[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5989096B2 - Anti-human XCR1 antibody - Google Patents

Anti-human XCR1 antibody Download PDF

Info

Publication number
JP5989096B2
JP5989096B2 JP2014509528A JP2014509528A JP5989096B2 JP 5989096 B2 JP5989096 B2 JP 5989096B2 JP 2014509528 A JP2014509528 A JP 2014509528A JP 2014509528 A JP2014509528 A JP 2014509528A JP 5989096 B2 JP5989096 B2 JP 5989096B2
Authority
JP
Japan
Prior art keywords
antibody
amino acid
seq
acid sequence
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014509528A
Other languages
Japanese (ja)
Other versions
JP2014527396A (en
JP2014527396A5 (en
Inventor
佳正 坂本
佳正 坂本
美由希 西村
美由希 西村
鉄 河野
鉄 河野
幸久 澤
幸久 澤
今井 俊夫
俊夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai R&D Management Co Ltd
Original Assignee
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R&D Management Co Ltd filed Critical Eisai R&D Management Co Ltd
Publication of JP2014527396A publication Critical patent/JP2014527396A/en
Publication of JP2014527396A5 publication Critical patent/JP2014527396A5/ja
Application granted granted Critical
Publication of JP5989096B2 publication Critical patent/JP5989096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/55Fusion polypeptide containing a fusion with a toxin, e.g. diphteria toxin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurology (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Biomedical Technology (AREA)
  • Obesity (AREA)
  • Neurosurgery (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、ヒトXCR1に対して結合する抗体に関する   The present invention relates to an antibody that binds to human XCR1.

ケモカインとは、白血球遊走および白血球活性化作用を有する塩基性のヘパリン結合性蛋白質の総称である。これらのケモカインの一次構造を比較した際に、保存されているシステイン残基の位置によって、CXC、CC、C、およびCX3Cのサブファミリーに分類される。XCL1(リンフォタクチン(Ltn)、リンフォタクチンα(Ltn-α)とも称される。)及びXCL2(リンフォタクチンβ(Ltn-β)とも称される。)は、上記のCサブファミリーに分類されるケモカインであり、XCR1(GPR5、SCM-1α又はATACとも称される。)はXCL1及びXCL2と特異的に結合するGタンパク質共役型のケモカイン受容体である。   A chemokine is a general term for basic heparin-binding proteins having leukocyte migration and leukocyte activation effects. When comparing the primary structures of these chemokines, they are classified into CXC, CC, C, and CX3C subfamilies according to the position of the conserved cysteine residues. XCL1 (also referred to as lymphotactin (Ltn), lymphotactin α (Ltn-α)) and XCL2 (also referred to as lymphotactin β (Ltn-β)) are chemokines classified into the C subfamily described above. , XCR1 (also referred to as GPR5, SCM-1α or ATAC) is a G protein-coupled chemokine receptor that specifically binds to XCL1 and XCL2.

XCR1のヒトの各種組織における発現はmRNAレベルで調べられており、胎盤では強く発現する一方、脾臓・胸腺で弱く発現していることが報告されている(非特許文献1)。また、XCR1は樹状細胞に主に発現しており、マウスでは特にCD8α陽性の樹状細胞に高発現している(非特許文献2、3)。このCD8α陽性の樹状細胞は、脾臓やリンパ節等の二次リンパ組織に常在しており、感染防御反応及び腫瘍細胞に対する免疫応答の際に重要な役割を果たす“クロスプレゼンテーション”を担う事が知られている。またヒトではマウスのCD8α陽性の樹状細胞のホモログとされるCD141陽性の樹状細胞にXCR1が高発現していることも知られている(非特許文献4)。   The expression of XCR1 in various human tissues has been examined at the mRNA level, and it has been reported that it is strongly expressed in the placenta, but weakly expressed in the spleen and thymus (Non-patent Document 1). XCR1 is mainly expressed in dendritic cells, and is highly expressed in CD8α-positive dendritic cells in mice (Non-patent Documents 2 and 3). These CD8α-positive dendritic cells are resident in secondary lymphoid tissues such as the spleen and lymph nodes, and play a “cross-presentation” role that plays an important role in the defense response and immune response to tumor cells. It has been known. In humans, it is also known that XCR1 is highly expressed in CD141-positive dendritic cells, which are homologs of mouse CD8α-positive dendritic cells (Non-patent Document 4).

通常、細胞外から抗原提示細胞に取り込まれた抗原は、ペプチドに分解された後、クラスIIの主要組織適合抗原(MHC class II)上に提示され、CD4+T細胞によって認識される。これに対し、細胞外から取り込まれた抗原が上述した通常の経路とは異なる経路を介してクラスIの主要組織適合抗原(MHC class I)上に提示されることがある。この抗原提示プロセスがクロスプレゼンテーションと呼ばれる。   Usually, antigens taken up into antigen-presenting cells from outside the cell are decomposed into peptides, presented on class II major histocompatibility antigens (MHC class II), and recognized by CD4 + T cells. On the other hand, antigens taken from outside the cell may be presented on the major class I histocompatibility antigen (MHC class I) via a route different from the normal route described above. This antigen presentation process is called cross-presentation.

このプロセスでMHC class I上に提示された抗原をCD8+T細胞が認識し、その後、宿主の感染防御及び腫瘍細胞の排除を担う細胞傷害性T細胞(CTL)へと分化する(非特許文献5)。   In this process, antigens presented on MHC class I are recognized by CD8 + T cells, and then differentiated into cytotoxic T cells (CTLs) that are responsible for host infection protection and tumor cell elimination (Non-patent literature) 5).

炎症反応が起こっているときには種々の免疫関連細胞が遊走される。その中で樹状細胞も抗原を貪食するために炎症が生じている局所に遊走されるが、このような樹状細胞の遊走にあたり、ケモカインとケモカイン受容体が重要な役割を果たしている。樹状細胞は炎症が生じている局所に遊走された後にT細胞に対して抗原を提示し、T細胞を活性化させる。その後、T細胞からさらに多くの免疫関連細胞に情報が伝えられて免疫反応が拡大していく(非特許文献6)。   Various immune-related cells migrate when an inflammatory response is occurring. Among them, dendritic cells also migrate to the local area where inflammation occurs due to phagocytosis of antigens, and chemokines and chemokine receptors play an important role in the migration of such dendritic cells. Dendritic cells migrate to the area where inflammation occurs and present antigens to T cells to activate T cells. Thereafter, information is transmitted from T cells to more immune-related cells, and the immune response expands (Non-Patent Document 6).

樹状細胞は、抗原提示細胞の中でも特に秀でた抗原提示能力を有しており、T細胞が活性化するためには非常に重要な役割を果たす。T細胞は自己免疫疾患をはじめとした多くの免疫疾患の発症や増悪に関与していることから、樹状細胞を制御することはすなわちT細胞の活性化を制御することであり、多くの免疫疾患の改善に繋がることが示唆されている(非特許文献6、7)。   Dendritic cells have a particularly excellent antigen-presenting ability among antigen-presenting cells, and play a very important role in order to activate T cells. Since T cells are involved in the onset and exacerbation of many immune diseases, including autoimmune diseases, controlling dendritic cells is the regulation of T cell activation. It has been suggested that this leads to improvement of the disease (Non-patent Documents 6 and 7).

また、ヒトXCR1に対するウサギ由来のポリクローナル抗体が、XCLによって惹起される正常口腔角化細胞及び口腔ガン細胞の細胞遊走を阻害する効果を発揮することが示されている(非特許文献8)。   Moreover, it has been shown that a rabbit-derived polyclonal antibody against human XCR1 exerts an effect of inhibiting cell migration of normal oral keratinocytes and oral cancer cells induced by XCL (Non-patent Document 8).

Yoshida T, Imai T, Kakizaki M, Nishimura M, Takagi S, Yoshie O. “Identification of Single C motif-1/lymphotactin receptor XCR1.” J. Biol. Chem. 273: 16551-16554 (1998))Yoshida T, Imai T, Kakizaki M, Nishimura M, Takagi S, Yoshie O. “Identification of Single C motif-1 / lymphotactin receptor XCR1.” J. Biol. Chem. 273: 16551-16554 (1998)) Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M. “The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells.” J Exp Med. 207: 1283-1292 (2010)Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M. “The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α + dendritic cells. ”J Exp Med. 207: 1283-1292 (2010) Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Guettler S, Hutloff A, Mages HW, Ranke K, Schaefer M, Jack RS, Henn V, Kroczek RA. “Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+T cells.” Immunity. 31: 823-833 (2009))Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Guettler S, Hutloff A, Mages HW, Ranke K, Schaefer M, Jack RS, Henn V, Kroczek RA. “Selective expression of the chemokine receptor XCR1 on cross- presenting dendritic cells determine cooperation with CD8 + T cells. ”Immunity. 31: 823-833 (2009)) Bachem A, Guettler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA. “Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+cells as homologues of mouse CD8+ dendritic cells.” J Exp Med. 207: 1273-1281 (2010)Bachem A, Guettler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA. “Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141 + cells as homologues of mouse CD8 + dendritic cells. ”J Exp Med. 207: 1273-1281 (2010) Kurts C, Robinson BW, Knolle PA. “Cross-priming in health and disease.” Nat Rev Immunol. 10: 403-414 (2010)Kurts C, Robinson BW, Knolle PA. “Cross-priming in health and disease.” Nat Rev Immunol. 10: 403-414 (2010) Cravens PD, Lipsky PE. “Dendritic cells, chemokine receptors and autoimmune inflammatory diseases.” Immunol Cell Biol. 80: 497-505 (2002)Cravens PD, Lipsky PE. “Dendritic cells, chemokine receptors and autoimmune inflammatory diseases.” Immunol Cell Biol. 80: 497-505 (2002) Waldner H. “The role of innate immune responses in autoimmune disease development.” Autoimmun. Rev. 8: 400-404 (2009)Waldner H. “The role of innate immune responses in autoimmune disease development.” Autoimmun. Rev. 8: 400-404 (2009) Khurram SA, Whawell SA, Bingle L, Murdoch C, McCabe BM, Farthing PM. “Functional expression of the chemokine receptor XCR1 on oral epithelial cells.” J Pathol. 221: 153-63 (2010)Khurram SA, Whawell SA, Bingle L, Murdoch C, McCabe BM, Farthing PM. “Functional expression of the chemokine receptor XCR1 on oral epithelial cells.” J Pathol. 221: 153-63 (2010)

これまで、樹状細胞が免疫疾患の発症、増悪等に関与するという知見が疾患の動物モデルを用いて蓄積されてきた。しかしながら、多くの免疫疾患に対して、未だ有効な治療方法も予防方法も開発されていないのが現状である。また、細胞遊走を阻害する効果を有するヒトXCR1に対する抗体が知られているものの(非特許文献8)、かかる抗体はウサギ由来のポリクローナル抗体であるため、医薬品としてただちに臨床に適用できるものとは言い難い。また、当該文献には、斯かる抗体が樹状細胞の細胞遊走を阻害することについては記載も示唆もされておらず、免疫疾患の治療又は予防に有効であることは予測すらできない。   Until now, the knowledge that dendritic cells are involved in the onset and exacerbation of immune diseases has been accumulated using animal models of diseases. However, at present, no effective treatment or prevention method has been developed for many immune diseases. In addition, although an antibody against human XCR1 having an effect of inhibiting cell migration is known (Non-patent Document 8), since such an antibody is a rabbit-derived polyclonal antibody, it is said that it can be immediately applied as a pharmaceutical to clinical practice. hard. In addition, the document does not describe or suggest that such an antibody inhibits cell migration of dendritic cells, and cannot be predicted to be effective for treatment or prevention of immune diseases.

本発明の課題は、ヒトXCR1に選択的に結合するモノクローナル抗体を提供すること、好ましくはヒトXCR1に選択的に結合し、細胞遊走を阻害する作用を有するモノクローナル抗体を提供すること、さらに好ましくは上記作用に基づいて免疫疾患、特に皮膚の免疫疾患の治療又は予防に有効な抗体を提供することである。   An object of the present invention is to provide a monoclonal antibody that selectively binds to human XCR1, preferably to provide a monoclonal antibody that selectively binds to human XCR1 and has an action of inhibiting cell migration, more preferably Based on the above action, it is to provide an antibody effective for the treatment or prevention of immune diseases, particularly skin immune diseases.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、ヒトXCR1に対して結合する抗体を開発し、当該抗体が、細胞遊走を阻害する作用を有し、樹状細胞の細胞遊走に関与する、例えば皮膚免疫疾患といった免疫疾患の治療又は予防に対して顕著な効果を有することを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have developed an antibody that binds to human XCR1, and the antibody has an action of inhibiting cell migration, and is a dendritic cell. It has been found that it has a remarkable effect on the treatment or prevention of immune diseases such as skin immune diseases involved in migration.

以下、本明細書において、上記抗体を単に「抗体」、「本発明に係る抗体」または「抗ヒトXCR1抗体」と称することがある。   Hereinafter, in the present specification, the antibody may be simply referred to as “antibody”, “antibody according to the present invention”, or “anti-human XCR1 antibody”.

本発明に係る抗体は、ヒトXCR1と結合する。本発明に係る抗体には、ヒトXCR1とヒトXCL1との間の結合を阻害する活性を有する抗体も包含され、これはヒトXCR1-ヒトXCL1結合阻害剤に配合する有効成分としての利用可能性を有している。   The antibody according to the present invention binds to human XCR1. The antibody according to the present invention also includes an antibody having an activity of inhibiting the binding between human XCR1 and human XCL1, which has an applicability as an active ingredient to be incorporated into a human XCR1-human XCL1 binding inhibitor. Have.

本発明に係る抗体には、細胞、特に樹状細胞の細胞遊走を好適に阻害する活性を有する抗体も包含され、このような抗体は細胞遊走阻害剤、特に樹状細胞遊走阻害剤に配合する有効成分としての利用可能性を有している。   The antibody according to the present invention also includes an antibody having an activity that suitably inhibits cell migration of cells, particularly dendritic cells, and such an antibody is incorporated in a cell migration inhibitor, particularly a dendritic cell migration inhibitor. It has applicability as an active ingredient.

また、本発明に係る抗体には、BDCA3(CD141ともいう)陽性細胞を特異的に認識するものも含まれることから、本発明に係る抗体を含む薬学的組成物は、細胞の遊走、特に樹状細胞の遊走が関与する免疫疾患の治療剤としての利用可能性を有しており、中でも遅延型過敏症、乾癬、類乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎、封入体筋炎、自己免疫性水疱症(天疱瘡、類天疱瘡、後天性表皮水疱症)、膿疱症、全身性強皮症、妊娠性疱疹、線状IgA水疱性皮膚症、円形脱毛症、尋常性白斑、膠原病(全身性エリテマトーデス、Sjoegren症候群、混合性結合組織病)に伴う皮膚疾患、アジソン病に伴う皮膚疾患、移植片対宿主病(GVHD)に伴う皮膚疾患、湿疹、蕁麻疹といった皮膚の免疫疾患の治療剤としての利用可能性を有している。   In addition, since the antibody according to the present invention includes those specifically recognizing BDCA3 (also referred to as CD141) positive cells, the pharmaceutical composition containing the antibody according to the present invention can be used for cell migration, particularly a tree. As a therapeutic agent for immune diseases involving the migration of dendritic cells, among which delayed type hypersensitivity, psoriasis, psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis Inclusion body myositis, autoimmune bullous disease (pemphigoid, pemphigoid, acquired epidermolysis bullosa), pustular, systemic scleroderma, gestational herpes zoster, linear IgA bullous dermatosis, alopecia areata, Skin disease associated with common vitiligo, collagen disease (systemic lupus erythematosus, Sjoegren syndrome, mixed connective tissue disease), skin disease associated with Addison disease, skin disease associated with graft-versus-host disease (GVHD), eczema, urticaria, etc. It has the potential to be used as a therapeutic agent for skin immune diseases That.

また、本発明に係る抗体には、これらの皮膚免疫疾患の他にも、I型糖尿病、糸球体腎炎、自己免疫性肝炎、多発性硬化症、強直性脊椎炎、甲状腺炎、移植片拒絶反応、クローン病、関節リウマチ、炎症性腸疾患、前部ブドウ膜炎、ヴェグナー肉芽腫、又はベーチェット病といった免疫疾患の治療剤としての利用可能性を有している。   In addition to these skin immune diseases, the antibodies according to the present invention include type I diabetes, glomerulonephritis, autoimmune hepatitis, multiple sclerosis, ankylosing spondylitis, thyroiditis, graft rejection It has applicability as a therapeutic agent for immune diseases such as Crohn's disease, rheumatoid arthritis, inflammatory bowel disease, anterior uveitis, Wegner's granuloma, or Behcet's disease.

図1は、ヒトXCR1-EGFP遺伝子を発現するB300.19細胞に対するマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)の反応性をFACSにて解析した結果を示す図である。FIG. 1 shows the results of FACS analysis of the reactivity of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) against B300.19 cells expressing the human XCR1-EGFP gene. 図2は、ヒトリンフォタクチンによって誘導されるヒトXCR1-EGFP遺伝子を発現するB300.19細胞の遊走に対するマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)の中和活性をケモタキシスアッセイにて解析した結果を示す図である。FIG. 2 shows a chemotaxis assay for the neutralizing activity of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) on migration of B300.19 cells expressing human XCR1-EGFP gene induced by human lymphotactin. It is a figure which shows the result analyzed by. 図3は、ヒトXCR1-EGFP遺伝子を発現するB300.19細胞に対するヒト型化抗ヒトXCR1抗体(HK1L2及びHK5L5)の反応性を、その親抗体であるマウス抗ヒトXCR1抗体(5G7)とキメラ化抗体の反応性とともに、FACSにて解析した結果を示す図である。FIG. 3 shows the reactivity of humanized anti-human XCR1 antibodies (HK1L2 and HK5L5) against B300.19 cells expressing the human XCR1-EGFP gene and chimerized with mouse anti-human XCR1 antibody (5G7), which is its parent antibody. It is a figure which shows the result analyzed by FACS with the reactivity of an antibody. 図4は、ヒトBDCA3陽性樹状細胞に対するマウス抗ヒトXCR1抗体(5G7)、ヒト型化抗ヒトXCR1抗体(HK1L2及びHK5L5)の反応性をFACSにて解析した結果を示す図である。FIG. 4 shows the results of FACS analysis of the reactivity of mouse anti-human XCR1 antibody (5G7) and humanized anti-human XCR1 antibodies (HK1L2 and HK5L5) against human BDCA3-positive dendritic cells. 図5は、ヒトリンフォタクチンによって誘導されるヒトXCR1-EGFP遺伝子を発現するB300.19細胞の遊走に対する、ヒト型化抗ヒトXCR1抗体(HK1L2及びHK5L5)の中和活性を、その親抗体であるマウス抗ヒトXCR1抗体(5G7)とキメラ化抗体の中和活性とともに、ケモタキシスアッセイにて解析した結果を示す図である。FIG. 5 shows the neutralizing activity of humanized anti-human XCR1 antibodies (HK1L2 and HK5L5) against the migration of B300.19 cells expressing the human XCR1-EGFP gene induced by human lymphotactin, and their parent antibodies. It is a figure which shows the result analyzed by the chemotaxis assay with the neutralizing activity of the mouse | mouth anti-human XCR1 antibody (5G7) which is and chimerized antibody. 図6は、ヒトリンフォタクチンによって誘導されるヒトBDCA3陽性樹状細胞の遊走に対するヒト型化抗ヒトXCR1抗体(HK1L2及びHK5L5)及びキメラ化抗体の中和活性を、アイソタイプコントロール抗体(ヒトIgG2,κ)とともに、経内皮遊走アッセイにて解析した結果を示す図である。FIG. 6 shows the neutralizing activity of humanized anti-human XCR1 antibody (HK1L2 and HK5L5) and chimerized antibody against human BDCA3-positive dendritic cell migration induced by human lymphotactin, and isotype control antibody (human IgG2). , κ) and the results of analysis by transendothelial migration assay. 図7は、本発明に係る抗体の重鎖CDR1-3及び軽鎖CDR1-3のアミノ酸配列を比較した図である。図には、重鎖CDR1-3及び軽鎖CDR1-3のアミノ酸配列を一般化した配列も併せて記載している。FIG. 7 is a diagram comparing the amino acid sequences of the heavy chain CDR1-3 and light chain CDR1-3 of the antibody according to the present invention. The figure also shows a generalized sequence of the amino acid sequences of heavy chain CDR1-3 and light chain CDR1-3. 図8は、本発明に係るマウス抗ヒトXCR1抗体(5G7)の遅延型接触性皮膚炎(DTH)モデルマウスに対する薬理作用を示す図である。(A)及び(B)は、DNFBによる惹起からそれぞれ24時間及び48時間後の耳の膨脹度(mm)を、本発明に係るマウス抗ヒトXCR1抗体(5G7)とコントロール抗体とで対比した結果を示す。FIG. 8 is a diagram showing the pharmacological action of the mouse anti-human XCR1 antibody (5G7) according to the present invention on delayed contact dermatitis (DTH) model mice. (A) and (B) are the results of comparing the degree of ear swelling (mm) 24 hours and 48 hours after DNFB, respectively, with the mouse anti-human XCR1 antibody (5G7) according to the present invention and the control antibody. Indicates. 図9は、本発明に係るマウス抗ヒトXCR1抗体(5G7)の各種ヒトケモカインレセプターへの結合特異性を示す図である。図中のグラフ横軸はphycoerythrin(PE)の蛍光強度を示す。FIG. 9 shows the binding specificity of the mouse anti-human XCR1 antibody (5G7) according to the present invention to various human chemokine receptors. The horizontal axis of the graph in the figure indicates the fluorescence intensity of phycoerythrin (PE). 図10は、本発明に係る抗体が結合するヒトXCR1のアミノ酸配列を示す。FIG. 10 shows the amino acid sequence of human XCR1 to which the antibody according to the present invention binds. 図11は、本発明に係る抗体を用いたヒトXCR1を発現する細胞に対する傷害性を示す図である。FIG. 11 is a diagram showing the cytotoxicity to cells expressing human XCR1 using the antibody according to the present invention. 図12は、本発明に係るマウス抗ヒトXCR1抗体(5G7)の細胞傷害性Tリンパ球アッセイの解析結果を示す図である。FIG. 12 is a diagram showing the analysis results of cytotoxic T lymphocyte assay of mouse anti-human XCR1 antibody (5G7) according to the present invention. 図13は、本発明に係るマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)のヒトとマウスのキメラXCR1を発現する細胞への反応性を示す図である。FIG. 13 shows the reactivity of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) according to the present invention to cells expressing human and mouse chimeric XCR1. 図14は、マウス抗ヒトXCR1抗体(2H6及び5G7)のヒトXCR1の細胞外ドメインへの結合サイトのペプチドイライザによるマッピングの解析結果を示す図である。FIG. 14 is a diagram showing the analysis results of the mapping of the binding site of the mouse anti-human XCR1 antibody (2H6 and 5G7) to the extracellular domain of human XCR1 using a peptide eraser. 図15は、抗ヒトXCR1ポリクローナル抗体のヒトXCR1の細胞外ドメインへの結合サイトのアラニン変異体によるマッピングの解析結果を示す図である。FIG. 15 is a diagram showing an analysis result of mapping of the anti-human XCR1 polyclonal antibody binding site to the extracellular domain of human XCR1 by an alanine mutant. 図16は、マウス抗ヒトXCR1抗体(2H6)のヒトXCR1の細胞外ドメインへの結合サイトのアラニン変異体によるマッピングの解析結果を示す図である。FIG. 16 is a diagram showing an analysis result of mapping of the binding site of the mouse anti-human XCR1 antibody (2H6) to the extracellular domain of human XCR1 by an alanine mutant. 図17は、マウス抗ヒトXCR1抗体(5G7)のヒトXCR1の細胞外ドメインへの結合サイトのアラニン変異体によるマッピングの解析結果を示す図である。FIG. 17 is a diagram showing an analysis result of mapping of the binding site of the mouse anti-human XCR1 antibody (5G7) to the extracellular domain of human XCR1 by an alanine mutant. 図18は、マウス抗ヒトXCR1抗体(11H2)のヒトXCR1の細胞外ドメインへの結合サイトのアラニン変異体によるマッピングの解析結果を示す図である。FIG. 18 is a diagram showing an analysis result of mapping of the binding site of the mouse anti-human XCR1 antibody (11H2) to the extracellular domain of human XCR1 by an alanine mutant. 図19は、ヒト型化抗ヒトXCR1抗体(HK1L2)のヒトXCR1の細胞外ドメインへの結合サイトのアラニン変異体によるマッピングの解析結果を示す図である。FIG. 19 is a diagram showing an analysis result of mapping of the binding site of the humanized anti-human XCR1 antibody (HK1L2) to the extracellular domain of human XCR1 by an alanine mutant. 図20は、ヒト型化抗ヒトXCR1抗体(HK5L5)のヒトXCR1の細胞外ドメインへの結合サイトのアラニン変異体によるマッピングの解析結果を示す図である。FIG. 20 is a diagram showing an analysis result of mapping of the binding site of the humanized anti-human XCR1 antibody (HK5L5) to the extracellular domain of human XCR1 by an alanine mutant. 図21は、ヒトXCR1を発現する細胞に対するマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)の結合における競合結果を示す図である。FIG. 21 shows the results of competition in the binding of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) to cells that express human XCR1. 図22は、マウス抗XCR1モノクローナル抗体(5G7)及び市販のヤギ抗ヒトXCR1ポリクローナル抗体の各種ヒトケモカインレセプターへの結合特異性を示す図である。図中のグラフ横軸はphycoerythrin(PE)の蛍光強度を示す。FIG. 22 shows the binding specificity of mouse anti-XCR1 monoclonal antibody (5G7) and commercially available goat anti-human XCR1 polyclonal antibody to various human chemokine receptors. The horizontal axis of the graph in the figure indicates the fluorescence intensity of phycoerythrin (PE). 図23は、マウス抗XCR1モノクローナル抗体(5G7)及びヒト型化抗ヒトXCR1(HK1L2及びHK5L5)の各種ヒトケモカインレセプターへの結合特異性を示す図である。図中のグラフ横軸はphycoerythrin(PE)の蛍光強度を示す。FIG. 23 shows the binding specificity of mouse anti-XCR1 monoclonal antibody (5G7) and humanized anti-human XCR1 (HK1L2 and HK5L5) to various human chemokine receptors. The horizontal axis of the graph in the figure indicates the fluorescence intensity of phycoerythrin (PE). 図24は、本発明に係るマウス抗ヒトXCR1抗体(5G7)のMycobacterium butyricumによって惹起された接触性皮膚炎(DTH)モデルマウスに対する薬理効果を示す図である。FIG. 24 is a diagram showing the pharmacological effect of mouse anti-human XCR1 antibody (5G7) according to the present invention on contact dermatitis (DTH) model mice induced by Mycobacterium butyricum. 図25は、本発明に係るマウス抗ヒトXCR1抗体(5G7)の実験的自己免疫性脳脊髄炎(EAE)による多発性硬化症モデルマウスに対する薬理効果を示す図である。FIG. 25 is a diagram showing the pharmacological effect of the mouse anti-human XCR1 antibody (5G7) according to the present invention on the multiple sclerosis model mouse caused by experimental autoimmune encephalomyelitis (EAE). 図26は、本発明に係るマウス抗ヒトXCR1抗体のリガンド競合結合試験の解析結果を示す図である。FIG. 26 is a diagram showing an analysis result of a ligand competitive binding test of a mouse anti-human XCR1 antibody according to the present invention.

本発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。   Various techniques used for carrying out the present invention can be easily and surely implemented by those skilled in the art based on known documents and the like, except for a technique that clearly indicates the source.

例えば、遺伝子工学及び分子生物学的技術であれば、Sambrook and Russell, "Molecular Cloning A LABORATORY MANUAL”, Cold Spring Harbor Laboratory Press, New York, (2001); Ausubel, F. M. et al. “Current Protocols in Molecular Biology”, John Wiley & Sons, New York, .NY等の文献を参照すればよい。   For example, in genetic engineering and molecular biology techniques, Sambrook and Russell, “Molecular Cloning A LABORATORY MANUAL”, Cold Spring Harbor Laboratory Press, New York, (2001); Ausubel, FM et al. “Current Protocols in Molecular Biology ”, John Wiley & Sons, New York,. Refer to literature such as NY.

また、抗体工学的技術であれば、Kabat et al., ”Sequences of Proteins of Immunological Interest, ”U.S.Department of Health and human Services,(1983), Konterman and Duebel, “Antibody Engineering”, Springer等の文献を参照すればよい。   Moreover, as for antibody engineering techniques, Kabat et al., “Sequences of Proteins of Immunological Interest,” U.S. References such as Department of Health and Human Services, (1983), Konterman and Duebel, “Antibody Engineering”, Springer, etc. may be referred to.

用語の説明
用語「核酸」とは、たとえばリボヌクレオチド、デオキシリボヌクレオチド、またはいずれかのヌクレオチドの修飾された形態を含む。核酸は、一本鎖または二本鎖であることができ、ポリヌクレオチドまたはオリゴヌクレオチドであることもできる。
Terminology The term “nucleic acid” includes, for example, ribonucleotides, deoxyribonucleotides, or modified forms of either nucleotide. The nucleic acid can be single-stranded or double-stranded, and can also be a polynucleotide or an oligonucleotide.

用語「タンパク質」とは、2以上のアミノ酸がペプチド結合によって結合した化合物を意味する。   The term “protein” means a compound in which two or more amino acids are linked by peptide bonds.

用語「モノクローナル抗体」とは、実質的に均一な抗体の集団から得られた抗体をいう。すなわち、該集団に含まれるそれぞれの抗体は微量に存在し得る天然に生じる突然変異を除いて同一である。モノクローナル抗体は高度に特異的であり、単一の抗原性部位に対して向けられる。さらに、異なる決定基(エピトープ)に対して向けられた異なる抗体を含むポリクローナル抗体調製物とは対照的に、各モノクローナル抗体は抗原上の単一決定基に対して向けられる。それらの特異性に加えて、モノクローナル抗体は、それらが他の抗体によって汚染されずに合成できる点で有利である。修飾語「モノクローナル」は、実質的に均一な抗体の集団から得られた抗体の特徴を示し、いずれかの特定の方法による抗体の生産を必要とすると解釈されるべきではない。   The term “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies. That is, each antibody contained in the population is identical except for naturally occurring mutations that may be present in trace amounts. Monoclonal antibodies are highly specific and are directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations that contain different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, monoclonal antibodies are advantageous in that they can be synthesized without being contaminated by other antibodies. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.

例えば、本発明に従って使用すべきモノクローナル抗体はKoehler G, Milstein C. “Continuous cultures of fused cells secreting antibody of predefined specificity.” Nature. 256: 495-7 (1975)によって最初に記載されたハイブリドーマ方法によって作成できるか、あるいは組換えDNA方法によって作成することができる(米国特許第4816567号参照)。   For example, monoclonal antibodies to be used in accordance with the present invention are prepared by the hybridoma method first described by Koehler G, Milstein C. “Continuous cultures of fused cells secreting antibody of predefined specificity.” Nature. 256: 495-7 (1975). Or can be made by recombinant DNA methods (see US Pat. No. 4,816,567).

また、”モノクローナル抗体”は、例えば、Clackson T, Hoogenboom HR, Griffiths AD, Winter G. “Making antibody fragments using phage display libraries.” Nature. 352: 624-8 (1991)又はMarks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. “By-passing immunization. “Human antibodies from V-gene libraries displayed on phage.” J Mol Biol. 222: 581-97 (1991)に記載された技術を用いてファージー抗体ライブラリーから単離することもできる。   In addition, “monoclonal antibody” is exemplified by Clackson T, Hoogenboom HR, Griffiths AD, Winter G. “Making antibody fragments using phage display libraries.” Nature. 352: 624-8 (1991) or Marks JD, Hoogenboom HR, Bonnert. TP, McCafferty J, Griffiths AD, Winter G. “By-passing immunization.“ Human antibodies from V-gene libraries displayed on phage. ”J Mol Biol. 222: 581-97 (1991) It can also be isolated from a phage antibody library.

アミノ酸配列又は塩基配列の“同一性”とは、2以上の対比可能なアミノ酸配列又は塩基配列の、お互いに対する同一のアミノ酸配列又は塩基配列の程度をいう。従って、ある2つのアミノ酸配列又は塩基配列の同一性が高いほど、それらの配列の同一性または類似性は高い。アミノ酸配列又は塩基配列の同一性のレベルは、例えば、配列分析用ツールであるFASTAを用い、デフォルトパラメーターを用いて決定される。   “Identity” of amino acid sequences or base sequences refers to the degree of two or more comparable amino acid sequences or base sequences that are identical to each other. Therefore, the higher the identity of a certain two amino acid sequences or base sequences, the higher the identity or similarity of those sequences. The level of amino acid sequence or base sequence identity is determined, for example, using FASTA, a sequence analysis tool, using default parameters.

若しくは、KarlinおよびAltschulによるアルゴリズムBLAST(Karlin S, Altschul SF. “Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes” Proc. Natl Acad Sci U S A. 87: 2264-2268 (1990)、Karlin S, Altschul SF.” Applications and statistics for multiple high-scoring segments in molecular sequences.” Natl Acad Sci U S A. 90: 5873-7 (1993))を用いて決定できる。このようなBLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. “Basic local alignment search tool.” J Mol Biol. 215: 403-10 (1990))。   Alternatively, the algorithm BLAST by Karlin and Altschul (Karlin S, Altschul SF. “Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes” Proc. Natl Acad Sci US A. 87: 2264-2268 (1990), Karlin S, Altschul SF. “Applications and statistics for multiple high-scoring segments in molecular sequences.” Natl Acad Sci US A. 90: 5873-7 (1993)). Programs called BLASTN and BLASTX based on such BLAST algorithms have been developed (Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. “Basic local alignment search tool.” J Mol Biol. 215: 403-10 (1990)).

例えば、塩基配列を解析するときには、BLASTNを用いればよく、パラメーターとしては、例えばscore= 100、wordlength= 12とすればよい。   For example, when analyzing a base sequence, BLASTN may be used, and as parameters, for example, score = 100 and wordlength = 12.

また、アミノ酸配列を解析する場合はBLASTXを用いればよく、パラメーターとしては、例えば、score= 50、wordlength= 3とすればよい。   Further, when analyzing an amino acid sequence, BLASTX may be used, and as parameters, for example, score = 50 and wordlength = 3 may be used.

BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いればよい。これらの解析方法の具体的な手法は公知であり、National Center of Biotechnology Information(NCBI)のウエブサイト(http://www.ncbi.nlm.nih.gov/)を参照すればよい。   When using BLAST and Gapped BLAST programs, the default parameters of each program may be used. Specific methods of these analysis methods are known, and the National Center of Biotechnology Information (NCBI) website (http://www.ncbi.nlm.nih.gov/) may be referred to.

抗ヒトXCR1抗体
本発明に係る抗体は、単離された抗体である。
Anti-human XCR1 antibody The antibody according to the present invention is an isolated antibody.

本発明に係る抗体は、ヒトXCR1に結合する。なお、ヒトXCR1のアミノ酸配列は、NCBI Reference Sequence: NP_001019815.1又はNP_005274.1にて示されるアミノ酸配列である。これらのアミノ酸配列はNCBIのウエブサイト(それぞれ、http://www.ncbi.nlm.nih.gov/protein/NP_001019815.1、又はhttp://www.ncbi.nlm.nih.gov/protein/NP_005274.1)を参照すればよい。   The antibody according to the present invention binds to human XCR1. The amino acid sequence of human XCR1 is the amino acid sequence represented by NCBI Reference Sequence: NP_001019815.1 or NP_005274.1. These amino acid sequences are available on the NCBI website (http://www.ncbi.nlm.nih.gov/protein/NP_001019815.1, or http://www.ncbi.nlm.nih.gov/protein/NP_005274, respectively). Refer to .1).

具体的な本発明に係る第1の態様の抗体は、
下記の(A)又は(a)の重鎖CDR1、
下記の(B)又は(b)の重鎖CDR2及び
下記の(C)又は(c)の重鎖CDR3
を含む重鎖可変領域と、
下記の(D)又は(d)の軽鎖CDR1、
下記の(E)又は(e)の軽鎖CDR2及び
下記の(F)又は(f)の軽鎖CDR3
を含む軽鎖可変領域とを含む抗体である。
The specific antibody of the first aspect according to the present invention is:
(A) or (a) heavy chain CDR1,
(B) or (b) heavy chain CDR2 below and (C) or (c) heavy chain CDR3 below
A heavy chain variable region comprising:
(D) or (d) light chain CDR1,
(E) or (e) light chain CDR2 below and (F) or (f) light chain CDR3 below
And a light chain variable region.

(A)配列番号53に示されるアミノ酸配列からなる重鎖CDR1、
(B)配列番号54に示されるアミノ酸配列からなる重鎖CDR2、
(C)配列番号55に示されるアミノ酸配列からなる重鎖CDR3;
(D)配列番号56に示されるアミノ酸配列からなる軽鎖CDR1、
(E)配列番号57に示されるアミノ酸配列からなる軽鎖CDR2、
(F)配列番号58に示されるアミノ酸配列からなる軽鎖CDR3。
(A) heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 53,
(B) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 54,
(C) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 55;
(D) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 56,
(E) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 57,
(F) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 58.

(a)配列番号41に示されるアミノ酸配列からなる重鎖CDR1、
(b)配列番号42に示されるアミノ酸配列からなる重鎖CDR2、
(c)配列番号43に示されるアミノ酸配列からなる重鎖CDR3;
(d)配列番号44に示されるアミノ酸配列からなる軽鎖CDR1、
(e)配列番号45に示されるアミノ酸配列からなる軽鎖CDR2、
(f)配列番号46に示されるアミノ酸配列からなる軽鎖CDR3。
(a) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 41,
(b) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 42,
(c) heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 43;
(d) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 44,
(e) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 45,
(f) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 46.

本発明に係る抗体にて規定する用語「CDR」とは、Complementarity Determining Regionの略であり、相補性決定領域とも称される。CDRとは、イムノグロブリンの可変領域に存在する領域であり、抗体が有する抗原への特異的な結合に深く関与する領域である。そして、「軽鎖CDR」とはイムノグロブリンの軽鎖の可変領域に存在するCDRであり、「重鎖CDR」とはイムノグロブリンの重鎖の可変領域に存在するCDRのことを意味する。 The term "CDR," as defined in the antibody according to the present invention stands for C omplementarity D etermining R egion, also called complementarity determining regions. CDR is a region present in the variable region of an immunoglobulin, and is a region that is deeply involved in specific binding to an antigen possessed by an antibody. The “light chain CDR” is a CDR present in the variable region of an immunoglobulin light chain, and the “heavy chain CDR” refers to a CDR present in the variable region of an immunoglobulin heavy chain.

また「可変領域」とは、上述したCDR1〜CDR3(以下、単に「CDRs1-3」という)を含む領域のことを意味する。これらのCDRs1-3の配置順序は特に限定はされないが、好ましくは、N末端側からC末端側の方向に、CDR1、CDR2、及びCDR3の順か、若しくはこの逆の順に、連続又は後述するフレームワーク領域(FR)と称される他のアミノ酸配列を介して、配置された領域を意味する。そして「重鎖可変領域」とは、上述の重鎖CDRs1-3が配置された領域であり、「軽鎖可変領域」とは、上述の軽鎖CDRs1-3が配置された領域である。   Further, the “variable region” means a region including the above-described CDR1 to CDR3 (hereinafter simply referred to as “CDRs1-3”). The arrangement order of these CDRs1-3 is not particularly limited, but preferably, in the direction from the N-terminal side to the C-terminal side, in the order of CDR1, CDR2, and CDR3, or in the reverse order, frames that are continuous or described later It means a region arranged through another amino acid sequence called a work region (FR). The “heavy chain variable region” is a region in which the above-described heavy chain CDRs 1-3 is disposed, and the “light chain variable region” is a region in which the above-described light chain CDRs 1-3 is disposed.

各可変領域の上記CDR1-3以外の領域は、上述するようにフレームワーク領域(FR)と称される。特に可変領域のN末端と上記CDR1との間の領域をFR1、CDR1とCDR2との間の領域をFR2、CDR2とCDR3との間の領域をFR3、CDR3と可変領域のC末端との間をFR4とそれぞれ定義される。   The region other than the CDR1-3 in each variable region is referred to as a framework region (FR) as described above. In particular, the region between the N-terminus of the variable region and the CDR1 is FR1, the region between CDR1 and CDR2 is FR2, the region between CDR2 and CDR3 is FR3, and the region between CDR3 and the C-terminus of the variable region Each is defined as FR4.

FRは、上述した抗原認識配列として特に重要なCDRs1-3を繋ぐリンカー配列としての機能も兼ね備えており、可変領域全体の立体構造形成に寄与する領域である。   FR also has a function as a linker sequence that connects CDRs1-3, which is particularly important as the antigen recognition sequence described above, and is a region that contributes to the formation of the three-dimensional structure of the entire variable region.

上述の本発明に係る第1の態様の好ましい抗体は、
下記の(g)、下記の(m)又は上記の(a)の何れか1つの重鎖CDR1、
下記の(h)、下記の(n)又は上記の(b)の何れか1つの重鎖CDR2、及び
下記の(i)、下記の(o)又は上記の(c)の何れか1つの重鎖CDR3
を含む重鎖可変領域と、
下記の(j)、下記の(p)又は上記の(d)の何れか1つの軽鎖CDR1、
下記の(k)、下記の(q)又は上記の(e)の何れか1つの軽鎖CDR2、及び
下記の(l)、下記の(r)又は上記の(f)の何れか1つの軽鎖CDR3
を含む軽鎖可変領域とを含む抗体が挙げられる。
The preferred antibody of the first aspect according to the present invention described above is
The following (g), the following (m) or any one of the above heavy chain CDR1, (a),
The following (h), the following (n), or the heavy chain CDR2 of any one of the above (b), and the following (i), the following (o), or the heavy chain of any one of the above (c) Chain CDR3
A heavy chain variable region comprising:
The light chain CDR1 of any one of the following (j), the following (p) or the above (d),
The light chain CDR2 of any one of the following (k), the following (q) or the above (e), and the light chain any one of the following (l), the following (r) or the above (f) Chain CDR3
And an antibody comprising a light chain variable region comprising

(g)配列番号17に示されるアミノ酸配列からなる重鎖CDR1、
(h)配列番号18に示されるアミノ酸配列からなる重鎖CDR2、
(i)配列番号19に示されるアミノ酸配列からなる重鎖CDR3;
(j)配列番号20に示されるアミノ酸配列からなる軽鎖CDR1、
(k)配列番号21に示されるアミノ酸配列からなる軽鎖CDR2、
(l)配列番号22に示されるアミノ酸配列からなる軽鎖CDR3;
(g) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 17,
(h) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 18,
(i) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 19;
(j) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 20,
(k) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 21,
(l) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 22;

(m)配列番号29に示されるアミノ酸配列からなる重鎖CDR1、
(n)配列番号30に示されるアミノ酸配列からなる重鎖CDR2、
(o)配列番号31に示されるアミノ酸配列からなる重鎖CDR3;
(p)配列番号32に示されるアミノ酸配列からなる軽鎖CDR1、
(q)配列番号33に示されるアミノ酸配列からなる軽鎖CDR2、
(r)配列番号34に示されるアミノ酸配列からなる軽鎖CDR3。
(m) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 29,
(n) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 30,
(o) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 31;
(p) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 32,
(q) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 33,
(r) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 34.

なお、(i)の重鎖CDR3と、(o)の重鎖CDR3は同一のアミノ酸配列からなる。   The heavy chain CDR3 in (i) and the heavy chain CDR3 in (o) have the same amino acid sequence.

本発明に係る第2の態様の抗体は、
上記(A)-(C)に示す重鎖CDRs1-3を含む重鎖可変領域又は
上記(a)-(c)に示す重鎖CDRs1-3を含む重鎖可変領域と、
上記(D)-(F)に示す軽鎖CDRs1-3を含む軽鎖可変領域又は
上記(d)-(f)に示す軽鎖CDRs1-3を含む軽鎖可変領域と
を含む抗体である。
The antibody of the second aspect according to the present invention is:
A heavy chain variable region comprising the heavy chain CDRs1-3 shown in the above (A)-(C) or a heavy chain variable region comprising the heavy chain CDRs1-3 shown in the above (a)-(c);
A light chain variable region comprising the light chain CDRs1-3 shown in (D)-(F) above or a light chain variable region containing the light chain CDRs1-3 shown in (d)-(f) above.

第2の態様のより好ましい抗体は、
上記(g)-(i)に示す重鎖CDRs1-3を含む重鎖可変領域、
上記(m)-(o)に示す重鎖CDRs1-3を含む重鎖可変領域、又は
上記(a)-(c)に示す重鎖CDRs1-3を含む重鎖可変領域
の何れか1つの重鎖可変領域と、
上記(j)-(l)に示す軽鎖CDRs1-3を含む軽鎖可変領域、
上記(p)-(r)に示す軽鎖CDRs1-3を含む軽鎖可変領域、又は
上記(d)-(f)に示す軽鎖CDRs1-3を含む軽鎖可変領域
の何れか1つの軽鎖可変領域
とを含む抗体である。
More preferred antibodies of the second aspect are:
A heavy chain variable region comprising the heavy chain CDRs1-3 shown in (g)-(i) above,
The heavy chain variable region containing the heavy chain CDRs1-3 shown in (m)-(o) above or the heavy chain variable region containing the heavy chain CDRs1-3 shown in (a)-(c) above A chain variable region;
A light chain variable region comprising the light chain CDRs 1-3 shown in (j)-(l) above,
The light chain variable region containing the light chain CDRs1-3 shown in (p)-(r) above, or the light chain variable region containing the light chain CDRs1-3 shown in (d)-(f) above. An antibody comprising a chain variable region.

本発明に係る第3の態様の抗体は、
上記(A)-(C)に示す重鎖CDRs1-3を含む重鎖可変領域と、
上記(D)-(F)に示す軽鎖CDRs1-3を含む軽鎖可変領域と
を含む抗体、又は
上記(a)-(c)に示す重鎖CDRs1-3を含む重鎖可変領域と、
上記(d)-(f)に示す軽鎖CDRs1-3を含む軽鎖可変領域と
を含む抗体である。
The antibody of the third aspect according to the present invention is:
A heavy chain variable region comprising the heavy chain CDRs 1-3 shown in (A)-(C) above,
An antibody comprising a light chain variable region comprising a light chain CDRs1-3 shown in (D)-(F) above, or a heavy chain variable region comprising a heavy chain CDRs1-3 shown in (a)-(c) above,
A light chain variable region comprising the light chain CDRs 1-3 shown in (d)-(f) above.

第3の態様のより好ましい抗体は、
上記(g)-(i)に示す重鎖CDRs1-3を含む重鎖可変領域と、
上記(j)-(l)に示す軽鎖CDRs1-3を含む軽鎖可変領域と
を含む抗体;
上記(m)-(o)に示す重鎖CDRs1-3を含む重鎖可変領域と、
上記(p)-(r)に示す軽鎖CDRs1-3を含む軽鎖可変領域と
を含む抗体;又は
上記(a)-(c)に示す重鎖CDRs1-3を含む重鎖可変領域と、
上記(d)-(f)に示す軽鎖CDRs1-3を含む軽鎖可変領域と
を含む抗体である。
More preferred antibodies of the third aspect are
A heavy chain variable region comprising the heavy chain CDRs 1-3 shown in (g)-(i) above,
An antibody comprising a light chain variable region comprising the light chain CDRs1-3 shown in (j)-(l) above;
A heavy chain variable region comprising the heavy chain CDRs 1-3 shown in (m)-(o) above,
An antibody comprising a light chain variable region comprising a light chain CDRs1-3 shown in (p)-(r) above; or a heavy chain variable region comprising a heavy chain CDRs1-3 shown in (a)-(c) above;
A light chain variable region comprising the light chain CDRs 1-3 shown in (d)-(f) above.

本発明に係る抗体の分子構造はイムノグロブリンに限らず、上述の重鎖可変領域及び軽鎖可変領域を有していればよい。具体的な構造としては、Fc領域を含まないF(ab’)2、イムノグロブリンをパパインで消化することによって得られるCH1領域及びCL領域と重鎖可変領域並び軽鎖可変領域からなるFab等;イムノグロブリンの定常領域を含まないFv等;そしてFvの単鎖型の抗体であるscFv等の分子構造が挙げられる。 The molecular structure of the antibody according to the present invention is not limited to immunoglobulin, but may have the above-described heavy chain variable region and light chain variable region. Specific structures include F (ab ′) 2 that does not include an Fc region, a CH1 region obtained by digesting immunoglobulin with papain, a CL region, a Fab composed of a heavy chain variable region and a light chain variable region; Examples include molecular structures such as Fv that does not contain an immunoglobulin constant region; and scFv that is a single chain antibody of Fv.

また、これらの分子構造を組み合わせた多価化構造であってもよい。例えば、Fc領域と上記のscFv構造の2つとを組み合わせたscFv-Fc構造や定常領域のCH3ドメインと上記のscFv構造の2つとを組み合わせたminibodyと称される構造等のように、scFv構造を積み重ねる手法を採用することによって多価化が達成される。   Moreover, the multivalent structure which combined these molecular structures may be sufficient. For example, scFv structures such as scFv-Fc structure combining the Fc region and two of the above scFv structures, or a structure called minibody combining the CH3 domain of the constant region and the two of the above scFv structures, etc. Multiplying is achieved by employing a stacking approach.

用語「多価化」は、抗原結合部位を複数配置することであり、本発明の抗体においては、ヒトXCR1と結合する部位を複数配置することと同じ意味で用いられる。   The term “multivalentization” refers to arranging a plurality of antigen binding sites, and is used in the same meaning as arranging a plurality of sites binding to human XCR1 in the antibody of the present invention.

本発明に係る抗体は、上述した重鎖可変領域及び軽鎖可変領域に加えて、ヒト定常領域を有していてもよい。   The antibody according to the present invention may have a human constant region in addition to the above-described heavy chain variable region and light chain variable region.

イムノグロブリンにおいて、重鎖の「定常領域」はCH1、CH2、及びCH3と称される領域を含み、軽鎖の「定常領域」はCLと称される領域を含む。   In an immunoglobulin, the “constant region” of the heavy chain comprises regions designated CH1, CH2, and CH3, and the “constant region” of the light chain comprises a region designated CL.

このように、本発明に係る抗体が定常領域を有している場合、重鎖可変領域はCH1、CH2又はCH3のいずれかの少なくとも1つの領域と結合し、軽鎖可変領域はCLと結合していることが好ましい。さらに、重鎖可変領域はCH1と直接結合していることが好ましい。   Thus, when the antibody according to the present invention has a constant region, the heavy chain variable region binds to at least one region of CH1, CH2 or CH3, and the light chain variable region binds to CL. It is preferable. Furthermore, the heavy chain variable region is preferably directly linked to CH1.

なお、本発明に係る抗体が有する定常領域は、ヒトイムノグロブリン由来の定常領域であり、好ましくはヒトイムノグロブリンIgG由来の定常領域である。ヒトイムノグロブリンIgGのサブタイプは、特に限定されることはなく、例えば下記に示すようなADCC活性、及びCDC活性等を抗体に付与するか否かに応じて適宜選択すればよい。   The constant region possessed by the antibody according to the present invention is a constant region derived from human immunoglobulin, preferably a constant region derived from human immunoglobulin IgG. The subtype of human immunoglobulin IgG is not particularly limited, and may be appropriately selected depending on, for example, whether ADCC activity, CDC activity, etc. as shown below are to be imparted to the antibody.

用語「ADCC活性」とは、抗体依存性細胞傷害活性(Antibody-Dependent Cellular Cytotoxicity)の略であり、抗体のFcドメインに特異的なレセプターを発現しているNK細胞等が抗体に結合し、このようなNK細胞等が抗体の近傍に存在する細胞に対して、傷害を与える活性である。また、用語「CDC活性」とは、補体依存性細胞傷害活性(Complement-Dependent Cytotoxicity)の略である。ヒトの場合、このようなADCC活性及び/又はCDC活性が高いIgGのサブタイプは、IgG1であり、これに対して、これらの活性が低いIgGのサブタイプはIgG2又はIgG4である。 The term "ADCC activity" is an abbreviation of antibody-dependent cellular cytotoxicity (A ntibody- D ependent C ellular C ytotoxicity), NK cells, etc. to the Fc domain of an antibody expressing specific receptors to antibodies It is an activity that binds and damages such NK cells and the like in the vicinity of the antibody. Further, the term "CDC activity" is an abbreviation of the complement dependent cytotoxicity (C omplement- D ependent C ytotoxicity) . In humans, such an IgG subtype with high ADCC activity and / or CDC activity is IgG1, whereas an IgG subtype with low activity is IgG2 or IgG4.

本発明に係る抗体には、ADCC活性及び/又はCDC活性を変化させる目的で、Fcドメインのアミノ酸残基に変異を導入してもよい。導入する変異は、特に限定されず公知の変異を導入すればよい。例えば、ADCC活性を上昇させる目的で、IgG1の定常領域に対して、S239D、I332E、S239D/I332E、S239D/I332E/A330L等(Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI. “Engineered antibody Fc variants with enhanced effector function.” Proc Natl Acad Sci U S A. 103: 4005-10 (2006).);S298A、K334A、S298A/K334A、S298A/E333A/K334A等(Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG. “High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.” J Biol Chem. 276: 6591-604 (2001))の変異導入を行えばよい。   In the antibody of the present invention, a mutation may be introduced into the amino acid residue of the Fc domain for the purpose of changing ADCC activity and / or CDC activity. The mutation to be introduced is not particularly limited, and a known mutation may be introduced. For example, for the purpose of increasing ADCC activity, S239D, I332E, S239D / I332E, S239D / I332E / A330L, etc. (Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L , Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI. “Engineered antibody Fc variants with enhanced effector function.” Proc Natl Acad Sci US A. 103: 4005-10 (2006 S298A, K334A, S298A / K334A, S298A / E333A / K334A, etc. (Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG. “High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.” J Biol Chem. 276: 6591-604 (2001)).

CDC活性を上昇させる変異として、例えば、S267E、H268F、S324T、S267E/H268F、S267E/S324T、H268F/S324T、S267E/H268F/S324T(Moore GL, Chen H, Karki S, Lazar GA. “Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions.” MAbs. 2:181-9 (2010))等の変異が挙げられる。   Examples of mutations that increase CDC activity include S267E, H268F, S324T, S267E / H268F, S267E / S324T, H268F / S324T, S267E / H268F / S324T (Moore GL, Chen H, Karki S, Lazar GA. “Engineered Fc variant Mutations such as antibodies with enhanced ability to recruit complement and mediate effector functions. ”MAbs. 2: 181-9 (2010)).

また、ADCC活性を下降させる目的で、公知の変異導入を採用すればよく、例えば、V234A/G237A(Cole MS, Anasetti C, Tso JY. “Human IgG2 variants of chimeric anti-CD3 are nonmitogenic to T cells” J Immunol. 159:3613-21 (1997))、H268Q/V309L/A330S/P331S (An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, Vitelli S, Zhao JZ, Lu P, Hua J, Gibson CR, Harvey BR, Montgomery D, Zaller D, Wang F, Strohl W. “IgG2m4, an engineered antibody isotype with reduced Fc function.” MAbs. 1:572-9 (2009))等の変異が挙げられる。   Furthermore, for the purpose of decreasing ADCC activity, a known mutation may be employed, for example, V234A / G237A (Cole MS, Anasetti C, Tso JY. “Human IgG2 variants of chimeric anti-CD3 are nonmitogenic to T cells”. J Immunol. 159: 3613-21 (1997)), H268Q / V309L / A330S / P331S (An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, Vitelli S, Zhao JZ, Lu P, Hua J , Gibson CR, Harvey BR, Montgomery D, Zaller D, Wang F, Strohl W. “IgG2m4, an engineered antibody isotype with reduced Fc function.” MAbs. 1: 572-9 (2009)).

なお、上述の変異導入対象となるアミノ酸の番号はEuナンバリング(Sequences of proteins of immunological interest, NIH Publication No.91-3242 を参照)に基づいている。   In addition, the number of the above-mentioned amino acid to be mutated is based on Eu numbering (see Sequences of proteins of immunological interest, NIH Publication No. 91-3242).

キメラ化抗体
本発明に係る抗体のうち、重鎖可変領域、及び軽鎖可変領域が、ヒト以外の生物由来のアミノ酸配列であり、定常領域のアミノ酸配列がヒト由来である抗体を、「キメラ化抗体」と定義する。
Chimerized antibody Among the antibodies according to the present invention, an antibody in which the heavy chain variable region and the light chain variable region are amino acid sequences derived from organisms other than humans, and the amino acid sequence of the constant region is derived from humans, is chimerized. It is defined as “antibody”.

本発明に係るキメラ化抗体の第一の態様として、配列番号13に示すアミノ酸配列を含む重鎖と、配列番号14に示す軽鎖を含むキメラ化抗体が挙げられる。   A first embodiment of the chimerized antibody according to the present invention includes a chimerized antibody comprising a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 13 and a light chain represented by SEQ ID NO: 14.

ここで、配列番号13に示すアミノ酸配列には、表5に示すように、重鎖可変領域に、上述の重鎖CDRs1-3のうち、配列番号17-19に示す重鎖CDRs1-3が配置されており、配列番号14に示すアミノ酸配列には、表5に示すように、軽鎖可変領域に、上述の軽鎖CDRs1-3のうち、配列番号20-22に示す軽鎖CDRs1-3が配置されている。   Here, in the amino acid sequence shown in SEQ ID NO: 13, as shown in Table 5, the heavy chain CDRs1-3 shown in SEQ ID NO: 17-19 among the heavy chain CDRs1-3 described above are arranged in the heavy chain variable region. In the amino acid sequence shown in SEQ ID NO: 14, as shown in Table 5, the light chain CDRs1-3 shown in SEQ ID NO: 20-22 among the above light chain CDRs1-3 are contained in the light chain variable region. Has been placed.

本発明に係るキメラ化抗体には、配列番号13に示すアミノ酸配列を含む重鎖、及び/又は、配列番号14に示すアミノ酸配列を含む軽鎖に、上記キメラ化抗体のヒトXCR1に対する結合能を失わない範囲で、変異が導入されてなる変異体が含まれる。   The chimerized antibody according to the present invention has the ability of the chimerized antibody to bind to human XCR1 on the heavy chain containing the amino acid sequence shown in SEQ ID NO: 13 and / or the light chain containing the amino acid sequence shown in SEQ ID NO: 14. Mutants in which mutations are introduced are included as long as they are not lost.

このような重鎖及び軽鎖の変異体は、それぞれ配列番号13及び14に示すアミノ酸配列のうち、可変領域のFR1〜FR4(以下、単に「FRs1-4」という)のいずれかの少なくとも一箇所に、若しくは定常領域の少なくとも一箇所に変異が導入されることが好ましい。   Such a heavy chain and light chain variant has at least one of variable regions FR1 to FR4 (hereinafter simply referred to as “FRs1-4”) of the amino acid sequences shown in SEQ ID NOs: 13 and 14, respectively. Alternatively, it is preferable that a mutation is introduced into at least one position of the constant region.

重鎖及び軽鎖に対する具体的な変異導入数は、共に特に限定はされないが、通常は変異前のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の同一性を有する変異体となるような変異導入数とすればよい。   The specific number of mutations introduced into the heavy and light chains is not particularly limited, but is usually 85% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% from the amino acid sequence before mutation. The number of mutation introductions may be such that it becomes a mutant having% or more identity.

ここでいう用語「変異導入」とは、置換、欠失、挿入等である。具体的な変異導入については、公知の方法を採用することができ、特に限定はされないが、例えば置換であれば保存的な置換技術を採用すればよい。用語「保存的な置換技術」とは、アミノ酸残基が類似の側鎖を有するアミノ酸残基に置換されることを意味する。   As used herein, the term “mutation introduction” includes substitution, deletion, insertion and the like. For specific mutagenesis, a known method can be employed, and is not particularly limited. For example, a conservative substitution technique may be employed for substitution. The term “conservative substitution technique” means that an amino acid residue is replaced with an amino acid residue having a similar side chain.

例えば、リジン、アルギニン、ヒスチジンといった塩基性側鎖を有するアミノ酸残基同士で置換されることが、保存的な置換にあたる。その他、アスパラギン酸、グルタミン酸といった酸性側鎖を有するアミノ酸残基;グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システインといった非帯電性極性側鎖を有するアミノ酸残基;アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファンといった非極性側鎖を有するアミノ酸残基;スレオニン、バリン、イソロイシンといったβ−分枝側鎖を有するアミノ酸残基、チロシン、フェニルアラニン、トリプトファン、ヒスチジンといった芳香族側鎖を有するアミノ酸残基同士での置換も同様に、保存的な置換にあたる。   For example, substitution with amino acid residues having basic side chains such as lysine, arginine, and histidine is a conservative substitution. In addition, amino acid residues having acidic side chains such as aspartic acid and glutamic acid; amino acid residues having non-charged polar side chains such as glycine, asparagine, glutamine, serine, threonine, tyrosine, and cysteine; alanine, valine, leucine, isoleucine, Amino acid residues with non-polar side chains such as proline, phenylalanine, methionine, and tryptophan; amino acid residues with β-branched side chains such as threonine, valine, and isoleucine, and aromatic side chains such as tyrosine, phenylalanine, tryptophan, and histidine Similarly, substitutions between amino acid residues are conservative substitutions.

ヒト型化抗体
本発明に係る抗体のうち、重鎖及び軽鎖可変領域に上述のCDRs1-3をそれぞれ含有し、FRs1-4がヒト由来のアミノ酸配列またはその変異体である抗体を「ヒト型化抗体」と定義する。
Humanized antibody Among the antibodies according to the present invention, an antibody comprising the above-mentioned CDRs1-3 in the heavy chain and light chain variable regions, respectively, wherein FRs1-4 is a human-derived amino acid sequence or a variant thereof is referred to as "human type". Defined antibody.

このようなヒト由来のアミノ酸配列を有するFRは特に限定はされず、公知の技術を基に決定すればよい。   The FR having such a human-derived amino acid sequence is not particularly limited, and may be determined based on a known technique.

例えば、完全なヒト型のFR、またはFRの準領域が挙げられ、好ましくはヒトの生殖細胞系配列由来のFRである。完全なヒト型のFRまたはFRの準領域の例として、例えばNCBIのウエブサイトには、現在知られているFRの配列が収載されているので、適宜参考すればよい。   For example, complete human FRs, or subregions of FRs, preferably FRs derived from human germline sequences. As an example of a complete human type FR or FR subregion, for example, the NCBI website contains currently known FR sequences, which may be referred to as appropriate.

ヒトの重鎖可変領域の配列は、以下に示すものに限定されるものではないが、例えばVH1-18、VH1-2、VH1-24、VH1-3、VH1-45、VH1-46、VH1-58、VH1-69、VH1-8、VH2-26、VH2-5、VH2-70、VH3-11、VH3-13、VH3-15、VH3-16、VH3-20、VH3-21、VH3-23、VH3-30、VH3-33、VH3-35、VH3-38、VH3-43、VH3-48、VH3-49、VH3-53、VH3-64、VH3-66、VH3-7、VH3-72、VH3-73、VH3-74、VH3-9、VH4-28、VH4-31、VH4-34、VH4-39、VH4-4、VH4-59、VH4-61、VH5-51、VH6-1、VH7-81等である。   The sequence of the human heavy chain variable region is not limited to those shown below, but for example, VH1-18, VH1-2, VH1-24, VH1-3, VH1-45, VH1-46, VH1- 58, VH1-69, VH1-8, VH2-26, VH2-5, VH2-70, VH3-11, VH3-13, VH3-15, VH3-16, VH3-20, VH3-21, VH3-23, VH3-30, VH3-33, VH3-35, VH3-38, VH3-43, VH3-48, VH3-49, VH3-53, VH3-64, VH3-66, VH3-7, VH3-72, VH3- 73, VH3-74, VH3-9, VH4-28, VH4-31, VH4-34, VH4-39, VH4-4, VH4-59, VH4-61, VH5-51, VH6-1, VH7-81, etc. It is.

ヒトの軽鎖可変領域の配列は、これだけに限定されるものではないが、例えばVL1-11、VL1-13、VL1-16、VL1-17、VL1-18、VL1-19、VL1-2、VL1-20、VL1-22、VL1-3、VL-4、VL1-5、VL1-7、VL1-9、VL2-1、VL2-11、VL2-13、VL2-14、VL2-15、VL2-17、VL2-19、VL2-6、VL2-7、VL-8、VL3-2、VL3-3、VL3-4、VL4-1、VL4-2、VL4-3、VL4-4、VL4-6、VL5-1、VL5-2、VL5-4、VL5-6等である。   The sequence of the human light chain variable region is not limited thereto, but for example, VL1-11, VL1-13, VL1-16, VL1-17, VL1-18, VL1-19, VL1-2, VL1 -20, VL1-22, VL1-3, VL-4, VL1-5, VL1-7, VL1-9, VL2-1, VL2-11, VL2-13, VL2-14, VL2-15, VL2-17 , VL2-19, VL2-6, VL2-7, VL-8, VL3-2, VL3-3, VL3-4, VL4-1, VL4-2, VL4-3, VL4-4, VL4-6, VL5 -1, VL5-2, VL5-4, VL5-6, etc.

完全なヒト型のFRは、これらの機能的生殖細胞系遺伝子から選択される。通常これらのFRは制限された数のアミノ酸の変更により互いに異なっている。これらのFRを本出願に記載のCDRと共に使用してもよい。上述のCDRと共に使用されるヒト型のFRの追加例は、限定はされないが、例えばKOL、NEWM、REI、EU、TUR、TEI、LAY、POMなどがある。これらのヒト型のFRの例は、Kabat, et. al. ”Sequences of Proteins of Immunological Interest”:US Department of Health AND human Services、NIH (1991) USA、又はWu TT, Kabat EA. “An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity.” J Exp Med. 132: 211-50(1970)等を参照すればよい。   The fully human FR is selected from these functional germline genes. Usually these FRs differ from each other by a limited number of amino acid changes. These FRs may be used with the CDRs described in this application. Additional examples of human-type FRs used with the CDRs described above include, but are not limited to, for example, KOL, NEWM, REI, EU, TUR, TEI, LAY, POM, and the like. Examples of these human-type FRs are Kabat, et. Al. “Sequences of Proteins of Immunological Interest”: US Department of Health AND human Services, NIH (1991) USA, or Wu TT, Kabat EA. “An analysis of The sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. ”J Exp Med. 132: 211-50 (1970).

本発明に係るヒト型化抗体の第1の態様として、配列番号60又は配列番号64の何れかに示すアミノ酸配列を含む重鎖可変領域と、配列番号68又は配列番号72の何れかに示す軽鎖可変領域とを含むヒト型化抗体が挙げられる。   As a first aspect of the humanized antibody according to the present invention, a heavy chain variable region comprising the amino acid sequence represented by either SEQ ID NO: 60 or SEQ ID NO: 64 and a light chain represented by either SEQ ID NO: 68 or SEQ ID NO: 72 are used. And a humanized antibody containing a chain variable region.

より好ましい態様としては、配列番号60に示すアミノ酸配列を含む重鎖可変領域と、配列番号68に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体、又は配列番号64に示すアミノ酸配列を含む重鎖可変領域と、配列番号72に示すアミノ酸配列を含む軽鎖可変領域とを含むヒト型化抗体である。   As a more preferred embodiment, an antibody comprising a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 60 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 68, or a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 64 A humanized antibody comprising a chain variable region and a light chain variable region comprising the amino acid sequence shown in SEQ ID NO: 72.

配列番号60及び配列番号64に示すアミノ酸配列には、それぞれ表11-1及び表12-1に示すように重鎖可変領域に上述の重鎖CDRs1-3のうち、配列番号17-19に示す重鎖CDRs1-3が配置されており、配列番号68及び配列番号72に示すアミノ酸配列には、それぞれ表13-1及び表14-1に示すように、軽鎖可変領域に上述の軽鎖CDRs1-3のうち、配列番号20-22に示す軽鎖CDRs1-3が配置されている。   The amino acid sequences shown in SEQ ID NO: 60 and SEQ ID NO: 64 are shown in SEQ ID NO: 17-19 among the above-mentioned heavy chain CDRs1-3 in the heavy chain variable region as shown in Table 11-1 and Table 12-1, respectively. Heavy chain CDRs 1-3 are arranged, and the amino acid sequences shown in SEQ ID NO: 68 and SEQ ID NO: 72 have the above light chain CDRs1 in the light chain variable region as shown in Table 13-1 and Table 14-1, respectively. -3, light chain CDRs1-3 shown in SEQ ID NO: 20-22 are arranged.

本発明に係るヒト型化抗体には、配列番号60又は配列番号64に示すアミノ酸配列を含む重鎖可変領域、及び/又は、配列番号68又は配列番号72に示すアミノ酸配列を含む軽鎖可変領域に、共にヒトXCR1に対する結合能を失わない範囲で変異が導入された変異体が含まれる。このような重鎖可変領域及び軽鎖可変領域の変異体は、それぞれのFRs1-4に変異が導入されてなるものであることが好ましい。   The humanized antibody according to the present invention includes a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 60 or SEQ ID NO: 64 and / or a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 68 or SEQ ID NO: 72 These include mutants into which mutations have been introduced to the extent that they do not lose their ability to bind to human XCR1. Such a mutant of the heavy chain variable region and the light chain variable region is preferably one obtained by introducing a mutation into each FRs1-4.

重鎖可変領域及び軽鎖可変領域の具体的な変異導入数は、いずれも特に限定はされないが、通常は変異前のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の同一性を有する変異体となるように変異すればよい。   The specific number of mutations introduced into the heavy chain variable region and the light chain variable region is not particularly limited, but is usually 85% or more, preferably 90% or more, more preferably 95% or more with the amino acid sequence before mutation. Most preferably, it may be mutated so as to be a mutant having 99% or more identity.

用語「変異導入」とは、置換、欠失、挿入等である。具体的な変異導入については、上述のキメラ化抗体と同様に、保存的な置換技術等を採用すればよい。   The term “mutation” includes substitution, deletion, insertion and the like. For specific mutagenesis, a conservative substitution technique or the like may be employed as in the above chimerized antibody.

更に、本発明に係るヒト型化抗体の第2の態様としてヒト定常領域を含む抗体が挙げられる。例えば、配列番号59又は63の何れかに示すアミノ酸配列を含む重鎖と、配列番号67又は71の何れかに示す軽鎖とを含むヒト型化抗体が挙げられる。   Furthermore, a second embodiment of the humanized antibody according to the present invention includes an antibody containing a human constant region. For example, a humanized antibody comprising a heavy chain comprising the amino acid sequence represented by either SEQ ID NO: 59 or 63 and a light chain represented by either SEQ ID NO: 67 or 71 can be mentioned.

より好ましい態様としては、配列番号59に示すアミノ酸配列を含む重鎖と、配列番号67に示すアミノ酸配列を含む軽鎖とを含むヒト型化抗体、又は配列番号63に示すアミノ酸配列を含む重鎖と、配列番号71に示すアミノ酸配列を含む軽鎖とを含むヒト型化抗体である。   As a more preferred embodiment, a humanized antibody comprising a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 59 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 67, or a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 63 And a humanized antibody comprising a light chain comprising the amino acid sequence shown in SEQ ID NO: 71.

ここで、配列番号59に示すアミノ酸配列は、表11-1に示すように、配列番号60に示す重鎖可変領域に相当するアミノ酸配列を含んでいることから、上述する重鎖CDRs1-3のうち、配列番号17-19に示す重鎖CDRs1-3が含まれる。また、配列番号67に示すアミノ酸配列は、表13-1に示すように配列番号68に示す軽鎖可変領域に相当するアミノ酸配列を含んでいることから、上述する軽鎖CDRs1-3のうち、配列番号20-22に示す軽鎖CDRs1-3が含まれる。   Here, as shown in Table 11-1, the amino acid sequence shown in SEQ ID NO: 59 contains the amino acid sequence corresponding to the heavy chain variable region shown in SEQ ID NO: 60. Of these, the heavy chain CDRs 1-3 shown in SEQ ID NOs: 17-19 are included. Further, since the amino acid sequence shown in SEQ ID NO: 67 contains the amino acid sequence corresponding to the light chain variable region shown in SEQ ID NO: 68 as shown in Table 13-1, among the light chain CDRs 1-3 described above, The light chain CDRs 1-3 shown in SEQ ID NOs: 20-22 are included.

これらの重鎖及び/又は軽鎖には、いずれもヒトXCR1に対する結合能を失わない範囲で変異が導入された変異体が含まれる。このような重鎖及び軽鎖の変異体は、FRs1-4又は定常領域に変異が導入されたものが好ましい。   These heavy chains and / or light chains include mutants into which mutations have been introduced to the extent that they do not lose their ability to bind to human XCR1. Such heavy and light chain mutants are preferably those in which mutations are introduced into FRs1-4 or the constant region.

重鎖及び軽鎖の具体的な変異導入数は、共に特に限定はされないが、通常は変異前のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の同一性を有する変異体となるように変異すればよい。   The specific number of mutations introduced into the heavy chain and the light chain is not particularly limited, but is usually 85% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% from the amino acid sequence before mutation. What is necessary is just to mutate | mutate so that it may become a variant which has more than% identity.

なお、用語「変異導入」とは、置換、欠失、挿入等である。具体的な変異導入については、上述のキメラ化抗体と同様に、保存的な置換技術等を採用すればよい。   The term “mutation introduction” includes substitution, deletion, insertion and the like. For specific mutagenesis, a conservative substitution technique or the like may be employed as in the above chimerized antibody.

抗体の機能
本発明に係る抗体は、ヒトXCR1と結合する。ここで、用語「結合」とは、少なくとも、タンパク質間の相互作用にて見られるような疎水性結合等の形式での結合を含む意味で用いられる。つまり、本発明に係る抗体は、少なくとも、ヒトXCR1と疎水性結合により結合するものであればよい。また、本発明に係る抗体とヒトXCR1は、一度結合した後に解離してもよいし、また解離しなくてもよい。
Antibody Function The antibody according to the present invention binds to human XCR1. Here, the term “bond” is used to include at least a bond in the form of a hydrophobic bond or the like as found in the interaction between proteins. That is, the antibody according to the present invention only needs to bind at least to human XCR1 through a hydrophobic bond. In addition, the antibody according to the present invention and human XCR1 may be dissociated after binding once or may not be dissociated.

本発明に係る抗体は、ヒトXCR1と特異的に結合することが好ましい。ここで、用語「特異的な結合」とは、選択的にヒトXCR1に結合することを意味し、ヒトXCR1以外の分子、特にヒトXCR1のホモログや、ヒトXCR1のオルソログといった、ヒトXCR1と構造的に類似する分子がヒトXCR1と共存している場合に、ヒトXCR1と優先的に結合することで説明される。   The antibody according to the present invention preferably specifically binds to human XCR1. Here, the term “specific binding” means selectively binding to human XCR1, and is structurally related to human XCR1, such as a molecule other than human XCR1, particularly a homolog of human XCR1 and an ortholog of human XCR1. This is explained by preferential binding to human XCR1 when a molecule similar to is coexisted with human XCR1.

なお、本発明に係る抗体が、ヒトXCR1と特異的に結合するということは、上述したヒトXCR1のホモログやオルソログとの結合が排除されるものではない。   The fact that the antibody according to the present invention specifically binds to human XCR1 does not exclude the binding of the above-mentioned human XCR1 homolog or ortholog.

このような本発明に係る抗体の、ヒトXCR1との結合の程度は、Kd値、Koff値、又はKon値といった反応速度定数でも評価される。なお、Kd値とは、Koff値をKon値で除して得られる値である。   The degree of binding of the antibody according to the present invention to human XCR1 is also evaluated by a reaction rate constant such as Kd value, Koff value, or Kon value. The Kd value is a value obtained by dividing the Koff value by the Kon value.

本発明に係る抗体のヒトXCR1との反応速度定数は特に限定されない。   The reaction rate constant of the antibody according to the present invention with human XCR1 is not particularly limited.

本発明に係る抗体は、ヒトXCR1の細胞外ドメインと結合する。具体的には、上述したNCBI Reference Sequence: NP_001019815.1又は、NP_005274.1に示すアミノ酸配列(図10)の細胞外ドメイン領域に相当する1-31、90-103、168-190、又は251-267番目のいずれかのアミノ酸領域と結合する。   The antibody according to the present invention binds to the extracellular domain of human XCR1. Specifically, 1-31, 90-103, 168-190, or 251-2 corresponding to the extracellular domain region of the amino acid sequence shown in NCBI Reference Sequence: NP_001019815.1 or NP_005274.1 (FIG. 10) described above. Binds to any amino acid region at position 267.

より好ましくは、配列番号91に示すアミノ酸配列のうち、8番目、11番目、12番目、13番目、14番目、16番目、17番目、22番目、23番目、176番目、及び177番目のアミノ酸からなる群より選択される少なくとも3個のアミノ酸と結合する。   More preferably, among the amino acid sequence shown in SEQ ID NO: 91, from the 8th, 11th, 12th, 13th, 14th, 16th, 17th, 22nd, 23rd, 176th, and 177th amino acids Binds to at least three amino acids selected from the group consisting of

上述の「少なくとも3個のアミノ酸」には、例えば3個以上のアミノ酸、4個以上のアミノ酸、5個以上のアミノ酸、6個以上のアミノ酸、7個以上のアミノ酸、8個以上のアミノ酸、9個以上のアミノ酸、10個以上のアミノ酸、又は11個のアミノ酸が含まれる。   The above “at least 3 amino acids” include, for example, 3 or more amino acids, 4 or more amino acids, 5 or more amino acids, 6 or more amino acids, 7 or more amino acids, 8 or more amino acids, 9 One or more amino acids, 10 or more amino acids, or 11 amino acids are included.

なお、本発明の用語「エピトープ」には、「抗原決定基」とも呼ばれ、「線状エピトープ」及び「不連続エピトープ」が含まれる。「線状エピトープ」とは、アミノ酸配列の一次構造を基に、斯かるアミノ酸配列の立体構造によらず、抗体によって認識されるエピトープを意味する。「不連続エピトープ」とは、アミノ酸配列の高次構造を基に、斯かるアミノ酸は配列の立体構造を基に認識されるエピトープを意味する。   The term “epitope” of the present invention is also called “antigenic determinant” and includes “linear epitope” and “discontinuous epitope”. “Linear epitope” means an epitope recognized by an antibody based on the primary structure of an amino acid sequence, regardless of the three-dimensional structure of the amino acid sequence. “Discontinuous epitope” means an epitope that is recognized based on the higher order structure of the amino acid sequence, and such amino acids are recognized based on the three-dimensional structure of the sequence.

本発明に係る抗体のエピトープは、当業者であれば、本発明の実施例に記載された方法を適宜改変することによって決定することができる。   The epitope of the antibody according to the present invention can be determined by those skilled in the art by appropriately modifying the methods described in the examples of the present invention.

例えば、ヒトXCR1のアミノ酸配列のうち、細胞外領域となる所望のアミノ酸配列からなるタンパク質又はペプチドを公知の方法によって合成し、斯かるタンパク質又はペプチドと抗体との結合を、公知の方法を用いて確認することでエピトープを決定することができる。   For example, among the amino acid sequences of human XCR1, a protein or peptide having a desired amino acid sequence that is an extracellular region is synthesized by a known method, and the binding between the protein or peptide and an antibody is performed using a known method. By confirming, the epitope can be determined.

そのほかに、ヒトXCR1のアミノ酸配列のうち、所望のアミノ酸に対して適当な変異を施した変異体を公知の方法を用いて作製し、斯かる変異体と抗体との結合が低下するかどうか確認することでエピトープを決定することができる。   In addition, a human XCR1 amino acid sequence in which a desired amino acid is appropriately mutated is prepared using a known method, and whether or not the binding between the mutant and the antibody is reduced is confirmed. By doing so, the epitope can be determined.

上述のように、本発明に係る抗体はヒトXCR1に結合する作用を有するため、ヒトXCR1とヒトXCL1との間の結合を阻害する活性を有する抗体も、本発明に係る抗体に含まれる。なお、ヒトXCL1とは、ヒトリンフォタクチン(Ltn)又はヒトリンフォタクチンα(Ltn-α)とも称される。上記のような阻害活性を、以下、本発明に係る抗体による「中和活性」と呼ぶことがある。ヒトXCR1は、生体内では受容体タンパク質として細胞表面に存在するために、本発明に係る抗体による、ヒトXCR1とXCL1との結合の阻害は細胞表面上で行われることが好ましい。   As described above, since the antibody according to the present invention has an action of binding to human XCR1, an antibody having an activity of inhibiting the binding between human XCR1 and human XCL1 is also included in the antibody according to the present invention. Human XCL1 is also referred to as human lymphotactin (Ltn) or human lymphotactin α (Ltn-α). The inhibitory activity as described above may hereinafter be referred to as “neutralizing activity” by the antibody according to the present invention. Since human XCR1 exists on the cell surface as a receptor protein in vivo, it is preferable that inhibition of the binding between human XCR1 and XCL1 by the antibody according to the present invention is performed on the cell surface.

なお、当該本発明に係る抗体は、少なくともヒトXCR1とXCL1との結合を阻害する活性を有するものであればよく、その限りにおいて、ヒトXCR1とXCL2との結合阻害活性の有無は問わない。従って、当該抗体には、ヒトXCR1とXCL1との結合のみならず、ヒトXCR1とXCL2との結合を阻害する活性を有するものも含まれる。   The antibody according to the present invention may be any antibody as long as it has an activity that inhibits at least the binding between human XCR1 and XCL1, and as long as it has no activity to inhibit the binding between human XCR1 and XCL2. Therefore, the antibody includes not only the binding between human XCR1 and XCL1, but also those having an activity that inhibits the binding between human XCR1 and XCL2.

好ましい細胞としては、ヒトXCR1とヒトXCL1の結合によって作動する免疫システムに関連する細胞であり、中でも樹状細胞が好ましい。特に、本発明に係る抗体は、後述の実験例で示されるように、ヒトXCR1タンパク質を著量発現している樹状細胞であるBDCA3陽性樹状細胞を特異的に認識することから、BDCA3陽性樹状細胞上において、ヒトXCR1とヒトXCL1との間の結合を阻害する作用を有するものであることが好ましい。   Preferred cells are those related to the immune system that are activated by the binding of human XCR1 and human XCL1, among which dendritic cells are preferred. In particular, the antibody according to the present invention specifically recognizes a BDCA3-positive dendritic cell, which is a dendritic cell that expresses a significant amount of human XCR1 protein, as shown in the experimental examples described below. It preferably has an action of inhibiting the binding between human XCR1 and human XCL1 on dendritic cells.

ヒトXCR1とヒトXCL1との結合は、本発明の抗体によって阻害される。当該阻害形式は、特に限定はされないが、以下の形式を包含する。   The binding between human XCR1 and human XCL1 is inhibited by the antibody of the present invention. Although the said inhibition format is not specifically limited, The following formats are included.

(1)本来ヒトXCL1が結合すべきヒトXCR1の部位に、本発明に係る抗体が結合することによって、ヒトXCL1の結合に立体的な障害が生じ、結果としてヒトXCR1とヒトXCL1との結合が阻害される形式。
(2)本発明に係る抗体が、ヒトXCR1と結合することによって、ヒトXCR1の立体構造が変化し、それに伴ってヒトXCL1と結合すべきヒトXCR1の構造も変化し、結果としてヒトXCR1とヒトXCL1との結合が阻害される形式。
(3)本発明に係る抗体が、ヒトXCR1と結合することによって受容体の内部移行が生じ、これに伴ってヒトXCR1とヒトXCL1との結合が阻害される形式。
(1) The binding of the antibody according to the present invention to the human XCR1 site to which human XCL1 should originally bind causes a steric hindrance in the binding of human XCL1, resulting in binding of human XCR1 and human XCL1 Inhibited form.
(2) When the antibody according to the present invention binds to human XCR1, the three-dimensional structure of human XCR1 changes, and accordingly, the structure of human XCR1 that should bind to human XCL1 also changes. As a result, human XCR1 and human XCR1 A form that inhibits binding to XCL1.
(3) A form in which the antibody according to the present invention binds to human XCR1 to cause internalization of the receptor, and the binding between human XCR1 and human XCL1 is inhibited accordingly.

本発明に係る抗体が有するヒトXCR1とヒトXCL1との結合阻害活性は、IC50又はIC90といった値で評価される。このような数値は、例えば、本発明に係る抗体の存在下において、ヒトXCR1タンパク質を発現する細胞を用いてヒトXCR1に対するヒトXCL1の結合の競合阻害実験等を行うことで得ることができる。かかる競合阻害実験の具体的な方法は、公知の方法を採用すればよい。 The binding inhibitory activity between human XCR1 and human XCL1 possessed by the antibody of the present invention is evaluated by a value such as IC 50 or IC 90 . Such numerical values can be obtained, for example, by conducting a competitive inhibition experiment of the binding of human XCL1 to human XCR1 using cells expressing human XCR1 protein in the presence of the antibody according to the present invention. A known method may be employed as a specific method for the competitive inhibition experiment.

本発明に係る抗体には、細胞の遊走を抑制する作用を有する抗体が含まれる。用語「細胞遊走」とは、細胞に対して外部刺激が与えられることにより、細胞内でシグナル伝達機構が作動し、結果として細胞自身が能動的に移動する現象のことを意味する。細胞が能動的に移動することによる効果は、当該細胞の機能によって区々ではあるが、例えば樹状細胞の細胞遊走であれば、免疫システムにおける一つの機能を担う現象である。本発明において、細胞の遊走阻害活性のことを、「中和活性」と呼ぶことがある。   The antibody according to the present invention includes an antibody having an action of suppressing cell migration. The term “cell migration” means a phenomenon in which a signal transduction mechanism is activated in a cell by applying an external stimulus to the cell, and as a result, the cell itself actively moves. The effect of actively moving cells varies depending on the function of the cells, but for example, if cell migration of dendritic cells, it is a phenomenon that bears one function in the immune system. In the present invention, the cell migration inhibitory activity is sometimes referred to as “neutralizing activity”.

本発明に係る抗体は、上述のように樹状細胞、特にBDCA3陽性樹状細胞におけるヒトXCR1とヒトXCL1との結合を好適に阻害することから、樹状細胞、特にBDCA3陽性樹状細胞の細胞遊走を好ましく阻害する。   Since the antibody according to the present invention suitably inhibits the binding of human XCR1 and human XCL1 in dendritic cells, particularly BDCA3-positive dendritic cells as described above, dendritic cells, particularly BDCA3-positive dendritic cell cells It preferably inhibits migration.

ヒトXCR1は、7回膜貫通型のGタンパク質結合受容体であり、ヒトXCL1がヒトXCR1に結合するとヒトXCR1の立体構造が変化し、その結果、ヒトXCR1の細胞内ドメインに結合しているGタンパク質が遊離し、細胞内へのシグナル伝達が行われる。   Human XCR1 is a seven-transmembrane G protein-coupled receptor. When human XCL1 binds to human XCR1, the three-dimensional structure of human XCR1 changes, and as a result, G that binds to the intracellular domain of human XCR1. Protein is released and signal transduction into the cell takes place.

本発明に係る抗体は、上述の(1)または(2)等の形式に従ってヒトXCR1とXCL1との結合を阻害するので、上記Gタンパク質の遊離が生じない。その結果、シグナル伝達が行われず、細胞の遊走現象も阻害されることになる。   Since the antibody according to the present invention inhibits the binding between human XCR1 and XCL1 according to the above-mentioned format (1) or (2), the G protein is not released. As a result, signal transmission is not performed, and the cell migration phenomenon is also inhibited.

また、細胞の遊走現象の阻害は、本発明に係る抗体がヒトXCR1に結合することによって、ヒトXCR1とその細胞内ドメインに結合しているGタンパク質との間の結合が強固となり、このためGタンパク質が遊離せず、細胞内へのシグナル伝達が阻害されることで生じるものであってもよい。   In addition, the inhibition of cell migration is achieved by binding of the antibody according to the present invention to human XCR1, thereby strengthening the binding between human XCR1 and the G protein bound to its intracellular domain. The protein may not be released and may be generated by inhibiting signal transduction into the cell.

本発明に係る抗体が有するヒト細胞の遊走阻害活性は、IC50又はIC90といった値で評価される。具体的な数値は特に限定されないが、例えばIC50値であれば、通常は0.36 nM以下程度、好ましくは0.27 nM以下程度、更に好ましくは0.16 nM以下程度である。例えばIC90値であれば、通常2.38 nM以下程度、好ましくは1.52 nM以下程度、更に好ましくは0.86 nM以下程度である。 The migration inhibitory activity of human cells possessed by the antibody of the present invention is evaluated by a value such as IC 50 or IC 90 . Specific numerical values are not particularly limited. For example, if the IC value is 50 , it is usually about 0.36 nM or less, preferably about 0.27 nM or less, more preferably about 0.16 nM or less. For example, an IC 90 value is usually about 2.38 nM or less, preferably about 1.52 nM or less, more preferably about 0.86 nM or less.

本発明に係る抗体には、一態様として、細胞傷害性Tリンパ細胞(CTL)の活性を低下させる機能を発揮する抗体が包含される。この様なCTL活性の低下の機序としては、例えば、本発明に係る抗体が、樹状細胞におけるヒトXCR1とヒトXCL1の間の相互作用を阻害することがあげられる。樹状細胞の中でも、上述するBDCA3陽性樹状細胞が好ましい。   The antibody according to the present invention includes, in one embodiment, an antibody that exhibits a function of reducing the activity of cytotoxic T lymphocytes (CTL). As a mechanism for such a decrease in CTL activity, for example, the antibody according to the present invention inhibits the interaction between human XCR1 and human XCL1 in dendritic cells. Among the dendritic cells, the above-described BDCA3-positive dendritic cells are preferable.

本発明に係る抗体の製造方法
本発明に係る抗体は、制限されないが、以下の3つの工程を含む方法によって製造することができる。
(i)本発明に係る抗体をコードする塩基配列を含む核酸を含むベクターを宿主に導入して、宿主を形質転換する工程1。
(ii)工程1によって得られる形質転換された宿主を培養し、ヒトXCR1に結合する抗体を含む画分を回収する工程2、
(iii)工程2によって得られる画分から、上記抗体を単離又は精製する工程3。
Method for Producing Antibody According to the Present Invention The antibody according to the present invention is not limited, but can be produced by a method comprising the following three steps.
(I) Step 1 of introducing a vector containing a nucleic acid containing a base sequence encoding the antibody of the present invention into a host to transform the host.
(Ii) culturing the transformed host obtained in step 1, and collecting a fraction containing an antibody that binds to human XCR1,
(Iii) Step 3 for isolating or purifying the antibody from the fraction obtained in Step 2.

工程1
工程1にて用いる核酸は、本発明に係る抗体をコードする核酸である。かかる核酸の塩基配列は、本発明に係る抗体のアミノ酸配列情報を基に、in silico技術を採用することで決定できる。その際、工程2にて採用する宿主におけるコドン頻度を参照のうえ塩基配列を決定することが好ましい。具体的な塩基配列としては、配列番号3、4、7、8、11、12、15、16、61、62、65、66、69、70、73、若しくは74に示す塩基配列、又はこれらの変異体等が挙げられる。
Process 1
The nucleic acid used in step 1 is a nucleic acid encoding the antibody according to the present invention. The base sequence of such a nucleic acid can be determined by employing in silico technology based on the amino acid sequence information of the antibody according to the present invention. In that case, it is preferable to determine the base sequence with reference to the codon frequency in the host employed in step 2. Specific examples of the base sequence include those shown in SEQ ID NOs: 3, 4, 7, 8, 11, 12, 15, 16, 61, 62, 65, 66, 69, 70, 73, or 74, or these sequences. A mutant etc. are mentioned.

上記変異体は、抗体のFR又は定常領域に変異(欠失、置換、挿入等)が導入されてなるものであることが好ましい。   The mutant is preferably one in which a mutation (deletion, substitution, insertion, etc.) is introduced into the FR or constant region of an antibody.

このような変異体における具体的な変異導入数は、特に限定はされないが、通常は変異前のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の同一性を有する変異体となるように変異すればよい。   The specific number of mutations introduced in such mutants is not particularly limited, but is usually 85% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% with the amino acid sequence before mutation. What is necessary is just to mutate | mutate so that it may become a variant which has the above identity.

また、当該核酸は、5’末端側に、分泌シグナルペプチドをコードする塩基配列を含んでいてもよい。具体的な分泌シグナルペプチドをコードする塩基配列は、工程2にて採用する宿主細胞において、分泌シグナルペプチドとして有効に機能する配列であることが好ましい。用語「分泌シグナルペプチド」とは、宿主内部で産生されるタンパク質又はペプチドを宿主外部に分泌するための経路へ導入されるための認識配列となるアミノ酸配列からなるペプチドを意味する。   In addition, the nucleic acid may contain a base sequence encoding a secretory signal peptide on the 5 ′ end side. The specific base sequence encoding the secretory signal peptide is preferably a sequence that functions effectively as a secretory signal peptide in the host cell employed in step 2. The term “secretory signal peptide” means a peptide consisting of an amino acid sequence that serves as a recognition sequence for introduction into a pathway for secreting a protein or peptide produced inside the host to the outside of the host.

分泌シグナルペプチドをコードする塩基配列の例として、例えば
ATGGGATTCAGCAGGATCTTTCTCTTCCTCCTGTCAGTAACTACAGGTGTCCACTCC(配列番号75)、
ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGCTGTTCTGGTTTCCTGCTTCCAACACT(配列番号76)、
ATGGAATGGTCATGGGTCTTTCTGTTCTTTCTGAGTGTCACAACCGGGGTGCATAGC(配列番号77)、
ATGGAATGGTCTTGGGTCTTTCTGTTCTTTCTGTCCGTCACTACCGGGGTCCACTCT(配列番号78)、
ATGTCCGTGCCTACTCAGGTGCTGGGGCTGCTGCTGCTGTGGCTGACCGATGCTCGTTGC(配列番号79)、
ATGTCCGTGCCTACTCAGGTGCTGGGGCTGCTGCTGCTGTGGCTGACCGATGCTCGTTGT(配列番号80)等が挙げられる。
Examples of base sequences encoding secretory signal peptides include
ATGGGATTCAGCAGGATCTTTCTCTTCCTCCTGTCAGTAACTACAGGTGTCCACTCC (SEQ ID NO: 75),
ATGAAGTTGCCTGTTAGGCTGTTGGTGCTGCTGTTCTGGTTTCCTGCTTCCAACACT (SEQ ID NO: 76),
ATGGAATGGTCATGGGTCTTTCTGTTCTTTCTGAGTGTCACAACCGGGGTGCATAGC (SEQ ID NO: 77),
ATGGAATGGTCTTGGGTCTTTCTGTTCTTTCTGTCCGTCACTACCGGGGTCCACTCT (SEQ ID NO: 78),
ATGTCCGTGCCTACTCAGGTGCTGGGGCTGCTGCTGCTGTGGCTGACCGATGCTCGTTGC (SEQ ID NO: 79),
ATGTCCGTGCCTACTCAGGTGCTGGGGCTGCTGCTGCTGTGGCTGACCGATGCTCGTTGT (sequence number 80) etc. are mentioned.

工程1にて用いるベクターは、上述の核酸を少なくとも1つ含むものである。   The vector used in step 1 contains at least one nucleic acid described above.

このようなベクターは、
(I)本発明に係る抗体の重鎖、重鎖可変領域、及び重鎖CDRs1-3からなる群より選択される少なくとも1種をコードする塩基配列を含む核酸を有するベクターであっても、
(II)本発明に係る抗体の軽鎖、軽鎖可変領域、及び軽鎖CDRs1-3からなる群より選択される少なくとも1種をコードする塩基配列を含む核酸を有するベクターであっても、また
(III)本発明に係る抗体の重鎖、重鎖可変領域、及び重鎖CDRs1-3からなる群より選択される少なくとも1種をコードする塩基配列を含む核酸、及び本発明に係る抗体の軽鎖、軽鎖可変領域、及び軽鎖CDRs1-3からなる群より選択される少なくとも1種をコードする塩基配列を含む核酸を含むベクターであってもよい。
Such vectors are
(I) A vector having a nucleic acid comprising a base sequence encoding at least one selected from the group consisting of the heavy chain, heavy chain variable region, and heavy chain CDRs1-3 of the antibody according to the present invention,
(II) A vector having a nucleic acid comprising a base sequence encoding at least one selected from the group consisting of a light chain, a light chain variable region, and a light chain CDRs 1-3 of the antibody according to the present invention, (III) A nucleic acid comprising a base sequence encoding at least one selected from the group consisting of the heavy chain, heavy chain variable region, and heavy chain CDRs 1-3 of the antibody according to the present invention, and the light chain of the antibody according to the present invention. It may be a vector comprising a nucleic acid comprising a base sequence encoding at least one selected from the group consisting of a chain, a light chain variable region, and a light chain CDRs1-3.

上述のベクターは、遺伝子発現ベクターであってもよい。「遺伝子発現ベクター」とは、上述の核酸が有する塩基配列を発現させる機能を有するベクターである。遺伝子発現ベクターには、塩基配列の発現を制御するためのプロモーター配列、エンハンサー配列、リプレッサー配列、インスレーター配列等が含まれていてもよい。これらの配列は、上記宿主にて機能するものであれば特に限定はされない。   The vector described above may be a gene expression vector. The “gene expression vector” is a vector having a function of expressing the base sequence of the nucleic acid described above. The gene expression vector may contain a promoter sequence, an enhancer sequence, a repressor sequence, an insulator sequence and the like for controlling the expression of the base sequence. These sequences are not particularly limited as long as they function in the above host.

工程1にて使用する宿主は、上述の遺伝子が発現するものであれば特に限定はされないが、例えば昆虫細胞、真核細胞、哺乳類細胞等が挙げられる。中でも、抗体をコードする塩基配列をより効率的に発現させる観点から、哺乳類細胞であるHEK細胞、CHO細胞、NS0細胞又はSP2/O細胞が特に好ましい。   The host used in step 1 is not particularly limited as long as the above gene is expressed, and examples thereof include insect cells, eukaryotic cells, mammalian cells and the like. Among these, from the viewpoint of more efficiently expressing the base sequence encoding the antibody, HEK cells, CHO cells, NS0 cells or SP2 / O cells which are mammalian cells are particularly preferable.

工程1にて、上述のベクターを宿主に導入する手法は、公知の手法を採用すればよく、特に限定されるものではない。なお、上記(I)〜(III)に示すベクターはいずれか1種のみを宿主に導入しても、2種以上を組み合わせて宿主に導入してもよい。   The method for introducing the above-described vector into the host in step 1 may be a known method, and is not particularly limited. In addition, any one of the vectors shown in the above (I) to (III) may be introduced into the host, or two or more of them may be introduced into the host.

このような手法によって、上述のベクターを保持した宿主を作製することが出来る。宿主は、ベクターをそのまま保持していてもよいが、上述したベクターに含まれる抗体をコードする塩基配列などを含む核酸が、宿主のゲノムに組み込まれた状態にて保持されていてもよい。作製された宿主は、公知の方法を採用して維持すればよく、必要に応じて長期保存することも可能である。   By such a method, a host holding the above-described vector can be produced. The host may hold the vector as it is, but a nucleic acid containing a base sequence encoding the antibody contained in the vector described above may be held in a state of being integrated into the host genome. The prepared host may be maintained by adopting a known method, and can be stored for a long period of time if necessary.

工程2
工程2は、工程1にて得られた上述の宿主を培養し、ヒトXCR1に結合する本発明に係る抗体を含む画分を回収する方法である。上述のベクターを保持する宿主を培養すれば、当該ベクターが保有する核酸を基に、本発明に係る抗体をコードする塩基配列が発現され、本発明に係る抗体が産生される。産生された抗体は宿主内か、或いは宿主を培養する際に用いる培地中に蓄積される。
Process 2
Step 2 is a method of culturing the above-mentioned host obtained in Step 1 and collecting a fraction containing the antibody according to the present invention that binds to human XCR1. When a host holding the above-described vector is cultured, the base sequence encoding the antibody according to the present invention is expressed based on the nucleic acid held by the vector, and the antibody according to the present invention is produced. The produced antibody is accumulated in the host or in a medium used for culturing the host.

工程2において、本発明に係る抗体を含む画分を回収する手法は公知の方法を採用すればよい。例えば、宿主内から本発明に係る抗体を含む画分を回収するには、物理的若しくは化学的手段によって宿主を破砕し、得られた破砕液を固液分離処理に供して得られる液体画分を本発明に係る抗体を含む画分とすればよい。   In Step 2, a known method may be adopted as a technique for collecting the fraction containing the antibody according to the present invention. For example, in order to recover a fraction containing the antibody of the present invention from the host, the host is crushed by physical or chemical means, and a liquid fraction obtained by subjecting the obtained crushed liquid to a solid-liquid separation process. May be a fraction containing the antibody according to the present invention.

一方、宿主を培養する際に用いる培地から本発明に係る抗体を含む画分を回収するには、当該培地、即ち工程1にて得られる宿主の培養液を固液分離処理に供して得られる液体画分をそのまま本発明に係る抗体を含む画分とすればよい。   On the other hand, in order to recover the fraction containing the antibody of the present invention from the medium used for culturing the host, the fraction obtained by subjecting the medium, that is, the host culture solution obtained in step 1, to solid-liquid separation treatment is obtained. The liquid fraction may be directly used as a fraction containing the antibody according to the present invention.

続く工程3での単離又は精製工程を簡便にする観点から、宿主の培養液から本発明に係る抗体を含む画分を回収することが好ましい。   From the viewpoint of simplifying the subsequent isolation or purification step in Step 3, it is preferable to recover the fraction containing the antibody of the present invention from the culture medium of the host.

工程2において培養する際に用いる培地は、宿主が本発明に係る抗体をコードする塩基配列を発現させ、本発明に係る抗体が産生されるものであれば、特に限定はされず、公知の培地を採用すればよい。しかしながら、上述のように、宿主の培養液から本発明に係る抗体を含む画分を回収するのであれば、続く工程3での単離・精製工程をなるべく簡便にすることに鑑みて、無血清培地を採用するのが好ましい。   The medium used for culturing in step 2 is not particularly limited as long as the host expresses the base sequence encoding the antibody according to the present invention and the antibody according to the present invention is produced. Should be adopted. However, as described above, if the fraction containing the antibody according to the present invention is recovered from the culture medium of the host, in view of simplifying the isolation / purification step in the subsequent step 3 as much as possible, serum-free It is preferable to employ a medium.

宿主の培養時に採用する容器、温度、時間、培地中の宿主の濃度、培養条件等については、公知の抗体製造方法を採用すればよい。   A known antibody production method may be employed for the container, temperature, time, concentration of the host in the medium, culture conditions, and the like that are employed when the host is cultured.

工程3
工程3は、上記工程2によって得られる画分から、ヒトXCR1に結合する本発明に係る抗体を単離又は精製する工程である。ここで本発明に係る抗体の単離及び精製方法は、特に制限されず、タンパク質について一般に使用されている単離又は精製方法を広く適用することができる。
Process 3
Step 3 is a step of isolating or purifying the antibody according to the present invention that binds to human XCR1 from the fraction obtained in Step 2 above. Here, the method for isolating and purifying the antibody according to the present invention is not particularly limited, and the isolation or purification method generally used for proteins can be widely applied.

本発明に係る抗体の医薬用途
(1)免疫疾患治療剤としての用途
本発明に係る抗体は、前述するように、免疫システムに関連する樹状細胞の細胞遊走現象を抑制する作用を有する。この作用に基づいて、本発明に係る抗体、特にヒト型化抗体は、ヒトに臨床適用される薬学的組成物の有効成分としての利用可能性を有している。
Pharmaceutical use of the antibody according to the present invention
(1) Use as a therapeutic agent for immune diseases As described above, the antibody according to the present invention has an action of suppressing the cell migration phenomenon of dendritic cells related to the immune system. Based on this action, the antibody according to the present invention, particularly the humanized antibody, has applicability as an active ingredient of a pharmaceutical composition clinically applied to humans.

以下、本発明に係る抗体が適用可能な疾患について説明する。   Hereinafter, diseases to which the antibody according to the present invention can be applied will be described.

適応疾患(免疫疾患)
XCR1は、ヒトではCD141陽性の樹状細胞に、マウスではCD8α陽性の樹状細胞に高発現しており、この樹状細胞は特に上述したクロスプレゼンテーションと呼ばれる抗原提示方法を用いてT細胞を活性化する(非特許文献4)。
Indication disease (immune disease)
XCR1 is highly expressed in CD141-positive dendritic cells in humans and in CD8α-positive dendritic cells in mice, and these dendritic cells activate T cells using the antigen presentation method called cross-presentation described above. (Non-Patent Document 4).

また、ヒトXCR1のリガンドであるXCL1の産生源がT細胞、中でもCD8+T細胞であることから、XCL1-XCR1が関与するケモカインシステムは樹状細胞によるCD8+T細胞の活性化を制御するものである(非特許文献2、3)。   In addition, since the source of XCL1, the ligand for human XCR1, is T cells, especially CD8 + T cells, the chemokine system involving XCL1-XCR1 controls the activation of CD8 + T cells by dendritic cells (Non-Patent Documents 2 and 3).

上述のように、本発明に係る抗体には、樹状細胞、特にBDCA-3陽性樹状細胞におけるヒトXCL1とヒトXCR1の結合を阻害する作用を示す抗体が一態様として包含されることから、当該樹状細胞の遊走によって活性化されるT細胞が関与する免疫疾患、特にCD8+T細胞の活性化の制御に関する疾患の治療剤としての利用可能性を有している。   As described above, the antibody according to the present invention includes an antibody that exhibits an action of inhibiting the binding of human XCL1 and human XCR1 in dendritic cells, particularly BDCA-3-positive dendritic cells, as one aspect. The present invention has applicability as a therapeutic agent for immune diseases involving T cells activated by migration of the dendritic cells, particularly diseases relating to control of activation of CD8 + T cells.

上述のように、本発明に係る抗体には、CTLの活性を低下させる効果を発揮する抗体が一態様として包含される。CTLは、細胞又は組織に対して攻撃を加えることで免疫システムを活性化させる機能を有する。種々の免疫疾患においてCTL活性が亢進していることが知られていることから、本発明に係る抗体は、CTL活性を低減させることにより、免疫疾患に対する治療剤としての利用可能性を有している。   As described above, the antibody according to the present invention includes an antibody exhibiting an effect of reducing the activity of CTL as one embodiment. CTL has a function of activating the immune system by attacking cells or tissues. Since it is known that CTL activity is enhanced in various immune diseases, the antibody according to the present invention can be used as a therapeutic agent for immune diseases by reducing CTL activity. Yes.

このような疾患として、特に限定はされないが、I型糖尿病、乾癬、糸球体腎炎、自己免疫性肝炎、多発性硬化症、強直性脊椎炎、甲状腺炎、移植片拒絶反応、遅延型過敏症、クローン病、皮膚筋炎、多発性筋炎、封入体筋炎、関節リウマチ、炎症性腸疾患、前部ブドウ膜炎、ヴェグナー肉芽腫、移植片対宿主病、ベーチェット病等が挙げられる(非特許文献5、Kehren J, Desvignes C, Krasteva M, Ducluzeau MT, Assossou O, Horand F, Hahne M, Kaegi D, Kaiserlian D, Nicolas JF. “Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity.” J Exp. Med. 189: 779-786 (1999); Middel P, Thelen P, Blaschke S, Polzien F, Reich K, Blaschke V, Wrede A, Hummel KM, Gunawan B, Radzun HJ. “Expression of the T-cell chemoattractant chemokine lymphotactin in Crohn's disease.” Am J Pathol. 159: 1751-1761 (2001); Sugihara T, Sekine C, Nakae T, Kohyama K, Harigai M, Iwakura Y, Matsumoto Y, Miyasaka N, Kohsaka H. “A new murine model to define the critical pathologic and therapeutic mediators of polymyositis.” Arthritis Rheum. 56: 1304-1314 (2007); Wang CR, Liu MF, Huang YH, Chen HC. “Up-regulation of XCR1 expression in rheumatoid joints.” Rheumatology (Oxford) 43: 569-573 (2004); Muroi E, Ogawa F, Shimizu K, Komura K, Hasegawa M, Fujimoto M, Sato S. “Elevation of serum lymphotactin levels in patients with systemic sclerosis.” J Rheumatol. 35: 834-838 (2008); Torrence AE, Brabb T, Viney JL, Bielefeldt-Ohmann H, Treuting P, Seamons A, Drivdahl R, Zeng W, Maggio-Price L. “Serum biomarkers in a mouse model of bacterial-induced inflammatory bowel disease.” Inflamm Bowel Dis. 14: 480-490 (2008); Yeh PT, Lin FA, Lin CP, Yang CM, Chen MS, Yang CH. “Expressions of lymphotactin and its receptor, XCR, in Lewis rats with experimental autoimmune anterior uveitis.” Graefes Arch. Clin. Exp. Ophthalmol. 248: 1737-1747 (2010); Blaschke S, Brandt P, Wessels JT, Mueller GA. “Expression and function of the C-class chemokine lymphotactin (XCL1) in Wegener's granulomatosis.” J Rheumatol. 36: 2491-2500 (2009); asuoka H, Okazaki Y, Kawakami Y, Hirakata M, Inoko H, Ikeda Y, Kuwana M. “Autoreactive CD8+ cytotoxic T lymphocytes to major histocompatibility complex class I chain-related gene A in patients with Behcet's disease.” Arthritis Rheum. 50: 3658-3662 (2004); Serody JS, Burkett SE, Panoskaltsis-Mortari A, Ng-Cashin J, McMahon E, Matsushima GK, Lira SA, Cook DN, Blazar BR. “T-lymphocyte production of macrophage inflammatory protein-1alpha is critical to the recruitment of CD8(+) T cells to the liver, lung, and spleen during graft-versus-host disease.“ Blood. 96: 2973-2980 (2000)及びSugihara T, Sekine C, Nakae T, Kohyama K, Harigai M, Iwakura Y, Matsumoto Y, Miyasaka N, Kohsaka H. “A new murine model to define the crinical pathologic and therapeutic mediators of polymyositis.” Arthritis & Rheumatism. 56: 1304-1314 (2007)); Dalakas MC. “Review: An update on inflammatory and autoimmune myopathies.” Neuropathol Appl Neurobiol.37: 226-242 (2011)。   Such diseases include, but are not limited to type I diabetes, psoriasis, glomerulonephritis, autoimmune hepatitis, multiple sclerosis, ankylosing spondylitis, thyroiditis, graft rejection, delayed hypersensitivity, Examples include Crohn's disease, dermatomyositis, polymyositis, inclusion body myositis, rheumatoid arthritis, inflammatory bowel disease, anterior uveitis, Wegner's granulomas, graft-versus-host disease, Behcet's disease, etc. Kehren J, Desvignes C, Krasteva M, Ducluzeau MT, Assossou O, Horand F, Hahne M, Kaegi D, Kaiserlian D, Nicolas JF. “Cytotoxicity is mandatory for CD8 (+) T cell-mediated contact hypersensitivity.” J Exp. Med. 189: 779-786 (1999); Middel P, Thelen P, Blaschke S, Polzien F, Reich K, Blaschke V, Wrede A, Hummel KM, Gunawan B, Radzun HJ. “Expression of the T-cell chemoattractant chemokine lymphotactin in Crohn's disease. ”Am J Pathol. 159: 1751-1761 (2001); Sugihara T, Sekine C, Nakae T, Kohyama K, Hariga i M, Iwakura Y, Matsumoto Y, Miyasaka N, Kohsaka H. “A new murine model to define the critical pathologic and therapeutic mediators of polymyositis.” Arthritis Rheum. 56: 1304-1314 (2007); Wang CR, Liu MF, Huang YH, Chen HC. “Up-regulation of XCR1 expression in rheumatoid joints.” Rheumatology (Oxford) 43: 569-573 (2004); Muroi E, Ogawa F, Shimizu K, Komura K, Hasegawa M, Fujimoto M, Sato S. “Elevation of serum lymphotactin levels in patients with systemic sclerosis.” J Rheumatol. 35: 834-838 (2008); Torrence AE, Brabb T, Viney JL, Bielefeldt-Ohmann H, Treuting P, Seamons A, Drivdahl R, Zeng W, Maggio-Price L. “Serum biomarkers in a mouse model of bacterial-induced inflammatory bowel disease.” Inflamm Bowel Dis. 14: 480-490 (2008); Yeh PT, Lin FA, Lin CP, Yang CM, Chen MS, Yang CH. “Expressions of lymphotactin and its receptor, XCR, in Lewis rats with experimental autoimmune anterior uveitis.” Graefes Arch. Clin. Exp. Ophthalmol. 248: 1737-1747 (2010); Blaschke S, B randt P, Wessels JT, Mueller GA. “Expression and function of the C-class chemokine lymphotactin (XCL1) in Wegener's granulomatosis.” J Rheumatol. 36: 2491-2500 (2009); asuoka H, Okazaki Y, Kawakami Y, Hirakata M, Inoko H, Ikeda Y, Kuwana M. “Autoreactive CD8 + cytotoxic T lymphocytes to major histocompatibility complex class I chain-related gene A in patients with Behcet's disease.” Arthritis Rheum. 50: 3658-3662 (2004); Serody JS, Burkett SE, Panoskaltsis-Mortari A, Ng-Cashin J, McMahon E, Matsushima GK, Lira SA, Cook DN, Blazar BR. “T-lymphocyte production of macrophage inflammatory protein-1alpha is critical to the recruitment of CD8 (+) T cells to the liver, lung, and spleen during graft-versus-host disease. “Blood. 96: 2973-2980 (2000) and Sugihara T, Sekine C, Nakae T, Kohyama K, Harigai M, Iwakura Y, Matsumoto Y, Miyasaka N, Kohsaka H. “A new murine model to define the crinical pathologic and therapeutic mediators of polymyositis.” Arthritis & Rheumatism. 56: 1304-1314 (2007)); Dalakas MC. “Review: An update on inflammatory and autoimmune myopathies.” Neuropathol Appl Neurobiol. 37: 226-242 (2011).

また後述する、遅延型過敏症(Delayed Type Hypersensitivity、以下「DTH」と呼ぶことが有る。)モデルマウスを用いた実験例において、本発明に係る抗体(抗ヒトXCR1マウスモノクローナル抗体(5G7))が、DTH反応を有意に抑制することが明らかになった。前述するように、遅延型過敏症は、樹状細胞の遊走によって活性化されるCD8+T細胞が関与する免疫疾患の一つとして知られている疾患である。本発明に係る抗体が、遅延型過敏症の治療に有効であることは、逆に、本発明に係る抗体が、CD8+T細胞に関与することから、細胞遊走作用の中でも特に樹状細胞の遊走作用を阻害する活性を有していることを裏付けるものである。   Further, in an experimental example using a delayed type hypersensitivity (hereinafter sometimes referred to as “DTH”) model mouse, an antibody according to the present invention (anti-human XCR1 mouse monoclonal antibody (5G7)) is described later. It was revealed that the DTH reaction was significantly suppressed. As described above, delayed type hypersensitivity is a disease known as one of immune diseases involving CD8 + T cells activated by dendritic cell migration. The antibody according to the present invention is effective for the treatment of delayed type hypersensitivity, conversely, since the antibody according to the present invention is involved in CD8 + T cells, it is particularly a dendritic cell among cell migration effects. This supports the activity of inhibiting the migratory action.

また、DTH反応が関与している皮膚免疫疾患としては、遅延型過敏症の他、アトピー性皮膚炎、及び接触性皮膚炎が知られている(Fabrizi G, Romano A, Vultaggio P, Bellegrandi S, Paganelli R, Venuti A. “Heterogeneity of atopic dermatitis defined by the immune response to inhalant and food allergy.” Eur. J. Dermatol. 9: 380-384 (1999). 及びFonacier LS, Dreskin SC, Leung DYM. “Allergic skin disseases.” J. Allergy Clin. Immunol. 125: S138-149 (2010))。   In addition to delayed-type hypersensitivity, atopic dermatitis and contact dermatitis are known as skin immune diseases involving DTH reaction (Fabrizi G, Romano A, Vultaggio P, Bellegrandi S, Paganelli R, Venuti A. “Heterogeneity of atopic dermatitis defined by the immune response to inhalant and food allergy.” Eur. J. Dermatol. 9: 380-384 (1999). And Fonacier LS, Dreskin SC, Leung DYM. “Allergic skin disseases. ”J. Allergy Clin. Immunol. 125: S138-149 (2010)).

これらのことから、本発明に係る抗体は、アトピー性皮膚炎又は接触性皮膚炎といった、皮膚の免疫疾患の治療剤としての利用可能性を有している。   From these facts, the antibody according to the present invention has applicability as a therapeutic agent for skin immune diseases such as atopic dermatitis or contact dermatitis.

当該DTH反応にも、CD8+T細胞の活性化が関与している可能性が指摘されている(Mody CH, Pain III R, Jackson C, Chen G-H, Toews GB. “CD8 Cells play a critical role in delayed type hypersensitivity to intact Cryptococcus neoformans.” J Immunol. 152: 3970-3979 (1994)等)。   It is pointed out that CD8 + T cell activation may also be involved in the DTH reaction (Mody CH, Pain III R, Jackson C, Chen GH, Toews GB. “CD8 Cells play a critical role in delayed type hypersensitivity to intact Cryptococcus neoformans. ”J Immunol. 152: 3970-3979 (1994)).

罹患患者数の多い、自己免疫性の皮膚疾患である乾癬において、特に慢性の乾癬病変では表皮へのCD8+T細胞の浸潤が見られ、これらの細胞が乾癬病変を引き起こす主要なエフェクター細胞であると考えられている(Gudjonsson JE, Johnston A, Sigmundsdottir H, Valdimarsson H. “Immunopathogenic mechanisms in psoriasis.” Clin Exp Immunol. 135: 1-8 (2004))。   In psoriasis, an autoimmune skin disease with a large number of affected patients, CD8 + T cells infiltrate the epidermis, especially in chronic psoriatic lesions, and these cells are the main effector cells that cause psoriatic lesions (Gudjonsson JE, Johnston A, Sigmundsdottir H, Valdimarsson H. “Immunopathogenic mechanisms in psoriasis.” Clin Exp Immunol. 135: 1-8 (2004)).

これらのことから、本発明に係る抗体は、CD8+T細胞の活性化が関与している皮膚免疫疾患の治療剤としての利用可能性を有している。   From these facts, the antibody according to the present invention has applicability as a therapeutic agent for skin immune diseases in which activation of CD8 + T cells is involved.

このようなCD8+T細胞の活性化が関与している皮膚免疫疾患としては、遅延型過敏症、アトピー性皮膚炎及び接触性皮膚炎の他に、皮膚筋炎、多発性筋炎、封入体筋炎、乾癬、類乾癬、自己免疫性水疱症(天疱瘡、類天疱瘡、後天性表皮水疱症)、膿疱症、妊娠性疱疹、線状IgA水疱性皮膚症、円形脱毛症、尋常性白斑、膠原病(全身性エリテマトーデス、Sjoegren症候群、混合性結合組織病)に伴う皮膚疾患、アジソン病に伴う皮膚疾患、移植片対宿主病(GVHD)に伴う皮膚疾患、湿疹、蕁麻疹、等が挙げられるが、これらの疾患に限定されるものではない。   In addition to delayed-type hypersensitivity, atopic dermatitis, and contact dermatitis, dermatomyositis, polymyositis, inclusion body myositis, Psoriasis, psoriasis, autoimmune blistering (pemphigoid, pemphigoid, acquired epidermolysis bullosa), pustulosis, gestational herpes zoster, linear IgA bullous dermatosis, alopecia areata, vulgaris vulgaris, collagen disease Skin diseases associated with (systemic lupus erythematosus, Sjoegren syndrome, mixed connective tissue disease), skin diseases associated with Addison's disease, skin diseases associated with graft-versus-host disease (GVHD), eczema, urticaria, etc. It is not limited to these diseases.

以下に、本発明に係る抗体と前述する各種の免疫疾患(多発性硬化症、ヒトI型糖尿病、糸球体腎炎、自己免疫性肝炎、甲状腺炎、移植片対宿主病、皮膚筋炎、多発性筋炎、封入体筋炎)との関連についてについて詳述する。ただし、本発明に係る抗体の疾患への有効性は、下記の具体的な疾患に限定されるものではない。   The antibodies according to the present invention and the various immune diseases described above (multiple sclerosis, human type I diabetes, glomerulonephritis, autoimmune hepatitis, thyroiditis, graft-versus-host disease, dermatomyositis, multiple myositis , Inclusion body myositis) will be described in detail. However, the effectiveness of the antibody according to the present invention for diseases is not limited to the following specific diseases.

多発性硬化症
ヒトにおいて多発性硬化症の中枢病変に、CD4+T細胞に加え、CD8+T細胞が浸潤している事が近年報告されている。またマウスを使用した実験において、中枢神経の髄鞘由来抗原によって活性化されたCD8+T細胞を組織に移入するにより、ヒト多発性硬化症のモデルである実験的自己免疫性脳髄膜炎が惹起されることが報告されている。このモデルは従来のモデルよりヒト多発性硬化症に近い病態(増悪寛解を繰り返す、脱髄が顕著に見られ、脱髄病変へ多くのCD8+T細胞やマクロファージ/マイクログリアが浸潤している)を示す。この様に、ヒト多発性硬化症やそのマウスモデルにおいて、CD8+T細胞が重要な役割を果たすことが示唆されている(Friese MA, Fugger L. “Autoreactive CD8+ cells in multiple sclerosis: a new target for therapy?” Brain. 128: 1747-1763 (2005))。
In recent years, it has been reported that CD8 + T cells infiltrate central lesions of multiple sclerosis in addition to CD4 + T cells in multiple sclerosis humans. Also, in experiments using mice, experimental autoimmune encephalomyelitis, a model of human multiple sclerosis, is caused by the transfer of CD8 + T cells activated by CNS myelin-derived antigens to tissues. It has been reported that This model is more similar to human multiple sclerosis than the previous model (repeated exacerbation, demyelination is prominent, and many CD8 + T cells and macrophages / microglia infiltrate the demyelinating lesion) Indicates. Thus, it has been suggested that CD8 + T cells play an important role in human multiple sclerosis and its mouse model (Friese MA, Fugger L. “Autoreactive CD8 + cells in multiple sclerosis: a new target for therapy? ”Brain. 128: 1747-1763 (2005)).

従って、CD8+T細胞の活性化を制御する本発明の抗体は、多発性硬化症の治療剤としての利用可能性を有している。   Therefore, the antibody of the present invention that controls activation of CD8 + T cells has applicability as a therapeutic agent for multiple sclerosis.

ヒトI型糖尿病
ヒトI型糖尿病のモデルである、non-obese diabetic (NOD)マウスにおいてCD8+T細胞を除去することで、糖尿病の発症が抑えられる事が示されている(Wang B, Gonzales A, Benoist C, Mathis D. “The role CD8+ T cells in the initiation of insulin-dependent diabetes mellitus.” Eur J Immunol. 26: 1762-1769 (1996))。この事からI型糖尿病についても、CD8+T細胞が病態の発症に関与する事が示唆される。
Human Type I Diabetes Deletion of CD8 + T cells in non-obese diabetic (NOD) mice, a model of human type I diabetes, has been shown to reduce the onset of diabetes (Wang B, Gonzales A , Benoist C, Mathis D. “The role CD8 + T cells in the initiation of insulin-dependent diabetes mellitus.” Eur J Immunol. 26: 1762-1769 (1996)). This suggests that CD8 + T cells are involved in the pathogenesis of type I diabetes.

従って、CD8+T細胞の活性化を制御する本発明の抗体は、ヒトI型糖尿病の治療剤としての利用可能性を有している。   Therefore, the antibody of the present invention that controls the activation of CD8 + T cells has applicability as a therapeutic agent for human type I diabetes.

糸球体腎炎
糸球体腎炎のモデルマウスにおいて、腎臓病変の形成過程にCD8+T細胞が関与している事が示されている(Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer W, Kaden S, Quaggin SE, Floege J, Groene H-J, Kurts C. “Kidney dendritic cell activation is required for progression of renal disease on a mouse model of glomerular injury.” J Clin Invest. 119: 1286-1297 (2009))。重症の自己免疫性のループス腎炎患者の腎臓に多くのCD8+T細胞が浸潤している。これらのCD8+T細胞の数と、腎機能の悪化を示すrenal activity scoreおよび血清クレアチニンレベルの上昇が相関することが報告されている(Couzi L, Merville P, Deminiere C, Moreau J-F, Combe C, Pellegrin J-L, Viallard J-F, Blanco P. “Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis.” Arthritis Rheum. 56: 2362-2370 (2007))。この様に、ヒトおよびマウスモデルにおいて、自己免疫性糸球体腎炎の発症あるいは病態の進行にCD8+T細胞が関与していると考えられる。
Glomerulonephritis In mouse model of glomerulonephritis, CD8 + T cells have been shown to be involved in the formation of kidney lesions (Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer W, Kaden S, Quaggin SE, Floege J, Groene HJ, Kurts C. “Kidney dendritic cell activation is required for progression of renal disease on a mouse model of glomerular injury.” J Clin Invest. 119: 1286-1297 (2009) ). Many CD8 + T cells infiltrate the kidneys of patients with severe autoimmune lupus nephritis. It has been reported that the number of these CD8 + T cells correlates with an increase in renal activity score and serum creatinine level, which indicate deterioration of renal function (Couzi L, Merville P, Deminiere C, Moreau JF, Combe C, Pellegrin JL, Viallard JF, Blanco P. “Predominance of CD8 + T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis.” Arthritis Rheum. 56: 2362-2370 (2007)). Thus, it is considered that CD8 + T cells are involved in the development of autoimmune glomerulonephritis or the progression of pathology in human and mouse models.

従って、CD8+T細胞の活性化を制御する本発明の抗体は、糸球体腎炎の治療剤としての利用可能性を有している。   Therefore, the antibody of the present invention that controls the activation of CD8 + T cells has applicability as a therapeutic agent for glomerulonephritis.

自己免疫性肝炎
自己免疫性肝炎の発症過程にHepatitis C virus (HCV)への感染が関与することが示唆されている。HCVに対して誘導されるCD8+のCTLがHCVの排除とともに、感染した肝細胞を傷害することにより、自己免疫性の肝炎の発症に関与することが示唆されている(Kammer AR, van der Burg SH, Grabscheid B, Hunziker IP, Kwappenberg KMC, Reichen J, Melief CJM, Cerny A. “Molecular mimicity of human cytochrome P450 by hepatitis C virus at the level of cytotoxic T cell recognition.” J Exp Med. 190: 169-175 (1999))。
The development process of autoimmune hepatitis Autoimmune hepatitis infection to Hepatitis C virus (HCV) has been suggested to be involved. It has been suggested that CD8 + CTLs induced against HCV are involved in the development of autoimmune hepatitis by damaging infected hepatocytes along with the elimination of HCV (Kammer AR, van der Burg SH , Grabscheid B, Hunziker IP, Kwappenberg KMC, Reichen J, Melief CJM, Cerny A. “Molecular mimicity of human cytochrome P450 by hepatitis C virus at the level of cytotoxic T cell recognition.” J Exp Med. 190: 169-175 ( 1999)).

従って、CD8+T細胞の活性化を制御する本発明の抗体は、自己免疫性肝炎の治療剤としての利用可能性を有している。   Therefore, the antibody of the present invention that controls the activation of CD8 + T cells has applicability as a therapeutic agent for autoimmune hepatitis.

甲状腺炎
ヒト甲状腺炎(例えば、橋本病)のモデルマウスである、Experimental autoimmune thyroiditis (EAT)の発症にCD8+のCTLが関与する事が知られており、また、このマウスはヒト甲状腺炎と類似した病変(末梢血中で抗サイログロブリン抗体が検出される、甲状腺へのCD8+T細胞およびCD4+T細胞の浸潤が見られる)を示すことが報告されている。この様に、CD8+T細胞はヒトおよびマウスモデルでの甲状腺炎発症に関わっている事が示唆されている(Brazillet M-P, Batteux F, Abehsira-Amar O, Nicoletti F, Charreire J. “Induction of experimental autoimmune thyroiditis by heat-denatured porcine thyroglobulin: a Tc1-mediated disease.” Eur J Immunol. 29: 1342-1352 (1999))。
Thyroiditis human thyroiditis (eg, Hashimoto's disease) is a model mouse, Experimental autoimmune thyroiditis onset is known that CD8 + of CTL is involved in the (EAT), also the mice were similar to human thyroiditis It has been reported to show lesions (detecting anti-thyroglobulin antibodies in peripheral blood, infiltration of CD8 + T cells and CD4 + T cells into the thyroid gland). Thus, CD8 + T cells have been implicated in the development of thyroiditis in human and mouse models (Brazillet MP, Batteux F, Abehsira-Amar O, Nicoletti F, Charreire J. “Induction of experimental autoimmune thyroiditis by heat-denatured porcine thyroglobulin: a Tc1-mediated disease. ”Eur J Immunol. 29: 1342-1352 (1999)).

従って、CD8+T細胞の活性化を制御する本発明の抗体は、ヒト甲状腺炎の治療剤としての利用可能性を有している。   Therefore, the antibody of the present invention that controls the activation of CD8 + T cells has applicability as a therapeutic agent for human thyroiditis.

関節リウマチ
後述する実施例に記載のように、本発明に係る抗体の一つである5G7はMycobacterium butyriumによって惹起されるDTHの実験において、関節リウマチの治療に関して優位な効果を発揮する。
Rheumatoid arthritis As described in the examples described later, 5G7, one of the antibodies according to the present invention, exerts a superior effect on the treatment of rheumatoid arthritis in DTH experiments induced by Mycobacterium butyrium.

従って、本発明に係る抗体は、関節リウマチの治療剤としての利用可能性を有している。   Therefore, the antibody according to the present invention has applicability as a therapeutic agent for rheumatoid arthritis.

移植片拒絶反応
ヒトの臓器移植後の移植片拒絶反応にCD8+T細胞が重要な役割を果たしている。移植片中の細胞上に発現しているMHC class Iを認識する宿主のCD8+T細胞により移植片が拒絶される。また、拒絶反応が起きている腎移植患者の腎臓に多くのCD8+T細胞が浸潤している事が報告されている。この様に、ヒト臓器移植後の移植片拒絶反応においても、CD8+T細胞が中心的な役割を果たすことが示されている(Bueno V, Pestana JOM. “The role of CD8+ T cells during allograft rejection.” Braz J Med Biol Res. 35: 1247-1258 (2002))。
Transplant rejection CD8 + T cells play an important role in transplant rejection after human organ transplantation. The graft is rejected by host CD8 + T cells that recognize MHC class I expressed on the cells in the graft. In addition, it has been reported that many CD8 + T cells infiltrate the kidneys of renal transplant patients undergoing rejection. Thus, CD8 + T cells have been shown to play a central role in transplant rejection after human organ transplantation (Bueno V, Pestana JOM. “The role of CD8 + T cells during allograft rejection. . ”Braz J Med Biol Res. 35: 1247-1258 (2002)).

従って、CD8+T細胞の活性化を制御する本発明の抗体は、臓器片対宿主病の治療剤としての利用可能性を有している。   Therefore, the antibody of the present invention that controls activation of CD8 + T cells has applicability as a therapeutic agent for organ fragment-versus-host disease.

皮膚筋炎、多発性筋炎、封入体筋炎
皮膚筋炎及び多発性筋炎患者の病変部位に浸潤するリンパ球を株化したところCD8+T細胞株は自己の培養筋細胞に対して細胞傷害性を示した。この事から上記筋炎患者における筋細胞傷害が、抗原特異的な細胞傷害性のCD8+Tによる事を示している(Hohlfeld R , Engel AG. “Coculture with autologous myotubes of cytotoxic T cells isolated from muscle in inflammatory myopathies.” Ann Neurol. 29: 498-507 (1991))。また封入体筋炎患者の病変部位にCD8+T細胞が浸潤していることが示されている(Dalakas MC. “Review: An update on inflammatory and autoimmune myopathies.” Neuropathol Appl Neurobiol.37: 226-242 (2011))。従って、CD8+T細胞の活性化を制御する本発明の抗体は、皮膚筋炎、多発性筋炎または封入体筋炎の治療剤としての利用可能性を有している。
When lymphocytes that infiltrate lesion sites of patients with dermatomyositis, polymyositis, inclusion body myositis dermatomyositis and polymyositis were established, the CD8 + T cell line was cytotoxic to its own cultured myocytes. . This suggests that myocyte damage in the above myositis patients is due to antigen-specific cytotoxic CD8 + T (Hohlfeld R, Engel AG. “Coculture with autologous myotubes of cytotoxic T cells isolated from muscle in inflammatory myopathies. ”Ann Neurol. 29: 498-507 (1991)). It has also been shown that CD8 + T cells are infiltrating into lesions of patients with inclusion body myositis (Dalakas MC. “Review: An update on inflammatory and autoimmune myopathies.” Neuropathol Appl Neurobiol. 37: 226-242 ( 2011)). Therefore, the antibody of the present invention that controls the activation of CD8 + T cells has applicability as a therapeutic agent for dermatomyositis, polymyositis or inclusion body myositis.

以上説明するように、本発明に係る抗体には、免疫疾患、特に皮膚免疫疾患に対する治療剤としての利用可能性を有しているため、本発明によれば、前述する本発明に係る抗体を含む薬学的組成物を提供することができる。   As described above, since the antibody according to the present invention has applicability as a therapeutic agent for immune diseases, particularly skin immune diseases, according to the present invention, the antibody according to the present invention described above is used. Pharmaceutical compositions comprising can be provided.

当該薬学的組成物は、免疫疾患、特に皮膚免疫疾患の治療を目的として、免疫疾患治療剤としての利用可能性を有している。   The pharmaceutical composition has applicability as a therapeutic agent for immune diseases for the purpose of treating immune diseases, particularly skin immune diseases.

ここで、「治療」なる用語は、所望の薬理学的効果及び/又は生理学的効果を得ることを意味する。この効果は、疾病及び/又は疾病に起因する悪影響(病態や症状)を、部分的又は完全に治癒することを含む。また、上記効果には、疾病及び/又は疾病に起因する悪影響(病態や症状)の進行を阻止又は遅延する効果、病態や症状を緩和する(疾病または症状の後退、または症状の進行の逆転を引き起こす)効果、さらに再発を阻止する効果が含まれる。また、上記効果には、疾病及び/又は疾病に起因する悪影響(病態や症状)の素因を持ちうるが、まだ持っていると診断されていない個体において、疾病及び/又は疾病に起因する悪影響(病態や症状)が起こることを部分的又は完全に防止する効果が含まれる。従って、「治療」なる用語には、「緩解」、「再発防止」、及び「予防」の意味も包含される。   Here, the term “treatment” means obtaining a desired pharmacological and / or physiological effect. This effect includes partial or complete cure of the disease and / or adverse effects (pathology or symptoms) resulting from the disease. In addition, the above-mentioned effects include the effect of preventing or delaying the progression of the disease and / or adverse effects (pathology and symptoms) caused by the disease, the relief of the disease state and symptoms (reversal of the disease or symptoms, or reversal of the progression of symptoms). Effect), and the effect of preventing recurrence. In addition, the effects described above may have a predisposition to the disease and / or adverse effects (pathology and symptoms) caused by the disease, but in individuals who have not yet been diagnosed as having an adverse effect due to the disease and / or disease ( The effect of partially or completely preventing the occurrence of a disease state or symptom) is included. Therefore, the term “treatment” includes the meanings of “remission”, “prevention of recurrence”, and “prevention”.

本発明において、本発明に係る抗体を含む薬学的組成物は、哺乳動物、特にヒトの免疫疾患、特に皮膚免疫疾患の治療に好適に用いることができ、例えば免疫疾患の各種症状を部分的または完全に治癒する効果、免疫疾患の各種症状を部分的または完全に阻害する(その進行を阻止又は遅延する)効果、免疫疾病の各種症状を緩和する(疾病または症状の後退、または症状の進行の逆転を引き起こす)効果、または免疫疾病の各種症状の再発を防止する効果を得ることが可能であると理解される。   In the present invention, the pharmaceutical composition containing the antibody according to the present invention can be suitably used for treatment of immune diseases in mammals, particularly humans, particularly skin immune diseases. For example, various symptoms of immune diseases are partially or Effects of complete healing, partial or complete inhibition of various symptoms of immune disease (preventing or delaying its progression), alleviation of various symptoms of immune disease (regression of disease or symptoms, or progression of symptoms) It is understood that it is possible to obtain effects that cause reversal) or prevent recurrence of various symptoms of immune disease.

ここで対象とする免疫疾患の具体的な例は、前述する通りである。好ましくは皮膚免疫疾患である。   The specific example of the immune disease to be used here is as described above. Preferred is a skin immune disease.

かかる薬学的組成物は、本発明に係る抗体を有効量含んでいればよく、その限りにおいて、組成物中の本発明に係る抗体の含有量は特に制限はされない。例えば、薬学的組成物100重量%中の本発明に係る抗体の含有割合が0.001〜99.99重量%の範囲になるように、対象とする免疫疾患の種類、剤型、及び投与方法等を勘案して、適宜設定することができる。   Such a pharmaceutical composition only needs to contain an effective amount of the antibody according to the present invention, and so far as the content of the antibody according to the present invention in the composition is not particularly limited. For example, considering the type, dosage form, and administration method of the target immune disease so that the content of the antibody according to the present invention in 100% by weight of the pharmaceutical composition is in the range of 0.001 to 99.99% by weight. And can be set as appropriate.

ここで、「有効量」なる用語は、本発明に係る抗体が樹状細胞の細胞遊走を阻害する効果を発揮する量、又は上述する所望の薬理学的効果及び/又は生理学的効果(免疫疾患治療効果)を発揮する量をいう。   Here, the term “effective amount” means the amount by which the antibody of the present invention exerts an effect of inhibiting cell migration of dendritic cells, or the desired pharmacological effect and / or physiological effect described above (immune disease). It refers to the amount that exhibits a therapeutic effect.

薬学的組成物には、本発明に係る抗体と共に、薬学的に許容可能な担体或いは添加物を配合してもよい。ここで、「薬学的に許容可能な担体或いは添加物」とは、任意の担体、希釈剤、賦形剤、懸濁剤、潤滑剤、アジュバント、媒体、送達システム、乳化剤、錠剤分解物質、吸収剤、保存剤、界面活性剤、着色剤、香料、または甘味料を意味し、公知のものを採用すればよい。   The pharmaceutical composition may contain a pharmaceutically acceptable carrier or additive together with the antibody of the present invention. Here, “pharmaceutically acceptable carrier or additive” refers to any carrier, diluent, excipient, suspension, lubricant, adjuvant, vehicle, delivery system, emulsifier, tablet disintegrant, absorption Meaning agents, preservatives, surfactants, colorants, fragrances, or sweeteners, and known ones may be employed.

かかる薬学的組成物の剤型は、たとえば錠剤、散剤、シロップ剤、ハップ剤、注射剤、点滴剤等が挙げられ、特に限定はされないが、注射剤または点滴剤とすることが好ましい。このような注射剤や点滴剤は、水性であっても、非水性であっても、懸濁性であってもよい。また、用時調製型の剤型であってもよい。   Examples of the dosage form of such a pharmaceutical composition include tablets, powders, syrups, haps, injections, drops, and the like, and are not particularly limited, but are preferably injections or drops. Such injections and infusions may be aqueous, non-aqueous or suspendable. Further, it may be a dosage form prepared at the time of use.

当該本発明の薬学的組成物、具体的には免疫疾患治療剤は、免疫疾患、特に皮膚免疫疾患に罹患した患者に投与する工程を含む免疫疾患の治療方法における利用可能性を有している。また、前述するように、免疫疾患、特に皮膚免疫疾患の病態や症状を発症していないものの、免疫疾患の素因を持ちうる患者に投与する工程を含む免疫疾患の予防方法における利用可能性を有している。   The pharmaceutical composition of the present invention, specifically, an immune disease therapeutic agent has applicability in a method for treating an immune disease including a step of administering to a patient suffering from an immune disease, particularly a skin immune disease. . In addition, as described above, the present invention has applicability in a method for preventing an immune disease including a step of administering to a patient who has no predisposition to an immune disease, although the disease state or symptom of an immune disease, particularly a skin immune disease, has not developed. doing.

当該薬学的組成物(免疫疾患治療剤)の投与量並びに投与方法は、対象とする免疫疾患の種類、患者の性別、人種、年齢、全身状態、疾患の重篤度等に応じて、0.001~100mg/kg/dayの範囲で適宜設定することができる。   The dosage and administration method of the pharmaceutical composition (immune disease therapeutic agent) is 0.001 depending on the type of immune disease, gender, race, age, general condition, severity of the disease, etc. It can be set as appropriate within a range of ~ 100 mg / kg / day.

本発明に係る抗体の投与は、上記の量を一日に一度に投与してもよく、数回に分けて投与してもよい。また、上記疾患に対する治療効果を有する範囲において、投与間隔は、毎日、隔日、毎週、隔週、2〜3週毎、毎月、隔月または2〜3ヶ月毎でもよい。投与方法は、例えば経口、筋肉内、静脈内、動脈内、くも膜下腔内、皮内、腹腔内、鼻腔内、肺内、眼内、腟内、頸部内、直腸内、皮下等へ投与する方法が挙げられ、特に限定はされない。   The antibody according to the present invention may be administered once a day or may be divided into several times. In addition, the administration interval may be daily, every other day, every week, every other week, every two to three weeks, every month, every other month, or every two to three months as long as it has a therapeutic effect on the above diseases. Administration method is, for example, oral, intramuscular, intravenous, intraarterial, intrathecal, intradermal, intraperitoneal, intranasal, intrapulmonary, intraocular, intravaginal, intracervical, intrarectal, subcutaneous, etc. There is no particular limitation.

(2)イムノトキシンとしての用途
本発明に係る抗体は、細胞毒性分子と結合した形態のものであってもよい。そのような抗体は、免疫システムに関連する樹状細胞にて著量発現しているヒトXCR1タンパク質に結合するため、樹状細胞を標的細胞としたイムノトキシンとすることが可能である。
(2) Use as immunotoxin The antibody according to the present invention may be in a form bound to a cytotoxic molecule. Such an antibody binds to a human XCR1 protein that is significantly expressed in dendritic cells associated with the immune system, and thus can be an immunotoxin having dendritic cells as target cells.

ここで、用語「細胞毒性分子」とは、細胞をアポトーシス及び/又はネクローシスなどといった、死に至らしめる効果を発揮する分子のことを意味する。   Here, the term “cytotoxic molecule” means a molecule that exerts an effect of causing a cell to die, such as apoptosis and / or necrosis.

このような分子として、例えばサポリン、リシン、Pseudomonas外毒素、ジフテリア毒素、化学療法剤などが挙げられる。抗体と毒性物質の結合は、従来のイムノトキシンの作製に用いられる方法によって行うことができる。   Examples of such molecules include saporin, ricin, Pseudomonas exotoxin, diphtheria toxin, chemotherapeutic agents and the like. The binding of the antibody and the toxic substance can be performed by a conventional method for producing an immunotoxin.

(3)本発明に係る抗体の他の用途
本発明に係る抗体は、樹状細胞に著量発現するXCR1と結合する態様の抗体も包含するために、樹状細胞を検出する方法における利用可能性を有している。その際には、本発明に係る抗体を標識化して用いることが好ましい。ここで、用語「標識化」とは、蛍光分子、発光分子、発色分子、放射性同位体分子等といった標識分子を結合させることである。
(3) Other uses of the antibody according to the present invention The antibody according to the present invention also includes an antibody that binds to XCR1 that is significantly expressed in dendritic cells, and can therefore be used in a method for detecting dendritic cells. It has sex. In that case, it is preferable to label and use the antibody according to the present invention. Here, the term “labeling” refers to binding of a labeled molecule such as a fluorescent molecule, a luminescent molecule, a chromogenic molecule, a radioisotope molecule or the like.

結合の様式は、検出に係る工程において結合が解離されない範囲においてどのような結合様式であってもよい。具体的な検出方法として、公知の方法を用いればよく、例えばフローサイトメトリー技術を採用すればよい。   The binding mode may be any binding mode as long as the binding is not dissociated in the detection step. As a specific detection method, a known method may be used. For example, a flow cytometry technique may be employed.

また、本発明に係る抗体は、上述した樹状細胞の検出に引き続き、樹状細胞を分離及び/又は除去する方法にも好適に用いることができる。これらの方法も、公知の方法を採用すればよく、例えばフローサイトメトリーと共に、公知のセルソーティング装置を適宜用いればよい。   The antibody according to the present invention can also be suitably used in a method for separating and / or removing dendritic cells following the above-described detection of dendritic cells. A known method may be adopted for these methods as well, for example, a known cell sorting apparatus may be appropriately used together with flow cytometry.

本発明は上述した抗体に関するものであり、下記に示す態様の発明を広く包含するものである。   The present invention relates to the above-described antibodies, and broadly encompasses the inventions of the embodiments shown below.

項1 ヒトXCR1に結合する抗体であって、配列番号91に示すアミノ酸配列のうち、8番目、11番目、12番目、13番目、14番目、16番目、17番目、22番目、23番目、176番目、及び177番目のアミノ酸からなる群より選択される少なくとも3個のアミノ酸を含む線状又は不連続エピトープに結合する抗体。   Item 1 An antibody that binds to human XCR1, wherein among the amino acid sequence shown in SEQ ID NO: 91, the 8th, 11th, 12th, 13th, 14th, 16th, 17th, 22nd, 23rd, 176 An antibody that binds to a linear or discontinuous epitope comprising at least 3 amino acids selected from the group consisting of the amino acids of the 1st and 177th amino acids.

項2 上記項1に記載の抗体であって、
下記の(g)-(i)の重鎖CDR1-3を含む重鎖可変領域と、(j)-(l)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;
(m)-(o)の重鎖CDR1-3を含む重鎖可変領域と、(p)-(r)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;又は
(a)-(c)の重鎖CDR1-3を含む重鎖可変領域と、(d)-(f)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体:
(a)配列番号41に示されるアミノ酸配列からなる重鎖CDR1、
(b)配列番号42に示されるアミノ酸配列からなる重鎖CDR2、
(c)配列番号43に示されるアミノ酸配列からなる重鎖CDR3;
(d)配列番号44に示されるアミノ酸配列からなる軽鎖CDR1、
(e)配列番号45に示されるアミノ酸配列からなる軽鎖CDR2、
(f)配列番号46に示されるアミノ酸配列からなる軽鎖CDR3;
(g)配列番号17に示されるアミノ酸配列からなる重鎖CDR1、
(h)配列番号18に示されるアミノ酸配列からなる重鎖CDR2、
(i)配列番号19に示されるアミノ酸配列からなる重鎖CDR3;
(j)配列番号20に示されるアミノ酸配列からなる軽鎖CDR1、
(k)配列番号21に示されるアミノ酸配列からなる軽鎖CDR2、
(l)配列番号22に示されるアミノ酸配列からなる軽鎖CDR3;
(m)配列番号29に示されるアミノ酸配列からなる重鎖CDR1、
(n)配列番号30に示されるアミノ酸配列からなる重鎖CDR2、
(o)配列番号31に示されるアミノ酸配列からなる重鎖CDR3;
(p)配列番号32に示されるアミノ酸配列からなる軽鎖CDR1、
(q)配列番号33に示されるアミノ酸配列からなる軽鎖CDR2、
(r)配列番号34に示されるアミノ酸配列からなる軽鎖CDR3。
Item 2 The antibody according to Item 1, wherein
An antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (g)-(i) below and a light chain variable region comprising the light chain CDR1-3 of (j)-(l);
an antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (m)-(o) and a light chain variable region comprising the light chain CDR1-3 of (p)-(r); or
An antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (a)-(c) and a light chain variable region comprising the light chain CDR1-3 of (d)-(f):
(a) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 41,
(b) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 42,
(c) heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 43;
(d) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 44,
(e) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 45,
(f) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 46;
(g) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 17,
(h) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 18,
(i) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 19;
(j) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 20,
(k) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 21,
(l) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 22;
(m) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 29,
(n) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 30,
(o) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 31;
(p) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 32,
(q) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 33,
(r) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 34.

項3 上記項1又は項2に記載の抗体であって、配列番号60又は64に示すアミノ酸配列を含む重鎖可変領域と、配列番号68又は72に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。   Item 3 The antibody according to Item 1 or 2, wherein a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 60 or 64 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 68 or 72 Including antibodies.

項4 上記項1〜項3の何れか1項に記載の抗体であって、配列番号60に示すアミノ酸配列を含む重鎖可変領域と、配列番号68に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。   Item 4 The antibody according to any one of Items 1 to 3, wherein the variable region comprises a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 60, and the light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 68. An antibody comprising

項5 上記項1〜項3の何れか1項に記載の抗体であって、配列番号64に示すアミノ酸配列を含む重鎖可変領域と、配列番号72に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。   Item 5 The antibody according to any one of Items 1 to 3, wherein the heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 64, and the light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 72 An antibody comprising

項6 上記項1〜項5の何れか1項に記載の抗体であって、ヒト定常領域を含有する抗体。   Item 6 The antibody according to any one of Items 1 to 5, wherein the antibody contains a human constant region.

項7 上記項1〜項6の何れか1項に記載の抗体であって、配列番号59に示すアミノ酸配列を含む重鎖と、配列番号67に示すアミノ酸配列を含む軽鎖とを含む抗体。   Item 7 The antibody according to any one of Items 1 to 6, wherein the antibody comprises a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 59 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 67.

項8 上記項1〜項6の何れか1項に記載の抗体であって、配列番号63に示すアミノ酸配列を含む重鎖と、配列番号71に示すアミノ酸配列を含む軽鎖とを含む抗体。   Item 8 The antibody according to any one of Items 1 to 6, wherein the antibody comprises a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 63 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 71.

項9 Fc領域を有する上記項1〜項8の何れか1項に記載の抗体であって、ADCC活性が変動するようにFc領域に変異が施されてなる抗体。   Item 9 The antibody according to any one of Items 1 to 8, which has an Fc region, wherein the Fc region is mutated so that ADCC activity varies.

項10 上記項9に記載の抗体であって、ADCC活性が下降するようにFc領域に変異が施されてなる抗体。   Item 10 The antibody according to Item 9, wherein the Fc region is mutated so that ADCC activity decreases.

項11 上記項1〜項10の何れか1項に記載の抗体であって、該抗体に細胞毒性分子が結合した抗体。   Item 11 The antibody according to any one of Items 1 to 10, wherein a cytotoxic molecule is bound to the antibody.

項12 上記項1〜項11の何れか1項に記載の抗体であって、ヒトXCR1とヒトXCL1との相互作用を阻害する作用を有する抗体。   Item 12 The antibody according to any one of Items 1 to 11, wherein the antibody has an action of inhibiting an interaction between human XCR1 and human XCL1.

項13 上記項1〜項12の何れか1項に記載の抗体であって、樹状細胞の細胞遊走を阻害する作用を有する抗体。   Item 13 The antibody according to any one of Items 1 to 12, wherein the antibody has an action of inhibiting cell migration of dendritic cells.

項14 上記項1〜項13の何れか1項に記載の抗体であって、細胞傷害性Tリンパ細胞の活性を抑制する抗体。   Item 14 The antibody according to any one of Items 1 to 13, wherein the antibody suppresses the activity of cytotoxic T lymphocytes.

項15 上記項1〜項14の何れか1項に記載の抗体、及び薬学的に許容可能な担体または添加物を含有する薬学的組成物。   Item 15 A pharmaceutical composition comprising the antibody according to any one of Items 1 to 14 and a pharmaceutically acceptable carrier or additive.

項16 免疫疾患治療剤である、上記項15に記載の薬学的組成物。   Item 16. The pharmaceutical composition according to Item 15, which is a therapeutic agent for immune diseases.

項17 免疫疾患が皮膚の免疫疾患である、上記項16に記載の薬学的組成物。   Item 17. The pharmaceutical composition according to Item 16, wherein the immune disease is a skin immune disease.

項18 皮膚の免疫疾患が乾癬、類乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎、封入体筋炎、自己免疫性水疱症(天疱瘡、類天疱瘡、後天性表皮水疱症)、膿疱症、妊娠性疱疹、線状IgA水疱性皮膚症、円形脱毛症、尋常性白斑、膠原病(全身性エリテマトーデス、Sjoegren症候群、混合性結合組織病)に伴う皮膚疾患、アジソン病に伴う皮膚疾患、移植片対宿主病(GVHD)に伴う皮膚疾患、湿疹又は蕁麻疹である、上記項17に記載の薬学的組成物。   Item 18 The skin immune disease is psoriasis, psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis, inclusion body myositis, autoimmune blistering (pemphigoid, pemphigoid, acquired epidermolysis blisters Symptom), pustular disease, gestational herpes zoster, linear IgA bullous dermatosis, alopecia areata, vulgaris vulgaris, skin disease associated with collagen disease (systemic lupus erythematosus, Sjoegren syndrome, mixed connective tissue disease), Addison disease Item 18. The pharmaceutical composition according to Item 17, which is a skin disease accompanying, skin disease associated with graft-versus-host disease (GVHD), eczema or urticaria.

項19 皮膚の免疫疾患が乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎または封入体筋炎である、上記項17に記載の薬学的組成物。   Item 19 The pharmaceutical composition according to Item 17, wherein the skin immune disease is psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis or inclusion body myositis.

項20 皮膚の免疫疾患がアトピー性皮膚炎又は接触性皮膚炎である、上記項17に記載の薬学的組成物。   Item 20. The pharmaceutical composition according to Item 17, wherein the skin immune disease is atopic dermatitis or contact dermatitis.

項21 免疫疾患が、甲状腺炎、関節リウマチ、I型糖尿病、又は多発性硬化症である、上記項16に記載の薬学的組成物。   Item 21 The pharmaceutical composition according to Item 16, wherein the immune disease is thyroiditis, rheumatoid arthritis, type I diabetes, or multiple sclerosis.

項22 上記項1〜項14の何れか1項に記載の抗体をコードする塩基配列を含む核酸。   Item 22 A nucleic acid comprising a base sequence encoding the antibody according to any one of Items 1 to 14.

項23 上記項1〜項14の何れか1項に記載の抗体又は上記項15に記載の薬学的組成物の有効量を、免疫疾患に罹患したヒトに投与する工程を含む免疫疾患の治療方法。   Item 23: A method for treating an immune disease comprising the step of administering an effective amount of the antibody according to any one of Items 1 to 14 or the pharmaceutical composition according to Item 15 to a human suffering from an immune disease. .

項24 免疫疾患が皮膚の免疫疾患である、上記項23に記載の方法。   Item 24 The method according to Item 23, wherein the immune disease is a skin immune disease.

項25 皮膚の免疫疾患が乾癬、類乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎、封入体筋炎、自己免疫性水疱症(天疱瘡、類天疱瘡、後天性表皮水疱症)、膿疱症、妊娠性疱疹、線状IgA水疱性皮膚症、円形脱毛症、尋常性白斑、膠原病(全身性エリテマトーデス、Sjoegren症候群、混合性結合組織病)に伴う皮膚疾患、アジソン病に伴う皮膚疾患、移植片対宿主病(GVHD)に伴う皮膚疾患、湿疹又は蕁麻疹である、上記項24に記載の方法。   Item 25 The skin immune disease is psoriasis, psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis, inclusion body myositis, autoimmune blistering (pemphigoid, pemphigoid, acquired epidermolysis blisters Symptom), pustular disease, gestational herpes zoster, linear IgA bullous dermatosis, alopecia areata, vulgaris vulgaris, skin disease associated with collagen disease (systemic lupus erythematosus, Sjoegren syndrome, mixed connective tissue disease), Addison disease Item 25. The method according to Item 24, wherein the method is skin disease associated with graft disease, graft-versus-host disease (GVHD), eczema or urticaria.

項26 皮膚の免疫疾患が乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎または封入体筋炎である、上記項24に記載の方法。   Item 26 The method according to Item 24, wherein the skin immune disease is psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis or inclusion body myositis.

項27 免疫疾患が、甲状腺炎、関節リウマチ、I型糖尿病、又は多発性硬化症である、上記項23に記載の方法。   Item 27 The method according to Item 23, wherein the immune disease is thyroiditis, rheumatoid arthritis, type I diabetes, or multiple sclerosis.

本発明は、下記に示す態様も包含する。   The present invention also includes the following embodiments.

項1A 下記の(g)-(i)の重鎖CDR1-3を含む重鎖可変領域と、(j)-(l)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;
(m)-(o)の重鎖CDR1-3を含む重鎖可変領域と、(p)-(r)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;又は
(a)-(c)の重鎖CDR1-3を含む重鎖可変領域と、(d)-(f)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体:
(a)配列番号41に示されるアミノ酸配列からなる重鎖CDR1、
(b)配列番号42に示されるアミノ酸配列からなる重鎖CDR2、
(c)配列番号43に示されるアミノ酸配列からなる重鎖CDR3;
(d)配列番号44に示されるアミノ酸配列からなる軽鎖CDR1、
(e)配列番号45に示されるアミノ酸配列からなる軽鎖CDR2、
(f)配列番号46に示されるアミノ酸配列からなる軽鎖CDR3;
(g)配列番号17に示されるアミノ酸配列からなる重鎖CDR1、
(h)配列番号18に示されるアミノ酸配列からなる重鎖CDR2、
(i)配列番号19に示されるアミノ酸配列からなる重鎖CDR3;
(j)配列番号20に示されるアミノ酸配列からなる軽鎖CDR1、
(k)配列番号21に示されるアミノ酸配列からなる軽鎖CDR2、
(l)配列番号22に示されるアミノ酸配列からなる軽鎖CDR3;
(m)配列番号29に示されるアミノ酸配列からなる重鎖CDR1、
(n)配列番号30に示されるアミノ酸配列からなる重鎖CDR2、
(o)配列番号31に示されるアミノ酸配列からなる重鎖CDR3;
(p)配列番号32に示されるアミノ酸配列からなる軽鎖CDR1、
(q)配列番号33に示されるアミノ酸配列からなる軽鎖CDR2、
(r)配列番号34に示されるアミノ酸配列からなる軽鎖CDR3。
Item 1A An antibody comprising a heavy chain variable region comprising the following heavy chain CDR1-3 of (g)-(i) and a light chain variable region comprising the light chain CDR1-3 of (j)-(l);
an antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (m)-(o) and a light chain variable region comprising the light chain CDR1-3 of (p)-(r); or
An antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (a)-(c) and a light chain variable region comprising the light chain CDR1-3 of (d)-(f):
(a) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 41,
(b) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 42,
(c) heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 43;
(d) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 44,
(e) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 45,
(f) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 46;
(g) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 17,
(h) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 18,
(i) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 19;
(j) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 20,
(k) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 21,
(l) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 22;
(m) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 29,
(n) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 30,
(o) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 31;
(p) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 32,
(q) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 33,
(r) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 34.

項2A 上記項1Aに記載の抗体であって、配列番号60又は64に示すアミノ酸配列を含む重鎖可変領域と、配列番号68又は72に示すアミノ酸配列を含む軽鎖可変領域とを含む記載の抗体。   Item 2A The antibody according to Item 1A above, comprising a heavy chain variable region comprising the amino acid sequence shown in SEQ ID NO: 60 or 64 and a light chain variable region comprising the amino acid sequence shown in SEQ ID NO: 68 or 72 antibody.

項3A 上記項1A又は項2Aに記載の抗体であって、配列番号60に示すアミノ酸配列を含む重鎖可変領域と、配列番号68に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。   Item 3A The antibody according to Item 1A or Item 2A, comprising a heavy chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 60 and a light chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 68.

項4A 上記項1A又は2Aに記載の抗体であって、配列番号64に示すアミノ酸配列を含む重鎖可変領域と、配列番号72に示すアミノ酸配列を含む軽鎖可変領域とを含む請求項1又は2に記載の抗体。   Item 4A The antibody according to Item 1A or 2A, comprising a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 64 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 72. 2. The antibody according to 2.

項5A 上記項1A〜項4Aの何れか1項に記載の抗体であって、ヒト定常領域を含有する抗体。   Item 5A The antibody according to any one of Items 1A to 4A, which comprises a human constant region.

項6A 上記項1A〜項5Aの何れか1項に記載の抗体であって、配列番号59に示すアミノ酸配列を含む重鎖と、配列番号67に示すアミノ酸配列を含む軽鎖とを含む抗体。   Item 6A The antibody according to any one of Items 1A to 5A, comprising a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 59 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 67.

項7A 上記項1A〜項5Aの何れか1項に記載の抗体であって、配列番号63に示すアミノ酸配列を含む重鎖と、配列番号71に示すアミノ酸配列を含む軽鎖とを含む抗体。   Item 7A The antibody according to any one of Items 1A to 5A, comprising a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 63 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 71.

項8A Fc領域を有する上記項1A〜項7Aの何れか1項に記載の抗体であって、ADCC活性が変動するようにFc領域に変異が施されてなる抗体。   Item 8A The antibody according to any one of Items 1A to 7A having the Fc region, wherein the Fc region is mutated so that ADCC activity varies.

項9A 上記項8Aに記載の抗体であって、ADCC活性が下降するようにFc領域に変異が施されてなる抗体。   Item 9A The antibody according to item 8A, wherein the Fc region is mutated so that ADCC activity decreases.

項10A 上記項1A〜項9Aの何れか1項に記載の抗体であって、ヒトXCR1とヒトXCL1との相互作用を阻害する作用を有する抗体。   Item 10A The antibody according to any one of Items 1A to 9A, wherein the antibody has an action of inhibiting an interaction between human XCR1 and human XCL1.

項11A 上記項1A〜項10Aの何れか1項に記載の抗体であって、樹状細胞の細胞遊走を阻害する作用を有する抗体。   Item 11A The antibody according to any one of Items 1A to 10A, wherein the antibody has an action of inhibiting cell migration of dendritic cells.

項12A 上記項1A〜項11Aの何れか1項に記載の抗体、及び薬学的に許容可能な担体または添加物を含有する薬学的組成物。   Item 12A A pharmaceutical composition comprising the antibody according to any one of Items 1A to 11A and a pharmaceutically acceptable carrier or additive.

項13A 免疫疾患治療剤である、上記項12Aに記載の薬学的組成物。   Item 13A The pharmaceutical composition according to Item 12A, which is a therapeutic agent for immune diseases.

項14A 免疫疾患が皮膚の免疫疾患である、上記項13Aに記載の薬学的組成物。   Item 14A The pharmaceutical composition according to Item 13A, wherein the immune disease is a skin immune disease.

項15A 皮膚の免疫疾患が乾癬、類乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎、封入体筋炎、自己免疫性水疱症(天疱瘡、類天疱瘡、後天性表皮水疱症)、膿疱症、妊娠性疱疹、線状IgA水疱性皮膚症、円形脱毛症、尋常性白斑、膠原病(全身性エリテマトーデス、Sjoegren症候群、混合性結合組織病)に伴う皮膚疾患、アジソン病に伴う皮膚疾患、移植片対宿主病(GVHD)に伴う皮膚疾患、湿疹又は蕁麻疹である、上記項14Aに記載の薬学的組成物。   Item 15A The skin immune disease is psoriasis, psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis, inclusion body myositis, autoimmune blistering (pemphigoid, pemphigoid, acquired epidermolysis blisters Symptom), pustular disease, gestational herpes zoster, linear IgA bullous dermatosis, alopecia areata, vulgaris vulgaris, skin disease associated with collagen disease (systemic lupus erythematosus, Sjoegren syndrome, mixed connective tissue disease), Addison disease Item 14. The pharmaceutical composition according to Item 14A, which is a skin disease accompanying, skin disease associated with graft-versus-host disease (GVHD), eczema or urticaria.

項16A 皮膚の免疫疾患が乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎または封入体筋炎である、上記項14Aに記載の薬学的組成物。   Item 16A The pharmaceutical composition according to Item 14A, wherein the skin immune disease is psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis or inclusion body myositis.

項17A 皮膚の免疫疾患がアトピー性皮膚炎又は接触性皮膚炎である、上記項14Aに記載の薬学的組成物。   Item 17A The pharmaceutical composition according to Item 14A, wherein the skin immune disease is atopic dermatitis or contact dermatitis.

項18A 上記項1A〜項11Aの何れか1項に記載の抗体をコードする塩基配列を含む核酸。   Item 18A A nucleic acid comprising a base sequence encoding the antibody according to any one of Items 1A to 11A.

項19A 上記項1A〜項11Aの何れか1項に記載の抗体の有効量を、免疫疾患に罹患したヒトに投与する工程を含む免疫疾患の治療方法。   Item 19A A method for treating an immune disease comprising a step of administering an effective amount of the antibody according to any one of Items 1A to 11A to a human suffering from an immune disease.

本発明は、さらに下記に示す態様も包含する。   The present invention further includes the following embodiments.

項1B 下記の(g)-(i)の重鎖CDR1-3を含む重鎖可変領域と、(j)-(l)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;
(m)-(o)の重鎖CDR1-3を含む重鎖可変領域と、(p)-(r)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;又は
(a)-(c)の重鎖CDR1-3を含む重鎖可変領域と、(d)-(f)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体:
(a)配列番号41に示されるアミノ酸配列からなる重鎖CDR1、
(b)配列番号42に示されるアミノ酸配列からなる重鎖CDR2、
(c)配列番号43に示されるアミノ酸配列からなる重鎖CDR3;
(d)配列番号44に示されるアミノ酸配列からなる軽鎖CDR1、
(e)配列番号45に示されるアミノ酸配列からなる軽鎖CDR2、
(f)配列番号46に示されるアミノ酸配列からなる軽鎖CDR3;
(g)配列番号17に示されるアミノ酸配列からなる重鎖CDR1、
(h)配列番号18に示されるアミノ酸配列からなる重鎖CDR2、
(i)配列番号19に示されるアミノ酸配列からなる重鎖CDR3;
(j)配列番号20に示されるアミノ酸配列からなる軽鎖CDR1、
(k)配列番号21に示されるアミノ酸配列からなる軽鎖CDR2、
(l)配列番号22に示されるアミノ酸配列からなる軽鎖CDR3;
(m)配列番号29に示されるアミノ酸配列からなる重鎖CDR1、
(n)配列番号30に示されるアミノ酸配列からなる重鎖CDR2、
(o)配列番号31に示されるアミノ酸配列からなる重鎖CDR3;
(p)配列番号32に示されるアミノ酸配列からなる軽鎖CDR1、
(q)配列番号33に示されるアミノ酸配列からなる軽鎖CDR2、
(r)配列番号34に示されるアミノ酸配列からなる軽鎖CDR3。
Item 1B An antibody comprising a heavy chain variable region comprising the following heavy chain CDR1-3 of (g)-(i) and a light chain variable region comprising the light chain CDR1-3 of (j)-(l);
an antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (m)-(o) and a light chain variable region comprising the light chain CDR1-3 of (p)-(r); or
An antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (a)-(c) and a light chain variable region comprising the light chain CDR1-3 of (d)-(f):
(a) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 41,
(b) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 42,
(c) heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 43;
(d) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 44,
(e) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 45,
(f) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 46;
(g) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 17,
(h) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 18,
(i) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 19;
(j) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 20,
(k) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 21,
(l) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 22;
(m) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 29,
(n) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 30,
(o) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 31;
(p) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 32,
(q) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 33,
(r) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 34.

項2B 上記項1Bに記載の抗体であって、配列番号60又は64に示すアミノ酸配列を含む重鎖可変領域と、配列番号68又は72に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。   Item 2B The antibody according to Item 1B, which comprises a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 60 or 64 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 68 or 72.

項3B 上記項1B又は項2Bに記載の抗体であって、配列番号60に示すアミノ酸配列を含む重鎖可変領域と、配列番号68に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。   Item 3B The antibody according to Item 1B or Item 2B, wherein the antibody comprises a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 60 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 68.

項4B 上記項1B又は2Bに記載の抗体であって、配列番号64に示すアミノ酸配列を含む重鎖可変領域と、配列番号72に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。   Item 4B The antibody according to Item 1B or 2B above, comprising a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 64 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 72.

項5B 上記項1B〜項4Bの何れか1項に記載の抗体であって、ヒト定常領域を含有する抗体。   Item 5B The antibody according to any one of Items 1B to 4B, which comprises a human constant region.

項6B 上記項1B〜項5Bの何れか1項に記載の抗体であって、配列番号59に示すアミノ酸配列を含む重鎖と、配列番号67に示すアミノ酸配列を含む軽鎖とを含む抗体。   Item 6B The antibody according to any one of Items 1B to 5B, wherein the antibody comprises a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 59 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 67.

項7B 上記項1B〜項5Bの何れか1項に記載の抗体であって、配列番号63に示すアミノ酸配列を含む重鎖と、配列番号71に示すアミノ酸配列を含む軽鎖とを含む抗体。   Item 7B The antibody according to any one of Items 1B to 5B, which comprises a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 63 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 71.

項8B Fc領域を有する上記項1B〜項7Bの何れか1項に記載の抗体であって、ADCC活性が変動するようにFc領域に変異が施されてなる抗体。   Item 8B The antibody according to any one of Items 1B to 7B, which has an Fc region, wherein the Fc region is mutated so that ADCC activity varies.

項9B 上記項8Bに記載の抗体であって、ADCC活性が下降するようにFc領域に変異が施されてなる抗体。   Item 9B The antibody according to Item 8B, wherein the Fc region is mutated so that ADCC activity decreases.

項10B 上記項1B〜項9Bの何れか1項に記載の抗体であって、該抗体に細胞毒性分子が結合した抗体。   Item 10B The antibody according to any one of Items 1B to 9B, wherein a cytotoxic molecule is bound to the antibody.

項11B 上記項1B〜項10Bの何れか1項に記載の抗体であって、ヒトXCR1とヒトXCL1との相互作用を阻害する作用を有する抗体。   Item 11B The antibody according to any one of Items 1B to 10B, wherein the antibody has an action of inhibiting an interaction between human XCR1 and human XCL1.

項12B 上記項1B〜項11Bの何れか1項に記載の抗体であって、樹状細胞の細胞遊走を阻害する作用を有する抗体。   Item 12B The antibody according to any one of Items 1B to 11B, wherein the antibody has an action of inhibiting cell migration of dendritic cells.

項13B 上記項1B〜項12Bの何れか1項に記載の抗体、及び薬学的に許容可能な担体または添加物を含有する薬学的組成物。   Item 13B A pharmaceutical composition comprising the antibody according to any one of Items 1B to 12B and a pharmaceutically acceptable carrier or additive.

項14B 免疫疾患治療剤である、上記項13Bに記載の薬学的組成物。   Item 14B The pharmaceutical composition according to Item 13B, which is a therapeutic agent for immune diseases.

項15B 免疫疾患が皮膚の免疫疾患である、上記項14Bに記載の薬学的組成物。   Item 15B The pharmaceutical composition according to Item 14B, wherein the immune disease is a skin immune disease.

項16B 皮膚の免疫疾患が乾癬、類乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎、封入体筋炎、自己免疫性水疱症(天疱瘡、類天疱瘡、後天性表皮水疱症)、膿疱症、妊娠性疱疹、線状IgA水疱性皮膚症、円形脱毛症、尋常性白斑、膠原病(全身性エリテマトーデス、Sjoegren症候群、混合性結合組織病)に伴う皮膚疾患、アジソン病に伴う皮膚疾患、移植片対宿主病(GVHD)に伴う皮膚疾患、湿疹又は蕁麻疹である、上記項15Bに記載の薬学的組成物。   Item 16B The skin immune disease is psoriasis, psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis, inclusion body myositis, autoimmune blistering (pemphigoid, pemphigoid, acquired epidermolysis blisters Symptom), pustular disease, gestational herpes zoster, linear IgA bullous dermatosis, alopecia areata, vulgaris vulgaris, skin disease associated with collagen disease (systemic lupus erythematosus, Sjoegren syndrome, mixed connective tissue disease), Addison disease Item 15. The pharmaceutical composition according to Item 15B, which is a skin disease accompanying, skin disease associated with graft-versus-host disease (GVHD), eczema or urticaria.

項17B 皮膚の免疫疾患が乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎または封入体筋炎である、上記項15Bに記載の薬学的組成物。   Item 17B The pharmaceutical composition according to Item 15B, wherein the immune disease of the skin is psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis or inclusion body myositis.

項18B 皮膚の免疫疾患がアトピー性皮膚炎又は接触性皮膚炎である、上記項15Bに記載の薬学的組成物。   Item 18B The pharmaceutical composition according to Item 15B, wherein the immune disease of the skin is atopic dermatitis or contact dermatitis.

項19B 上記項1B〜項12Bの何れか1項に記載の抗体をコードする塩基配列を含む核酸。   Item 19B A nucleic acid comprising a base sequence encoding the antibody according to any one of Items 1B to 12B.

項20B 上記項1B〜項12Bの何れか1項に記載の抗体又は上記項13Bに記載の薬学的組成物の有効量を、免疫疾患に罹患したヒトに投与する工程を含む免疫疾患の治療方法。   Item 20B A method for treating an immune disease, comprising a step of administering an effective amount of the antibody according to any one of Items 1B to 12B or the pharmaceutical composition according to Item 13B to a human suffering from an immune disease. .

項21B 免疫疾患が皮膚の免疫疾患である、上記項20Bに記載の方法。   Item 21B The method according to Item 20B, wherein the immune disease is a skin immune disease.

項22B 皮膚の免疫疾患が乾癬、類乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎、封入体筋炎、自己免疫性水疱症(天疱瘡、類天疱瘡、後天性表皮水疱症)、膿疱症、妊娠性疱疹、線状IgA水疱性皮膚症、円形脱毛症、尋常性白斑、膠原病(全身性エリテマトーデス、Sjoegren症候群、混合性結合組織病)に伴う皮膚疾患、アジソン病に伴う皮膚疾患、移植片対宿主病(GVHD)に伴う皮膚疾患、湿疹又は蕁麻疹である、上記項21Bに記載の方法。   Item 22B The skin immune disease is psoriasis, psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis, inclusion body myositis, autoimmune blistering (pemphigoid, pemphigoid, acquired epidermolysis blisters Symptom), pustular disease, gestational herpes zoster, linear IgA bullous dermatosis, alopecia areata, vulgaris vulgaris, skin disease associated with collagen disease (systemic lupus erythematosus, Sjoegren syndrome, mixed connective tissue disease), Addison disease Item 21B. The method according to Item 21B, wherein the method is a skin disease accompanying, skin disease associated with graft-versus-host disease (GVHD), eczema or urticaria.

項23B 皮膚の免疫疾患が乾癬、アトピー性皮膚炎、接触性皮膚炎、皮膚筋炎、多発性筋炎または封入体筋炎である、上記項21Bに記載の方法。   Item 23B The method according to Item 21B, wherein the skin immune disease is psoriasis, atopic dermatitis, contact dermatitis, dermatomyositis, polymyositis or inclusion body myositis.

項24B 皮膚の免疫疾患が乾癬、アトピー性皮膚炎又は接触性皮膚炎である、上記項21Bに記載の方法。   Item 24B The method according to Item 21B, wherein the immune disease of the skin is psoriasis, atopic dermatitis or contact dermatitis.

以下に、本発明を実験例に基づいてより詳細に説明する。なお、本発明が実施例に限定されないことは、言うまでもない。 Below, this invention is demonstrated in detail based on an experiment example. Needless to say, the present invention is not limited to the examples.

実験例1
(1)マウス抗ヒトXCR1モノクローナル抗体の作製
ヒトXCR1に対するモノクローナル抗体を作製するために、ヒトXCR1を遺伝子導入したB300.19細胞の膜画分をXCR1ノックアウトマウスに免疫した。膜画分は以下のように調製した。まず、ヒトXCR1を遺伝子導入したB300.19細胞をHoバッファー(0.25 M Sucrose、10mMのHepes(pH7.4)、1mMのEGTA、0.5mMのMgCl2、1x Complete mini EDTA-free(Roche Applied Science))に懸濁したものを窒素ガス細胞破砕器(Parr Instrument campany)にて破砕(800psi、30分間、氷上)し、遠心分離した(2,000g、10分間)。上清を回収して再度遠心分離した(100,000g、30 分間)。沈殿を50mMのHepes(pH7.4)バッファーに懸濁し、これを膜画分とした。
Experimental example 1
(1) Preparation of mouse anti-human XCR1 monoclonal antibody In order to prepare a monoclonal antibody against human XCR1, XCR1 knockout mice were immunized with a membrane fraction of B300.19 cells transfected with human XCR1. The membrane fraction was prepared as follows. First, B300.19 cells transfected with human XCR1 were transferred to Ho buffer (0.25 M Sucrose, 10 mM Hepes (pH 7.4), 1 mM EGTA, 0.5 mM MgCl 2 , 1x Complete mini EDTA-free (Roche Applied Science) ) Was crushed (800 psi, 30 minutes, on ice) with a nitrogen gas cell crusher (Parr Instrument campany) and centrifuged (2,000 g, 10 minutes). The supernatant was collected and centrifuged again (100,000 g, 30 minutes). The precipitate was suspended in 50 mM Hepes (pH 7.4) buffer, and this was used as a membrane fraction.

160μg、もしくは260μgの膜画分を等量のGERBUアジュバント(GERBU Biotechnik GmbH)と混合し、XCR1ノックアウトマウス(Deltagen)の足裏に皮下注射した。その後、5回、または6回の追加免疫を2週間に1回行った。最終免疫の3日、もしくは4日後にマウスを屠殺し、末梢リンパ節細胞とP3U1ミエローマ細胞とを2:1、あるいは5:1の割合でGenomeONE-CF(石原産業株式会社)存在下で細胞融合した。融合した細胞は96ウェルプレートにて培養した。   160 μg or 260 μg of the membrane fraction was mixed with an equal amount of GERBU adjuvant (GERBU Biotechnik GmbH) and injected subcutaneously into the soles of XCR1 knockout mice (Deltagen). Thereafter, 5 or 6 booster immunizations were performed once every two weeks. Mice were sacrificed 3 or 4 days after the final immunization, and peripheral lymph node cells and P3U1 myeloma cells were fused at a ratio of 2: 1 or 5: 1 in the presence of GenomeONE-CF (Ishihara Sangyo Co., Ltd.) did. The fused cells were cultured in a 96 well plate.

一次スクリーニングとして、FACS解析を行った。CHO親細胞とヒトXCR1-EGFP遺伝子を導入したCHO細胞を1:1の割合で混合し、FACSバッファー(1mMのEDTA、1%のウシ胎児血清を含むPBS-(Sigma))に懸濁した。細胞をそれぞれのハイブリドーマの培養上清とともに氷上で20分間インキュベートした。FACSバッファーにて3回洗浄した後、FACSバッファーにて100倍に希釈したPE標識抗マウスIgGポリクローナル抗体(Jackson、#715-116-151)とともに氷上で20分間インキュベートした。FACSバッファーにて3回洗浄した後、細胞をFACSバッファーに懸濁し、蛍光強度をFACS CantoII Cell analyzer(BD Bioscience)にて測定したところ、3つのウェルから回収された培養上清がヒトXCR1-EGFP遺伝子を導入したCHO細胞に対する反応性を示した。 As a primary screening, FACS analysis was performed. The CHO cells transfected with CHO parental cells and human XCR1-EGFP gene were mixed at a ratio of 1: 1, FACS buffer (PBS containing 1mM of EDTA, 1% fetal bovine serum - (Sigma)) was suspended in. Cells were incubated with each hybridoma culture supernatant for 20 minutes on ice. After washing 3 times with FACS buffer, it was incubated for 20 minutes on ice with PE-labeled anti-mouse IgG polyclonal antibody (Jackson, # 715-116-151) diluted 100-fold with FACS buffer. After washing three times with FACS buffer, the cells were suspended in FACS buffer, and the fluorescence intensity was measured with FACS CantoII Cell analyzer (BD Bioscience). The culture supernatant collected from the three wells was human XCR1-EGFP. Reactivity against CHO cells into which the gene was introduced was shown.

上記3つの陽性ウェルより、通常用いられる限界希釈法にて、クローンを取得した(2H6、5G7、及び11H2)。各々のクローンの反応性は上述のFACS解析にて確認した。   Clones were obtained from the above three positive wells by the normally used limiting dilution method (2H6, 5G7, and 11H2). The reactivity of each clone was confirmed by the FACS analysis described above.

続いて、ヒトリンフォタクチンによって誘導される、ヒトXCR1を遺伝子導入したBaF3細胞、あるいはB300.19細胞の遊走に対するこれらの3種類のクローンの中和活性を評価するため、in vitroケモタキシスアッセイを行った。ケモタキシスアッセイは24ウェル トランスウェル カルチャーサポート(pore 3μm、Costar、#3399)または96ウェル トランスウェル カルチャープレート(MultiScreen、pore 5μm、Millipore、#MAMIC 5S10)を用いて行った。   In order to evaluate the neutralizing activity of these three clones against the migration of BaF3 cells transfected with human XCR1 or B300.19 cells induced by human lymphotactin, in vitro chemotaxis The assay was performed. The chemotaxis assay was performed using 24-well transwell culture support (pore 3 μm, Costar, # 3399) or 96-well transwell culture plates (MultiScreen, pore 5 μm, Millipore, #MAMIC 5S10).

24ウェル トランスウェル カルチャーサポートの場合、50μlのケモタキシスバッファー(0.5%のBSA、0.5% のFBS、20mMのHEPES(pH7.4)含有RPMI1640培地(Invitrogen))と50μlの各クローンの培養上清の混合液に1x106個のヒトXCR1を遺伝子導入したBaF3細胞を懸濁し、室温にて30分間インキュベートした。その後、1μg/mlの濃度でケモタキシスバッファーに溶解した組換えヒトリンフォタクチン(Genzyme、#2695)を1ウェルあたり600μlの割合で下層のウェルに加え、インキュベートした細胞を上層に加えた。37℃、5%のCO2インキュベーター内で4時間インキュベートした後、トランスウェルを1,350回転で5分間遠心し、遊走した細胞を下層のウェルに回収した。回収した細胞はパラホルムアルデヒド(最終濃度;1%)にて固定し、それぞれ30μlのサンプル中の細胞数をFACSCantoII cell analyzerにて計測した。 For 24-well transwell culture support, 50 μl of chemotaxis buffer (0.5% BSA, 0.5% FBS, 20 mM HEPES (pH 7.4) in RPMI1640 medium (Invitrogen)) and 50 μl of each culture supernatant BaF3 cells into which 1 × 10 6 human XCR1 genes were introduced were suspended in the mixed solution and incubated at room temperature for 30 minutes. Thereafter, recombinant human lymphotactin (Genzyme, # 2695) dissolved in chemotaxis buffer at a concentration of 1 μg / ml was added to the lower well at a rate of 600 μl per well, and the incubated cells were added to the upper layer. . After 4 hours of incubation in a 5% CO 2 incubator at 37 ° C., the transwell was centrifuged at 1,350 rpm for 5 minutes, and the migrated cells were collected in the lower well. The collected cells were fixed with paraformaldehyde (final concentration: 1%), and the number of cells in each 30 μl sample was measured with a FACSCantoII cell analyzer.

96ウェル トランスウェル カルチャープレートの場合、25μlのケモタキシスバッファー(0.5%のBSA、0.5%のFBS、20mMのHEPES(pH7.4)、50μMの2-メルカプトエタノール含有RPMI1640(Invitrogen))と50μlの各クローンの培養上清の混合液に2x105個のヒトXCR1を遺伝子導入したB300.19細胞を懸濁し、室温にて30分間インキュベートした。その後、1μg/mlの濃度でケモタキシスバッファーに溶解した組換えヒトリンフォタクチン(Genzyme、#2695)を1ウェルあたり150μlの割合で下層のウェルに加え、インキュベートした細胞を上層に加えた。37℃、5% CO2インキュベーター内で4時間インキュベートした後、トランスウェルを1,350回転で5分間遠心し、遊走した細胞を下層のウェルに回収した。それぞれ30μlのサンプル中の細胞数をFACSCantoII cell analyzerにて計測した。 For 96-well transwell culture plates, 25 μl of chemotaxis buffer (0.5% BSA, 0.5% FBS, 20 mM HEPES, pH 7.4, 50 μM 2-mercaptoethanol in RPMI 1640 (Invitrogen)) and 50 μl B300.19 cells into which 2 × 10 5 human XCR1 genes were introduced were suspended in the culture supernatant of each clone, and incubated at room temperature for 30 minutes. Subsequently, recombinant human lymphotactin (Genzyme, # 2695) dissolved in chemotaxis buffer at a concentration of 1 μg / ml was added to the lower well at a rate of 150 μl per well, and the incubated cells were added to the upper layer. . After incubation in a 5% CO 2 incubator at 37 ° C. for 4 hours, the transwell was centrifuged at 1,350 rpm for 5 minutes, and the migrated cells were collected in the lower well. The number of cells in each 30 μl sample was counted with a FACSCantoII cell analyzer.

3つのハイブリドーマクローン(2H6、5G7、及び11H2)の培養上清が、ヒトリンフォタクチンによって誘導される、ヒトXCR1を遺伝子導入したBaF3細胞又はB300.19細胞の遊走に対して中和活性を示した。   Culture supernatants of three hybridoma clones (2H6, 5G7, and 11H2) have neutralizing activity against the migration of BaF3 cells or B300.19 cells transfected with human XCR1 induced by human lymphotactin. Indicated.

(2)ヒトXCR1発現細胞に対するマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)の反応性
これら3つのクローンの精製抗体の反応性と中和活性を評価するため、各クローンの培養上清より組換えプロテインA(GE Healthcare、#17-5080-01)にて抗体を精製した。各クローンのアイソタイプはモノクローナル抗体アイソタイピングキット(serotec、#MMT1)にて決定した。2H6と5G7はIgG2b,κ、11H2はIgG2a,κであった。
(2) Reactivity of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) against human XCR1-expressing cells To evaluate the reactivity and neutralizing activity of the purified antibodies of these three clones, from the culture supernatant of each clone The antibody was purified with recombinant protein A (GE Healthcare, # 17-5080-01). The isotype of each clone was determined with a monoclonal antibody isotyping kit (serotec, # MMT1). 2H6 and 5G7 were IgG2b and κ, and 11H2 was IgG2a and κ.

精製抗体のヒトXCR1に対する反応性はFACS解析にて評価した。B300.19親細胞とヒトXCR1-EGFP遺伝子を導入したB300.19細胞を1:1の割合で混合し、FACSバッファー(1%のFBSを含むPBS-(Sigma))に懸濁した。細胞を100μg/mlのヒトイムノグロブリンを含むFACSバッファーにて、氷上で10分間ブロッキングした。その後、細胞を0μg/mlから10μg/mlの濃度の精製抗体(2H6、5G7、及び11H2)、または10μg/mlの濃度のマウスアイソタイプコントロール抗体として用いるIgG2a(eBioscience、#14-4724-82)もしくはIgG2b(eBioscience、#14-4732-82)とともに氷上で20分間インキュベートした。FACSバッファーにて3回洗浄した後、FACSバッファーにて50倍に希釈したPE標識抗マウスIgGポリクローナル抗体(Jackson、#715-116-151)とともに氷上で20分間インキュベートした。FACSバッファーにて3回洗浄した後、細胞をFACSバッファーに懸濁し、蛍光強度をFACS CantoII cell analyzerにて測定した。 The reactivity of the purified antibody to human XCR1 was evaluated by FACS analysis. The B300.19 B300.19 cells transfected with parental cells and human XCR1-EGFP gene were mixed at a ratio of 1: 1, (PBS containing 1% FBS - (Sigma)) FACS buffer and suspended in. Cells were blocked with FACS buffer containing 100 μg / ml human immunoglobulin on ice for 10 minutes. The cells are then purified IgG (2H6, 5G7, and 11H2) at a concentration of 0 μg / ml to 10 μg / ml, or IgG2a (eBioscience, # 14-4724-82) or as a mouse isotype control antibody at a concentration of 10 μg / ml or Incubated with IgG2b (eBioscience, # 14-4732-82) on ice for 20 minutes. After washing 3 times with FACS buffer, it was incubated on PE for 20 minutes with PE-labeled anti-mouse IgG polyclonal antibody (Jackson, # 715-116-151) diluted 50 times with FACS buffer. After washing 3 times with FACS buffer, the cells were suspended in FACS buffer, and the fluorescence intensity was measured with FACS CantoII cell analyzer.

これら3つの精製抗体(2H6、5G7、及び11H2)はヒトXCR1-EGFP遺伝子を導入したB300.19細胞に反応性を示し、B300.19親細胞には反応しなかった(図1)。一方、マウスアイソタイプコントロール抗体はヒトXCR1-EGFP遺伝子を導入したB300.19細胞、親細胞ともに反応性を示さなかった(データは示していない)。   These three purified antibodies (2H6, 5G7, and 11H2) showed reactivity to B300.19 cells into which the human XCR1-EGFP gene was introduced, but did not react with B300.19 parent cells (FIG. 1). On the other hand, the mouse isotype control antibody showed no reactivity in the B300.19 cells into which the human XCR1-EGFP gene was introduced and the parent cells (data not shown).

(3)ヒトリンフォタクチンによって誘導されるヒトXCR1発現細胞の遊走に対するマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)の中和活性
これらの3つのクローンの精製抗体の中和活性はin vitroケモタキシスアッセイにて評価した。ケモタキシスアッセイは96ウェル トランスウェル カルチャープレート(MultiScreen、pore 5μm、Millipore、#MAMIC 5S10)を用いて行った。2H6、5G7、及び11H2の各精製抗体を0μg/mlから10μg/mlの濃度で含む75μlのケモタキシスバッファー(0.5%のBSA、0.5%のFBS、20mMのHEPES(pH7.4)、50μMの2-メルカプトエタノール含有RPMI1640培地(Invitrogen))に2x105個のヒトXCR1を遺伝子導入したB300.19細胞を懸濁し、室温にて30分間インキュベートした。また、組換えヒトリンフォタクチン(R&D、#695-LT/CF)を最終濃度1μg/ml、各精製抗体を最終濃度0μg/mlから10μg/mlになるようにケモタキシスバッファーに溶解し、1ウェルあたり150μlの割合で下層のウェルに加え、室温にて30分間インキュベートした。30分後、インキュベートした細胞を上層に加え、37℃、5%のCO2インキュベーター内で4時間インキュベートした後、それぞれ30μlのサンプル中の細胞数をFACSCantoII cell analyzerにて計測した。
(3) Neutralizing activity of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) on migration of human XCR1-expressing cells induced by human lymphotactin The neutralizing activity of the purified antibodies of these three clones is The in vitro chemotaxis assay was evaluated. The chemotaxis assay was performed using a 96 well transwell culture plate (MultiScreen, pore 5 μm, Millipore, #MAMIC 5S10). 75 μl of chemotaxis buffer (0.5% BSA, 0.5% FBS, 20 mM HEPES (pH 7.4), 50 μM) containing 2H6, 5G7, and 11H2 purified antibodies at concentrations of 0 μg / ml to 10 μg / ml B300.19 cells into which 2 × 10 5 human XCR1 genes were introduced were suspended in RPMI1640 medium (Invitrogen) containing 2-mercaptoethanol, and incubated at room temperature for 30 minutes. Recombinant human lymphotactin (R & D, # 695-LT / CF) is dissolved in chemotaxis buffer to a final concentration of 1 μg / ml and each purified antibody to a final concentration of 0 μg / ml to 10 μg / ml. 150 μl per well was added to the lower well and incubated for 30 minutes at room temperature. After 30 minutes, the incubated cells were added to the upper layer, incubated for 4 hours at 37 ° C. in a 5% CO 2 incubator, and the number of cells in each 30 μl sample was counted with a FACSCantoII cell analyzer.

2H6、5G7、及び11H2はおよそ3μg/mlの濃度でケモタキシスを完全に阻害した。代表的な濃度依存的な阻害の様子を図2に示す。3回の独立した実験からIC50値とIC90値を算出し、平均±標準誤差として、表1に示す。 2H6, 5G7, and 11H2 completely inhibited chemotaxis at a concentration of approximately 3 μg / ml. A typical concentration-dependent inhibition state is shown in FIG. IC 50 values and IC 90 values were calculated from three independent experiments and are shown in Table 1 as the mean ± standard error.

Figure 0005989096
Figure 0005989096

(4)マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)の配列解析
クローン2H6、5G7、及び11H2の重鎖と軽鎖をコードする遺伝子配列を含むポリヌクレオチドを5’-RACE(5’-rapid amplification of cDNA ends)法にて増幅した。これら3つのクローンのハイブリドーマからTRIZOL(Invitrogen)にてトータルRNAを調製し、DNase(QIAGEN、 RNase free DNase set)にて処理した。トータルRNAからcDNA 合成キット(TAKARA)にて二重鎖cDNAを調製し、ad29S; ACATCACTCCGT(配列番号81)と、
as29AS; ACGGAGTGATGTCCGTCGACGTATCTCTGCGTTGATACTTCAGCGTAGCT(配列番号82)
とをアニールした5’アダプターを付加した。得られたcDNAを、
5’フォワードプライマー(5’-PCR4 primer、AGCTACGCTGAAGTATCAACGCAGAG:配列番号83)と、3’リバースプライマー(IgG2b重鎖の増幅にはAGGACAGGGGTTGATTGTTGA:配列番号84、又はCTCAAGTTTTTTGTCCACCGTGGTGC:配列番号85を、
IgG2a重鎖の増幅には
CTCAATTTTCTTGTCCACCTTGGTGC:配列番号86、又はGCCAGTGGATAGACTGATG:配列番号87
を、
Igκ軽鎖の増幅には
CTCATTCCTGTTGAAGCTCTTGACAAT:配列番号88、GATGGATACAGTTGGTGCAGC:配列番号89、
又はCAGATCCTCAGCCTCCACTCTGCT:配列番号90を用いた)にて増幅した。
(4) Sequence analysis of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) A polynucleotide containing gene sequences encoding heavy and light chains of clones 2H6, 5G7, and 11H2 is 5'-RACE (5'- Rapid amplification of cDNA ends). Total RNA was prepared from hybridomas of these three clones with TRIZOL (Invitrogen) and treated with DNase (QIAGEN, RNase free DNase set). Prepare double-stranded cDNA from total RNA using cDNA synthesis kit (TAKARA), ad29S; ACATCACTCCGT (SEQ ID NO: 81),
as29AS; ACGGAGTGATGTCCGTCGACGTATCTCTGCGTTGATACTTCAGCGTAGCT (SEQ ID NO: 82)
And a 5 ′ adapter that was annealed. The resulting cDNA
5 'forward primer (5'-PCR4 primer, AGCTACGCTGAAGTATCAACGCAGAG: SEQ ID NO: 83) and 3' reverse primer (AGGACAGGGGTTGATTGTTGA: SEQ ID NO: 84 or CTCAAGTTTTTTGTCCACCGTGGTGC: SEQ ID NO: 85 for amplification of IgG2b heavy chain,
For amplification of IgG2a heavy chain
CTCAATTTTCTTGTCCACCTTGGTGC: SEQ ID NO: 86 or GCCAGTGGATAGACTGATG: SEQ ID NO: 87
The
For amplification of Igκ light chain
CTCATTCCTGTTGAAGCTCTTGACAAT: SEQ ID NO: 88, GATGGATACAGTTGGTGCAGC: SEQ ID NO: 89,
Or CAGATCCTCAGCCTCCACTCTGCT: SEQ ID NO: 90 was used).

増幅したcDNAはpCR2.1ベクター(Invitrogen)に挿入した。遺伝子配列はABI3130XLにて解析した。また、解析によって明らかになった遺伝子配列がコードするアミノ酸配列を表2−1から表4−2に示す。   The amplified cDNA was inserted into pCR2.1 vector (Invitrogen). The gene sequence was analyzed with ABI3130XL. In addition, Table 2-1 to Table 4-2 show the amino acid sequences encoded by the gene sequences clarified by analysis.

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

実験例2
(1)キメラ化抗ヒトXCR1抗体及びヒト型化抗ヒトXCR1抗体の作製
2H6、5G7、及び11H2の中で中和活性の高かった5G7を、キメラ化抗体及びヒト型化抗体の作製に進めた。
Experimental example 2
(1) Production of chimerized anti-human XCR1 antibody and humanized anti-human XCR1 antibody
Among 2H6, 5G7, and 11H2, 5G7, which had high neutralizing activity, was advanced to the production of chimerized antibody and humanized antibody.

キメラ化抗体は5G7の可変領域の遺伝子配列とヒトIgG2の定常領域にV234A/G237Aの変異を挿入したものの遺伝子配列をPCR法にてつなぎ合わせて、発現ベクター(pEE6.4、pEE12.4)に挿入して作製した。具体的なキメラ化抗体のアミノ酸配列及び塩基配列を、表5及び表6に示す。   The chimerized antibody is obtained by connecting the gene sequence of the variable region of 5G7 and the gene sequence of the human IgG2 constant region with the V234A / G237A mutation inserted by the PCR method into an expression vector (pEE6.4, pEE12.4) It was prepared by inserting. Specific amino acid sequences and base sequences of chimerized antibodies are shown in Tables 5 and 6.

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

抗体のヒト型化は、マウス抗体5G7の相補性決定領域をヒト抗体の可変領域へ移植することにより行った。相補性決定領域はKabatのナンバリングシステムと相補性決定領域の決定法(例えば、Kabatら、(1991)Sequences of Proteins of Immunological Interest: US Department of Health AND human Services、NIH、USA)により決定した。また、2H6及び11H2の相補性決定領域も同様に決定した。これらの3つのクローンの相補性決定領域のアミノ酸配列及び塩基配列を、表7−1〜9−2に示す。   The antibody was humanized by transplanting the complementarity determining region of mouse antibody 5G7 into the variable region of human antibody. The complementarity determining region was determined by the Kabat numbering system and the method of determining the complementarity determining region (for example, Kabat et al. (1991) Sequences of Proteins of Immunological Interest: US Department of Health AND human Services, NIH, USA). The complementarity determining regions of 2H6 and 11H2 were determined in the same manner. The amino acid sequences and base sequences of the complementarity determining regions of these three clones are shown in Tables 7-1 to 9-2.

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

表7−1と表8−1から明らかなように、5G7のCDRと2H6のCDRにおけるアミノ酸配列の同一性は非常に高く、特に重鎖CDR3については全く同一のアミノ酸配列であった。従って、5G7と2H6については、以下の表10に示すようにアミノ酸配列を一般化することができる。また、これらのクローンのCDR1-3のアミノ酸配列を比較したものを図7にて示す。   As is clear from Table 7-1 and Table 8-1, the identity of the amino acid sequences in the CDR of 5G7 and the CDR of 2H6 is very high, and particularly in the heavy chain CDR3, the amino acid sequences were exactly the same. Therefore, for 5G7 and 2H6, the amino acid sequence can be generalized as shown in Table 10 below. Further, FIG. 7 shows a comparison of the amino acid sequences of CDR1-3 of these clones.

Figure 0005989096
Figure 0005989096

表中のXは、アラニン(Ala:A)、アルギニン(Arg:R)、アスパラギン(Asn:N)、アスパラギン酸(Asp:D)、システイン(Cys:C)、グルタミン(Gln:Q)、グルタミン酸(Glu:E)、グリシン(Gly:G)、ヒスチジン(His:H)、イソロイシン(Ile:I)、ロイシン(Leu:L)、リジン(Lys:K)、メチオニン(Met:M)、フェニルアラニン(Phe:F)、プロリン(Pro:P)、セリン(Ser:S)、スレオニン(Thr:T)、トリプトファン(Trp:W)、チロシン(Tyr:Y)又はバリン(Val:V)のいずれであってもよい。   X in the table is alanine (Ala: A), arginine (Arg: R), asparagine (Asn: N), aspartic acid (Asp: D), cysteine (Cys: C), glutamine (Gln: Q), glutamic acid (Glu: E), glycine (Gly: G), histidine (His: H), isoleucine (Ile: I), leucine (Leu: L), lysine (Lys: K), methionine (Met: M), phenylalanine ( Phe: F), proline (Pro: P), serine (Ser: S), threonine (Thr: T), tryptophan (Trp: W), tyrosine (Tyr: Y) or valine (Val: V). May be.

ヒト型化抗体のFRは5G7のFRと同一性の高いヒト抗体のFRを選択した。そして、5G7において相補性決定領域と相互作用するFRのアミノ酸を、得られる抗体の3次元モデルより予測し、相補性決定領域とともに移植した。定常領域はヒトIgG2の定常領域にV234A/G237Aの変異を挿入したものを使用した。ヒト型化抗体の重鎖としてHK1とHK5を設計し、軽鎖としてL2とL5を設計した。具体的なヒト型化抗体のアミノ酸配列及び塩基配列を、表11−1〜表14−2に示す。   The humanized antibody FR was selected to be a human antibody FR having high identity with the FR of 5G7. The amino acid of FR that interacts with the complementarity determining region in 5G7 was predicted from the obtained three-dimensional model of the antibody, and transplanted together with the complementarity determining region. The constant region was obtained by inserting the V234A / G237A mutation into the constant region of human IgG2. HK1 and HK5 were designed as the heavy chain of the humanized antibody, and L2 and L5 were designed as the light chain. Specific amino acid sequences and base sequences of humanized antibodies are shown in Table 11-1 to Table 14-2.

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

Figure 0005989096
Figure 0005989096

これらのヒト型化抗体の遺伝子配列はGenScript USA Inc.にて全合成し、発現ベクター(pEE6.4、pEE12.4、Lonza社より購入)に挿入した。抗体の産生のために、リポフェクトアミン2000(Invitrogen)の使用説明書に従い、発現ベクターをHEK293E細胞(Invitrogen)にリポフェクトアミン2000を用いて導入した。培養上清を回収し、プロテインA(GE healthcare)を用いて抗体を精製した。これらの精製したヒト型化抗体を用いて、中和活性の評価を行った。   The gene sequences of these humanized antibodies were fully synthesized by GenScript USA Inc. and inserted into expression vectors (pEE6.4, pEE12.4, purchased from Lonza). For the production of antibodies, the expression vector was introduced into HEK293E cells (Invitrogen) using Lipofectamine 2000 according to the instructions for Lipofectamine 2000 (Invitrogen). The culture supernatant was collected, and the antibody was purified using protein A (GE healthcare). Using these purified humanized antibodies, neutralization activity was evaluated.

ヒトリンフォタクチンによって誘導される、ヒトXCR1発現細胞の遊走に対する中和活性を持つヒト型化抗体の同定は、ヒトXCR1を遺伝子導入したB300.19細胞を用いたin vitroケモタキシスアッセイにて行った。ケモタキシスアッセイは96ウェル トランスウェル カルチャープレート(MultiScreen、pore 5μm、Millipore、#MAMIC 5S10、またはCorning、#3387、または#3388)を用いて、前述の通りに行った。ただし、Corningのトランスウェル カルチャープレートを用いる場合、下層に加える組換えヒトリンフォタクチンと精製抗体の液量は1ウェルあたり235μlとする。   Identification of humanized antibodies with neutralizing activity against the migration of human XCR1-expressing cells induced by human lymphotactin is an in vitro chemotaxis assay using B300.19 cells transfected with human XCR1. I went. Chemotaxis assays were performed as described above using 96-well transwell culture plates (MultiScreen, pore 5 μm, Millipore, #MAMIC 5S10, or Corning, # 3387, or # 3388). However, when using a Corning transwell culture plate, the volume of recombinant human lymphotactin and purified antibody added to the lower layer should be 235 μl per well.

中和活性をもつヒト型化抗体のうち、HK1L2とHK5L5の二種類をさらに詳細に評価することとした。   Of the humanized antibodies having neutralizing activity, two types, HK1L2 and HK5L5, were evaluated in more detail.

(2)ヒトXCR1発現細胞に対するヒト型化抗ヒトXCR1抗体(HK1L2及びHK5L5)の反応性
これら2つのヒト型化抗体(HK1L2及びHK5L5)と親抗体5G7、キメラ化抗体を用いてFACS解析を行った。B300.19親細胞とヒトXCR1-EGFP遺伝子を導入したB300.19細胞を1:1の割合で混合し、FACSバッファー(1%のFBSを含むPBS-(Sigma))に懸濁した。細胞を0μg/mlから10μg/mlの濃度のそれぞれの精製抗体とともに氷上で20分間インキュベートした。FACSバッファーにて3回洗浄した後、FACSバッファーにて100倍に希釈したPE標識抗マウスIgGポリクローナル抗体(Jackson、#715-116-151:親抗体5G7で染色した細胞に用いた)、またはPE標識抗ヒトIgGポリクローナル抗体(Jackson、#709-116-149:キメラ化抗体、及びヒト型化抗体(HK1L2及びHK5L5)で染色した細胞に用いた)とともに氷上で20分間インキュベートした。FACSバッファーにて3回洗浄した後、細胞をFACSバッファーに懸濁し、蛍光強度をFACS CantoII cell analyzer(BD Bioscience)にて測定した。
(2) Reactivity of humanized anti-human XCR1 antibodies (HK1L2 and HK5L5) against human XCR1-expressing cells FACS analysis was performed using these two humanized antibodies (HK1L2 and HK5L5), parent antibody 5G7, and chimerized antibody. It was. The B300.19 B300.19 cells transfected with parental cells and human XCR1-EGFP gene were mixed at a ratio of 1: 1, (PBS containing 1% FBS - (Sigma)) FACS buffer and suspended in. Cells were incubated for 20 minutes on ice with each purified antibody at a concentration of 0 μg / ml to 10 μg / ml. PE-labeled anti-mouse IgG polyclonal antibody (Jackson, # 715-116-151: used for cells stained with parent antibody 5G7) diluted with 100 times with FACS buffer after washing 3 times with FACS buffer, or PE Incubated for 20 minutes on ice with labeled anti-human IgG polyclonal antibody (Jackson, # 709-116-149: chimerized antibody and used for cells stained with humanized antibodies (HK1L2 and HK5L5)). After washing 3 times with FACS buffer, the cells were suspended in FACS buffer, and the fluorescence intensity was measured with FACS CantoII cell analyzer (BD Bioscience).

ヒト型化抗体(HK1L2及びHK5L5)は濃度依存的にヒトXCR1-EGFP遺伝子を導入したB300.19細胞に反応性を示し、その反応性は親抗体5G7或いはキメラ化抗体とほぼ同様であった(図3)。   The humanized antibodies (HK1L2 and HK5L5) showed reactivity to B300.19 cells into which the human XCR1-EGFP gene was introduced in a concentration-dependent manner, and the reactivity was almost the same as the parent antibody 5G7 or the chimerized antibody ( FIG. 3).

ヒト末梢血単核球を用いたFACS解析により、さらにヒト型化抗体(HK1L2及びHK5L5)のヒトXCR1に対する反応性を検証した。ヒト末梢血単核球の中で希少集団であるBDCA3陽性樹状細胞にヒトXCR1遺伝子が発現していることが知られているため、まず樹状細胞をヒト末梢血単核球より濃縮し、FACS解析に使用した。ヒト健常人の血液より、Ficoll-Paque(GE healthcare、#17-1440-02)にてヒト末梢血単核球を単離した。ヒト樹状細胞は、ヒト末梢血単核球よりCD3、CD14、CD19、CD56陽性細胞を抗ヒトCD3、CD14、CD19、CD56抗体マイクロビーズ(Miltenyi、#130-050-101、#130-050-201、#130-050-301、#130-050-401)にて標識し、auto-MACS(Miltenyi)を用いて除去することにより濃縮した。濃縮した樹状細胞を1%のラット血清、1%のマウス血清、100μg/mlのヒトイムノグロブリンを含むFACSバッファー(1%のFBSを含むPBS-(Sigma))を用いて、氷上で10分間ブロッキングした。細胞をPE標識した5G7、HK1L2、HK5L5、或いはアイソタイプコントロール抗体マウスIgG2b, κ(eBioscience、#14-4732-82)、又はヒトIgG2, κ(Sigma、#I5404)とFITC標識抗BDCA3抗体(Miltenyi、#130-090-513)、APC標識抗CD123抗体(Miltenyi、#130-090-901)、APC-Cy7標識抗HLA-DR抗体(BioLegend、#307617)、及びAlexa700標識抗CD3、CD14、CD19、CD56抗体(BioLegend、#300324、#301822、#302225、#318316)を用いて氷上、30分間染色した。FACSバッファーにて3回洗浄した後、FACSバッファーに懸濁し、FACS CantoII cell analyzerにて蛍光強度を測定した。 The reactivity of humanized antibodies (HK1L2 and HK5L5) to human XCR1 was further verified by FACS analysis using human peripheral blood mononuclear cells. Since human XCR1 gene is known to be expressed in BDCA3-positive dendritic cells, a rare population among human peripheral blood mononuclear cells, first dendritic cells are concentrated from human peripheral blood mononuclear cells, Used for FACS analysis. Human peripheral blood mononuclear cells were isolated from the blood of healthy human subjects using Ficoll-Paque (GE healthcare, # 17-1440-02). Human dendritic cells are derived from human peripheral blood mononuclear cells using CD3, CD14, CD19, CD56 positive cells as anti-human CD3, CD14, CD19, CD56 antibody microbeads (Miltenyi, # 130-050-101, # 130-050- 201, # 130-050-301, # 130-050-401) and concentrated by removal using auto-MACS (Miltenyi). 1% rat serum concentrated dendritic cells, (PBS containing 1% FBS - (Sigma)) 1% mouse serum, 100 [mu] g / ml of human immunoglobulin FACS buffer containing with ice for 10 minutes Blocked. Cells labeled with PE 5G7, HK1L2, HK5L5, or isotype control antibody mouse IgG2b, κ (eBioscience, # 14-4732-82), or human IgG2, κ (Sigma, # I5404) and FITC-labeled anti-BDCA3 antibody (Miltenyi, # 130-090-513), APC-labeled anti-CD123 antibody (Miltenyi, # 130-090-901), APC-Cy7-labeled anti-HLA-DR antibody (BioLegend, # 307617), and Alexa700-labeled anti-CD3, CD14, CD19, CD56 antibody (BioLegend, # 300324, # 301822, # 302225, # 318316) was stained on ice for 30 minutes. After washing 3 times with FACS buffer, it was suspended in FACS buffer and the fluorescence intensity was measured with FACS CantoII cell analyzer.

ヒト型化抗体(HK1L2及びHK5L5)は親抗体5G7と同様に、ヒトXCR1を発現しているBDCA3陽性樹状細胞に選択的に反応した(図4)。   The humanized antibodies (HK1L2 and HK5L5) selectively reacted with BDCA3-positive dendritic cells expressing human XCR1, similarly to the parent antibody 5G7 (FIG. 4).

(3)ヒトリンフォタクチンによって誘導されるヒトXCR1発現細胞の遊走に対するヒト型化抗ヒトXCR1抗体(HK1L2及びHK5L5)の中和活性
これらのヒト型化抗体の中和活性は親抗体5G7とキメラ化抗体とともにin vitroケモタキシスアッセイにて、前述のように評価した。
(3) Neutralizing activity of humanized anti-human XCR1 antibodies (HK1L2 and HK5L5) against migration of human XCR1-expressing cells induced by human lymphotactin The neutralizing activity of these humanized antibodies is the same as that of parent antibody 5G7. The in vitro chemotaxis assay was evaluated as described above with the chimerized antibody.

どちらのヒト型化抗体も親抗体である5G7と比較して、中和活性を維持していた。代表的な濃度依存性の阻害の様子を図5に示す。3回の独立した実験からIC50値とIC90値を算出し、平均±標準誤差として、表16に示す。 Both humanized antibodies maintained neutralizing activity compared to the parent antibody 5G7. FIG. 5 shows a typical concentration-dependent inhibition state. IC 50 values and IC 90 values were calculated from three independent experiments and are shown in Table 16 as mean ± standard error.

Figure 0005989096
Figure 0005989096

次いで、ヒトXCR1を導入した細胞の代わりに、ヒト樹状細胞を用いた経内皮遊走アッセイにより、ヒト型化抗体(HK1L2及びHK5L5)の中和活性をさらに検証した。経内皮遊走アッセイは24ウェル トランスウェル カルチャーサポート(pore 5μm、Costar、#3421)を用いて行った。まず、ECV304細胞を10%のFBS含有Medium 199 Earle’s 培地(Invitrogen)に懸濁し、トランスウェルの上層に1ウェルあたり2x105個播き込み、37℃、5%のCO2インキュベーター内で3日間培養した。アッセイ当日、ECV304細胞をアッセイバッファー(Medium 199 Earle’s培地とRPMI1640培地を1:1の割合で混合したものに、0.5%のBSAと20mMのHEPES(pH7.4)を添加したもの)で洗浄した。組換えヒトリンフォタクチンを1μg/mlの濃度でアッセイバッファーに溶解したものに、キメラ化抗体、HK1L2、HK5L5、或いはアイソタイプコントロール抗体ヒトIgG2, κ(Sigma)を10μg/mlの濃度で添加し、下層のウェルに1ウェルあたり600μlの割合で添加した。ヒト樹状細胞は前述のように濃縮し、アッセイバッファーに懸濁した後、キメラ化抗体、ヒト型化抗体(HK1L2及びHK5L5)及びアイソタイプコントロール抗体ヒトIgG2, κ(Sigma)を10μg/mlの濃度で添加し、ECV304細胞を含む上層に播種した。37℃、5%のCO2インキュベーター内で4時間インキュベートした後、トランスウェルを1,350rpm、5分間遠心し、遊走した細胞を回収した。回収した細胞は細胞系列マーカー、FITC標識抗BDCA3抗体(Miltenyi、#130-090-513)、PE標識抗BDCA1抗体(BioLegend、#331517)、APC標識抗CD123抗体(Miltenyi、#130-090-901)、APC標識抗HLA-DR抗体(BioLegend、#307617)を用いて、氷上で30分間染色した。各サンプルの170μlを用いてFACS CantoII cell analyzer (BD Bioscience)にて細胞数を計測した。 Subsequently, the neutralizing activity of the humanized antibodies (HK1L2 and HK5L5) was further verified by a transendothelial migration assay using human dendritic cells instead of the cells into which human XCR1 was introduced. Transendothelial migration assay was performed using 24-well transwell culture support (pore 5 μm, Costar, # 3421). First, ECV304 cells were suspended in Medium 199 Earle's medium (Invitrogen) containing 10% FBS, seeded at 2 × 10 5 per well on the upper layer of the transwell, and cultured in a CO 2 incubator at 37 ° C. and 5% for 3 days. . On the day of the assay, ECV304 cells were washed with assay buffer (medium 199 Earle's medium and RPMI1640 medium mixed at a ratio of 1: 1 to which 0.5% BSA and 20 mM HEPES (pH 7.4) were added). Add chimeric antibody, HK1L2, HK5L5, or isotype control antibody human IgG2, κ (Sigma) at a concentration of 10 μg / ml to recombinant human lymphotactin dissolved in assay buffer at a concentration of 1 μg / ml. The lower well was added at a rate of 600 μl per well. Human dendritic cells are concentrated as described above, suspended in assay buffer, then chimerized antibody, humanized antibody (HK1L2 and HK5L5) and isotype control antibody human IgG2, κ (Sigma) at a concentration of 10 μg / ml And seeded on the upper layer containing ECV304 cells. After incubation for 4 hours in a 37 ° C., 5% CO 2 incubator, the transwell was centrifuged at 1,350 rpm for 5 minutes to collect migrated cells. The recovered cells were cell lineage markers, FITC-labeled anti-BDCA3 antibody (Miltenyi, # 130-090-513), PE-labeled anti-BDCA1 antibody (BioLegend, # 331517), APC-labeled anti-CD123 antibody (Miltenyi, # 130-090-901) ), And APC-labeled anti-HLA-DR antibody (BioLegend, # 307617) was stained on ice for 30 minutes. Using 170 μl of each sample, the number of cells was counted with a FACS CantoII cell analyzer (BD Bioscience).

どちらのヒト型化抗体もキメラ化抗体と同様にBDCA3陽性樹状細胞の遊走を阻害した(図6)。   Both humanized antibodies inhibited migration of BDCA3-positive dendritic cells in the same manner as the chimerized antibody (FIG. 6).

実験例3
ヒト型化抗XCR1抗体の薬理効果
上記実験例2において作製した抗ヒトXCR1マウスモノクローナル抗体(5G7)の薬理効果を、遅延型接触性皮膚炎(DTH)モデルマウスを用いて確認した。
Experimental example 3
Pharmacological effect of humanized anti-XCR1 antibody The pharmacological effect of the anti-human XCR1 mouse monoclonal antibody (5G7) prepared in Experimental Example 2 was confirmed using delayed contact dermatitis (DTH) model mice.

(1)DNFB(ジニトロフルオロベンゼン)感作マウスの耳の腫脹に対するヒト型化抗ヒトXCR1抗体の作用
(実験方法)
<1.供試マウス>
7週齢から12週齢のC57BL/6背景のヒトXCR1ノックインマウス(マウスXCR1の遺伝子がヒトXCR1遺伝子に置き換わっているマウス)を実験に供した。
(1) Effect of humanized anti-human XCR1 antibody on swelling of ears of mice sensitized with DNFB (dinitrofluorobenzene) (experimental method)
<1.Test mouse>
7 to 12-week-old C57BL / 6 background human XCR1 knock-in mice (mouse in which the mouse XCR1 gene was replaced with the human XCR1 gene) were subjected to the experiment.

<2.感作のためのDNFBと惹起のためのDNFBの調製法>
感作および惹起のためのDNFBは、アセトンとオリーブオイルを4:1で混合したものに、DNFBを0.5%濃度になるように混合して調製した。また惹起時のコントロール用溶液としてアセトンとオリーブオイルを4:1で混合したものを用いた。
<2. Preparation of DNFB for sensitization and DNFB for induction>
DNFB for sensitization and induction was prepared by mixing acetone and olive oil at a ratio of 4: 1 and DNFB to a concentration of 0.5%. As a control solution at the time of induction, a mixture of acetone and olive oil at a ratio of 4: 1 was used.

<3.DNFBの投与方法>
感作のための0.5%のDNFBは、マウスの腹部の毛を皮膚が露出するまで刈り、そこに50μl塗布した。さらにその翌日に同じ部位に0.5%のDNFB を50μl塗布した。惹起のための0.5% DNFBは、その4日後にマウスの右耳の表側に25μl塗布した。同時にコントロールとして、マウスの左耳の表側にアセトンとオリーブオイルを4:1で混合したコントロール用溶液を25μl塗布した。
<3. DNFB administration method>
For sensitization, 0.5% DNFB was shaved from the abdomen of the mouse until the skin was exposed, and 50 μl was applied thereto. The next day, 50 μl of 0.5% DNFB was applied to the same site. Four days later, 25 μl of 0.5% DNFB for induction was applied to the front side of the right ear of the mouse. At the same time, 25 μl of a control solution in which acetone and olive oil were mixed at a ratio of 4: 1 was applied to the front side of the left ear of the mouse as a control.

<4.抗体の投与法>
抗ヒトXCR1マウスモノクローナル抗体(5G7)、およびそのコントロール抗体であるマウスIgG(ジャクソン研究所製)をPBSで2mg/mlとなるように調製した。1度目の感作を行った日をday0とし、day-1、day1、day4にマウスの腹腔内に、これらの各抗体を250μl/匹(500ug/匹)の割合で投与した。
<4. Antibody administration method>
Anti-human XCR1 mouse monoclonal antibody (5G7) and its control antibody, mouse IgG (manufactured by Jackson Laboratories), were prepared at 2 mg / ml in PBS. The day of the first sensitization was defined as day 0, and each of these antibodies was administered at a rate of 250 μl / animal (500 ug / animal) into the abdominal cavity of mice on day-1, day1, and day4.

<5.DNFBマウスモデルの耳の腫脹の測定方法>
初日および次の日に0.5%のDNFBを、皮膚を露出させたマウスの腹部に50μl塗布することで感作を行い、その4日後に耳の厚さをノギスで測定した。測定した後に、マウスの右耳の表側に0.5%のDNFBを25μl塗布して惹起を行った。またマウスの左耳にはコントロールとしてアセトンとオリーブオイルを4:1で混合したコントロール用溶液を25μl塗布した。そして惹起を行ってから24時間後、48時間後に耳の厚さの測定を行った。腫脹は、計測値を以下の計算式で換算して求めた。
<5. Measurement method of ear swelling in DNFB mouse model>
Sensitization was performed by applying 50 μl of 0.5% DNFB to the abdomen of the exposed mouse on the first day and the next day, and the thickness of the ear was measured with calipers four days later. After the measurement, 25 μl of 0.5% DNFB was applied to the front side of the right ear of the mouse for induction. As a control, 25 μl of a control solution in which acetone and olive oil were mixed at a ratio of 4: 1 was applied to the left ear of the mouse. The ear thickness was measured 24 hours and 48 hours after induction. The swelling was obtained by converting the measured value by the following formula.

[式]
DNFBによって変化した耳の厚さ(膨脹mm)= ([A]−[B])-([C]−[D])
[A]:惹起後の右耳の厚さ(mm)
[B]:惹起前の右耳の厚さ(mm)
[C]:コントロール塗布後の左耳の厚さ(mm)
[D]:コントロール塗布前の左耳の厚さ(mm)
[formula]
Ear thickness changed by DNFB (expansion mm) = ([A]-[B])-([C]-[D])
[A]: Thickness of the right ear after erection (mm)
[B]: Thickness of the right ear before raising (mm)
[C]: Thickness of left ear after control application (mm)
[D]: Thickness of left ear before control application (mm)

(実験結果と考察)
図8に示すように、抗ヒトXCR1マウスモノクローナル抗体(5G7)を投与したマウスでは、コントロール抗体を投与したマウスと比較して、DNFBによる惹起から24時間後の耳介の腫脹が顕著に抑制されていることが明らかとなり(図8(A))、その効果は、DNFBによる惹起から48時間後でも同様に顕著に抑制されていた(図8(B))。
(Experimental results and discussion)
As shown in FIG. 8, in the mouse administered with the anti-human XCR1 mouse monoclonal antibody (5G7), the swelling of the auricle 24 hours after the initiation by DNFB was remarkably suppressed as compared with the mouse administered with the control antibody. (FIG. 8 (A)), and the effect was remarkably suppressed even after 48 hours from the induction by DNFB (FIG. 8 (B)).

抗体の投与は腹腔内投与と、全身への投与を行ったにもかかわらず、DNFBによる惹起を行った耳介での腫脹が抑えられていることから、抗体は腹腔から血中へ移動し、血流と共に炎症部位又はリンパ節に到達し、耳介の膨脹を抑える効果を発揮しているものと推測される。   Despite the administration of the antibody intraperitoneally and systemically, since the swelling in the pinna caused by DNFB is suppressed, the antibody moves from the abdominal cavity into the blood, It is presumed that the bloodstream reaches the inflamed site or lymph node together with the blood flow and exhibits the effect of suppressing the expansion of the auricle.

このことから本発明に係る抗体は、部位特異的に炎症部位に対して特異的に効果を奏することも示唆される。   This suggests that the antibody according to the present invention has a specific effect on the inflammatory site in a site-specific manner.

実験例4
各種ヒトケモカインレセプターに対するマウス抗ヒトXCR1モノクローナル抗体(5G7)の反応性
各種ヒトケモカインレセプターに対するマウス抗ヒトXCR1モノクローナル抗体(5G7)の反応性をFACS解析にて評価した。C末端にEGFPを結合した各種ヒトケモカインレセプター(CCR1、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CCR11、CXCR1、CXCR3、CXCR4、CXCR5、CXCR6、CX3CR1、XCR1)の遺伝子を導入したB300.19細胞とB300.19親細胞をFACSバッファー(1%のFBS含むPBS-(Sigma))に懸濁した。細胞をブロッキングバッファー(100μg/mlのヒト免疫グロブリンを含むFACSバッファー)にて、氷上で20分間ブロッキングした。その後、細胞を10μg/mlの濃度の5G7、またはマウスアイソタイプコントロール抗体IgG2b(eBioscience、#14-4732-82)を含むブロッキングバッファーとともに氷上で30分間インキュベートした。FACSバッファーにて3回洗浄した後、ブロッキングバッファーにて50倍に希釈したPE標識抗マウスIgGポリクローナル抗体(Jackson、#715-116-151)とともに氷上で20分間インキュベートした。FACSバッファーにて3回洗浄した後、細胞をFACSバッファーに懸濁し、蛍光強度をFACS CantoII cell analyzerにて測定した。
Experimental Example 4
Reactivity of mouse anti-human XCR1 monoclonal antibody (5G7) to various human chemokine receptors The reactivity of mouse anti-human XCR1 monoclonal antibody (5G7) to various human chemokine receptors was evaluated by FACS analysis. Introduced genes for various human chemokine receptors (CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR11, CXCR1, CXCR3, CXCR4, CXCR5, CXCR6, CX3CR1, XCR1) with EGFP bound to the C-terminus the B300.19 cells and B300.19 parental cells FACS buffer (1% FBS containing PBS - (Sigma)) was suspended in. The cells were blocked with blocking buffer (FACS buffer containing 100 μg / ml human immunoglobulin) on ice for 20 minutes. Cells were then incubated for 30 minutes on ice with blocking buffer containing 5G7 at a concentration of 10 μg / ml, or mouse isotype control antibody IgG2b (eBioscience, # 14-4732-82). After washing 3 times with FACS buffer, it was incubated on PE for 20 minutes with PE-labeled anti-mouse IgG polyclonal antibody (Jackson, # 715-116-151) diluted 50-fold with blocking buffer. After washing 3 times with FACS buffer, the cells were suspended in FACS buffer, and the fluorescence intensity was measured with FACS CantoII cell analyzer.

抗ヒトXCR1抗体5G7はヒトXCR1-EGFPを導入したB300.19細胞に強く反応性を示した。またヒトCX3CR1-EGFPを導入したB300.19細胞に非常に弱い反応性を示したものの、他のヒトケモカインレセプターを発現したB300.19細胞には反応性を示さなかった(図9)。一方、マウスアイソタイプコントロール抗体はすべてのヒトケモカインレセプターを発現したB300.19細胞に反応性を示さなかった(データは示していない)。   Anti-human XCR1 antibody 5G7 was strongly reactive to B300.19 cells introduced with human XCR1-EGFP. Moreover, although very weak reactivity was shown to B300.19 cell which introduce | transduced human CX3CR1-EGFP, it did not show reactivity to B300.19 cell which expressed the other human chemokine receptor (FIG. 9). On the other hand, mouse isotype control antibody did not show any reactivity to B300.19 cells expressing all human chemokine receptors (data not shown).

実験例5
サポリン結合Fab抗マウスIgG二次抗体を用いたヒトXCR1発現細胞への抗ヒトXCR1抗体の細胞傷害性
XCR1発現細胞への抗ヒトXCR1抗体の細胞傷害活性を実証するために、サポリン結合Fab抗マウスIgG2次抗体を用いて、内在的にヒトXCR1を発現する細胞において、マウス抗ヒトXCR1モノクローナル抗体の細胞傷害試験を行った。
Experimental Example 5
Cytotoxicity of anti-human XCR1 antibody to human XCR1-expressing cells using saporin-conjugated Fab anti-mouse IgG secondary antibody
In order to demonstrate the cytotoxic activity of anti-human XCR1 antibody to XCR1-expressing cells, cells of mouse anti-human XCR1 monoclonal antibody were used in cells that endogenously express human XCR1 using saporin-conjugated Fab anti-mouse IgG secondary antibody. An injury test was performed.

10%のFBS(Cell culture bioscience:#171012)、100μg/mlのカナマイシン硫酸塩(Invitrogen:#15160-054)及び50μMの2−メルカプトエタノール(2-ME:Invitrogen社;#21985-023)を含む80μLのRPMI(Invitrogen:#11875-093)に、2x103個のB300.19親細胞又はヒトXCR1-EGFPを発現するB300.19細胞を96ウェルプレートのそれぞれのウェルに添加した。マウス抗ヒトXCR1抗体(2H6、5G7、又は11H2)、及びマウスアイソタイプコントロール抗体である,IgG2a,κ(eBioscience社:#16-4724-85)若しくはIgG2b,κ(eBioscience社:16-4732-85)を、10%のFBS、100μg/mlのカナマイシン硫酸塩、及び50μMの2−メルカプトエタノールを含むRPMIで希釈し、10μlのこららの希釈した抗体を、0μg/ml〜0.17μg/mlの種々の濃度で細胞に添加した後、細胞を5%のCO2及び37℃の環境下で20分間インキュベートした。 Contains 10% FBS (Cell culture bioscience: # 171012), 100 μg / ml kanamycin sulfate (Invitrogen: # 15160-054) and 50 μM 2-mercaptoethanol (2-ME: Invitrogen; # 21985-023) To 80 μL of RPMI (Invitrogen: # 11875-093), 2 × 10 3 B300.19 parental cells or B300.19 cells expressing human XCR1-EGFP were added to each well of a 96 well plate. Mouse anti-human XCR1 antibody (2H6, 5G7, or 11H2) and mouse isotype control antibody, IgG2a, κ (eBioscience: # 16-4724-85) or IgG2b, κ (eBioscience: 16-4732-85) Is diluted with RPMI containing 10% FBS, 100 μg / ml kanamycin sulfate, and 50 μM 2-mercaptoethanol, and 10 μl of these diluted antibodies are added at various concentrations from 0 μg / ml to 0.17 μg / ml. After addition to the cells at a concentration, the cells were incubated for 20 minutes in an environment of 5% CO 2 and 37 ° C.

次いでサポリン結合Fab抗マウスIgG抗体(Advanced Targeting Systems:#IT-48)を10%のFBS、100μg/mlのカナマイシン硫酸塩、及び50μMの2−メルカプトエタノールを含むRPMIで希釈し、この希釈した抗体の10μlを、終濃度が1μg/mlとなるようにそれぞれのウェルに添加した。次いで、細胞を5%のCO2及び37℃の環境下で72時間インキュベートした。 The saporin-binding Fab anti-mouse IgG antibody (Advanced Targeting Systems: # IT-48) was then diluted with RPMI containing 10% FBS, 100 μg / ml kanamycin sulfate, and 50 μM 2-mercaptoethanol. Of 10 μl of was added to each well to a final concentration of 1 μg / ml. The cells were then incubated for 72 hours in an environment of 5% CO 2 and 37 ° C.

そして、それぞれのセルの細胞数を、Cell Count Reagent SF試薬(Nacalai tesque;07553-15又は07553-44)を用いて測定した。試薬を各ウェルに添加し、5%のCO2及び37℃の環境下で2時間又は3時間インキュベートした。そして、OD450をプレートリーダー(Arvo:PerkinElmer)を用いて測定した。 The number of cells in each cell was measured using Cell Count Reagent SF reagent (Nacalai tesque; 07553-15 or 07553-44). Reagents were added to each well and incubated for 2 or 3 hours in an environment of 5% CO 2 and 37 ° C. Then, OD450 was measured using a plate reader (Arvo: PerkinElmer).

サポリン結合2次抗体を有するマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)はヒトXCR1-EGFPを発現するB300.19細胞の増殖を抑制する事が示された(図11)。2H6、5G7、及び11H2のIC50値は、Graphpad Prism softwareによって計算し、それぞれ0.141nM、0.017nM、及び0.155nMであった。 Mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) having a saporin-binding secondary antibody were shown to suppress the growth of B300.19 cells expressing human XCR1-EGFP (FIG. 11). IC 50 values for 2H6, 5G7, and 11H2 were calculated by Graphpad Prism software and were 0.141 nM, 0.017 nM, and 0.155 nM, respectively.

一方で、サポリン結合2次抗体を有するこれらの抗体は,B300.19親細胞の増殖抑制は示されなかった。また、サポリン結合2次抗体を有するコントロール抗体は、サポリン結合2次抗体を有するこれらの抗体は、ヒトXCR1-EGFPを発現するB300.19細胞の増殖抑制は示さなかった(図11)。   On the other hand, these antibodies having a saporin-binding secondary antibody did not show growth suppression of B300.19 parent cells. In addition, as for the control antibody having the saporin-binding secondary antibody, these antibodies having the saporin-binding secondary antibody did not suppress the growth of B300.19 cells expressing human XCR1-EGFP (FIG. 11).

これらの結果から、マウス抗ヒトXCR1抗体である、2H6、5G7、及び11H2は、サポリン結合2次抗体と共に取り込まれ、イムノトキシンとして働くことが示唆された。   From these results, it was suggested that mouse anti-human XCR1 antibodies 2H6, 5G7, and 11H2 were incorporated together with the saporin-binding secondary antibody and acted as an immunotoxin.

実験例6
インビボにおける5G7モノクローナル抗体の細胞傷害性T細胞アッセイに対する効果
CTL機能に対し5G7モノクローナル抗体がどの様な阻害活性を有するか検討するために、CTLアッセイを行った。
Experimental Example 6
Effect of 5G7 monoclonal antibody on cytotoxic T cell assay in vivo
To examine what inhibitory activity the 5G7 monoclonal antibody has on CTL function, a CTL assay was performed.

マウスXCR1に代えてヒトXCR1を発現するヒトXCR1ノックインマウスを創出し、0日目にCFAでエマルション化したオバルブミンを皮下に200μg/headの量で免疫付与した。5G7モノクローナル抗体又はコントロールとして用いるマウスIgG抗体(Jackson Laboratory)をそれぞれ−1日目、2日目、及び5日目に、500ug/headの量で腹腔内に投与した。   Human XCR1 knock-in mice expressing human XCR1 were created instead of mouse XCR1, and on day 0, ovalbumin emulsified with CFA was subcutaneously immunized in an amount of 200 μg / head. A 5G7 monoclonal antibody or a mouse IgG antibody (Jackson Laboratory) used as a control was administered intraperitoneally in an amount of 500 ug / head on the -1 day, the 2nd day, and the 5th day, respectively.

6日後に、未感作のC57BL/6マウスから得た脾臓細胞を10μg/mlのOVA257-264ペプチド(SIINFEKL;MBL)と共に又は単独で30分間37℃でインキュベートした。これらのペプチド刺激された及びされていないターゲット細胞の集団を、それぞれ2.5及び0.25μMのCFSE(Invitrogen Life Technologies)でラベルし、その後1:1の比率で混合して、免疫付与したマウスの静脈内に投与した。 Six days later, spleen cells from naive C57BL / 6 mice were incubated with 10 μg / ml OVA 257-264 peptide (SIINFEKL; MBL) or alone for 30 minutes at 37 ° C. These peptide-stimulated and untargeted populations of target cells are labeled with 2.5 and 0.25 μM CFSE (Invitrogen Life Technologies), respectively, and then mixed in a 1: 1 ratio to give intravenous immunization to mice. Administered.

CFSEラベルされた脾臓細胞の投与から一日後、ターゲット細胞への殺傷活性を、脾臓中のCFSE陽性細胞集団の比率を用いて以下のように評価した。   One day after the administration of CFSE-labeled spleen cells, the killing activity on the target cells was evaluated using the ratio of the CFSE-positive cell population in the spleen as follows.

免疫付与したマウスの脾臓中のCFSE陽性細胞をフローサイトメトリーにて検出し、それぞれのマウスにおけるCTL活性を以下に示すようなCFSEhigh細胞とCFSElow細胞の比を用いて算出した。
CTL活性=(CFSEhighの%/CFSElowの%)
CFSE positive cells in the spleen of immunized mice were detected by flow cytometry, and the CTL activity in each mouse was calculated using the ratio of CFSE high cells and CFSE low cells as shown below.
CTL activity = (% CFSE high /% CFSE low )

次いで、相対的なCTL活性を以下の方法で算出した
相対CTL活性=(それぞれの免疫付与したマウスのCTL活性)/コントロールマウスのCTL活性)
Next, relative CTL activity calculated by the following method: relative CTL activity = (CTL activity of each immunized mouse) / CTL activity of control mouse)

図12に示すように、コントロールIgG抗体で処理したマウスと比較して、5G7モノクローナル抗体で処理したマウスは相対CTL活性が低くなることが明らかとなった。この結果から、抗XCR1抗体を用いた処理によって、インビボにおけるCTL活性が抑制されることが示され、抗XCR1抗体は自己免疫疾患における移植片対宿主病(GVHD)、組織損傷等の移植片拒絶といった免疫疾患に有効であることを示唆している。   As shown in FIG. 12, it was revealed that the mice treated with the 5G7 monoclonal antibody had a lower relative CTL activity than the mice treated with the control IgG antibody. This result shows that treatment with anti-XCR1 antibody suppresses CTL activity in vivo, and anti-XCR1 antibody is used for graft rejection such as graft-versus-host disease (GVHD) and tissue damage in autoimmune diseases. It is suggested that it is effective for such immune diseases.

実験例7
マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)のヒト/マウスキメラXCR1発現細胞に対する反応性
マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)によって認識されるヒトXCR1のエピトープを決定するために、ヒト/マウスキメラXCR1発現細胞に対する反応性を検討した。
Experimental Example 7
Reactivity of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) against human / mouse chimeric XCR1-expressing cells To determine the epitope of human XCR1 that is recognized by mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) The reactivity with human / mouse chimeric XCR1-expressing cells was examined.

マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)は、ヒトXCR1には反応するがマウスXCR1には反応しないため、ヒト/マウスキメラレセプターのパネルを作製した。このパネルにおいて、それぞれのヒトXCR1の細胞外ドメインをマウスXCR1のホモログ領域で置換し、その逆も行った。   Mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) react with human XCR1 but not with mouse XCR1, thus creating a panel of human / mouse chimeric receptors. In this panel, the extracellular domain of each human XCR1 was replaced with the mouse XCR1 homolog region and vice versa.

オーバーラップPCR法を用いてこのパネルの発現ベクターを構築した。それぞれのEGFP−キメラレセプターをTK-1細胞にて発現させ、モノクローナル抗体との反応性を、FACS解析によって決定した。   The expression vector of this panel was constructed using overlap PCR. Each EGFP-chimeric receptor was expressed in TK-1 cells and the reactivity with the monoclonal antibody was determined by FACS analysis.

TK-1親細胞、ヒトXCR1-EGFP、マウスXCR1-EGFP、又はキメラXCR1-EGFP発現TK-1細胞を、FACSバッファー(1%のBSA(シグマ社)を含むPBS-)に懸濁した。次いで細胞を100μg/mLのヒトイムノグロブリンを含むFACSバッファーを用いて10分間氷冷してブロッキングした。 TK-1 parent cells, human XCR1-EGFP, mouse XCR1-EGFP, or chimeric XCR1-EGFP expressing TK-1 cells were suspended in FACS buffer (PBS containing 1% BSA (Sigma)). The cells were then blocked by ice-cooling for 10 minutes using FACS buffer containing 100 μg / mL human immunoglobulin.

次いで、0μg/mL〜10μg/mLの様々な濃度のマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)、マウスアイソタイプコントロール抗体として、10μg/mLの濃度のIgG2a(eBioscience社#14-4724-82)或いはIgG2b(eBioscience,#14-4732-82)、又は抗体を含まないFACSバッファーで細胞を氷上で20分間インキュベートした。   Next, mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) at various concentrations from 0 μg / mL to 10 μg / mL, and IgG2a at a concentration of 10 μg / mL (eBioscience # 14-4724-82) as a mouse isotype control antibody. ) Or IgG2b (eBioscience, # 14-4732-82), or FACS buffer without antibody, cells were incubated for 20 minutes on ice.

細胞をFACSバッファーにて3回洗浄し、それから、PEでラベルされた抗マウスIgGポリクローナル抗体(Jackson,#715-116-151,FACSバッファーにて1:50に希釈)又はPEラベルされた抗ヒトXCR1ポリクローナル抗体(R&D,#FAB857P,FACSバッファーにて 2:5に希釈し、抗体を含まないFACSバッファーにてインキュベートされた細胞に対して使用)で、氷上で20分間インキュベートした。細胞を3回洗浄し、それからFACSバッファーに懸濁した。蛍光強度はFACSCanto II cell analyzerを用いて測定した。   Cells were washed 3 times with FACS buffer and then anti-mouse IgG polyclonal antibody labeled with PE (Jackson, # 715-116-151, diluted 1:50 with FACS buffer) or PE-labeled anti-human Incubated with XCR1 polyclonal antibody (R & D, # FAB857P, diluted 2: 5 in FACS buffer and used for cells incubated in FACS buffer without antibody) on ice for 20 minutes. Cells were washed 3 times and then suspended in FACS buffer. The fluorescence intensity was measured using a FACSCanto II cell analyzer.

図13に示すように、マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)は、ヒトXCR1-EGFP発現TK-1細胞に対して反応性を示したが、TK-1親細胞にもマウスXCR1-EGFP発現TK-1細胞にも反応性を示さなかった。4つの細胞外ドメインの起源は4文字コード(例えば、HHHHはヒトXCR1の野生型、HmmmはN末端にヒトXCR1の細胞外N末端ドメインを有し、1番目、2番目、及び3番目のマウスXCR1の細胞外ループドメインを有する。)によって示される。   As shown in FIG. 13, mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) showed reactivity to human XCR1-EGFP expressing TK-1 cells, but also to mouse TK-1 parent cells. -EGFP-expressing TK-1 cells did not show any reactivity. The origin of the four extracellular domains is the four letter code (eg, HHHH is the wild type of human XCR1, Hmmm has the extracellular N-terminal domain of human XCR1 at the N-terminus, the first, second and third mice With the extracellular loop domain of XCR1).

これらの3つの抗体は、キメラXCR1の中でもヒトXCR1の細胞外N末端ドメインを有するEGFP発現TK-1細胞に対して反応性を示した。キメラレセプターであるmmHmも、他の実験で検討したが、反応性は確認されなかった(データ示さず)。   These three antibodies showed reactivity against EGFP-expressing TK-1 cells having the extracellular N-terminal domain of human XCR1 among the chimeric XCR1. The chimeric receptor mmHm was also examined in other experiments, but no reactivity was confirmed (data not shown).

これに対して、マウスアイソタイプコントロール抗体は、何れのTK-1細胞にも反応性を示さなかった。   In contrast, the mouse isotype control antibody did not show any reactivity with any TK-1 cells.

実験例8
ペプチドイライザを用いた、ヒトXCR1の細胞外ドメインにおけるマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)の結合サイトのマッピング
マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)のヒトXCR1細胞外ドメインにおける結合残基を決定するために、ヒトXCR1の細胞外ドメインをカバーする12アミノ酸長のペプチドセットを用いたペプチドスキャンアッセイを行った。
Experimental Example 8
Mapping of binding sites for mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) in the extracellular domain of human XCR1 using a peptide equalizer Human XCR1 extracellular domain of mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) In order to determine the binding residues in, a peptide scan assay using a 12 amino acid long peptide set covering the extracellular domain of human XCR1 was performed.

N末端側にビオチンとGSGSスペーサーを有する2セットのペプチドをシグマ社に委託して合成した。第1のセットは12個のアミノ酸からなる13個のペプチドで、それぞれのペプチド間で2アミノ酸ずつのオフセットを有し、ヒトXCR1の細胞外N末端ドメインをカバーするものである。   Two sets of peptides having biotin and GSGS spacer on the N-terminal side were synthesized by Sigma. The first set is 13 peptides consisting of 12 amino acids, with an offset of 2 amino acids between each peptide and covering the extracellular N-terminal domain of human XCR1.

第2のセットは、12個のアミノ酸からなる13個のペプチドで、それぞれのペプチド間で3アミノ酸ずつのオフセットを有し、ヒトXCR1の細胞外ループドメインをカバーするものである。   The second set consists of 13 peptides consisting of 12 amino acids, with an offset of 3 amino acids between each peptide and covering the extracellular loop domain of human XCR1.

ペプチドは初めに100%のDMSO中に溶解し、次いで30%に希釈して50μg/mLの終濃度で直接ELISAに用いた。ストレプトアビジンでコートされたマイクロタイタープレート(Perkin Elmer)にウェル当たり50μLの量のペプチド(50μg/mL)を加え、室温で1時間インキュベーションして更にコーティングした。   The peptide was first dissolved in 100% DMSO and then diluted to 30% and used directly in the ELISA at a final concentration of 50 μg / mL. A 50 μL amount of peptide (50 μg / mL) per well was added to a streptavidin-coated microtiter plate (Perkin Elmer) and further coated by incubation for 1 hour at room temperature.

ペプチド溶液を除去した後、4%のブロックエースを含むPBS-を各ウェルに添加し、4℃で一晩インキュベートした。ウェルをELISAバッファー(0.02%のTween20を含むPBS-)を用いて3回洗浄し、10μg/mLマウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)を添加して、室温で6時間インキュベートし、その後ELISAバッファーで3回洗浄した。 After removing the peptide solution, PBS containing 4% Block Ace was added to each well and incubated at 4 ° C. overnight. The wells were washed 3 times with ELISA buffer (PBS containing 0.02% Tween20), 10 μg / mL mouse anti-human XCR1 antibody (2H6, 5G7, and 11H2) was added, and incubated at room temperature for 6 hours. Thereafter, it was washed 3 times with ELISA buffer.

次いで、ELISAバッファーで5000倍に希釈したロバ由来西洋わさびペルオキシダーゼ結合抗マウスIgG抗体をウェルに添加し、室温で1時間インキュベートした。その後ELISAバッファーで3回洗浄し、TMBZ(3,3’,5,5’ tetramethyl benzidine;Sigma社)をウェルに加え、室温でインキュベートした後に、2規程の硫酸を用いて反応を停止させ、Arvo plate reader(PerkinElmer社)を用いてA450を測定した。 Next, donkey-derived horseradish peroxidase-conjugated anti-mouse IgG antibody diluted 5000-fold with ELISA buffer was added to the wells and incubated at room temperature for 1 hour. After washing 3 times with ELISA buffer, TMBZ (3,3 ', 5,5' tetramethyl benzidine; Sigma) was added to the well, incubated at room temperature, and then the reaction was stopped using 2 standards of sulfuric acid. A 450 was measured using a plate reader (PerkinElmer).

図14に示すように、マウス抗ヒトXCR1抗体の2H6と5G7は配列番号96に示す7PESTTFFYYDLQ18を含むペプチドに強く結合し、配列番号110に示す11TFFYYDLQSQPC22を含むペプチドに弱いながらも結合することが明らかとなった。また、5G7は、3つの連続しない配列番号101に示す19SQPCENQAWVFA30を含むペプチド、配列番号110に示す172SSGCDYSELTWY183を含むペプチド、及び配列番号111に示す175CDYSELTWYLTS186を含むペプチドに弱い結合を示すことが明らかとなった。一方で、11H2はこれらのペプチドに対して結合は示さなかった(データ示さず。)。 As shown in FIG. 14, mouse anti-human XCR1 antibodies 2H6 and 5G7 bind strongly to the peptide containing 7 PESTTFFYYDLQ 18 shown in SEQ ID NO: 96 and bind weakly to the peptide containing 11 TFFYYDLQSQPC 22 shown in SEQ ID NO: 110. It became clear. 5G7 shows weak binding to three non-consecutive peptides containing 19 SQPCENQAWVFA 30 shown in SEQ ID NO: 101, a peptide containing 172 SSGCDYSELTWY 183 shown in SEQ ID NO: 110, and a peptide containing 175 CDYSELTWYLTS 186 shown in SEQ ID NO: 111. It became clear. On the other hand, 11H2 showed no binding to these peptides (data not shown).

実施例9
ヒトXCR1の細胞外ドメインにおけるアラニン変異体を用いた、マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)及びヒト型抗ヒトXCR1抗体(HK1L2及びHK5L5)の結合残基のマッピング
マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)及びヒト型抗ヒトXCR1抗体(HK1L2及びHK5L5)によって認識されるヒトXCR1の重要残基を決定するために、アラニン置換体アッセイを行った。
Example 9
Mapping mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) and human anti-human XCR1 antibodies (HK1L2 and HK5L5) using alanine mutants in the extracellular domain of human XCR1 Mouse anti-human XCR1 antibody To determine key residues of human XCR1 that are recognized by (2H6, 5G7, and 11H2) and human anti-human XCR1 antibodies (HK1L2 and HK5L5), alanine substitution assays were performed.

ヒトXCR1のアラニン置換変異体のパネルを作製した。このパネルでは、ヒトXCR1の細胞外領域にある7PESTTFFYYDLQSQPCENQAWVFA30(配列番号118)及び175CDYSELTWYLTS186(配列番号119)のそれぞれのアミノ酸をアラニンに置換している。アラニン置換変異体の発現ベクターを、部位特異的変異誘発法を用いて構築した。 A panel of alanine substitution mutants of human XCR1 was generated. In this panel, each amino acid of 7 PESTTFFYYDLQSQPCENQAWVFA 30 (SEQ ID NO: 118) and 175 CDYSELTWYLTS 186 (SEQ ID NO: 119) in the extracellular region of human XCR1 is substituted with alanine. An alanine substitution mutant expression vector was constructed using site-directed mutagenesis.

それぞれの変異体は、B300.19細胞を用いて発現させ、抗体との反応をFACS analysisにて決定した。B300.19親細胞とヒトXCR1-EGFP発現B300.19細胞若しくはアラニン変異ヒトXCR1-EGFP発現B300.19細胞とを、1:1の比率で混合し、FACSバッファー(1%のFBSを含むPBS-(Sigma社))に懸濁した。 Each mutant was expressed using B300.19 cells, and the reaction with the antibody was determined by FACS analysis. B300.19 the parental cells and human XCR1-EGFP expressing B300.19 cells or alanine mutant human XCR1-EGFP expressing B300.19 cells, 1: 1 were mixed in a ratio, including FACS buffer (1% FBS PBS - (Sigma)).

次いで、10%のラット血清を含むFACSバッファーを用い、氷上で10分間ブロッキングを行った。その後、マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)及びヒト型抗ヒトXCR1抗体(HK1L2及びHK5L5)、マウスアイソタイプコントロール抗体として、10μg/mLの濃度のIgG2a(eBioscience、#14-4724-82)若しくはIgG2b(eBioscience、#14-4732-82)、又はヒトアイソタイプコントロール抗体として10μg/mLの濃度のIgG2(Sigma社,#I5404);又は抗体を含まないFACSバッファーで細胞を氷上で20分間インキュベートした。   Subsequently, blocking was performed on ice for 10 minutes using a FACS buffer containing 10% rat serum. Thereafter, as a mouse anti-human XCR1 antibody (2H6, 5G7, and 11H2), a human anti-human XCR1 antibody (HK1L2 and HK5L5), and a mouse isotype control antibody, IgG2a (eBioscience, # 14-4724-82) at a concentration of 10 μg / mL. ) Or IgG2b (eBioscience, # 14-4732-82), or IgG2 at a concentration of 10 μg / mL as a human isotype control antibody (Sigma, # I5404); or cells incubated with FACS buffer without antibody for 20 minutes on ice did.

細胞を、FACSバッファーで3回洗浄し、それから氷上でPE標識抗マウスIgGポリクローナル抗体(Jackson,#715-116-151;マウス抗体を用いてインキュベートした細胞に、FACSバッファーで50倍に希釈して使用、PE標識抗ヒトIgGポリクローナル抗体(Jackson、#709-116-149;ヒト型抗体又はヒトコントロール抗体を用いてインキュベートした細胞に対して、FACSバッファーで50倍に希釈して使用)、又はPE標識抗ヒトXCR1ポリクローナル抗体(R&D社、#FAB857P、抗体を含まないFACSバッファーでインキュベートした細胞に対して、FACSバッファーで2:5に希釈して使用)を用いて細胞を氷上で20分間インキュベートした。その後細胞をFACSバッファーで3回洗浄し、FACSバッファーに懸濁した。蛍光強度はFACSCanto II cell analyzer(BD Bioscience社)を用いて測定した。   Cells were washed 3 times with FACS buffer and then diluted 50-fold with FACS buffer into cells incubated with PE-labeled anti-mouse IgG polyclonal antibody (Jackson, # 715-116-151; mouse antibody on ice). Use, PE-labeled anti-human IgG polyclonal antibody (Jackson, # 709-116-149; used diluted 50-fold with FACS buffer for cells incubated with human-type antibody or human control antibody), or PE Cells were incubated on ice for 20 minutes with labeled anti-human XCR1 polyclonal antibody (R & D, # FAB857P, cells incubated with FACS buffer without antibody, diluted 2: 5 with FACS buffer) Thereafter, the cells were washed three times with FACS buffer and suspended in FACS buffer, and the fluorescence intensity was measured using FACSCanto II cell analyzer (BD Bioscience).

図15に示すように、C175A変異体を除いて、それぞれの変異体はPE標識抗ヒトXCR1ポリクローナル抗体によって検出された。それぞれのアラニン変異体の細胞表面におけるXCR1発現量がまちまちであるため、それぞれのアラニン変異体の抗体への反応性は以下に示す手順にて算出した相対PE平均値(mAb/pAb)にて評価した。   As shown in FIG. 15, except for the C175A mutant, each mutant was detected by PE-labeled anti-human XCR1 polyclonal antibody. Since the amount of XCR1 expression on the cell surface of each alanine variant varies, the reactivity of each alanine variant to the antibody is evaluated by the relative PE average value (mAb / pAb) calculated by the procedure shown below. did.

先ず、それぞれの抗体を用いてヒトXCR1-EGFPを発現するB300.19細胞(野生型)を染色した際に得られるPE平均値を1.0と設定し、それぞれの抗体の相対的なPE平均値を算出する。そして、マウス抗ヒトXCR1抗体(2H、5G7、又は11H2)又はヒト型抗体(HK1L2又はHK5L5)のそれぞれの相対PE平均値を、PE標識抗ヒトXCR1ポリクローナル抗体の相対PE平均値で除算して得られる商を相対PE平均値(mAb/pAb)として算出した。   First, the average PE value obtained when each antibody was used to stain B300.19 cells (wild-type) expressing human XCR1-EGFP was set to 1.0, and the relative PE average value of each antibody was determined. calculate. Then, the respective relative PE average values of the mouse anti-human XCR1 antibody (2H, 5G7, or 11H2) or the human-type antibody (HK1L2 or HK5L5) are obtained by dividing by the relative PE average value of the PE-labeled anti-human XCR1 polyclonal antibody. The quotient obtained was calculated as a relative PE average value (mAb / pAb).

2H6の結果を図16に、5G7の結果を図17に、HK1L2の結果を図19に、そしてHK5L5の結果を図20に示す。細胞外N末端ドメイン又は細胞外の2番目のループドメインにおける残基にアラニン置換を施した多数の変異体の反応性が低くなっており、Y14A変異体、D16A変異体、及びL17A変異体は、反応性が無いか弱い反応性しか示さないことが確認された。更に、これらの変異体の中でも、E8A変異体、F13A変異体、C22A変異体、及びY177A変異体では、より低い反応性しか示さないことが確認された。   The result of 2H6 is shown in FIG. 16, the result of 5G7 is shown in FIG. 17, the result of HK1L2 is shown in FIG. 19, and the result of HK5L5 is shown in FIG. The reactivity of many mutants in which residues in the extracellular N-terminal domain or extracellular second loop domain are subjected to alanine substitution is low. Y14A mutant, D16A mutant, and L17A mutant are It was confirmed that there was no reactivity or only weak reactivity. Furthermore, among these mutants, it was confirmed that the E8A mutant, the F13A mutant, the C22A mutant, and the Y177A mutant showed lower reactivity.

これらが示す結果から、2H6、5G7、HK1L2、及びHK5L5はヒトXCR1の細胞外ドメインのE8、F13、Y14、D16、L17、C22、及びY177認識していることが示された。   From these results, it was shown that 2H6, 5G7, HK1L2, and HK5L5 recognize E8, F13, Y14, D16, L17, C22, and Y177 of the extracellular domain of human XCR1.

また図18に示す結果から、11H2はF13A及びD16A以外は他のモノクローナル抗体と同様の反応性を示すことが明らかであり、11H2はE8、Y14、L17、C22、及びY177を認識していることが示された。   Further, from the results shown in FIG. 18, it is clear that 11H2 shows the same reactivity as other monoclonal antibodies except for F13A and D16A, and 11H2 recognizes E8, Y14, L17, C22, and Y177. It has been shown.

実験例10
類似のエピトープを認識するマウス抗ヒトXCR1抗体(2H6,5G7,及び11H2)間のヒトXCR1発現細胞に対する競合実験
類似のエピトープを認識する抗ヒトXCR1抗体がヒトXCR1に対して互いに競合して結合するかどうかを決定するために、競合アッセイを行った。
Experimental Example 10
Competition experiment on human XCR1-expressing cells between mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) that recognize similar epitopes Anti-human XCR1 antibodies that recognize similar epitopes compete with and bind to human XCR1 To determine whether a competition assay was performed.

B300.19親細胞及びヒトXCR1-EGFPを発現するB300.19細胞を1:1の比率で混合し、FACSバッファー(1%のFBSを含むPBS-(Sigma社))に懸濁した。次いで、10%のラット血清を含むFACSバッファーを用い、細胞を氷上で10分間ブロッキングした。そして、細胞を0μg/mL〜10μg/mLの様々な濃度のマウス抗ヒトXCR1抗体(2H6、5G7、又は11H2),又はマウスアイソタイプコントロールとして用いるIgG2a(eBioscience、#16-4724-85)若しくはIgG2b(eBioscience、#16-4732-85)を含むFACSバッファーを用い、20分間氷上でインキュベートした。 B300.19 the B300.19 cells expressing parental cells and human XCR1-EGFP 1: 1 were mixed in a ratio, (PBS containing 1% FBS - (Sigma Co.)) FACS buffer and suspended in. Cells were then blocked on ice for 10 minutes using FACS buffer containing 10% rat serum. The cells were then used at various concentrations of mouse anti-human XCR1 antibody (2H6, 5G7, or 11H2) from 0 μg / mL to 10 μg / mL, or IgG2a (eBioscience, # 16-4724-85) or IgG2b ( Incubated on ice for 20 minutes using FACS buffer containing eBioscience, # 16-4732-85).

その後、0.3μg/mLの濃度のビオチン化したマウス抗ヒトXCR1抗体(5G7)を含むFACSバッファーを用い、氷上で20分間インキュベートした。細胞をFACSバッファーで3回洗浄し、FACSバッファーで50倍に希釈したPE標識ストレプトアビジン(BD Pharmingen、#554061)を用い、氷上で20分間インキュベートした。その後細胞を3回FACSバッファーで洗浄し、FACSバッファーに懸濁した。蛍光強度の測定は、FACSCanto II cell analyzer(BD Bioscience)を用いて行った。   Thereafter, incubation was carried out on ice for 20 minutes using a FACS buffer containing a biotinylated mouse anti-human XCR1 antibody (5G7) at a concentration of 0.3 μg / mL. Cells were washed 3 times with FACS buffer and incubated for 20 minutes on ice with PE-labeled streptavidin (BD Pharmingen, # 554061) diluted 50-fold with FACS buffer. The cells were then washed 3 times with FACS buffer and suspended in FACS buffer. The fluorescence intensity was measured using a FACSCanto II cell analyzer (BD Bioscience).

図21に示す結果から、ビオチン化マウス抗ヒトXCR1抗体のヒトXCR1-EGFPを発現するB300.19 細胞に対する結合は、未標識の5G7そのものや、5G7とヒトXCR1において同様のエピトープを認識する2H6並びに11H2で競合を受けることが明らかとなった。一方で、コントロール抗体は、ビオチン化マウス抗ヒトXCR1抗体(5G7)のヒトXCR1-EGFPを発現するB300.19 細胞に対する結合に競合しなかった。   From the results shown in FIG. 21, the binding of biotinylated mouse anti-human XCR1 antibody to B300.19 cells expressing human XCR1-EGFP is unlabeled 5G7 itself, 2H6 recognizing a similar epitope in 5G7 and human XCR1 and It became clear that 11H2 would compete. On the other hand, the control antibody did not compete for binding of the biotinylated mouse anti-human XCR1 antibody (5G7) to B300.19 cells expressing human XCR1-EGFP.

実験例11
マウス抗ヒトXCR1モノクローナル抗体(5G7)及びヒト型抗ヒトXCR1モノクローナル抗体(HK1L2及びHK5L5)の種々のヒトケモカインレセプターに対する反応性
マウス抗ヒトXCR1モノクローナル抗体(5G7)及びヒト型抗ヒトXCR1モノクローナル抗体(HK1L2及びHK5L5)の種々のヒトケモカインレセプターに対する反応性をFACS analysisを用いて検討した。
Experimental Example 11
Reactivity of mouse anti-human XCR1 monoclonal antibody (5G7) and human anti-human XCR1 monoclonal antibody (HK1L2 and HK5L5) against various human chemokine receptors Mouse anti-human XCR1 monoclonal antibody (5G7) and human anti-human XCR1 monoclonal antibody (HK1L2) And the reactivity of HK5L5) to various human chemokine receptors was examined using FACS analysis.

B300.19親細胞、ヒトケモカインレセプター-EGFPを発現するB300.19細胞(XCR1、CXCR1、CXCR3、CXCR4、CXCR5、CXCR6、CCR1、CCR2B、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CCR11、又はCX3CR1)を100μlのFACSバッファー(1%のFBSを含むPBS-(Sigma社))に1x106細胞数/mLの濃度となるように懸濁し、丸底の96穴プレートに入れた。 B300.19 parent cells, B300.19 cells expressing human chemokine receptor-EGFP (XCR1, CXCR1, CXCR3, CXCR4, CXCR5, CXCR6, CCR1, CCR2B, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR11 or CX3CR1) (PBS containing 1% FBS - (Sigma Co.) FACS buffer 100μl were suspended so as to be) to 1x10 6 concentrations in cell number / mL, placed in a 96 well plate, round bottom.

細胞を遠心分離して上清を捨てた後に、マウス抗ヒトXCR1モノクローナル抗体(5G7)、マウスアイソタイプコントロールとして用いるIgG2b(eBioscience、#14-4732-82)、ヒト型抗ヒトXCR1モノクローナル抗体(HK1L2及びHK5L5)、及びコントロールとしてヒトIgG(Mitsubishi,#128-26053-9)をFACSバッファーで5μg/mLの濃度に希釈して調製した。PE標識ヤギ抗ヒトXCR1ポリクローナル抗体(R&D、#FAB857P、及びLifeSpan BioScience、#LS-C76885)を、それぞれFACSバッファーを用いて2:5及び1:5に希釈して調製した。   After centrifuging the cells and discarding the supernatant, mouse anti-human XCR1 monoclonal antibody (5G7), IgG2b used as mouse isotype control (eBioscience, # 14-4732-82), human anti-human XCR1 monoclonal antibody (HK1L2 and HK5L5) and human IgG (Mitsubishi, # 128-26053-9) as a control were diluted with FACS buffer to a concentration of 5 μg / mL. PE-labeled goat anti-human XCR1 polyclonal antibodies (R & D, # FAB857P, and LifeSpan BioScience, # LS-C76885) were prepared by diluting 2: 5 and 1: 5 using FACS buffer, respectively.

調製した抗体を50μLずつ各ウェルに加え、氷上で20分間、細胞を冷却した。その後細胞をFACSバッファーで3回洗浄し、FACSバッファーで50倍に希釈したPE標識抗マウスIgGポリクローナル抗体(Jackson、#715-116-151)を5G7又はマウスアイソタイプコントロール抗体でインキュベートした細胞に加えた。また、FACSバッファーで50倍に希釈したPE標識抗ヒトIgGポリクローナル抗体(Jackson、#709-116-149)をHK1L2、HK5L5、又はヒトコントロールIgGでインキュベートした細胞に加えた。そして、抗ヒトXCR1ポリクローナル抗体でインキュベートした細胞には、FACSバッファーを加えた。   50 μL of the prepared antibody was added to each well, and the cells were cooled on ice for 20 minutes. The cells were then washed 3 times with FACS buffer and PE-labeled anti-mouse IgG polyclonal antibody (Jackson, # 715-116-151) diluted 50-fold with FACS buffer was added to cells incubated with 5G7 or mouse isotype control antibody. . In addition, PE-labeled anti-human IgG polyclonal antibody (Jackson, # 709-116-149) diluted 50-fold with FACS buffer was added to cells incubated with HK1L2, HK5L5, or human control IgG. Then, FACS buffer was added to the cells incubated with the anti-human XCR1 polyclonal antibody.

これらの細胞を氷上で20分間インキュベートし、その後FACSバッファーを用いて3回洗浄を行い、FACSバッファーに懸濁した。蛍光強度はFACSCanto II cell analyzerを用いて測定し、PE平均値の変化量で表した。PE平均値の変化量は、それぞれの抗体を用いて染色したそれぞれの細胞によって得られるPE平均値からバックグラウンドのPE平均値を減算した差である。   These cells were incubated for 20 minutes on ice, then washed 3 times with FACS buffer and suspended in FACS buffer. The fluorescence intensity was measured using a FACSCanto II cell analyzer and expressed as the amount of change in PE average value. The amount of change in the PE average value is a difference obtained by subtracting the background PE average value from the PE average value obtained by each cell stained with each antibody.

図22に示す結果から、マウス抗ヒトXCR1抗体である5G7はヒトCX3CR1-EGFPを発現するB300.19細胞を除いて、選択的にヒトXCR1-EGFPを発現するB300.19細胞に対して反応性を有することが確認された。一方で、ヤギ抗ヒトXCR1ポリクローナル抗体は、ヒトケモカインレセプター−EGFPを発現する様々なB300.19細胞に反応性を有することが明らかとなった。   From the results shown in FIG. 22, the mouse anti-human XCR1 antibody 5G7 is reactive to B300.19 cells that selectively express human XCR1-EGFP, except for B300.19 cells that express human CX3CR1-EGFP. It was confirmed to have On the other hand, it was revealed that the goat anti-human XCR1 polyclonal antibody has reactivity with various B300.19 cells expressing human chemokine receptor-EGFP.

また、図23に示す結果から、ヒト型抗ヒトXCR1抗体であるHK1L2及びHK5L5は、
ヒトXCR1−EGFPを発現する細胞に対して高い反応性を示すにもかかわらず、ヒトCX3CR1-EGFPを発現する細胞への反応性が減少していた。
Further, from the results shown in FIG. 23, HK1L2 and HK5L5, which are human anti-human XCR1 antibodies,
Despite the high reactivity to cells expressing human XCR1-EGFP, the reactivity to cells expressing human CX3CR1-EGFP was decreased.

実験例12
Mycobacterium butyricumによって惹起されたDTH反応に対する5G7モノクローナル抗体の効果
遅延型過敏反応が自己抗原に対して生じた際に、甲状腺炎、関節リウマチ、I型糖尿病等の自己免疫疾患の発症機序の一つとして考えられている(Actor, J.K. and Ampel, N.M. (December 2009) Hypersensitivity: T Lymphocyte-mediated (Type IV). In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester)
T細胞と樹状細胞の相互作用は、DTH反応においては重要であり、この相互作用を阻害することが、これらの疾患を治療するのには有用であると考えられている。そこで、ヒトXCR1ノックインマウスを用い、DTH反応モデルであるMycobacterium (M.) butyricumによって惹起されるDTH反応(Mihara, M. et al, Immunology Letters 2002, 84: 223-229; Mohan K et al, Eur. J. Immunol. 2005, 35: 1702-1711)における効果を、抗ヒトXCR1である5G7モノクローナル抗体にて検討した。
Experimental Example 12
Effect of 5G7 monoclonal antibody on DTH reaction elicited by Mycobacterium butyricum One of the pathogenesis of autoimmune diseases such as thyroiditis, rheumatoid arthritis, type I diabetes, etc. (Actor, JK and Ampel, NM (December 2009) Hypersensitivity: T Lymphocyte-mediated (Type IV). In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester)
The interaction between T cells and dendritic cells is important in the DTH response, and inhibiting this interaction is believed to be useful in treating these diseases. Therefore, DTH reaction (Mihara, M. et al, Immunology Letters 2002, 84: 223-229; Mohan K et al, Eur) induced by Mycobacterium (M.) butyricum, a DTH reaction model, using human XCR1 knock-in mice J. Immunol. 2005, 35: 1702-1711) was examined using a 5G7 monoclonal antibody which is anti-human XCR1.

(方法)
マウスXCR1に代えてヒトXCR1を発現するヒトXCR1ノックインマウスを創出し、0日目に熱殺傷した100μg/headのM.butyricumをミネラルオイルと共に皮下に投与して免疫付与した。5G7モノクローナル抗体又はコントロールとして用いるマウスIgG(Jackson Laboratory)を500μg/headの量で、それぞれM.butyricumによる免疫付与の後の1日目、3日目、7日目に腹腔内投与した。
(Method)
Human XCR1 knock-in mice expressing human XCR1 were created instead of mouse XCR1, and 100 μg / head of M. butyricum killed by heat on day 0 was administered subcutaneously with mineral oil for immunization. 5G7 monoclonal antibody or mouse IgG (Jackson Laboratory) used as a control was intraperitoneally administered on the first day, the third day, and the seventh day after immunization with M. butyricum in an amount of 500 μg / head, respectively.

そしてM.butyricumによる免疫付与の後10日目にミネラルオイルに懸濁したM.butyricumを用いて、20μg/footの量で右足蹠にチャレンジした(M.butyricumチャレンジ)。また、左足蹠はミネラルオイルのみでチャレンジした(コントロールチャレンジ)。   On the 10th day after immunization with M. butyricum, M. butyricum suspended in mineral oil was used to challenge the right footpad in an amount of 20 μg / foot (M. butyricum challenge). The left footpad was challenged with mineral oil only (control challenge).

チャレンジから1日後に、それぞれの足蹠の厚さを測定し、DTH反応を評価した。足蹠の膨張は、以下に示す式に基づいて算出した。
足蹠の膨張=([A]-[B])-([C]-[D])
[A]=M.butyricumチャレンジ前の右足蹠の厚さ
[B]=M.butyricumチャレンジ後の右足蹠の厚さ
[C]=コントロールチャレンジ前の足蹠の厚さ
[D]=コントロールチャレンジ後の足蹠の厚さ
One day after the challenge, the thickness of each footpad was measured and the DTH response was evaluated. The toe expansion was calculated based on the following formula.
Toe swelling = ([A]-[B])-([C]-[D])
[A] = Thickness of right footpad before M.butyricum challenge
[B] = Thickness of right footpad after M.butyricum challenge
[C] = Thickness of footpad before control challenge
[D] = Thickness of footpad after control challenge

(結果)
図24に示すように、5G7モノクローナル抗体で処理したマウスにおける、M.butyricumによって惹起されるDTH反応は、コントロールIgGで処理したマウスと比較して顕著にDTH反応が減少していることが明らかとなった。
(result)
As shown in FIG. 24, it is clear that the DTH reaction elicited by M. butyricum in the mouse treated with the 5G7 monoclonal antibody is significantly reduced compared to the mouse treated with the control IgG. became.

(考察)
実験結果はDTH反応におけるXCR1抗体による治療効果を示すものである。よって、甲状腺炎、関節リウマチ、I型糖尿病といったDTHによって発症する自己免疫疾患の治療に、抗XCR1抗体が有用であることが示唆された。
(Discussion)
The experimental results show the therapeutic effect of XCR1 antibody in DTH reaction. Therefore, it was suggested that anti-XCR1 antibody is useful for the treatment of autoimmune diseases caused by DTH such as thyroiditis, rheumatoid arthritis, and type I diabetes.

実験例13
EAE関連ペプチドであるMOG37-50に対する5G7モノクローナル抗体の効果
多発性硬化症(MS)はヒトの中枢神経(CNS)における増悪寛解を繰り返すことや、又は脱髄の進行等の所見によって特徴づけられる慢性的な脱髄症状を示す疾患である。
Experimental Example 13
Effect of 5G7 monoclonal antibody against MOG37-50, an EAE-related peptide Multiple sclerosis (MS) is a chronic disease characterized by repeated exacerbations in the human central nervous system (CNS) or progression of demyelination This disease shows typical demyelinating symptoms.

MSの動物モデルとして最も集中的に研究がなされて実験的自己免疫性脳脊髄炎(EAE)は、古典的に運動機能の欠損に基づくものである。T細胞は、MS及びEAEにおける発症機序において重要な役割を担っているとの報告も多い。   Experimental autoimmune encephalomyelitis (EAE), the most intensively studied animal model of MS, is classically based on motor function deficits. There are many reports that T cells play an important role in the pathogenesis of MS and EAE.

そこでMSの発症機序に関する5G7モノクローナル抗体の阻害活性を検討するために、EAEモデル実験を行った。   Therefore, in order to investigate the inhibitory activity of 5G7 monoclonal antibody on the pathogenesis of MS, an EAE model experiment was conducted.

(実験手段)
1.サンプルマウス
C57BL/6をバックグラウンドに持ち、マウスXCR1に得てヒトXCR1を発現する、ヒトXCR1ノックインマウス(7〜12週齢)を実験に用いた。
(Experimental means)
1. Sample mouse
Human XCR1 knock-in mice (7-12 weeks old), which had C57BL / 6 in the background, were obtained in mouse XCR1 and expressed human XCR1, were used in the experiment.

2.EAEの誘導
EAEの進行にCD8陽性T細胞が関連していることが示されたThe journal Eur. J. Immunol. 2005,35:76-85に記載される方法に基づいて、EAEの誘導を行った。具体的には、ヒトXCR1ノックインマウスの皮下に、20mgのMycobacterium tuberculosis H37Raを含む完全フロイントアジュバント(CFA)でエマルション化された、200μgミエリンオリゴデンドロサイトグリコプロテイン(myelin oligodendrocyte glycoprotein)の37-50に相当するペプチド(MOG 37-50)を投与・免疫付与した。免疫付与後すぐ及び投与から2日後に200ngの百日咳毒素を静脈内投与した。
2. EAE induction
Induction of EAE was performed based on the method described in The journal Eur. J. Immunol. 2005, 35: 76-85, which showed that CD8 positive T cells were associated with EAE progression. Specifically, equivalent to 37-50 of 200 μg myelin oligodendrocyte glycoprotein, emulsified with complete Freund's adjuvant (CFA) containing 20 mg of Mycobacterium tuberculosis H37Ra, subcutaneously in human XCR1 knock-in mice Peptide (MOG 37-50) was administered and immunized. Immediately after immunization and 2 days after administration, 200 ng of pertussis toxin was intravenously administered.

3.抗体の投与方法
抗ヒトXCR1マウスモノクローナル抗体(5G7)及びそのコントロール抗体としてマウスIgG抗体(Jackson Laboratory)を、終濃度が2mg/mLとなるようにPBSを用いて調製し、それぞれの抗体を免疫付与から7日目、10日目、14日目、及び17日目に250μl/mouse(500μg/mouse)の量で静脈投与した。
3. Antibody administration method Anti-human XCR1 mouse monoclonal antibody (5G7) and mouse IgG antibody (Jackson Laboratory) as its control antibody were prepared using PBS to a final concentration of 2 mg / mL, and each antibody was immunized. From Day 7 to Day 10, Day 14, Day 14, and Day 17, intravenous administration was performed in an amount of 250 μl / mouse (500 μg / mouse).

4.本モデルにおける病理スコア
免疫付与日以降の臨床的症状を観察し、以下の基準に基づいて0〜5のスケールでスコアを付けた。
4). Pathological score in this model Clinical symptoms after the date of immunization were observed and scored on a scale of 0-5 based on the following criteria.

グレード0:病変なし、グレード0.5:軽度の尾の麻痺、グレード1:尾の麻痺、グレード2:歩行障害、グレード2.5:一つの後肢の麻痺。グレード3:後肢の麻痺、グレード4:両肢の麻痺、グレード5:瀕死又は死亡   Grade 0: No lesion, Grade 0.5: Mild tail paralysis, Grade 1: Tail paralysis, Grade 2: Gait disorder, Grade 2.5: Paralysis of one hind limb. Grade 3: Paralysis of hind limbs, Grade 4: Paralysis of both limbs, Grade 5: Drowning or death

(実験結果及び考察)
図25に示す結果から明らかのように、5G7モノクローナル抗体を投与したマウスの病理スコアは、コントロールIgGを投与したマウスよりも低いレベルとなった。
(Experimental results and discussion)
As is clear from the results shown in FIG. 25, the pathological score of the mice administered with the 5G7 monoclonal antibody was lower than that of the mice administered with the control IgG.

このデータより、抗XCR1抗体を用いた処置により、EAEの進行はある程度抑えることができ、抗XCR1抗体を用いた治療がヒトのMSに対して、有用であることが示唆された。   This data suggests that treatment with anti-XCR1 antibody can suppress the progression of EAE to some extent, and that treatment with anti-XCR1 antibody is useful for human MS.

実験例14
マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)を用いた、ヒトXCR1発現細胞に対するヒトXCL1の結合阻害
マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)がヒトXCL1とヒトXCR1の結合を阻害するかどうか確認するために、競合的リガンド結合アッセイを行った。
Experimental Example 14
Inhibition of human XCL1 binding to human XCR1-expressing cells using mouse anti-human XCR1 antibody (2H6, 5G7, and 11H2) Mouse anti-human XCR1 antibody (2H6, 5G7, and 11H2) inhibits binding of human XCL1 and human XCR1 Competitive ligand binding assays were performed to see if.

先ず、ヒトXCL1-SSS-His(10)のXCR1-EGFPを発現するBaF3細胞への結合を、以下に示す方法にて決定した。BaF3親細胞及びXCR1-EGFPを発現するBaF3細胞を1:1の割合で混合し、FACSバッファー(1%のFBSを含有するPBS-(Sigma))に懸濁した。 First, the binding of human XCL1-SSS-His (10) to BaF3 cells expressing XCR1-EGFP was determined by the method shown below. BaF3 cells expressing BaF3 parental cells and XCR1-EGFP 1: were mixed at a ratio of 1, (PBS containing 1% FBS - (Sigma)) FACS buffer and suspended in.

2.5μMの可溶性ヒトXCL1(R&D、#695-LT-025/CF)の存在下又は非存在下で、混合した細胞を氷上で30分間インキュベートながらヒトXCL1-SSS-His(10)の濃度が高くなるように添加した。   High concentration of human XCL1-SSS-His (10) while incubating mixed cells for 30 minutes on ice in the presence or absence of 2.5 μM soluble human XCL1 (R & D, # 695-LT-025 / CF) It added so that it might become.

次いで、細胞をFACSバッファーにて3回洗浄し、それからFACSバッファーで100倍に希釈した抗6x-His抗体(BETHYL、#A190-114A)を用いて氷上で20分間インキュベートした。その後、再度細胞を3回FACSバッファーにて洗浄し、FACSバッファーで50倍に希釈したPE標識化抗ウサギIgG抗体(Jackson、#711-166-152)を用いて氷上で20分間インキュベートした。   Cells were then washed 3 times with FACS buffer and then incubated on ice for 20 minutes with anti-6x-His antibody (BETHYL, # A190-114A) diluted 100-fold with FACS buffer. Thereafter, the cells were washed again three times with FACS buffer, and incubated for 20 minutes on ice using PE-labeled anti-rabbit IgG antibody (Jackson, # 711-166-152) diluted 50-fold with FACS buffer.

その後、再度細胞を3回FACSバッファーにて洗浄し、FACSバッファーに懸濁した。蛍光強度はFACSCanto II cell analyzerを用いて測定した。特異的な結合は、2.5μMの可溶性ヒトXCL1の非存在下での総結合数から、可溶性ヒトXCL1の存在下での総結合数を減算した差によって決定した。   Thereafter, the cells were washed again three times with FACS buffer and suspended in FACS buffer. The fluorescence intensity was measured using a FACSCanto II cell analyzer. Specific binding was determined by the difference of the total number of binding in the absence of 2.5 μM soluble human XCL1 minus the total number of binding in the presence of soluble human XCL1.

競合的な結合試験は、以下に示す方法にて行った。BaF3親細胞及びXCR1-EGFPを発現するBaF3細胞を1:1の割合で混合し、FACSバッファー(1%のFBSを含有するPBS-(Sigma))に懸濁した。次いで細胞を、10%のラット血清を含むFACSバッファーにて氷上で20分間ブロッキングした。 The competitive binding test was performed by the method shown below. BaF3 cells expressing BaF3 parental cells and XCR1-EGFP 1: were mixed at a ratio of 1, (PBS containing 1% FBS - (Sigma)) FACS buffer and suspended in. The cells were then blocked for 20 minutes on ice with FACS buffer containing 10% rat serum.

それから、細胞を0μg/mLから150μg/mLの様々な濃度のマウス抗ヒトXCR1抗体(2H6、5G7、又は11H2)又はマウスアイソタイプコントロール抗体としてIgG2a(eBioscience、#16-4724-85)若しくはIgG2b(eBioscience、#16-4732-85)を用いて氷上で20分間インキュベートした。次いで細胞を、0.12μg/mLの飽和濃度のヒトXCL1-SSS-His(10)を用い、氷上で30分間インキュベートした。   The cells are then immunized with various concentrations of mouse anti-human XCR1 antibody (2H6, 5G7, or 11H2) from 0 μg / mL to 150 μg / mL, or IgG2a (eBioscience, # 16-4724-85) or IgG2b (eBioscience) as mouse isotype control antibodies. And # 16-4732-85) for 20 minutes on ice. Cells were then incubated for 30 minutes on ice with 0.12 μg / mL saturating human XCL1-SSS-His (10).

細胞を3回FACSバッファーにて洗浄し、それからFACSバッファーで100倍に希釈した抗6x-Hisタグ抗体(BETHYL、#A190-114A)と用いて、氷上で20分間インキュベートした。その後、再度細胞を3回FACSバッファーにて洗浄し、FACSバッファーで50倍に希釈したPE標識抗ウサギIgG抗体を用いて氷上で20分間インキュベートした。   The cells were washed 3 times with FACS buffer and then incubated for 20 minutes on ice with anti-6x-His tag antibody (BETHYL, # A190-114A) diluted 100-fold with FACS buffer. Thereafter, the cells were washed again three times with FACS buffer, and incubated for 20 minutes on ice using PE-labeled anti-rabbit IgG antibody diluted 50-fold with FACS buffer.

そして再度細胞を3回洗浄し、FACSバッファーに懸濁した。蛍光強度はFACSCanto II cell analyzerを用いて測定した。   The cells were washed again three times and suspended in FACS buffer. The fluorescence intensity was measured using a FACSCanto II cell analyzer.

ヒトXCL1のヒトXCR1-EGFPを発現するBaF3細胞への結合は、マウス抗ヒトXCR1抗体(2H6、5G7、及び11H2)によって阻害され、そのIC50値はそれぞれ37.0,6.9,及び23.8nMであった。一方で、コントロール抗体は、ヒトXCL1のヒトXCR1-EGFPを発現するBaF3細胞への結合を阻害しなかった。 Binding of human XCL1 to BaF3 cells expressing human XCR1-EGFP was inhibited by mouse anti-human XCR1 antibodies (2H6, 5G7, and 11H2) with IC 50 values of 37.0, 6.9, and 23.8 nM, respectively. . On the other hand, the control antibody did not inhibit the binding of human XCL1 to BaF3 cells expressing human XCR1-EGFP.

Claims (15)

ヒトXCR1に結合する抗体であって、
下記の(g)-(i)の重鎖CDR1-3を含む重鎖可変領域と、(j)-(l)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;
(m)-(o)の重鎖CDR1-3を含む重鎖可変領域と、(p)-(r)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体;又は
(a)-(c)の重鎖CDR1-3を含む重鎖可変領域と、(d)-(f)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体:
(a)配列番号41に示されるアミノ酸配列からなる重鎖CDR1、
(b)配列番号42に示されるアミノ酸配列からなる重鎖CDR2、
(c)配列番号43に示されるアミノ酸配列からなる重鎖CDR3;
(d)配列番号44に示されるアミノ酸配列からなる軽鎖CDR1、
(e)配列番号45に示されるアミノ酸配列からなる軽鎖CDR2、
(f)配列番号46に示されるアミノ酸配列からなる軽鎖CDR3;
(g)配列番号17に示されるアミノ酸配列からなる重鎖CDR1、
(h)配列番号18に示されるアミノ酸配列からなる重鎖CDR2、
(i)配列番号19に示されるアミノ酸配列からなる重鎖CDR3;
(j)配列番号20に示されるアミノ酸配列からなる軽鎖CDR1、
(k)配列番号21に示されるアミノ酸配列からなる軽鎖CDR2、
(l)配列番号22に示されるアミノ酸配列からなる軽鎖CDR3;
(m)配列番号29に示されるアミノ酸配列からなる重鎖CDR1、
(n)配列番号30に示されるアミノ酸配列からなる重鎖CDR2、
(o)配列番号31に示されるアミノ酸配列からなる重鎖CDR3;
(p)配列番号32に示されるアミノ酸配列からなる軽鎖CDR1、
(q)配列番号33に示されるアミノ酸配列からなる軽鎖CDR2、
(r)配列番号34に示されるアミノ酸配列からなる軽鎖CDR3。
An antibody that binds to human XCR1,
An antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (g)-(i) below and a light chain variable region comprising the light chain CDR1-3 of (j)-(l);
an antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (m)-(o) and a light chain variable region comprising the light chain CDR1-3 of (p)-(r); or
An antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (a)-(c) and a light chain variable region comprising the light chain CDR1-3 of (d)-(f):
(a) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 41,
(b) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 42,
(c) heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 43;
(d) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 44,
(e) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 45,
(f) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 46;
(g) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 17,
(h) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 18,
(i) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 19;
(j) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 20,
(k) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 21,
(l) a light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 22;
(m) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 29,
(n) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 30,
(o) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 31;
(p) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 32,
(q) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 33,
(r) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 34.
請求項1に記載の抗体であって、
下記の(g)-(i)の重鎖CDR1-3を含む重鎖可変領域と、(j)-(l)の軽鎖CDR1-3を含む軽鎖可変領域とを含む抗体:
(g)配列番号17に示されるアミノ酸配列からなる重鎖CDR1、
(h)配列番号18に示されるアミノ酸配列からなる重鎖CDR2、
(i)配列番号19に示されるアミノ酸配列からなる重鎖CDR3;
(j)配列番号20に示されるアミノ酸配列からなる軽鎖CDR1、
(k)配列番号21に示されるアミノ酸配列からなる軽鎖CDR2、
(l)配列番号22に示されるアミノ酸配列からなる軽鎖CDR3。
The antibody of claim 1,
An antibody comprising a heavy chain variable region comprising the heavy chain CDR1-3 of (g)-(i) below and a light chain variable region comprising the light chain CDR1-3 of (j)-(l):
(g) a heavy chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 17,
(h) a heavy chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 18,
(i) a heavy chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 19;
(j) a light chain CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 20,
(k) a light chain CDR2 consisting of the amino acid sequence represented by SEQ ID NO: 21,
(l) A light chain CDR3 consisting of the amino acid sequence represented by SEQ ID NO: 22.
請求項1又は2に記載の抗体であって、配列番号60又は64に示すアミノ酸配列を含む重鎖可変領域と、配列番号68又は72に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。 The antibody according to claim 1 or 2, wherein the antibody comprises a heavy chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 60 or 64 and a light chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 68 or 72. 請求項1〜3の何れか1項に記載の抗体であって、配列番号60に示すアミノ酸配列を含む重鎖可変領域と、配列番号68に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。 The antibody according to any one of claims 1 to 3, wherein the antibody comprises a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 60 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 68. . 請求項1〜3の何れか1項に記載の抗体であって、配列番号64に示すアミノ酸配列を含む重鎖可変領域と、配列番号72に示すアミノ酸配列を含む軽鎖可変領域とを含む抗体。 The antibody according to any one of claims 1 to 3, comprising a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 64 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 72. . 請求項1〜5の何れか1項に記載の抗体であって、ヒト定常領域を含有する抗体。 6. The antibody according to any one of claims 1 to 5, comprising a human constant region. 請求項1〜4、6の何れか1項に記載の抗体であって、配列番号59に示すアミノ酸配列を含む重鎖と、配列番号67に示すアミノ酸配列を含む軽鎖とを含む抗体。 The antibody according to any one of claims 1 to 4 and 6 , wherein the antibody comprises a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 59 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 67. 請求項1〜3、5、6の何れか1項に記載の抗体であって、配列番号63に示すアミノ酸配列を含む重鎖と、配列番号71に示すアミノ酸配列を含む軽鎖とを含む抗体。 The antibody according to any one of claims 1 to 3 , 5 , and 6 , comprising a heavy chain comprising the amino acid sequence represented by SEQ ID NO: 63 and a light chain comprising the amino acid sequence represented by SEQ ID NO: 71. . Fc領域を有する上記項1〜8の何れか1項に記載の抗体であって、ADCC活性が変動するようにFc領域に変異が施されてなる抗体。 Item 9. The antibody according to any one of Items 1 to 8, which has an Fc region, wherein the Fc region is mutated so that ADCC activity varies. 請求項9に記載の抗体であって、ADCC活性が下降するようにFc領域に変異が施されてなる抗体。 The antibody according to claim 9, wherein the Fc region is mutated so that ADCC activity decreases. 請求項1〜10の何れか1項に記載の抗体であって、該抗体に細胞傷害性分子が結合した抗体。 The antibody according to any one of claims 1 to 10, wherein a cytotoxic molecule is bound to the antibody. 請求項1〜11の何れか1項に記載の抗体であって、ヒトXCR1とヒトXCL1との相互作用を阻害する作用を有する抗体。 The antibody according to any one of claims 1 to 11, which has an action of inhibiting an interaction between human XCR1 and human XCL1. 請求項1〜12の何れか1項に記載の抗体であって、樹状細胞の細胞遊走を阻害する作用を有する抗体。 The antibody according to any one of claims 1 to 12, wherein the antibody has an action of inhibiting cell migration of dendritic cells. 請求項1〜13の何れか1項に記載の抗体であって、細胞傷害性Tリンパ細胞の活性を抑制する抗体。 The antibody according to any one of claims 1 to 13, which suppresses the activity of cytotoxic T lymphocytes. 請求項1〜14の何れか1項に記載の抗体、及び薬学的に許容可能な担体または添加物を含有する薬学的組成物。 A pharmaceutical composition comprising the antibody according to any one of claims 1 to 14, and a pharmaceutically acceptable carrier or additive.
JP2014509528A 2011-09-01 2012-08-30 Anti-human XCR1 antibody Expired - Fee Related JP5989096B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161530194P 2011-09-01 2011-09-01
US61/530,194 2011-09-01
US201261659637P 2012-06-14 2012-06-14
US61/659,637 2012-06-14
PCT/JP2012/072667 WO2013032032A1 (en) 2011-09-01 2012-08-30 Anti-human xcr1 antibodies

Publications (3)

Publication Number Publication Date
JP2014527396A JP2014527396A (en) 2014-10-16
JP2014527396A5 JP2014527396A5 (en) 2015-10-01
JP5989096B2 true JP5989096B2 (en) 2016-09-07

Family

ID=46881120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014509528A Expired - Fee Related JP5989096B2 (en) 2011-09-01 2012-08-30 Anti-human XCR1 antibody

Country Status (18)

Country Link
US (1) US9371389B2 (en)
EP (1) EP2751140B1 (en)
JP (1) JP5989096B2 (en)
KR (1) KR101767717B1 (en)
CN (1) CN103764680B (en)
AR (1) AR087749A1 (en)
AU (1) AU2012302596B2 (en)
BR (1) BR112014004352A2 (en)
CA (1) CA2846370C (en)
ES (1) ES2684173T3 (en)
HK (1) HK1199038A1 (en)
IL (1) IL231075A (en)
IN (1) IN2014CN01466A (en)
MX (1) MX346560B (en)
MY (1) MY166152A (en)
RU (1) RU2619180C2 (en)
TW (1) TWI563004B (en)
WO (1) WO2013032032A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110251683A (en) 2013-06-24 2019-09-20 Abl生物公司 Antibody-drug conjugates and application thereof with improved stability
LT3331553T (en) * 2015-08-05 2022-09-12 Acticor Biotech Novel anti-human gpvi antibodies and uses thereof
MX2019009137A (en) 2017-02-03 2019-12-19 Acticor Biotech Inhibition of platelet aggregation using anti-human gpvi antibodies.
WO2018146074A1 (en) 2017-02-07 2018-08-16 Vib Vzw Immune-cell targeted bispecific chimeric proteins and uses thereof
CN107312092B (en) * 2017-05-04 2020-12-11 华南农业大学 Preparation method and application of polyclonal antibody of epinephelus coioides CCR12
US20210130776A1 (en) * 2017-09-29 2021-05-06 The Broad Institute, Inc. Methods and compositions for modulating suppression of lymphocyte activity
WO2019148089A1 (en) * 2018-01-26 2019-08-01 Orionis Biosciences Inc. Xcr1 binding agents and uses thereof
EP3902560A1 (en) 2018-12-28 2021-11-03 F. Hoffmann-La Roche AG A peptide-mhc-i-antibody fusion protein for therapeutic use in a patient with amplified immune response

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5786210A (en) 1994-02-08 1998-07-28 Schering Corporation Mammalian thymokine genes
EP1268554A2 (en) * 2000-03-31 2003-01-02 IPF Pharmaceuticals GmbH Diagnostic and medicament for analysing the cell surface proteome of tumour and inflammatory cells and for treating tumorous and inflammatory diseases, preferably using a specific chemokine receptor analysis and the chemokine receptor-ligand interaction
AU2002246557A1 (en) 2000-11-29 2002-08-06 Lifespan Biosciences, Inc. Compositions and methods related to chemokine (c motif) xc receptor 1 (ccxcr1)
US20050136033A9 (en) * 2002-08-13 2005-06-23 Matthias Mack Method of treating allergen induced airway disease
WO2004072646A1 (en) * 2003-02-13 2004-08-26 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with g protein-coupled receptor 5 (gpr5)
EP1698902A1 (en) * 2005-03-01 2006-09-06 DKFZ Deutsches Krebsforschungszentrum Use of XCR1 for diagnosing or monitoring of immune tolerance
CN101293924A (en) * 2007-04-24 2008-10-29 上海国健生物技术研究院 Monoclone antibody with combined function epiposition, specificity of osteopontin and in preparing antineoplastic diversion medicaments
EP2062592A1 (en) * 2007-11-20 2009-05-27 BUNDESREPUBLIK DEUTSCHLAND letztvertreten durch das Robert Koch-Institut vertreten durch seinen Präsidenten System for delivery into a XCR1 positive cell and uses thereof
CA2752286A1 (en) * 2009-02-16 2010-08-19 Biolex Therapeutics, Inc. Humanized anti-cd20 antibodies and methods of use

Also Published As

Publication number Publication date
EP2751140B1 (en) 2018-05-30
CN103764680B (en) 2016-11-23
NZ621320A (en) 2015-11-27
US9371389B2 (en) 2016-06-21
IN2014CN01466A (en) 2015-05-08
CN103764680A (en) 2014-04-30
AR087749A1 (en) 2014-04-16
MX2014002078A (en) 2014-05-30
ES2684173T3 (en) 2018-10-01
IL231075A0 (en) 2014-03-31
TW201311725A (en) 2013-03-16
BR112014004352A2 (en) 2017-03-21
JP2014527396A (en) 2014-10-16
KR20140054108A (en) 2014-05-08
RU2014106832A (en) 2015-08-27
MY166152A (en) 2018-06-06
TWI563004B (en) 2016-12-21
AU2012302596A1 (en) 2014-03-06
US20140193421A1 (en) 2014-07-10
IL231075A (en) 2017-08-31
WO2013032032A1 (en) 2013-03-07
MX346560B (en) 2017-03-24
CA2846370A1 (en) 2013-03-07
KR101767717B1 (en) 2017-08-11
EP2751140A1 (en) 2014-07-09
AU2012302596B2 (en) 2016-12-01
CA2846370C (en) 2019-04-23
RU2619180C2 (en) 2017-05-12
HK1199038A1 (en) 2015-06-19

Similar Documents

Publication Publication Date Title
JP5989096B2 (en) Anti-human XCR1 antibody
CA2993423C (en) Il-8-binding antibodies and uses thereof
KR102257154B1 (en) Methods of treating immune diseases using PD-1 binding protein
AU2012233313C1 (en) Method for altering plasma retention and immunogenicity of antigen-binding molecule
US20120100074A1 (en) Humanized antibodies against light and uses thereof
KR20220050971A (en) Novel anti-CD39 antibody
EA031047B1 (en) St2l antagonists and methods of use thereof
JP2016539638A (en) Tumor necrosis factor-like ligand 1A specific antibody and compositions and uses thereof
US20140286957A1 (en) ANTIBODIES TO CD1d
AU2024219504A1 (en) BINDING MOLECULES SPECIFIC FOR FCyGAMMA RIIA AND USES THEREOF
TW202246315A (en) Compounds specific to coronavirus s protein and uses thereof
AU2015332338A1 (en) Antibodies that bind to CCR6 and their uses
KR20230113752A (en) Novel conjugate molecules targeting CD39 and TGFbeta
JP2017122117A (en) Anti-orai1 antibody
KR20240128709A (en) Novel anti-TSLP antibodies
CA2874918A1 (en) Tlr3 binding agents
JP6466904B2 (en) Interferon alpha and omega antibody antagonists
US20240279343A1 (en) Multi-specific antibodies and methods of use
TW202000704A (en) Anti-human TLR7 antibody
WO2024135794A1 (en) Anti-human cx3cr1 antibody
NZ621320B2 (en) Anti-human xcr1 antibodies
RU2771964C2 (en) Antibodies against signal-regulatory alpha protein and their application methods
JP2024542618A (en) Fibrosis treatment with anti-TREM2 antibody
TW202334227A (en) Fibrosis treatment with anti-trem2 antibodies
TW202309075A (en) Compounds specific to coronavirus s protein and uses thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5989096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees