前に、反応硬化型樹脂組成物にエネルギー線を照射して、エネルギー開裂型開始剤によって、光が届く範囲を重合反応させて硬化させておくと、貼り合わされた光学部品系が物理的に安定し、工程(4)におけるコーティング組成物中の反応開始剤による重合反応が、安定した環境で行われるので好ましい。特に、工程(1)において、遮光部のみにコーティング組成物が配置される場合は、反応硬化型樹脂組成物はエネルギー開裂型開始剤を含む。これにより、遮光部においては、コーティング組成物に含まれる反応開始剤と反応硬化型樹脂組成物とが接触することで硬化反応が進行し、光が照射される部分は、反応硬化型樹脂組成物に含まれるエネルギー開裂型開始剤によって反応硬化型樹脂の硬化反応が進行する。さらに、工程(1)で用いられるコーティング組成物に含まれる反応開始剤が、エネルギー開裂型開始剤ではないのがより好ましい。   An energy-cleavable initiator is included in the reaction-curable resin composition used in the step (2), and the energy-cleavable resin composition is irradiated with energy rays before the step (4). If the initiator reaches the range where the light reaches by polymerization reaction and is cured, the bonded optical component system is physically stabilized, and the polymerization reaction by the reaction initiator in the coating composition in the step (4) This is preferable because it is performed in a stable environment. In particular, in the step (1), when the coating composition is disposed only in the light shielding portion, the reaction curable resin composition contains an energy cleavage type initiator. Thereby, in the light-shielding part, the reaction that proceeds with the reaction initiator and the reaction curable resin composition contained in the coating composition is in contact with each other, and the portion irradiated with light is the reaction curable resin composition. The reaction of the reaction-curable resin proceeds by the energy-cleavable initiator contained in the. Furthermore, it is more preferable that the reaction initiator contained in the coating composition used in step (1) is not an energy cleavage type initiator.

エネルギー線の照射の条件としては、好ましものを含み工程(1B)で例示されたものが挙げられる。   Examples of the energy ray irradiation include those exemplified in the step (1B) including preferred ones.

工程(3)は、光学部品構成部材A及びBの間に反応性樹脂組成物を介して、コーティング組成物と反応硬化型樹脂組成物とが接触するように、光学部品構成部材A及びBを貼り合せる工程である。これにより、光学部品構成部材A及びBの貼り合せ体が得られる。工程(3)により、コーティング組成物と反応硬化型樹脂組成物とが接触する。工程(3)において、光学部品構成部材A及びBを貼り合せた際に、反応硬化型樹脂組成物とコーティング組成物との接触を促進させるために圧縮等の手段を用いてもよい。   In the step (3), the optical component constituent members A and B are disposed so that the coating composition and the reactive curable resin composition are in contact with each other through the reactive resin composition between the optical component constituent members A and B. It is a process of bonding. Thereby, the bonded body of optical component structural members A and B is obtained. By the step (3), the coating composition and the reaction curable resin composition are brought into contact. In the step (3), when the optical component constituent members A and B are bonded together, a means such as compression may be used to promote contact between the reaction curable resin composition and the coating composition.

工程(4)は、反応硬化型樹脂組成物を反応開始剤によって重合反応を開始させて、前記反応硬化型樹脂組成物を硬化させる工程である。工程(4)において、工程(3)で得られた、光学部品構成部材A及びBの貼り合せ体を放置することにより、反応開始剤が反応硬化型樹脂組成物層中に拡散され、重合反応が進行する。このような条件は、反応硬化型樹脂組成物の重合反応が進行する温度及び時間であれば特に限定されない。好ましくは10〜60℃、より好ましくは15〜40℃、更に好ましくは20〜30℃の環境に、好ましくは0.1〜24時間、より好ましくは0.5〜12時間、更に好ましくは1〜6時間の条件で、反応硬化型樹脂組成物をコーティング組成物中の反応開始剤によって重合反応を開始させて硬化させることができる。   Step (4) is a step of curing the reaction curable resin composition by initiating a polymerization reaction of the reaction curable resin composition with a reaction initiator. In the step (4), the reaction initiator is diffused into the reaction curable resin composition layer by leaving the bonded body of the optical component constituent members A and B obtained in the step (3), and the polymerization reaction is caused. Progresses. Such conditions are not particularly limited as long as the temperature and time allow the polymerization reaction of the reaction curable resin composition to proceed. Preferably it is 10-60 degreeC, More preferably, it is 15-40 degreeC, More preferably, it is 20-30 degreeC, Preferably it is 0.1-24 hours, More preferably, it is 0.5-12 hours, More preferably, it is 1- Under the condition of 6 hours, the reaction curable resin composition can be cured by initiating a polymerization reaction with a reaction initiator in the coating composition.

また、工程(1)において、遮光部のみにコーティング組成物が配置される場合は、工程(4)において、遮光部以外の部分は、エネルギー線を照射することにより、反応硬化型樹脂組成物に含まれるエネルギー開裂型開始剤によって反応硬化型樹脂の硬化反応が進行する。ここで、エネルギー線の照射の条件は、上記工程(1B)で例示されたものが挙げられる。   Moreover, when a coating composition is arrange | positioned only in a light-shielding part in a process (1), in parts other than a light-shielding part in a process (4), by irradiating an energy ray, it becomes a reaction curable resin composition. The curing reaction of the reaction curable resin proceeds by the energy cleavage type initiator contained. Here, the conditions of irradiation with energy rays include those exemplified in the above step (1B).

これにより、本発明の製造方法により得られる光学部品が得られる。   Thereby, the optical component obtained by the manufacturing method of this invention is obtained.

本発明の製造方法によれば、従来、段差が生じる箇所に樹脂組成物を直接塗布していたため樹脂組成物の厚みムラが生じていたが、印刷段差、偏光板段差をコーティング組成物で埋めることができるため、貼り合わせ厚みの違いによって発生する表示ムラを解決することができる。さらに、偏光板端部をコーティングすることによって樹脂組成物の厚みムラに伴い発生しやすかったケミカルクラックを抑制することができる。   According to the manufacturing method of the present invention, since the resin composition has been applied directly to the place where the step is generated, the thickness unevenness of the resin composition has occurred, but the printing step and the polarizing plate step are filled with the coating composition. Therefore, display unevenness caused by the difference in the bonding thickness can be solved. Furthermore, the coating of the end portion of the polarizing plate can suppress chemical cracks that are likely to occur with uneven thickness of the resin composition.

〔コーティング組成物〕
本発明のコーティング組成物について説明する。コーティング組成物は、反応硬化型樹脂組成物の重合反応を開始しうる反応開始剤を含む。
[Coating composition]
The coating composition of the present invention will be described. The coating composition contains a reaction initiator capable of initiating a polymerization reaction of the reaction curable resin composition.

〔反応開始剤〕
コーティング組成物中に含まれる反応開始剤は、ラジカル発生剤、カチオン発生剤、アニオン発生剤、及び重縮合・重付加反応開始剤が挙げられる。反応開始剤は、反応硬化型樹脂組成物の重合反応態様に応じて用いることができる。例えば、反応硬化型樹脂組成物がラジカル反応硬化型樹脂組成物の場合は、ラジカル発生剤、反応硬化型樹脂組成物がカチオン反応硬化型樹脂組成物の場合は、カチオン発生剤、反応硬化型樹脂組成物がアニオン反応硬化型樹脂組成物の場合は、アニオン発生剤、反応硬化型樹脂組成物が重縮合・重付加反応硬化型樹脂組成物の場合は、重縮合・重付加反応開始剤を使用することができる。反応硬化型樹脂組成物の重合反応態様により、ラジカル発生剤、カチオン発生剤、アニオン発生剤及び重縮合・重付加反応開始剤からなる群から選ばれる少なくとも1種以上の化合物を使用することが好ましい。
(Reaction initiator)
Examples of the reaction initiator contained in the coating composition include a radical generator, a cation generator, an anion generator, and a polycondensation / polyaddition reaction initiator. The reaction initiator can be used according to the polymerization reaction mode of the reaction curable resin composition. For example, when the reaction curable resin composition is a radical reaction curable resin composition, a radical generator, and when the reaction curable resin composition is a cation reaction curable resin composition, a cation generator, a reaction curable resin When the composition is an anion reaction curable resin composition, an anion generator is used. When the reaction curable resin composition is a polycondensation / polyaddition reaction curable resin composition, a polycondensation / polyaddition reaction initiator is used. can do. Depending on the polymerization reaction mode of the reaction curable resin composition, it is preferable to use at least one compound selected from the group consisting of a radical generator, a cation generator, an anion generator and a polycondensation / polyaddition reaction initiator. .

ラジカル発生剤としては、鉄(Fe)、アルミニウム(Al)、コバルト(Co)、銅(Cu)、マンガン(Mn)、スズ(Sn)、亜鉛(Zn)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、インジウム(In)、及びチタン(Ti)等の金属及びその酸化物(例えば五酸化バナジウム)、ならびに、前記金属の錯体が挙げられる。前記金属の錯体を形成する錯形成剤としては、アセチルアセトン、アセト酢酸エステル、カルボン酸、アルコキシド、アミン化合物、アミド化合物、ヒドロキシメート酸、ケトン化合物、イミン化合物、チオール化合物、リン酸ジブチルなどのリン酸エステル等が挙げられる。よって、本発明の金属錯体として、具体的には、アセチルアセトンとバナジウムの錯体であるアセチルアセトンバナジル(日本化学産業社製:ナーセムバナジル)、バナジウムアルコキシドであるバナジウムオキシトリイソブトキシド(日亜化学社製)が挙げられる。ラジカル発生剤は、単独で用いてもよく、2種以上が併用されてもよい。   As radical generators, iron (Fe), aluminum (Al), cobalt (Co), copper (Cu), manganese (Mn), tin (Sn), zinc (Zn), vanadium (V), chromium (Cr) , Zirconium (Zr), indium (In), and titanium (Ti), and their oxides (for example, vanadium pentoxide), and complexes of the above metals. The complexing agent that forms the metal complex includes phosphoric acid such as acetylacetone, acetoacetate ester, carboxylic acid, alkoxide, amine compound, amide compound, hydroxymate acid, ketone compound, imine compound, thiol compound, and dibutyl phosphate. Examples include esters. Therefore, as the metal complex of the present invention, specifically, acetylacetone vanadyl (manufactured by Nippon Kagaku Sangyo Co., Ltd .: Nasemuvanadil), which is a complex of acetylacetone and vanadium, and vanadium oxytriisobutoxide (manufactured by Nichia Chemical), which is a vanadium alkoxide, Can be mentioned. A radical generator may be used independently and 2 or more types may be used together.

カチオン発生剤としては、アリールジアゾニウム塩、ジアリールハロニウム塩、トリアリールスルホニウム塩、トリホスホニウム塩、鉄アレン錯体、チタノセン錯体、アリールシラノールアルミニウム錯体などのイオン性光酸発生剤;ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N−ヒドロキシイミドスルホナートなどの非イオン性光酸発生剤などがあげられる。これらは、単独で用いられてもよく、2種以上が併用されてもよい。   Cation generators include ionic photoacid generators such as aryldiazonium salts, diarylhalonium salts, triarylsulfonium salts, triphosphonium salts, iron allene complexes, titanocene complexes, and arylsilanol aluminum complexes; nitrobenzyl esters, sulfonic acids Nonionic photoacid generators such as derivatives, phosphoric acid esters, phenol sulfonic acid esters, diazonaphthoquinone, N-hydroxyimide sulfonate and the like. These may be used independently and 2 or more types may be used together.

アニオン発生剤としては、1,10−ジアミノデカン、4,4’−トリメチレンジピペラジン、カルバメート類及びその誘導体、コバルト−アミン錯体類、アミノオキシイミノ類、アンモニウムボレート類、三級アミン類、イミダゾール類等が挙げられる。これらは、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the anion generator include 1,10-diaminodecane, 4,4′-trimethylenedipiperazine, carbamates and derivatives thereof, cobalt-amine complexes, aminooxyiminos, ammonium borates, tertiary amines, imidazole And the like. These may be used independently and 2 or more types may be used together.

重縮合・重付加反応開始剤としては、トリフェニルフォスフィン、アミン類、イミダゾール、ピリジン、イソシアネート系化合物、チタン、アルミニウム、ゲルマニウム、白金などの金属触媒が挙げられる。これらは、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the polycondensation / polyaddition reaction initiator include metal catalysts such as triphenylphosphine, amines, imidazole, pyridine, isocyanate compounds, titanium, aluminum, germanium, and platinum. These may be used independently and 2 or more types may be used together.

本発明において、反応開始剤は、反応硬化型樹脂組成物の重合反応を10〜60℃において開始しうる化合物であるのが好ましい。このような化合物として、鉄(Fe)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、バナジウム(V)、ジルコニウム(Zr)、及びチタン(Ti)等の金属酸化物、並びに前記金属の錯体;イソシアネート系化合物;脂肪族アミン;ポリアミド樹脂;三級アミン;ポリアミン;ポリメルカプタン;ルイス酸及びそのアミン錯体;白金触媒が挙げられる。   In the present invention, the reaction initiator is preferably a compound capable of initiating the polymerization reaction of the reaction curable resin composition at 10 to 60 ° C. Examples of such compounds include metal oxides such as iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), vanadium (V), zirconium (Zr), and titanium (Ti), and the metal An isocyanate compound; an aliphatic amine; a polyamide resin; a tertiary amine; a polyamine; a polymercaptan; a Lewis acid and its amine complex; and a platinum catalyst.

反応開始剤の量は、工程(4)にける反応硬化型樹脂組成物を十分に効果させる観点から、コーティング組成物中、好ましくは0.01〜80重量%、より好ましくは0.1〜50重量%、さらに好ましくは1〜30重量%である。   The amount of the reaction initiator is preferably 0.01 to 80% by weight, more preferably 0.1 to 50% in the coating composition from the viewpoint of sufficiently effecting the reaction curable resin composition in the step (4). % By weight, more preferably 1 to 30% by weight.

本発明において、コーティング組成物は、本発明の目的の範囲内で更なる成分を含むことができる。   In the present invention, the coating composition may contain further components within the scope of the object of the present invention.

コーティング組成物は、光学部品構成部材の表面を塗工できる組成物であれば特に限定されない。よって、コーティング組成物は溶媒を含むことができる。コーティング組成物及び含まれる溶剤としては、光学部品構成部材の表面で単分子膜以上の膜を形成しうると考えられている有機化合物あるいは無機化合物が好ましい。   A coating composition will not be specifically limited if it is a composition which can apply | coat the surface of an optical component structural member. Thus, the coating composition can include a solvent. As the coating composition and the solvent to be contained, an organic compound or an inorganic compound that is considered to be capable of forming a film of a monomolecular film or more on the surface of the optical component constituting member is preferable.

有機化合物である溶媒として、エタノール、2−プロパノールなどのアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートなどのエーテル・アセタール類;酢酸エチル、酢酸ブチルなどのエステル類;シクロヘキサン、ベンゼン、トルエン、キシレンなどの炭化水素類;臭化アリル、臭化ベンジル、塩化ベンジル、四塩化炭素、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類;N,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルスルホキシドなどが挙げられる。
無機化合物である溶媒として、水、二硫化炭素が挙げられる。
溶媒の量は、コーティング組成物中、好ましくは10〜99.99重量%、より好ましくは10〜99.9重量%である。
As a solvent which is an organic compound, alcohols such as ethanol and 2-propanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone; ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether Ethers and acetals such as propylene glycol monomethyl ether acetate; esters such as ethyl acetate and butyl acetate; hydrocarbons such as cyclohexane, benzene, toluene and xylene; allyl bromide, benzyl bromide, benzyl chloride, carbon tetrachloride Halogenated hydrocarbons such as dichloromethane, chloroform; N, N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, etc. It is below.
Examples of the solvent that is an inorganic compound include water and carbon disulfide.
The amount of the solvent is preferably 10 to 99.99% by weight, more preferably 10 to 99.9% by weight in the coating composition.

有機化合物であるコーティング剤として、Si系モノマー化合物;F系モノマー化合物;ポリブタジエンなどのジエン系モノマー化合物;2−ヒドロキシエチルメタクリレート、ジシクロペンテニルオキシエチルメタクリレートなどのアクリル系モノマー化合物;エポキシ系モノマー化合物;グリコール系モノマー化合物;アルキル系モノマー化合物;アミド系モノマー化合物;アクリルポリマー;アクリルポリオールなどのポリオール;シリコーンポリマー;フッ素系ポリマー;ジエン系ポリマー;ポリエステル系樹脂;ポリウレタンなどが挙げられる。市販品として、GLS−HF000 MEDIUM(帝国インキ製造社製、ポリエステル系樹脂)、DS−HF10929 TKI MEDIUM(帝国インキ製造社製、アクリルポリオール系樹脂)、TE−2000(日本曹達製、ポリブタジエン系樹脂)、ライトエステルHO−250(協栄化学社製)、QM−657(ロームアンドハース社製)が挙げられる。
無機化合物であるコーティング剤として、チタン、ジルコニアなどの金属コーティング剤;アセチレンブラックなどの炭化水素系コーティング剤などが挙げられる。
As a coating agent that is an organic compound, an Si monomer compound; an F monomer compound; a diene monomer compound such as polybutadiene; an acrylic monomer compound such as 2-hydroxyethyl methacrylate and dicyclopentenyloxyethyl methacrylate; an epoxy monomer compound; Glycol monomer compounds; alkyl monomer compounds; amide monomer compounds; acrylic polymers; polyols such as acrylic polyols; silicone polymers; fluorine polymers; diene polymers; Commercially available products include GLS-HF000 MEDIUM (made by Teikoku Ink Manufacturing Co., Ltd., polyester resin), DS-HF10929 TKI MEDIUM (made by Teikoku Ink Manufacturing Co., Ltd., acrylic polyol resin), TE-2000 (made by Nippon Soda Co., Ltd., polybutadiene resin) , Light ester HO-250 (manufactured by Kyoei Chemical Co., Ltd.) and QM-657 (manufactured by Rohm and Haas Co., Ltd.).
Examples of the coating agent that is an inorganic compound include metal coating agents such as titanium and zirconia; hydrocarbon coating agents such as acetylene black.

樹脂は、熱やエネルギー線照射に対して反応性であっても非反応性であってもよい。熱やエネルギー線照射に対して反応性である樹脂として、後述する反応硬化型樹脂組成物に用いられる反応硬化型樹脂が挙げられる。本発明の製造方法において、工程(1)が工程(1A)〜(1B)である場合は、コーティング組成物は、熱やエネルギー線照射に対して反応性である樹脂を含む。   The resin may be reactive or non-reactive with respect to heat and energy beam irradiation. Examples of the resin that is reactive to heat and energy ray irradiation include a reactive curable resin used in a reactive curable resin composition described later. In the production method of the present invention, when step (1) is steps (1A) to (1B), the coating composition contains a resin that is reactive to heat and energy ray irradiation.

樹脂の量は、コーティング組成物中、好ましくは10〜99.99重量%、より好ましくは20〜80重量%であり、さらに好ましくは30〜60重量%である。   The amount of the resin is preferably 10 to 99.99% by weight, more preferably 20 to 80% by weight, and further preferably 30 to 60% by weight in the coating composition.

本発明において、工程(1)が工程(1A)〜(1B)である場合は、コーティング組成物は、熱硬化剤及び光開始剤からなる群より選択される樹脂硬化剤を含有することができる。なお、コーティング組成物が熱硬化剤及び光開始剤を含有するときは、さらに、カチオン反応硬化型樹脂、ラジカル硬化型樹脂、アニオン硬化型樹脂を含有するのが好ましい。これらの反応硬化型樹脂は、反応硬化型樹脂組成物において例示される樹脂が挙げられる。   In the present invention, when step (1) is steps (1A) to (1B), the coating composition can contain a resin curing agent selected from the group consisting of a thermosetting agent and a photoinitiator. . In addition, when a coating composition contains a thermosetting agent and a photoinitiator, it is preferable to contain a cation reaction curable resin, a radical curable resin, and an anion curable resin further. Examples of these reactive curable resins include resins exemplified in the reactive curable resin composition.

熱硬化剤として、ジフェニルヨードニウム・ヘキサフルオロホスフェート、ジフェニルヨードニウム・ヘキサフルオロアンチモネート、ジフェニルヨードニウム・テトラフルオロボレート、ジフェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウム・テトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウム・ヘキサフルオロホスフェート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウム・ヘキサフルオロアンチモネート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウム・テトラフルオロボレート、4−メチルフェニル−4−(1−メチルエチル)フェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、4−メトキシジフェニルヨードニウム・ヘキサフルオロホスフェート、ビス(4−メチルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(4−t−ブチルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウム・トリルクミルヨードニウムヘキサフルオロホスフェート等のヨードニウム塩;トリアリルスルホニウムヘキサフルオロアンチモネートなどのスルホニウム塩;トリフェニルピレニルメチルホスホニウム塩などのホスホニウム塩;(η6−ベンゼン)(η5−シクロペンタジエニル)鉄(II)ヘキサフルオロアンチモネート;o−ニトロベンジルシリルエーテルとアルミニウムアセチルアセトナートとの組み合わせ;シルセスキオキサンとアルミニウムアセチルアセトナートとの組み合わせ;メラミン系樹脂;有機過酸化物(例えば、ケトンパーオキサイド、パーオキシケタール、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートなど)、ルイス酸(三フッ化ホウ素、塩化亜鉛、塩化アルミニウム、塩化鉄、塩化スズなど)、アゾ化合物(アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンカルボニトリル)など)、酸(有機酸または低温加熱で酸を発生するスルホニウム塩系の酸発生剤など)、塩基(脂肪族ポリアミン等のポリアミン、イミダゾール、ヒドラジド及びケチミン等のアミン化合物、低温加熱によってアミン化合物を発生する化合物など)、ポリアミド樹脂、ポリメルカプタン、及び白金族系金属化合物又はその錯体(塩化白金(IV)、塩化白金酸六水和物、ビス(アルキニル)ビス(トリフェニルホスフィン)白金錯体など)等が例示できる。このような熱硬化剤は、市販品として、DS−HF 10929TKI CATALYST(帝国インキ製造社製、メラミン樹脂)が挙げられる。
熱硬化剤の量は、硬化性樹脂の合計100重量部に対して、0.01〜80重量部であるのが好ましく、0.1〜60重量部であるのがより好ましく、1〜50重量部であるのが更に好ましい。
As thermosetting agents, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis (pentafluorophenyl) borate, bis (dodecylphenyl) iodonium hexafluorophosphate, bis (Dodecylphenyl) iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrafluoroborate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, 4-methylphenyl-4- (1-methylethyl) Phenyl iodonium hexafluorophosphate, 4-methylphenyl-4- (1-methylethyl) phenyl Dodonium hexafluoroantimonate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrafluoroborate, 4-methylphenyl-4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate 4-methoxydiphenyliodonium hexafluorophosphate, bis (4-methylphenyl) iodonium hexafluorophosphate, bis (4-t-butylphenyl) iodonium hexafluorophosphate, bis (dodecylphenyl) iodonium tricumyliodonium Iodonium salts such as hexafluorophosphate; sulfonium salts such as triallylsulfonium hexafluoroantimonate; triphenylpyrenylmethylphosphoniu Phosphonium salts such as salts; (η6-benzene) (η5-cyclopentadienyl) iron (II) hexafluoroantimonate; a combination of o-nitrobenzylsilyl ether and aluminum acetylacetonate; silsesquioxane and aluminum acetyl Combination with acetonate; melamine resin; organic peroxide (eg, ketone peroxide, peroxyketal, diacyl peroxide, peroxyester, peroxydicarbonate, etc.), Lewis acid (boron trifluoride, zinc chloride) , Aluminum chloride, iron chloride, tin chloride, etc.), azo compounds (azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), etc.), acids (organic acids or sulfonium salts that generate acids when heated at low temperatures) Acid generators), bases (fats) Polyamines such as aliphatic polyamines, amine compounds such as imidazole, hydrazide, and ketimine, compounds that generate amine compounds when heated at low temperature, polyamide resins, polymercaptan, and platinum group metal compounds or complexes thereof (platinum (IV) chloride) Chloroplatinic acid hexahydrate, bis (alkynyl) bis (triphenylphosphine) platinum complex, etc.). As such a thermosetting agent, DS-HF 10929TKI CATALYST (made by Teikoku Ink Manufacturing Co., Ltd., melamine resin) is mentioned as a commercial item.
The amount of the thermosetting agent is preferably 0.01 to 80 parts by weight, more preferably 0.1 to 60 parts by weight, and more preferably 1 to 50 parts by weight with respect to 100 parts by weight of the curable resin. More preferably, it is part.

光開始剤として、2,6−ジメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,6−ジクロルベンゾイルジフェニルフォスフィンオキサイド、及び2,6−ジメトキシベンゾイルジフェニルフォスフィンオキサイドなどのアシルフォスフィンオキサイド類;2,4,6−トリメチルベンゾイルフェニルフォスフィン酸メチルエステルなどのアシルフォスフィン酸エステル類;4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ2−2プロピル)ケトン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−メチル−1,4−(メチルチオ)フェニル−2−モルフォリノプロパン−1−オン、1−フェニル−2−ヒドロキシ−2−メチルプロパン−1−オン、1−ヒドロキシシクロヘキシル−フェニルケトン、4−ジフェノキシジクロロアセトフェノン、ジエトキシアセトフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オンなどのアセトフェノン系化合物;ベンゾフェノン、ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン3,3’−ジメチル−4−メトキシベンゾフェノン、ジフェノキシベンゾフェノンなどのベンゾフェノン系化合物、1,10−ジアミノデカン、4,4’−トリメチレンジピペラジン、カルバメート類及びその誘導体、コバルト−アミン錯体類、アミノオキシイミノ類、アンモニウムボレート類、アリールジアゾニウム塩、ジアリールハロニウム塩、トリアリールスルホニウム塩、トリホスホニウム塩、鉄アレン錯体、チタノセン錯体、アリールシラノールアルミニウム錯体などのイオン性光酸発生剤;ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、N−ヒドロキシイミドスルホナートなどの非イオン性光酸発生剤などが挙げられる。市販品として、I−184(BASF社製、1−ヒドロキシシクロヘキシル−フェニルケトン)、ルシリンTPO(BASF社製、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド)が挙げられる。
光開始剤の量は、硬化性樹脂100重量部に対して、0.001〜50重量部であるのが好ましく、0.01〜20重量部であるのがより好ましく、0.1〜10重量部であるのが更に好ましい。
As photoinitiators, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, and 2,6-dimethoxybenzoyldiphenylphosphine Acylphosphine oxides such as fin oxide; Acylphosphine esters such as 2,4,6-trimethylbenzoylphenylphosphinic acid methyl ester; 4- (2-hydroxyethoxy) phenyl (2-hydroxy2-2propyl) ) Ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1,4- (methylthio) phenyl-2-morpholinopropan-1-one, 1-phenyl-2-hydroxy -2-methyl group Acetophenones such as pan-1-one, 1-hydroxycyclohexyl-phenylketone, 4-diphenoxydichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one Compound: Benzophenone, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone 3,3′-dimethyl-4-methoxybenzophenone, benzophenone compounds such as diphenoxybenzophenone, 1,10-diaminodecane, 4,4′-tri Methylenedipiperazine, carbamates and derivatives thereof, cobalt-amine complexes, aminooxyiminos, ammonium borates, aryldiazonium salts, diarylhalonium salts, triarylsulfonium Ionic photoacid generators such as salts, triphosphonium salts, iron allene complexes, titanocene complexes, arylsilanol aluminum complexes; nitrobenzyl esters, sulfonic acid derivatives, phosphate esters, phenol sulfonate esters, diazonaphthoquinone, N-hydroxyimide Nonionic photoacid generators such as sulfonates are listed. Examples of commercially available products include I-184 (BASF, 1-hydroxycyclohexyl-phenylketone) and Lucillin TPO (BASF, 2,4,6-trimethylbenzoyldiphenylphosphine oxide).
The amount of the photoinitiator is preferably 0.001 to 50 parts by weight, more preferably 0.01 to 20 parts by weight, and more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the curable resin. More preferably, it is part.

コーティング組成物には、さらに、光学部品構成部材の表面に対する濡れ性を改善するための界面活性剤及びシランカップリング剤、並びに光学部品構成部材の表面に膜を形成するための膜形成剤を含むことが好ましい。   The coating composition further includes a surfactant and a silane coupling agent for improving wettability to the surface of the optical component component, and a film forming agent for forming a film on the surface of the optical component component. It is preferable.

界面活性剤としては、アニオン界面活性剤、両性界面活性剤、及び非イオン(ノニオン)型界面活性剤が挙げられる。これらは、1種類、又は2種類以上を組合せて使用することができる。   Examples of the surfactant include an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant. These can be used alone or in combination of two or more.

アニオン界面活性剤として、石ケン、ラウリル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルフェニルエーテルリン酸、N−アシルアミノ酸塩、α−オレフィンスルホン酸塩、アルキル硫酸エステル塩、アルキルフェニルエーテル硫酸エステル塩、及びメチルタウリン酸塩等が挙げられる。アニオン界面活性剤は、1種類、又は2種類以上を適宜組み合わせて使用することができる。   As an anionic surfactant, soap, lauryl sulfate, polyoxyethylene alkyl ether sulfate, alkylbenzene sulfonate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkylphenyl ether phosphate, N-acyl amino acid salt, α -Olefin sulfonates, alkyl sulfates, alkyl phenyl ether sulfates, methyl taurates and the like. An anionic surfactant can be used 1 type or in combination of 2 or more types as appropriate.

両性界面活性剤としては、塩酸アルキルジアミノエチルグリシン、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、ヤシ油脂肪酸アミドプロピルベタイン、脂肪酸アルキルベタイン、スルホベタイン、及びアミオキサイド等が挙げられる。両性界面活性剤は、1種類、又は2種類以上を適宜組み合わせて使用することができる。   Examples of amphoteric surfactants include alkyldiaminoethylglycine hydrochloride, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, lauryldimethylaminoacetic acid betaine, coconut oil fatty acid amide propyl betaine, fatty acid alkyl betaine, sulfobetaine And amidoxide. Amphoteric surfactants can be used alone or in combination of two or more.

非イオン(ノニオン)型界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、トリエチレングリコールモノブチルエーテル等のアルキルエーテル型化合物、ポリオキシソルビタンエステル等のエステル型化合物、アルキルフェノール型化合物、フッ素型化合物、及びシリコーン型化合物等が挙げられる。非イオン(ノニオン)型界面活性剤は、1種類、又は2種類以上を適宜組み合わせて使用することができる。   Nonionic (nonionic) type surfactants include polyethylene glycol alkyl ester type compounds, alkyl ether type compounds such as triethylene glycol monobutyl ether, ester type compounds such as polyoxysorbitan ester, alkylphenol type compounds, fluorine type compounds, And silicone type compounds. Nonionic (nonionic) type surfactants can be used singly or in appropriate combination of two or more.

シランカップリング剤として、ビニルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリエトキシシラン、エトルトリブトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリイソプロポキシシランなどのトリアルコキシシラン類;テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン、ジメトキシジイソプロポキシシラン、ジエトキシジイソプロポキシシラン、ジエトキシジブトキシシランなどのテトラアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジブトキシシラン、フェニルエチルジエトキシシランなどのジアルコキシシラン類を例示でき、トリアルコキシシラン類が好ましく、ビニルトリメトキシシランがより好ましい。これらのシランカップリング剤は、単独でも2種以上組み合わせて使用してもよい。   As silane coupling agents, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltriethoxysilane, etoltributoxysilane, cyclohexyltriethoxysilane Trialkoxysilanes such as phenyltriisopropoxysilane; tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, dimethoxydiethoxysilane, dimethoxydiisopropoxysilane, diethoxydiisopropoxy Tetraalkoxysilanes such as silane and diethoxydibutoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, and diethyl Diethoxy silane, diethyl dibutoxy silane, can be exemplified a dialkoxysilane such as phenylethyl diethoxy silane, preferably trialkoxysilane, vinyl trimethoxysilane is more preferred. These silane coupling agents may be used alone or in combination of two or more.

膜形成剤としては、特に限定されないが、レベリング性の観点から、好ましくはシリコーン系添加剤、アクリル系レベリング剤、ワックス系表面調整剤、及びフッ素系表面改質剤である。より好ましくは、シリコーン系添加剤、アクリル系レベリング剤、及びフッ素系表面改質剤であり、更に好ましくは、アクリル系レベリング剤、及びフッ素系表面改質剤である。このような膜形成剤として、具体的には、ラウリルアクリレートが挙げられる。   Although it does not specifically limit as a film formation agent, From a viewpoint of leveling property, Preferably it is a silicone type additive, an acrylic type leveling agent, a wax type surface conditioner, and a fluorine type surface modifier. More preferred are silicone additives, acrylic leveling agents, and fluorine surface modifiers, and more preferred are acrylic leveling agents and fluorine surface modifiers. Specific examples of such a film forming agent include lauryl acrylate.

界面活性剤、シランカップリング剤、及び膜形成剤の量は、コーティング組成物中、好ましくは0.01〜20重量%、より好ましくは0.1〜10重量%、さらに好ましくは0.1〜5重量%である。   The amount of the surfactant, the silane coupling agent, and the film forming agent is preferably 0.01 to 20% by weight, more preferably 0.1 to 10% by weight, and still more preferably 0.1 to 10% by weight in the coating composition. 5% by weight.

〔反応硬化型樹脂組成物〕
本発明の反応硬化型樹脂組成物について説明する。反応硬化型樹脂組成物としては、ラジカル反応硬化型樹脂組成物、カチオン反応硬化型樹脂組成物、アニオン反応硬化型樹脂組成物、重縮合・重付加反応硬化型樹脂組成物等が例示できる。反応硬化型樹脂組成物としては、エネルギー線による硬化の速度、コーティング組成物中の反応開始剤との反応性の観点から、ラジカル反応硬化型樹脂組成物が好ましい。
[Reaction curable resin composition]
The reaction curable resin composition of the present invention will be described. Examples of the reaction curable resin composition include a radical reaction curable resin composition, a cation reaction curable resin composition, an anion reaction curable resin composition, a polycondensation / polyaddition reaction curable resin composition, and the like. As the reaction curable resin composition, a radical reaction curable resin composition is preferable from the viewpoint of curing with energy rays and reactivity with a reaction initiator in the coating composition.

ラジカル反応硬化型樹脂組成物に使用されるラジカル反応硬化型樹脂としては、(メタ)アクリル樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、及びビニルエステル樹脂が挙げられる。好ましくは(メタ)アクリル樹脂、シリコーン樹脂、及びビニルエステル樹脂であり、より好ましくは(メタ)アクリル樹脂である。ここで、(メタ)アクリル樹脂として、具体的には、ジシクロペンテニルオキシエチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレートなどの(メタ)アクリレート化合物;ポリイソプレン(メタ)アクリレート、ポリブタジエン(メタ)アクリレートなどの(メタ)アクリレート変性オリゴマーが挙げられる。   Examples of the radical reaction curable resin used in the radical reaction curable resin composition include (meth) acrylic resins, silicone resins, unsaturated polyester resins, and vinyl ester resins. Preferred are (meth) acrylic resins, silicone resins, and vinyl ester resins, and more preferred are (meth) acrylic resins. Here, as the (meth) acrylic resin, specifically, (meth) acrylate compounds such as dicyclopentenyloxyethyl (meth) acrylate and 2-hydroxybutyl (meth) acrylate; polyisoprene (meth) acrylate, polybutadiene ( Examples include (meth) acrylate-modified oligomers such as (meth) acrylate.

カチオン反応硬化型樹脂組成物に使用されるカチオン反応硬化型樹脂としては、エポキシ樹脂、オキセタン化合物、ビニルエーテル樹脂、及びポリスチレン系樹脂が挙げられる。好ましくは、エポキシ樹脂、及びオキセタン化合物である。   Examples of the cation reaction curable resin used in the cation reaction curable resin composition include epoxy resins, oxetane compounds, vinyl ether resins, and polystyrene resins. An epoxy resin and an oxetane compound are preferable.

アニオン反応硬化型樹脂組成物に使用されるアニオン反応硬化型樹脂としては、エポキシ樹脂、(メタ)アクリル樹脂、シアノアクリレート系樹脂、オキセタン化合物、ポリスチレン系樹脂、及びポリエチレン系樹脂が挙げられる。好ましくは、エポキシ樹脂、(メタ)アクリル樹脂、シアノアクリレート系樹脂、及びポリスチレン系樹脂であり、より好ましくは、シアノアクリレート系樹脂、及びポリスチレン系樹脂である。   Examples of the anion reaction curable resin used in the anion reaction curable resin composition include epoxy resins, (meth) acrylic resins, cyanoacrylate resins, oxetane compounds, polystyrene resins, and polyethylene resins. An epoxy resin, a (meth) acrylic resin, a cyanoacrylate resin, and a polystyrene resin are preferable, and a cyanoacrylate resin and a polystyrene resin are more preferable.

重縮合・重付加反応硬化型樹脂組成物に使用される重縮合反応硬化型樹脂としては、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、及びシリコーン樹脂が挙げられる。好ましくは、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、及びシリコーン樹脂であり、より好ましくは、ポリエステル樹脂、ポリカーボネート樹脂、及びシリコーン樹脂である。   Examples of the polycondensation reaction curable resin used in the polycondensation / polyaddition reaction curable resin composition include polyamide resins, polyimide resins, polyester resins, polycarbonate resins, and silicone resins. Polyamide resins, polyester resins, polycarbonate resins, and silicone resins are preferable, and polyester resins, polycarbonate resins, and silicone resins are more preferable.

反応硬化型樹脂組成物中に、エネルギー開裂型開始剤を含めることができる。エネルギー開裂型開始剤として、前記した光開始剤が挙げられる。   An energy-cleavable initiator can be included in the reaction curable resin composition. As the energy-cleavage type initiator, the above-mentioned photoinitiator can be mentioned.

反応硬化型樹脂組成物に、エネルギー開裂型開始剤を含めておく場合、反応硬化型樹脂組成物に含まれる樹脂として、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂組成物が挙げられる。エネルギー開裂型開始剤の量は、特に限定されないが、上記した光開始剤の量が挙げられる。本発明において、コーティング組成物に含まれる反応開始剤が、反応硬化型樹脂組成物に含まれるエネルギー開裂型開始剤ではないことが好ましい。   When an energy-cleavable initiator is included in the reaction curable resin composition, examples of the resin contained in the reaction curable resin composition include acrylic resins, epoxy resins, and silicone resin compositions. The amount of the energy-cleavable initiator is not particularly limited, but examples include the amount of the photoinitiator described above. In the present invention, it is preferable that the reaction initiator contained in the coating composition is not the energy cleavage type initiator contained in the reaction curable resin composition.

反応硬化型樹脂組成物には、光学透明性安定性の観点から、熱・光安定剤を含めておくと好ましい。熱・光安定剤としては、ヒンダードフェノール系酸化防止剤、リン系加工熱安定剤、ヒドロキシルアミン系加工熱安定剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ヒンダードアミン系光安定剤、及びベンゾエート系紫外線吸収剤が挙げられる。好ましくは、ヒンダードフェノール系酸化防止剤、リン系加工熱安定剤、及びヒンダードアミン系光安定剤であり、より好ましくは、ヒンダードフェノール系酸化防止剤である。   The reaction curable resin composition preferably contains a heat / light stabilizer from the viewpoint of optical transparency stability. Heat and light stabilizers include hindered phenol antioxidants, phosphorus processing heat stabilizers, hydroxylamine processing heat stabilizers, benzotriazole UV absorbers, triazine UV absorbers, hindered amine light stabilizers, And benzoate-based ultraviolet absorbers. Preferred are hindered phenol antioxidants, phosphorus processing heat stabilizers, and hindered amine light stabilizers, and more preferred are hindered phenol antioxidants.

ここで、ヒンダードフェノール系酸化防止剤としては、具体的には、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル]プロピオネート)、2,2−メチレン−ビス(4−メチル−6−ターシャリーブチルフェノール)、カテコール、ピクリン酸、ターシャリーブチルカテコール、2,6−ジターシャリーブチル−p−クレゾール、及び4,4’−チオビス[エチレン(オキシ)(カルボニル)(エチレン)]ビス[2,6−ビス(1,1−ジメチルエチル)フェノール]が挙げられる。酸化防止剤は市販品として、イルガノックス1010(I’nox1010)(BASF社製)が挙げられる。   Here, as the hindered phenol-based antioxidant, specifically, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl] propionate), 2,2-methylene-bis (4-methyl-6-tert-butylphenol), catechol, picric acid, tertiary butyl catechol, 2,6-ditertiary butyl-p-cresol, and 4,4′-thiobis [ethylene (oxy) (carbonyl) ( Ethylene)] bis [2,6-bis (1,1-dimethylethyl) phenol]. As an antioxidant, Irganox 1010 (I'nox 1010) (manufactured by BASF) is mentioned as a commercial product.

熱・光安定剤の量は、反応硬化型樹脂組成物に対して、好ましくは0.001〜10重量%であり、より好ましくは0.01〜5重量%であり、更に好ましくは0.1〜3重量%である。   The amount of the heat / light stabilizer is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, and still more preferably 0.1 to 10% by weight with respect to the reaction curable resin composition. ~ 3 wt%.

反応硬化型樹脂組成物には、エネルギー線の非存在下、エネルギー線硬化型液状樹脂組成物と混合すると、60℃以下の温度でラジカル、カチオン又はアニオンを発生し、反応硬化型樹脂組成物を硬化させる化合物を含めておくと好ましい。例として、有機過酸化物(例えば、クメンパーオキサイド、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネート)、ポリアミン、酸無水物(無水フタル酸、無水トリメリット酸、無水ピロメリット酸など)、芳香族アミン、ヒドラジド、アミンアダクト類、ジシアンジアミド、ポリスルフィド樹脂、ルイス酸(三フッ化ホウ素、塩化亜鉛、塩化アルミニウム、塩化鉄、塩化スズなど)、アゾ化合物(アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンカルボニトリル)など)、酸(有機酸または低温加熱で酸を発生するスルホニウム塩系の酸発生剤など)、塩基(脂肪族ポリアミン等のポリアミン、イミダゾール、ヒドラジド及びケチミン等のアミン化合物、低温加熱によってアミン化合物を発生する化合物など)、ポリアミド樹脂、ポリメルカプタン、及び白金族系金属化合物又はその錯体(塩化白金(IV)、塩化白金酸六水和物、ビス(アルキニル)ビス(トリフェニルホスフィン)白金錯体など)等が挙げられる。有機過酸化物の量は、反応硬化型樹脂組成物中、好ましくは0.001〜10重量%であり、より好ましくは0.01〜5重量%であり、更に好ましくは0.1〜3重量%である。   In the reaction curable resin composition, when mixed with the energy ray curable liquid resin composition in the absence of energy rays, radicals, cations or anions are generated at a temperature of 60 ° C. or less, and the reaction curable resin composition is It is preferable to include a compound to be cured. Examples include organic peroxides (eg cumene peroxide, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate), polyamines, acid anhydrides ( Phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, etc.), aromatic amine, hydrazide, amine adducts, dicyandiamide, polysulfide resin, Lewis acid (boron trifluoride, zinc chloride, aluminum chloride, iron chloride, tin chloride) ), Azo compounds (azobisisobutyronitrile, 1,1′-azobis (cyclohexanecarbonitrile), etc.), acids (organic acids or sulfonium salt-based acid generators that generate acid by low-temperature heating, etc.), bases (Polyamines such as aliphatic polyamines, Amine compounds such as midazole, hydrazide and ketimine, compounds that generate amine compounds when heated at low temperature, etc.), polyamide resins, polymercaptan, and platinum group metal compounds or their complexes (platinum chloride (IV), chloroplatinic acid hexahydrate) Products, bis (alkynyl) bis (triphenylphosphine) platinum complexes, and the like. The amount of the organic peroxide in the reaction curable resin composition is preferably 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, and further preferably 0.1 to 3% by weight. %.

〔接着樹脂組成物キット〕
本発明の製造方法において、コーティング組成物と反応硬化型樹脂組成物は組合せて使用されることから、コーティング組成物と反応硬化型樹脂組成物は本発明の製造方法のための接着樹脂組成物キットを構成する。
[Adhesive resin composition kit]
Since the coating composition and the reaction curable resin composition are used in combination in the production method of the present invention, the coating composition and the reaction curable resin composition are used as an adhesive resin composition kit for the production method of the present invention. Configure.

接着樹脂組成物キットは、反応硬化型樹脂組成物と反応開始剤による重合反応の態様に応じて、既に挙げた好適なコーティング組成物と好適な反応硬化型樹脂組成物の組合せを適宜選択すればよいが、以下の組合せがより好ましい。   For the adhesive resin composition kit, if a combination of the suitable coating composition and the suitable reactive curable resin composition already mentioned is appropriately selected according to the mode of the polymerization reaction using the reactive curable resin composition and the reaction initiator, The following combinations are more preferred.

即ち、接着樹脂組成物キットは、好ましくは、反応硬化型樹脂としてアクリル樹脂を含有し、さらに、ラジカル発生剤として有機過酸化物も含有する反応硬化型樹脂組成物と、反応開始剤として、例えば、鉄(Fe)、アルミニウム(Al)、コバルト(Co)、マンガン(Mn)、スズ(Sn)、亜鉛(Zn)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、インジウム(In)、チタン(Ti)等の金属またこれらの金属の錯体を含有するコーティング組成物との組み合わせ、或いは、反応硬化型樹脂としてエポキシ樹脂を含有する反応硬化型樹脂組成物と、反応開始剤として、酸及び/又は塩基を含有するコーティング組成物との組み合わせである。酸としては、有機酸または加熱もしくは光で酸が発生するスルホニウム塩系の酸発生剤を挙げられる。塩基としては、ポリアミン、イミダゾール、ヒドラジド等のアミン化合物、熱や光によってアミン化合物が発生する化合物が挙げられる。   That is, the adhesive resin composition kit preferably contains an acrylic resin as a reaction curable resin and further contains an organic peroxide as a radical generator, and a reaction initiator, for example, , Iron (Fe), aluminum (Al), cobalt (Co), manganese (Mn), tin (Sn), zinc (Zn), vanadium (V), chromium (Cr), zirconium (Zr), indium (In) In combination with a coating composition containing a metal such as titanium (Ti) or a complex of these metals, or a reactive curable resin composition containing an epoxy resin as a reactive curable resin, and an acid as a reaction initiator And / or a combination with a coating composition containing a base. Examples of the acid include an organic acid or a sulfonium salt-based acid generator that generates an acid by heating or light. Examples of the base include amine compounds such as polyamine, imidazole and hydrazide, and compounds in which an amine compound is generated by heat or light.

接着樹脂組成物キットにおけるコーティング組成物及び反応硬化型樹脂組成物の量は、コーティング組成物における反応開始剤と反応硬化型樹脂組成物における硬化型樹脂との量比を満足する限り特に限定されない。例えば、反応硬化型組成物100重量部に対して、コーティング組成物は、0.01〜100重量部であるのが好ましく、0.1〜10重量部であるのがより好ましい。   The amount of the coating composition and the reaction curable resin composition in the adhesive resin composition kit is not particularly limited as long as the ratio of the reaction initiator in the coating composition to the curable resin in the reaction curable resin composition is satisfied. For example, the coating composition is preferably 0.01 to 100 parts by weight and more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the reaction curable composition.

〔光学部品及び光学表示装置〕
本発明の製造方法は、具体的には、保護パネルとタッチセンサーパネルの貼り合わせ、保護パネルと表示体の貼り合わせ、タッチセンサーパネルと表示体の貼り合わせ、保護パネル付タッチセンサーパネルと表示体の貼り合わせ、保護パネルとタッチセンサー付表示体の貼り合わせ、3Dシステムと表示体の貼り合わせ、保護パネルと3Dシステム付表示体の貼り合わせ、タッチセンサーパネルと3Dシステム付表示体の貼り合わせ、保護パネル付タッチセンサーパネルと3Dシステム付表示体の貼り合わせ、及び保護パネルとタッチセンサー付3Dシステム付表示体の貼り合わせ等の、光学部品構成部材の貼り合せに用いられる。本発明の製造方法で得られる光学部品は前述で挙げられた光学部品構成部材の貼り合わせ体である。また、本発明の製造方法で得られる光学部品を含む光学表示装置として、液晶ディスプレイ、有機ELディスプレイが挙げられる。
[Optical components and optical display devices]
Specifically, the manufacturing method of the present invention includes bonding a protective panel and a touch sensor panel, bonding a protective panel and a display, bonding a touch sensor panel and a display, touch sensor panel with protective panel and display Bonding of protective panel and display with touch sensor 3D system and bonding of display body, bonding of protective panel and display with 3D system, bonding of touch sensor panel and display with 3D system, It is used for bonding optical component components such as bonding of a touch panel with a protection panel and a display body with a 3D system, and bonding of a protection panel and a display body with a 3D system with a touch sensor. The optical component obtained by the manufacturing method of the present invention is a bonded body of the optical component constituent members mentioned above. Moreover, a liquid crystal display and an organic EL display are mentioned as an optical display apparatus containing the optical component obtained with the manufacturing method of this invention.

以下に実施例により本発明を説明する。
〔コーティング組成物〕
表1に示した組成(重量部)を有するコーティング組成物a〜dを調製した。調整条件は、3gの反応開始剤、0.5gのモノマー類、エタノール100gを容量約200mlのガラス瓶に入れ、蓋をして室温(25℃)にて手動で振とう攪拌を行い、反応開始剤を溶解させて103.5gのコーティング組成物を得た。
The following examples illustrate the invention.
[Coating composition]
Coating compositions a to d having the composition (parts by weight) shown in Table 1 were prepared. The adjustment conditions are as follows: 3 g of reaction initiator, 0.5 g of monomers, and 100 g of ethanol are placed in a glass bottle with a capacity of about 200 ml, capped and manually shaken and stirred at room temperature (25 ° C.). Was dissolved to obtain 103.5 g of a coating composition.

ナーセムバナジル(日本化学産業社製;バナジルアセチルアセトネート)
FC4430(住友スリーエム社製;フッ素系界面活性剤)
KBM1003(信越化学社製;ビニルトリメトキシシラン)
LA(共栄社化学社製;ラウリルアクリレート)
Nasemu vanadil (Nippon Chemical Industry Co., Ltd .; vanadyl acetylacetonate)
FC4430 (manufactured by Sumitomo 3M; fluorinated surfactant)
KBM1003 (Shin-Etsu Chemical Co., Ltd .; vinyltrimethoxysilane)
LA (Kyoeisha Chemical Co., Ltd .; lauryl acrylate)

〔反応硬化型樹脂組成物〕
表2に示す組成(重量部)を有する反応硬化型樹脂組成物Aを調製した。UC−203を40g、QM−657を40g、HOBを13gを容量約200mlのナンコー容器に入れ、室温(25℃)にてスリーワンモータ(新東科学社製)で混ぜ、そこにI−184を3g、ルシリンTPOを1g、I’nox1010を1g加え、オーブンで約60℃に加温して溶解させ、その後常温に戻した後、カヤクメンHを2g加えて室温(25℃)にてスリーワンモータ(新東科学社製)で混ぜ、100gの反応硬化型樹脂組成物Aを得た。
[Reaction curable resin composition]
A reaction curable resin composition A having the composition (parts by weight) shown in Table 2 was prepared. 40g of UC-203, 40g of QM-657 and 13g of HOB are placed in a Nangko container with a capacity of about 200ml, mixed at room temperature (25 ° C) with a three-one motor (manufactured by Shinto Kagaku Co.), and then I-184 is added. 3 g, 1 g of lucillin TPO and 1 g of I'nox1010, heated to about 60 ° C. in an oven and dissolved, then returned to room temperature, then 2 g of kayakmen H was added and a three-one motor (at 25 ° C.) 100 g of reaction curable resin composition A was obtained.

〔試験例〕
コーティング組成物a〜dのそれぞれを、ガラス基板(50×40×0.7mm)の前面にコーティングし、常温にて10分間乾燥させコーティング組成物付ガラス基板とした。コーティング組成物付ガラス基板とガラス(45×35×0.7mm)とをコーティング組成物層が内側になるように、反応硬化型樹脂組成物Aを用いて厚さ200μmtで貼り合わせた後、所定時間(1時間又は24時間)室温で放置し、反応硬化型樹脂組成物Aの硬化状態を触診で以下の基準にて確認した。触診にて液に流動性がない場合を硬化、流動性があった場合を未硬化とした。結果を表3に示す。
[Test example]
Each of the coating compositions a to d was coated on the front surface of a glass substrate (50 × 40 × 0.7 mm) and dried at room temperature for 10 minutes to obtain a glass substrate with a coating composition. A glass substrate with a coating composition and glass (45 × 35 × 0.7 mm) are bonded to each other with a thickness of 200 μmt using the reactive curable resin composition A so that the coating composition layer is on the inside, and then predetermined. It was allowed to stand at room temperature for 1 hour or 24 hours, and the cured state of the reaction curable resin composition A was confirmed by palpation according to the following criteria. When the liquid was not fluid by palpation, it was cured, and when it was fluid, it was uncured. The results are shown in Table 3.

〔コーティング組成物2〕
表4に示した組成(重量部)を有するコーティング組成物e〜kを調製した。10gの反応開始剤、指定重量のオリゴマー、モノマー類、及びそれらの硬化剤を約200mlのガラス瓶に入れ、室温(25℃)にて攪拌を行い、反応開始剤等を溶解させてコーティング組成物を得た。
[Coating composition 2]
Coating compositions ek having the composition (parts by weight) shown in Table 4 were prepared. 10 g of reaction initiator, specified weight of oligomer, monomers, and their curing agents are placed in an approximately 200 ml glass bottle and stirred at room temperature (25 ° C.) to dissolve the reaction initiator and the like to form a coating composition. Obtained.

ナーセムバナジル(日本化学産業社製;バナジルアセチルアセトネート)
GLS−HF000 MEDIUM(帝国インキ製造社製;ポリエステル系樹脂)
DS−HF 10929 TKI MEDIUM(帝国インキ製造社製;アクリルポリオール系樹脂)
TE−2000(日本曹達社製;ポリブタジエン系樹脂)
ライトエステルHO−250(N)(共栄社化学社製;2−ヒドロキシエチルメタクリレート)
QM−657(ロームアンドハース社製;ジシクロペンテニルオキシエチルメタクリレート)
DS−HF 10929 TKI CATALYST(帝国インキ製造社製;メラミン系樹脂)
I−184(BASF社製;1−ヒドロキシシクロヘキシルフェニルケトン)
Nasemu vanadil (Nippon Chemical Industry Co., Ltd .; vanadyl acetylacetonate)
GLS-HF000 MEDIUM (made by Teikoku Ink Manufacturing Co., Ltd .; polyester resin)
DS-HF 10929 TKI MEDIUM (manufactured by Teikoku Ink Manufacturing Co., Ltd .; acrylic polyol resin)
TE-2000 (Nippon Soda Co., Ltd .; polybutadiene resin)
Light ester HO-250 (N) (manufactured by Kyoeisha Chemical Co .; 2-hydroxyethyl methacrylate)
QM-657 (Rohm and Haas; dicyclopentenyloxyethyl methacrylate)
DS-HF 10929 TKI CATALYST (manufactured by Teikoku Ink; melamine resin)
I-184 (manufactured by BASF; 1-hydroxycyclohexyl phenyl ketone)

〔試験例〕
コーティング組成物e〜iのそれぞれを、ガラス基板(50×40×0.7mm)の前面にコーティングし、コーティング組成物e、f、g、iは150℃にて30分間で熱硬化させ、コーティング組成物hはメタルハライドランプで積算光量3,000mJ/cmでUV硬化させ、コーティング組成物付ガラス基板とした。コーティング組成物付ガラス基板とガラス(45×35×0.7mm)とをコーティング組成物層が内側になるように、反応硬化型樹脂組成物Aを用いて厚さ200μmtで貼り合わせた後、所定時間(1時間又は24時間)室温で放置し、反応硬化型樹脂組成物Aの硬化状態を触診で以下の基準にて確認した。触診にて液に流動性がない場合を硬化、流動性があった場合を未硬化とした。結果を表5に示す。
[Test example]
Each of the coating compositions e to i is coated on the front surface of a glass substrate (50 × 40 × 0.7 mm), and the coating compositions e, f, g, and i are thermally cured at 150 ° C. for 30 minutes to be coated. The composition h was UV-cured with a metal halide lamp with an integrated light amount of 3,000 mJ / cm 2 to obtain a glass substrate with a coating composition. A glass substrate with a coating composition and glass (45 × 35 × 0.7 mm) are bonded to each other with a thickness of 200 μmt using the reactive curable resin composition A so that the coating composition layer is on the inside, and then predetermined. It was allowed to stand at room temperature for 1 hour or 24 hours, and the cured state of the reaction curable resin composition A was confirmed by palpation according to the following criteria. When the liquid was not fluid by palpation, it was cured, and when it was fluid, it was uncured. The results are shown in Table 5.

1:光学部品構成部材A
2:遮光インク層
3:エネルギー線硬化型樹脂組成物
4:コーティング組成物
5:光学部品構成部材B
6:エネルギー線硬化型樹脂組成物の硬化部分
1: Optical component component A
2: Light-shielding ink layer 3: Energy ray curable resin composition 4: Coating composition 5: Optical component component B
6: Cured portion of the energy beam curable resin composition

Claims (10)

光学部品構成部材Aと他の光学部品構成部材Bとを反応硬化型樹脂組成物を介して貼り合せた光学部品の製造方法であって、
(1)前記光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、前記反応硬化型樹脂組成物の重合反応を開始しうる反応開始剤及び更なる成分のみからなり、更なる成分は、ポリエステル樹脂である、コーティング組成物を配置する工程、
(2)前記表面に配置された前記コーティング組成物の表面及び前記コーティング組成物が配置されていない前記表面の少なくとも1つの面に前記反応性樹脂組成物を配置する工程、
(3)前記光学部品構成部材A及びBの間に前記反応性樹脂組成物を介して、前記コーティング組成物と前記反応硬化型樹脂組成物とが接触するように、前記光学部品構成部材A及びBを貼り合せる工程、及び
(4)前記反応硬化型樹脂組成物の重合反応を前記反応開始剤によって開始させて、前記反応硬化型樹脂組成物を硬化させる工程
を含むことを特徴とする光学部品の製造方法。
An optical component manufacturing method in which an optical component constituent member A and another optical component constituent member B are bonded together via a reaction curable resin composition,
(1) Only one or both of the opposing surfaces of the optical component constituent members A and B are composed of a reaction initiator capable of initiating a polymerization reaction of the reactive curable resin composition and further components, and further component, placing a port Riesuteru resin, a coating composition,
(2) disposing the reactive resin composition on at least one surface of the surface of the coating composition disposed on the surface and the surface on which the coating composition is not disposed;
(3) The optical component constituent member A and the optical component constituent member A and B so that the coating composition and the reactive curable resin composition are in contact with each other through the reactive resin composition. An optical component comprising a step of bonding B, and (4) a step of initiating a polymerization reaction of the reaction curable resin composition with the reaction initiator to cure the reaction curable resin composition. Manufacturing method.
光学部品構成部材Aと他の光学部品構成部材Bとを反応硬化型樹脂組成物を介して貼り合せた光学部品の製造方法であって、
(1)前記光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、前記反応硬化型樹脂組成物の重合反応を開始しうる反応開始剤及び更なる成分のみからなり、更なる成分は、アクリルポリオールとメラミン樹脂との組合せである、コーティング組成物を配置する工程、
(2)前記表面に配置された前記コーティング組成物の表面及び前記コーティング組成物が配置されていない前記表面の少なくとも1つの面に前記反応性樹脂組成物を配置する工程、
(3)前記光学部品構成部材A及びBの間に前記反応性樹脂組成物を介して、前記コーティング組成物と前記反応硬化型樹脂組成物とが接触するように、前記光学部品構成部材A及びBを貼り合せる工程、及び
(4)前記反応硬化型樹脂組成物の重合反応を前記反応開始剤によって開始させて、前記反応硬化型樹脂組成物を硬化させる工程
を含み、
工程(1)が、工程(1A)及び(1B):
(1A)光学部品構成部材A及びBの対向する表面の一方又は両方の表面に、前記反応硬化型樹脂組成物の重合反応を開始しうる反応開始剤及び更なる成分のみからなり、更なる成分は、アクリルポリオールとメラミン樹脂との組合せである、コーティング組成物を配置する工程、及び
(1B)熱を加えることにより、コーティング組成物を硬化させる工程
であることを特徴とする光学部品の製造方法。
An optical component manufacturing method in which an optical component constituent member A and another optical component constituent member B are bonded together via a reaction curable resin composition,
(1) Only one or both of the opposing surfaces of the optical component constituent members A and B are composed of a reaction initiator capable of initiating a polymerization reaction of the reactive curable resin composition and further components, and further The component is a combination of an acrylic polyol and a melamine resin, placing the coating composition;
(2) disposing the reactive resin composition on at least one surface of the surface of the coating composition disposed on the surface and the surface on which the coating composition is not disposed;
(3) The optical component constituent member A and the optical component constituent member A and B so that the coating composition and the reactive curable resin composition are in contact with each other through the reactive resin composition. A step of bonding B, and
(4) A step of curing the reaction curable resin composition by initiating a polymerization reaction of the reaction curable resin composition with the reaction initiator.
Including
Step (1) is step (1A) and (1B):
(1A) One or both of the opposing surfaces of the optical component constituent members A and B are composed of only a reaction initiator capable of initiating a polymerization reaction of the reaction-curable resin composition and further components, and further components is a combination of an acrylic polyol and a melamine resin, a step of placing a coating composition, and (1B) by the heat to Turkey, optical components, characterized in that a step of curing the coating composition Production method.
前記反応開始剤が、前記反応硬化型樹脂組成物の重合反応を10〜60℃において開始しうる化合物である、請求項1又は2記載の光学部品の製造方法。 The manufacturing method of the optical component of Claim 1 or 2 whose said reaction initiator is a compound which can start the polymerization reaction of the said reaction curable resin composition in 10-60 degreeC. 前記反応硬化型樹脂組成物が、エネルギー開裂型開始剤を含み、前記工程(4)の前に、前記反応硬化型樹脂組成物が、前記エネルギー開裂型開始剤によって、重合反応を開始させる工程を含む、請求項1〜3のいずれか1項記載の光学部品の製造方法。 The reaction curable resin composition includes an energy cleavage initiator, and before the step (4), the reaction curable resin composition initiates a polymerization reaction with the energy cleavage initiator. The manufacturing method of the optical component of any one of Claims 1-3 containing. 前記反応開始剤が、前記エネルギー開裂型開始剤ではない、請求項記載の光学部品の製造方法。 The method for producing an optical component according to claim 4 , wherein the reaction initiator is not the energy-cleavable initiator. 前記反応開始剤が、ラジカル発生剤、カチオン発生剤、アニオン発生剤及び重縮合・重付加反応開始剤からなる群から選択される少なくとも1種の化合物である、請求項1〜のいずれか1項記載の光学部品の製造方法。 The reaction initiator is a radical generator, cation generating agent is at least one compound selected from the group consisting of anionic generator, and polycondensation-polyaddition reaction initiator, any of claims 1-5 1 The manufacturing method of the optical component of description. 前記光学部品構成部材Aが表示パネルであり、前記光学部品構成部材Bが保護パネルである、請求項1〜6のいずれか1項記載の光学部品の製造方法。   The method for manufacturing an optical component according to claim 1, wherein the optical component constituent member A is a display panel and the optical component constituent member B is a protective panel. 請求項記載の光学部品の製造方法のための接着組成物キットであって、
請求項1に定義されたコーティング組成物と反応硬化型樹脂組成物とを含むことを特徴とする請求項記載の光学部品の製造方法のための接着樹脂組成物キット。
An adhesive composition kit for the method of manufacturing an optical component according to claim 1 ,
Adhesive resin composition kit for production process of an optical component according to claim 1, characterized in that it comprises a claim coating composition as defined in 1 and the reaction-curable resin composition.
請求項8記載の接着組成物キットのための、請求項1に定義されたコーティング組成物。   9. A coating composition as defined in claim 1 for an adhesive composition kit according to claim 8. 光学部品を含む光学表示装置の製造方法であって、前記光学部品は請求項1〜7のいずれか1項記載の方法で製造する、製造方法。   It is a manufacturing method of the optical display apparatus containing an optical component, Comprising: The said optical component is manufactured by the method of any one of Claims 1-7.
JP2012259055A 2012-05-18 2012-11-27 Optical component manufacturing method, adhesive composition kit, and coating composition Active JP5993725B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012259055A JP5993725B2 (en) 2012-05-18 2012-11-27 Optical component manufacturing method, adhesive composition kit, and coating composition
KR1020147035076A KR102038281B1 (en) 2012-05-18 2013-05-13 Method for producing optical component, adhesive composition kit, and coating composition
PCT/JP2013/063251 WO2013172284A1 (en) 2012-05-18 2013-05-13 Method for producing optical component, adhesive composition kit, and coating composition
CN201380025058.5A CN104284956A (en) 2012-05-18 2013-05-13 Method for producing optical component, adhesive composition kit, and coating composition
TW102117530A TWI584956B (en) 2012-05-18 2013-05-17 A method of manufacturing an optical component, followed by a composition kit and a coating composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012114386 2012-05-18
JP2012114386 2012-05-18
JP2012259055A JP5993725B2 (en) 2012-05-18 2012-11-27 Optical component manufacturing method, adhesive composition kit, and coating composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016162023A Division JP6040337B1 (en) 2012-05-18 2016-08-22 Optical component manufacturing method, adhesive composition kit, and coating composition

Publications (2)

Publication Number Publication Date
JP2013256638A JP2013256638A (en) 2013-12-26
JP5993725B2 true JP5993725B2 (en) 2016-09-14

Family

ID=49583689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259055A Active JP5993725B2 (en) 2012-05-18 2012-11-27 Optical component manufacturing method, adhesive composition kit, and coating composition

Country Status (5)

Country Link
JP (1) JP5993725B2 (en)
KR (1) KR102038281B1 (en)
CN (1) CN104284956A (en)
TW (1) TWI584956B (en)
WO (1) WO2013172284A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689931B2 (en) * 2013-03-13 2015-03-25 富士フイルム株式会社 Adhesive sheet, laminate for touch panel, capacitive touch panel
US10344169B2 (en) * 2014-09-30 2019-07-09 3M Innovative Properties Company Free-radical polymerization methods and articles thereby
JP6464379B2 (en) * 2015-08-25 2019-02-06 協立化学産業株式会社 Manufacturing method of laminate
TWI752043B (en) * 2016-06-28 2022-01-11 日商東亞合成股份有限公司 2-cyanoacrylate-based adhesive composition
JP6829219B2 (en) * 2018-03-12 2021-02-10 株式会社飯沼ゲージ製作所 Laminating method and laminating device
KR102058865B1 (en) 2018-04-12 2019-12-24 (주)아이엠 Heating device using hyper heat accelerator and method for manufacturing the same
CN112706433B (en) * 2019-10-25 2022-10-21 阳程科技股份有限公司 Method for automatically forming special-shaped optical cement on surface of flexible element
CN112743947B (en) * 2020-12-29 2022-08-16 潍坊同有新材料科技有限公司 Photo-thermal dual-curing diaphragm composite material and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200303439A (en) * 2002-02-04 2003-09-01 Mitsui Chemicals Inc Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell
JP4123355B2 (en) 2002-09-05 2008-07-23 株式会社朝日ラバー Transparent sheet, method for manufacturing the same, and liquid crystal display device
CN101652803B (en) * 2007-04-03 2015-02-04 迪睿合电子材料有限公司 Method for manufacturing image display
JP5202912B2 (en) * 2007-09-05 2013-06-05 協立化学産業株式会社 Method for obtaining a composite by bonding a light shielding film and an opaque substrate with a photocurable adhesive resin
JP2009098187A (en) * 2007-10-12 2009-05-07 Sekisui Chem Co Ltd Adhesive for optical components
JP5352094B2 (en) * 2008-02-22 2013-11-27 電気化学工業株式会社 Adhesive composition, bonding method, bonded body, and manufacturing method of bonded body
JP4983891B2 (en) 2009-11-05 2012-07-25 カシオ計算機株式会社 Manufacturing method of display panel integrated display panel
JP2013253117A (en) * 2010-09-28 2013-12-19 Denki Kagaku Kogyo Kk Curable resin composition
WO2012099171A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
JP5837320B2 (en) * 2011-04-08 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー Manufacturing method of image display device
JP2014240852A (en) * 2011-10-06 2014-12-25 株式会社カネカ Manufacturing method of fpd, lamination method, and photocurable composition for fpd lamination
WO2013077306A1 (en) * 2011-11-21 2013-05-30 協立化学産業株式会社 Energy ray-curable liquid resin composition for bonding, ink composition for light shielding, and method for producing optical component using said liquid resin composition and said ink composition

Also Published As

Publication number Publication date
CN104284956A (en) 2015-01-14
WO2013172284A1 (en) 2013-11-21
KR20150013784A (en) 2015-02-05
TWI584956B (en) 2017-06-01
JP2013256638A (en) 2013-12-26
KR102038281B1 (en) 2019-10-30
TW201408489A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
JP5993725B2 (en) Optical component manufacturing method, adhesive composition kit, and coating composition
TWI433822B (en) A method of manufacturing a display device
CN103582908A (en) Method for manufacturing image display device
JP5954257B2 (en) Vehicle window material
JP5297163B2 (en) UV curable resin composition and bonding method using the same
TW201400575A (en) Photocurable resin composition, image display device, and method for producing same
TW201900778A (en) Active energy ray-curable composition, method for producing cured film, and cured product
JP5987269B2 (en) Hard coat film, polarizing plate and image display device
JP6040337B1 (en) Optical component manufacturing method, adhesive composition kit, and coating composition
TW201231263A (en) Method for manufacturing laminate
JP6464379B2 (en) Manufacturing method of laminate
JP2014095740A (en) Low refractive index resin composition, low refractive index layer, and antireflection film
JP5934247B2 (en) Energy beam curable liquid resin composition for bonding, ink composition for light shielding, and method for producing optical component using them
JP6496900B2 (en) Method for bonding optical members
TWI515280B (en) Composition for forming resin layer and flexible display substrate using the same
TW201133058A (en) Method for manufacturing liquid crystal display device
JP5445589B2 (en) Manufacturing method of laminate
JP6528063B2 (en) Method of manufacturing battery module
TW202033696A (en) Radical curable adhesive composition, adhesive layer, polarizing plate and image display apparatus
JP6331013B2 (en) Cationic curable resin composition
JP5646361B2 (en) Method for producing optical film having reworkable pressure-sensitive adhesive layer
WO2019230881A1 (en) Spacer particles, adhesive agent and adhesive structural body
JP2014153502A (en) Hard coat film and manufacturing method thereof
WO2019065421A1 (en) Anti-reflection film, anti-reflection article, polarizing plate, and image display device
JP2014102315A (en) Hard coat composition, hard coat film coated with hard coat composition and antireflection film equipped with hard coat film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 5993725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250