[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5989048B2 - Cylinder head of internal combustion engine - Google Patents

Cylinder head of internal combustion engine Download PDF

Info

Publication number
JP5989048B2
JP5989048B2 JP2014167847A JP2014167847A JP5989048B2 JP 5989048 B2 JP5989048 B2 JP 5989048B2 JP 2014167847 A JP2014167847 A JP 2014167847A JP 2014167847 A JP2014167847 A JP 2014167847A JP 5989048 B2 JP5989048 B2 JP 5989048B2
Authority
JP
Japan
Prior art keywords
exhaust
wall
cylinder head
curvature
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014167847A
Other languages
Japanese (ja)
Other versions
JP2016044572A (en
Inventor
藤井 健史
健史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014167847A priority Critical patent/JP5989048B2/en
Publication of JP2016044572A publication Critical patent/JP2016044572A/en
Application granted granted Critical
Publication of JP5989048B2 publication Critical patent/JP5989048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、内部に排気集合部が形成された内燃機関のシリンダヘッドに関する。   The present invention relates to a cylinder head of an internal combustion engine in which an exhaust collecting portion is formed.

多気筒エンジンにおいては、シリンダヘッドの内部に複数の吸気ポート及び排気ポートを形成し、シリンダヘッドの吸気側側面及び排気側側面に対し、吸気を分配する吸気マニホールド及び排気を合流させる排気マニホールドをそれぞれ接合する形態が一般的である。近年では、排気を合流させる排気集合部をシリンダヘッドの内部に形成し、シリンダヘッドの排気側側面に単一の排気出口を形成して単一の排気管をシリンダヘッドに接合する形態のものもある。   In a multi-cylinder engine, a plurality of intake ports and exhaust ports are formed inside a cylinder head, and an intake manifold that distributes intake air and an exhaust manifold that joins exhaust to the intake side surface and the exhaust side surface of the cylinder head, respectively. The form to join is common. In recent years, there is also a configuration in which an exhaust collecting portion for joining exhaust is formed inside a cylinder head, a single exhaust outlet is formed on the exhaust side surface of the cylinder head, and a single exhaust pipe is joined to the cylinder head. is there.

排気集合部がシリンダヘッド内に形成された多気筒エンジンは、排気マニホールドを別体で設ける必要がないため、エンジン全体を小型化できる他、排ガスの放熱量を抑制でき、暖機時に排ガス浄化装置の温度を早期に高めて触媒を活性化することができる。また、燃焼室から排気集合部の出口までの距離を短くできるため、排ガスを利用する過給機(ターボチャージャ)を設ける場合に過給機の応答性を向上させることもできる。   A multi-cylinder engine with an exhaust collecting part formed in the cylinder head does not require a separate exhaust manifold, so the entire engine can be downsized and the amount of heat released from the exhaust gas can be reduced. The catalyst can be activated by raising the temperature of the catalyst early. Further, since the distance from the combustion chamber to the outlet of the exhaust collecting portion can be shortened, the responsiveness of the supercharger can be improved when a supercharger (turbocharger) that uses exhaust gas is provided.

その一方で、排気集合部が内部に形成されたシリンダヘッドでは、排気出口及びその近傍の排気集合部を画定する部分がシリンダブロック(シリンダブロックとの接合面)に対して側方に膨出する形状となることが多いため、過度な温度上昇によるシリンダヘッド本体や排気管への熱害を防止するためにこの膨出部分を冷却する必要がある。シリンダヘッド内に形成された排気集合部の周辺を効果的に冷却する構造として、シリンダヘッド内のウォータージャケット(冷却液通路)を、排気集合部を上面側及び下面側から覆うように膨出部分に延出させた構成が知られている(例えば、特許文献1参照)。   On the other hand, in the cylinder head in which the exhaust collecting portion is formed, the portion defining the exhaust outlet and the exhaust collecting portion in the vicinity thereof bulges laterally with respect to the cylinder block (joining surface with the cylinder block). Since it often has a shape, it is necessary to cool the bulging portion in order to prevent heat damage to the cylinder head body and the exhaust pipe due to excessive temperature rise. As a structure that effectively cools the periphery of the exhaust collecting portion formed in the cylinder head, the water jacket (coolant passage) in the cylinder head bulges so as to cover the exhaust collecting portion from the upper surface side and the lower surface side The structure extended to is known (for example, see Patent Document 1).

特開2000−205042号公報JP 2000-205042 A

しかしながら、このように排気集合部が内部に形成されたシリンダヘッドでは、排気出口の直下流に過給機や排ガス浄化装置触媒が設けられると過給機や排ガス浄化装置が高温になることも相俟って、熱負荷が高くなった時に膨出部分の壁が変形する。特に、ウォータージャケットを画定する壁のうち、内側に位置する内壁は排気集合部を画定しており、熱源である排気に直接晒されるため、外側に位置して外気に触れる外壁よりも高温になりやすい。このように内壁と外壁とに温度差が生じると、内壁が外壁よりも大きく膨出方向に熱膨張し、これらの壁には排気出口側の端部に応力が集中する。また、このような熱膨張は、図9の断面図に示すように、排気出口が形成された接合面の平坦性を損ねるような変形や、外壁を内壁に近付けるように撓ませる変形を生じさせるため、シリンダヘッドとその下流側排気通路部材とのシール性が低下するうえ、ウォータージャケットの断面積が縮小して冷却性能が低下する虞がある。   However, in the cylinder head having the exhaust collecting portion formed inside as described above, if the supercharger or the exhaust gas purification device catalyst is provided immediately downstream of the exhaust outlet, the supercharger or the exhaust gas purification device may become hot. As a result, when the heat load becomes high, the wall of the bulging portion is deformed. In particular, among the walls that define the water jacket, the inner wall located on the inner side defines the exhaust collecting part and is directly exposed to the exhaust gas, which is a heat source, so that it is hotter than the outer wall that is located outside and touches the outside air. Cheap. Thus, when a temperature difference arises between the inner wall and the outer wall, the inner wall is larger than the outer wall and thermally expands in the bulging direction, and stress is concentrated on the end portions on the exhaust outlet side of these walls. In addition, as shown in the cross-sectional view of FIG. 9, such thermal expansion causes deformation that impairs the flatness of the joint surface on which the exhaust outlet is formed, or deformation that deflects the outer wall closer to the inner wall. For this reason, the sealing performance between the cylinder head and the downstream exhaust passage member is lowered, and the cross-sectional area of the water jacket is reduced, which may reduce the cooling performance.

本発明は、このような従来技術に含まれる課題に鑑み、シリンダヘッド内に形成された排気集合部を形成する壁がシリンダブロックに対して側方に膨出する形状となっていても、この膨出部の熱膨張による応力集中を緩和すると共に、熱膨張による変形を抑制して、シリンダヘッドとその下流側排気通路部材とのシール性及び排気集合部周辺の冷却性能を維持できる内燃機関のシリンダヘッドを提供することを目的とする。   In view of the problems included in the conventional technology, the present invention is configured such that even if the wall forming the exhaust collecting portion formed in the cylinder head bulges laterally with respect to the cylinder block. An internal combustion engine that can relieve stress concentration due to thermal expansion of the bulging portion, suppress deformation due to thermal expansion, and maintain the sealing performance between the cylinder head and its downstream exhaust passage member and the cooling performance around the exhaust collecting portion. An object is to provide a cylinder head.

このような課題を解決するために、本発明は、複数のシリンダ(1)が一列に形成されたシリンダブロック(2)の上部に締結され、前記シリンダ内を摺動するピストンの頂面との間に燃焼室(6)を形成し、ヘッド内冷却液通路(30)を備えた内燃機関(E)のシリンダヘッド(3)であって、当該シリンダヘッド内には、上流端が前記燃焼室に開口する複数の排気ポート(8a)と、前記複数の排気ポートを合流させ、当該シリンダヘッドの一側面における長手方向の中間位置に排気出口(8c)を開口させる排気集合部(8b)とが形成され、前記排気出口を画定する部分(18)及びその近傍が、前記シリンダブロックに対して側方に膨出して前記排気集合部を形成する膨出部(19)をなし、前記ヘッド内ウォータージャケットが、前記排気集合部を挟むように前記膨出部に形成された一対の排気側冷却液通路(32、33)を含み、前記膨出部が、前記排気側冷却液通路を画定する一対の外壁(41、42)及び一対の内壁(43、44)を有し、シリンダ列方向に直交しかつ前記排気出口を通る断面において、前記一対の外壁の少なくとも一方の内面(41i、42i)が、前記排気出口側の端部に形成され、前記排気側冷却液通路側に曲率中心を置いて第1の曲率半径(R1、R3)をもって湾曲する第1の湾曲領域(61、71)と、前記第1の湾曲領域よりも前記燃焼室側に形成され、前記排気側冷却液通路側に曲率中心を置いて前記第1の曲率半径よりも大きな第2の曲率半径(R2、R4)をもって湾曲する第2の湾曲領域(62、72)とを含み、前記第2の湾曲領域が、少なくとも前記排気出口側から前記燃焼室側に向けて前記排気側冷却液通路の高さを漸増させる第1部分(66、76)を含む構成とする。   In order to solve such a problem, according to the present invention, a plurality of cylinders (1) are fastened to an upper portion of a cylinder block (2) formed in a row, and the top surface of a piston that slides in the cylinder is formed. A cylinder head (3) of an internal combustion engine (E) having a combustion chamber (6) formed therebetween and provided with an in-head coolant passage (30), the upstream end of which is located in the combustion chamber A plurality of exhaust ports (8a) that open to each other, and an exhaust collecting portion (8b) that joins the plurality of exhaust ports and opens an exhaust outlet (8c) at an intermediate position in the longitudinal direction on one side surface of the cylinder head. A portion (18) that is formed and delimits the exhaust outlet and the vicinity thereof form a bulging portion (19) that bulges laterally with respect to the cylinder block to form the exhaust collecting portion. Jacket A pair of exhaust-side coolant passages (32, 33) formed in the bulging portion so as to sandwich the exhaust collecting portion, and the bulging portion defines a pair of outer walls defining the exhaust-side coolant passage (41, 42) and a pair of inner walls (43, 44), and in a cross section perpendicular to the cylinder row direction and passing through the exhaust outlet, at least one inner surface (41i, 42i) of the pair of outer walls is A first curved region (61, 71) formed at an end on the exhaust outlet side and curved with a first radius of curvature (R1, R3) centered on the exhaust-side coolant passage; The first curved region is formed closer to the combustion chamber than the first curved region, and is curved with a second radius of curvature (R2, R4) larger than the first radius of curvature with the center of curvature located on the exhaust side coolant passage side. Two curved areas (62, 72) and front The second bending region is a structure including a first portion gradually increasing the height of the exhaust-side coolant passage toward the combustion chamber side from at least the exhaust outlet (66, 76).

この構成によれば、外壁の内面が第2の湾曲領域を含むことにより、内壁が排気によって加熱されて外壁よりも高温となり、外壁よりも大きく膨出方向に熱膨張した際に、応力が外壁に分散し、外壁と内壁との接続部への応力集中が緩和される。また、第2の湾曲領域が、排気側冷却液通路の高さを漸増させる第1部分を含むことにより、外壁が内壁に近付くように変形した際に直線形状に近付くことで外壁の膨出方向の寸法が大きくなり、排気出口が形成された接合面の平坦性を損ねるような変形が抑制される。そのため、シリンダヘッドとその下流側排気通路部材とのシール性を確保できる。また、第2の湾曲領域が排気側冷却液通路の高さを漸増させる第1部分を含むように形成されているため、外壁が内壁に近付くように変形した際にも排気側冷却液通路の高さを確保して排気集合部周辺の冷却性能を維持できる。   According to this configuration, when the inner surface of the outer wall includes the second curved region, the inner wall is heated by the exhaust gas so as to have a higher temperature than the outer wall, and when the thermal expansion is larger than the outer wall in the bulging direction, stress is applied to the outer wall. The stress concentration at the connection portion between the outer wall and the inner wall is alleviated. In addition, since the second curved region includes the first portion that gradually increases the height of the exhaust-side coolant passage, when the outer wall is deformed so as to approach the inner wall, the bulging direction of the outer wall becomes closer to the linear shape. Therefore, deformation that impairs the flatness of the joint surface on which the exhaust outlet is formed is suppressed. Therefore, the sealing performance between the cylinder head and the downstream exhaust passage member can be ensured. In addition, since the second curved region is formed so as to include the first portion that gradually increases the height of the exhaust-side coolant passage, even when the outer wall is deformed so as to approach the inner wall, the exhaust-side coolant passage The cooling performance around the exhaust collecting part can be maintained by securing the height.

また、上記の発明において、前記一対の外壁の少なくとも一方(42)の内面(42i)が、前記第1の湾曲領域(71)と前記第2の湾曲領域(72)との間に形成され、前記排気側冷却液通路側に曲率中心を置いて前記第1の曲率半径(R3)よりも大きく前記第2の曲率半径(R4)よりも小さな第3の曲率半径(R5)をもって湾曲する第3湾曲領域(73)を更に含み、前記第3湾曲領域が前記第1の湾曲領域及び前記第2の湾曲領域と滑らかに接続している構成とするとよい。   In the above invention, an inner surface (42i) of at least one of the pair of outer walls (42) is formed between the first curved region (71) and the second curved region (72), A third curve having a third radius of curvature (R5) that is larger than the first radius of curvature (R3) and smaller than the second radius of curvature (R4) with the center of curvature located on the exhaust side coolant passage side. It is preferable to further include a curved region (73), and the third curved region is smoothly connected to the first curved region and the second curved region.

この構成によれば、第1の湾曲領域と第2の湾曲領域との間にこれらの中間的な曲率半径を有する第3湾曲領域が形成されたことにより、熱膨張時における曲率の変化点への応力集中が抑制され、応力をより確実に分散できる。   According to this configuration, since the third curved region having an intermediate radius of curvature is formed between the first curved region and the second curved region, the curvature change point during thermal expansion can be obtained. Stress concentration is suppressed, and the stress can be more reliably dispersed.

また、上記の発明において、前記第2の湾曲領域(62、72)が、前記第1部分(66、76)から前記燃焼室(6)側に連続し、前記排気出口(8c)側から前記燃焼室側に向けて前記排気側冷却液通路(32、33)の高さを漸減させる第2部分(67、77)を更に含む構成とすることができる。   In the above invention, the second curved region (62, 72) is continuous from the first portion (66, 76) to the combustion chamber (6) side, and from the exhaust outlet (8c) side. A configuration may further include a second portion (67, 77) for gradually decreasing the height of the exhaust-side coolant passage (32, 33) toward the combustion chamber.

この構成によれば、第2の曲率半径を有する第2の湾曲領域を膨出方向に長く形成できるため、発生する応力を外壁に一層分散することができる。また、外壁が内壁に近付くように変形した際の外壁の膨出方向寸法がより大きくなるため、排気出口が形成された接合面の平坦性を損ねるような変形が一層抑制される。   According to this configuration, since the second curved region having the second radius of curvature can be formed long in the bulging direction, the generated stress can be further dispersed on the outer wall. Further, since the dimension of the outer wall in the bulging direction when the outer wall is deformed so as to approach the inner wall becomes larger, deformation that impairs the flatness of the joint surface on which the exhaust outlet is formed is further suppressed.

また、上記の発明において、前記外壁(42)の前記第2の湾曲領域(72)に対応する部分の大半が一定の厚さ(t1)を有する構成とするとよい。   In the above invention, the most part of the outer wall (42) corresponding to the second curved region (72) preferably has a constant thickness (t1).

この構成によれば、応力の集中を抑制しつつ無駄な肉をなくすことができ、シリンダヘッドを軽量化できる。   According to this configuration, it is possible to eliminate wasteful meat while suppressing stress concentration, and to reduce the weight of the cylinder head.

また、上記の発明において、前記一対の外壁の少なくとも一方(42)の内面(42i)が、前記第2の湾曲領域(72)よりも前記燃焼室(6)側に形成され、前記第2の湾曲領域に連続する直線状の直線領域(74)を更に含み、前記外壁が、前記直線領域の少なくとも前記第2の湾曲領域側の部分において一定の厚さを有する平板状部分(42a)を有し、当該平板状部分の前記外壁の前記直線領域に対応する部分の厚さ(t2)が前記第2の湾曲領域に対応する部分の平均厚さ(t1ave)よりも厚い構成とするとよい。   In the above invention, the inner surface (42i) of at least one of the pair of outer walls (42) is formed closer to the combustion chamber (6) than the second curved region (72), and the second A straight linear region (74) continuous to the curved region, and the outer wall includes a flat plate portion (42a) having a constant thickness at least at a portion of the linear region on the second curved region side. Then, the thickness (t2) of the portion corresponding to the linear region of the outer wall of the flat plate portion may be thicker than the average thickness (t1ave) of the portion corresponding to the second curved region.

この構成によれば、第2の湾曲領域に連続して平板状部分が存在すると、この部分に応力が集中しやすくなるが、平板状部分の厚さが第2の湾曲領域に対応する部分の平均厚さよりも厚いことにより、応力集中しやすい部分の剛性を高めて変形を抑制することができる。   According to this configuration, if there is a flat plate-like portion continuously in the second curved region, stress tends to concentrate on this portion, but the thickness of the flat plate-like portion is the portion corresponding to the second curved region. By being thicker than the average thickness, it is possible to increase the rigidity of the portion where stress is easily concentrated and suppress deformation.

また、上記の発明において、当該シリンダヘッド(3)が前記内燃機関(E)における鉛直方向の上側に配置され、前記一対の外壁が上側に配置された上外壁(41)及び下側に配置された下外壁(42)をなし、前記上外壁には、動弁室(11)を画定する側壁(3S)が一体形成され、少なくとも前記下外壁の内面(42i)が前記第1の湾曲領域(71)と前記第2の湾曲領域(72)とを含む構成とするとよい。   In the above invention, the cylinder head (3) is disposed on the upper side in the vertical direction of the internal combustion engine (E), and the pair of outer walls are disposed on the upper outer wall (41) and the lower side. The upper outer wall is integrally formed with a side wall (3S) defining a valve operating chamber (11), and at least an inner surface (42i) of the lower outer wall is formed in the first curved region (42). 71) and the second curved region (72).

この構成によれば、上側の外壁は、側壁が一体形成されるために比較的剛性が高く、シリンダヘッドに接合される下流側排気通路部材の荷重が発生するモーメントが引張力となって作用するため、熱膨張時に発生する応力が小さいが、側壁が一体形成されず、かつ下流側排気通路部材の荷重が圧縮力となって作用する下側の外壁に第1の湾曲領域と第2の湾曲領域とが形成されたことにより、大きな圧縮応力が発生しやすい下側の外壁で発生する応力を効果的に分散することができる。   According to this configuration, the upper outer wall has a relatively high rigidity because the side wall is integrally formed, and the moment generated by the load of the downstream exhaust passage member joined to the cylinder head acts as a tensile force. Therefore, although the stress generated at the time of thermal expansion is small, the first curved region and the second curved portion are not formed on the lower outer wall where the side wall is not integrally formed and the load of the downstream exhaust passage member acts as a compressive force. By forming the region, it is possible to effectively disperse the stress generated in the lower outer wall where a large compressive stress is likely to be generated.

このように本発明によれば、シリンダブロックに対して側方に膨出する膨出部の熱膨張による応力集中を緩和すると共に、熱膨張による変形を抑制して、シリンダヘッドとその下流側排気通路部材とのシール性及び排気集合部周辺の冷却性能を維持できる内燃機関のシリンダヘッドを提供することができる。   As described above, according to the present invention, the stress concentration due to the thermal expansion of the bulging portion that bulges laterally with respect to the cylinder block is alleviated, and the deformation due to the thermal expansion is suppressed, so that the cylinder head and its downstream exhaust It is possible to provide a cylinder head of an internal combustion engine that can maintain the sealing performance with the passage member and the cooling performance around the exhaust collecting portion.

実施形態に係るエンジンの要部のシリンダ列方向に直交する方向の断面図Sectional drawing of the direction orthogonal to the cylinder row direction of the principal part of the engine which concerns on embodiment シリンダヘッドを下方から見た斜視図Perspective view of cylinder head as seen from below 図1中のIII−III線に沿って示すシリンダヘッドの断面図Sectional view of the cylinder head taken along line III-III in FIG. シリンダヘッドの冷却液通路を抜き出して斜め上方から見た斜視図A perspective view of the coolant passage of the cylinder head extracted from an oblique upper side シリンダヘッドの冷却液通路を抜き出して斜め下方から見た斜視図Perspective view of the cylinder head coolant passage extracted from diagonally below 図1中のVI部拡大図Enlarged view of VI in Fig. 1 図6に示すシリンダヘッドの要部の説明図Explanatory drawing of the principal part of the cylinder head shown in FIG. 従来技術に係るエンジンの要部断面図Sectional view of the main part of an engine according to the prior art 従来技術に係るエンジンの熱膨張による変形を示す概念図Conceptual diagram showing deformation due to thermal expansion of an engine according to the prior art

以下、図面を参照して、本発明を自動車用内燃機関(以下、単にエンジンEと記す。)に適用した実施形態について詳細に説明する。以下では、エンジンEが自動車に搭載された状態を基準として図1に示す上下の方向に従って説明する。   Hereinafter, an embodiment in which the present invention is applied to an internal combustion engine for automobiles (hereinafter simply referred to as engine E) will be described in detail with reference to the drawings. Below, it demonstrates according to the up-down direction shown in FIG. 1 on the basis of the state in which the engine E was mounted in the motor vehicle.

図1及び図2に示すように、エンジンEは、SOHC4バルブ式の直列4気筒ガソリンエンジンである。図1に示すように、エンジンEは、ピストンが収容される4つのシリンダ1が一列に形成されたシリンダブロック2と、シリンダブロック2の上部に締結された箱形のシリンダヘッド3と、シリンダヘッド3の上部に締結されたヘッドカバー4とを備えており、シリンダヘッド3を鉛直方向の上側に配置した姿勢で自動車に搭載されている。シリンダブロック2及びシリンダヘッド3は、アルミニウム合金で鋳造される。   As shown in FIGS. 1 and 2, the engine E is a SOHC 4-valve in-line four-cylinder gasoline engine. As shown in FIG. 1, an engine E includes a cylinder block 2 in which four cylinders 1 in which pistons are accommodated are formed in a row, a box-shaped cylinder head 3 fastened to the top of the cylinder block 2, and a cylinder head 3 and a head cover 4 fastened to the upper portion of the cylinder 3. The cylinder head 3 is mounted on the automobile in a posture in which the cylinder head 3 is arranged on the upper side in the vertical direction. The cylinder block 2 and the cylinder head 3 are cast from an aluminum alloy.

シリンダ1は、それぞれ略上下方向に延在し、互いに平行にシリンダブロック2に形成されている。以下、列設された複数のシリンダ1の配列方向をシリンダ列方向という。各シリンダ1は、上端がシリンダブロック2の上端面2aに開口し、下端がシリンダブロック2の下部に形成されたクランク室(図示しない)に開口している。シリンダブロック2のシリンダ1の側部には、各シリンダ1の側周部を一体に囲むようにブロック内冷却液通路5(ブロック内ウォータージャケット)が形成されている。ブロック内冷却液通路5は、各シリンダ1の側周部に沿うように湾曲しており、ブロック内冷却液通路5の上端はシリンダブロック2の上端面2aに開口している。ブロック内冷却液通路5は、冷却水やオイル、冷媒などの冷却液を流通させるべく、シリンダブロック2の成型時に砂型などによって空洞として形成される。   The cylinders 1 extend in a substantially vertical direction, and are formed in the cylinder block 2 in parallel with each other. Hereinafter, the arrangement direction of the plurality of cylinders 1 arranged in a row is referred to as a cylinder row direction. Each cylinder 1 has an upper end opened to the upper end surface 2 a of the cylinder block 2, and a lower end opened to a crank chamber (not shown) formed in the lower part of the cylinder block 2. An in-block coolant passage 5 (in-block water jacket) is formed on the side of the cylinder 1 of the cylinder block 2 so as to integrally surround the side periphery of each cylinder 1. The in-block coolant passage 5 is curved so as to extend along the side periphery of each cylinder 1, and the upper end of the in-block coolant passage 5 is open to the upper end surface 2 a of the cylinder block 2. The in-block coolant passage 5 is formed as a cavity by a sand mold or the like when the cylinder block 2 is molded so as to circulate coolant such as coolant, oil or refrigerant.

シリンダヘッド3のシリンダブロック2との接合面(以下、対ブロック接合面3aと称する)における各シリンダ1に対向する部分には、曲面状の窪みである燃焼室凹部3bが形成されている。各燃焼室凹部3bは、各シリンダ1のピストンよりも上方の部分と共に燃焼室6を画定する。つまり、シリンダヘッド3が燃焼室6の上縁を画定している。   A combustion chamber recess 3b, which is a curved recess, is formed in a portion of the joint surface of the cylinder head 3 with the cylinder block 2 (hereinafter referred to as a pair-block joint surface 3a) facing each cylinder 1. Each combustion chamber recess 3 b defines a combustion chamber 6 together with a portion above the piston of each cylinder 1. That is, the cylinder head 3 defines the upper edge of the combustion chamber 6.

シリンダヘッド3の内部には、上流端がシリンダヘッド3のシリンダ列方向に沿う一側面(図1の左側の側面)に開口する一方、二股に分岐した下流端が各燃焼室凹部3bの壁面に開口する4つの吸気ポート7と、上流端が各燃焼室凹部3bの壁面に2つずつ開口する一方、下流端がシリンダヘッド3のシリンダ列方向に沿う他側面(図1の右側の側面)に開口する1つの排気集合ポート8とが形成されている。すなわち、排気集合ポート8は、各燃焼室凹部3bに開口する複数(8本)の排気ポート8aと、全ての排気ポート8aを集合させる排気集合部8bとをシリンダヘッド3の内部に有しており、排気集合部8bがシリンダヘッド3の他側面に単一の排気出口8cを形成している。燃焼室凹部3bを基準として吸気ポート7が設けられた側を吸気側、排気集合ポート8が設けられた側を排気側とする。   Inside the cylinder head 3, the upstream end opens on one side surface (the left side surface in FIG. 1) along the cylinder row direction of the cylinder head 3, while the bifurcated downstream end is on the wall surface of each combustion chamber recess 3 b. Four intake ports 7 to be opened and two upstream ends open to the wall surface of each combustion chamber recess 3b, while the downstream end is on the other side surface (the right side surface in FIG. 1) along the cylinder row direction of the cylinder head 3. One exhaust collecting port 8 that is open is formed. That is, the exhaust collecting port 8 has a plurality (eight) of exhaust ports 8a opened in the respective combustion chamber recesses 3b and an exhaust collecting portion 8b for collecting all the exhaust ports 8a inside the cylinder head 3. The exhaust collecting portion 8 b forms a single exhaust outlet 8 c on the other side surface of the cylinder head 3. The side on which the intake port 7 is provided with reference to the combustion chamber recess 3b is the intake side, and the side on which the exhaust collection port 8 is provided is the exhaust side.

シリンダヘッド3には、吸気ポート7の燃焼室6との各接続部を開閉する吸気バルブ9及び排気集合ポート8の燃焼室6との各接続部を開閉する排気バルブ10が、それぞれ摺動自在に設けられている。シリンダヘッド3とヘッドカバー4との間には、両者によって動弁室11が画定され、動弁室11には、吸気バルブ9及び排気バルブ10を開弁駆動する動弁機構12が収容されている。動弁機構12は、シリンダヘッド3に回転可能に取り付けられるカムシャフト13、カムシャフト13の上方に配置されるロッカシャフト14、ロッカシャフト14により揺動可能に支持される吸気ロッカアーム15及び排気ロッカアーム16等により構成される。カムシャフト13には、シリンダ1毎に一対の吸気バルブ9及び排気バルブ10を駆動する4つの動弁カム13aが形成されている。   In the cylinder head 3, an intake valve 9 for opening and closing each connection portion with the combustion chamber 6 of the intake port 7 and an exhaust valve 10 for opening and closing each connection portion with the combustion chamber 6 of the exhaust collecting port 8 are slidable. Is provided. A valve operating chamber 11 is defined between the cylinder head 3 and the head cover 4, and a valve operating mechanism 12 that opens and drives the intake valve 9 and the exhaust valve 10 is accommodated in the valve operating chamber 11. . The valve operating mechanism 12 includes a camshaft 13 rotatably attached to the cylinder head 3, a rocker shaft 14 disposed above the camshaft 13, an intake rocker arm 15 and an exhaust rocker arm 16 that are swingably supported by the rocker shaft 14. Etc. The camshaft 13 is formed with four valve cams 13 a that drive the pair of intake valves 9 and exhaust valves 10 for each cylinder 1.

図2に示すように、排気出口8cは、シリンダヘッド3の排気側側面3cにおける長手方向の中間位置に形成されている。また、燃焼室凹部3bの壁面における4つの吸気ポート7及び排気集合ポート8の中央には、点火プラグ(図示しない)を挿入するための点火プラグ挿入孔17がシリンダヘッド3の上面に貫通するように形成されている。   As shown in FIG. 2, the exhaust outlet 8 c is formed at an intermediate position in the longitudinal direction on the exhaust side surface 3 c of the cylinder head 3. Further, an ignition plug insertion hole 17 for inserting an ignition plug (not shown) passes through the upper surface of the cylinder head 3 in the center of the four intake ports 7 and the exhaust collecting port 8 on the wall surface of the combustion chamber recess 3b. Is formed.

図1及び図2に示すように、排気集合部8bは、シリンダヘッド3の対ブロック接合面3aよりも排気側に形成されている。より具体的には、排気出口8cがシリンダヘッド3の排気側側面3cにおいて突出する管状の排気出口管状部18により画定され、シリンダヘッド3の排気出口管状部18及びその近傍が、シリンダブロック2に対して側方に膨出して排気集合部8bを形成する膨出部19をなしている。   As shown in FIGS. 1 and 2, the exhaust collecting portion 8 b is formed on the exhaust side with respect to the pair-block joint surface 3 a of the cylinder head 3. More specifically, the exhaust outlet 8c is defined by a tubular exhaust outlet tubular portion 18 protruding from the exhaust side surface 3c of the cylinder head 3, and the exhaust outlet tubular portion 18 of the cylinder head 3 and the vicinity thereof are connected to the cylinder block 2. On the other hand, a bulging portion 19 is formed which bulges laterally to form an exhaust collecting portion 8b.

排気出口管状部18の先端面は、図示しない過給機(ターボチャージャ)のタービンや排気浄化装置などの下流側排気通路部材20の接合面18aをなす。そして、排気出口管状部18の先端には、下流側排気通路部材20をボルトで締結するための締結ボス21が排気出口8cを囲むように複数(図示例では4つ)形成されている。一方、膨出部19の下面には、対ブロック接合面3aの周縁からそれぞれ締結ボス21に至るように2本のリブ22が形成されている。これらのリブ22は、シリンダ列に対して近接離反する方向である前後方向に延在しており、締結ボス21から対ブロック接合面3aに向けて開くハ字形をなしている。   The distal end surface of the exhaust outlet tubular portion 18 forms a joint surface 18a of a downstream exhaust passage member 20 such as a turbocharger (turbocharger) turbine or an exhaust purification device (not shown). A plurality of (four in the illustrated example) fastening bosses 21 for fastening the downstream exhaust passage member 20 with bolts are formed at the tip of the exhaust outlet tubular portion 18 so as to surround the exhaust outlet 8c. On the other hand, two ribs 22 are formed on the lower surface of the bulging portion 19 so as to reach the fastening boss 21 from the peripheral edge of the anti-block joint surface 3a. These ribs 22 extend in the front-rear direction, which is a direction in which they approach and separate from the cylinder row, and have a C-shape that opens from the fastening boss 21 toward the anti-block joint surface 3a.

前述したようにシリンダブロック2及びシリンダヘッド3の前方には過給機や排気浄化装置などの下流側排気通路部材20が配置され、エンジンEの始動後にはこれらが高温になる。そのため、シリンダブロック2に対して側方に膨出するシリンダヘッド3の膨出部19は、過給機や排気浄化装置から熱伝導、放射及び対流によって熱が伝達しやすく、特に下面が高温になりやすい。そして膨出部19の下面が高温になると、熱膨張に伴う変形によってシリンダヘッド3と下流側排気通路部材20とのシール性が低下しがちであるが、本実施形態では膨出部19の下面にシリンダ列に対して近接離反する方向に延在するリブ22が形成されることにより、膨出部19の変形が抑制されるようになっている。   As described above, downstream exhaust passage members 20 such as a supercharger and an exhaust purification device are disposed in front of the cylinder block 2 and the cylinder head 3, and after the engine E is started, these become high temperatures. Therefore, the bulging portion 19 of the cylinder head 3 that bulges laterally with respect to the cylinder block 2 is easy to transfer heat from the supercharger or the exhaust purification device by heat conduction, radiation, and convection, and the lower surface is particularly hot. Prone. When the lower surface of the bulging portion 19 becomes high temperature, the sealing performance between the cylinder head 3 and the downstream side exhaust passage member 20 tends to deteriorate due to deformation accompanying thermal expansion. The ribs 22 extending in the direction approaching and separating from the cylinder row are formed, so that deformation of the bulging portion 19 is suppressed.

図1及び図3〜図5に示すように、シリンダヘッド3の内部には、燃焼室6内や排気集合ポート8内の燃焼ガスからの熱伝搬による温度上昇を抑制するために、燃焼室凹部3b、吸気ポート7及び排気集合ポート8の周辺にヘッド内冷却液通路30(31〜39、ヘッド内ウォータージャケット)が形成されている。ヘッド内冷却液通路30も、冷却水やオイル、冷媒などの冷却液を流通させるべく、シリンダヘッド3の成型時に砂型などによって空洞として形成されるが、図4及び図5では、シリンダヘッド3を透視して空間部分であるヘッド内冷却液通路30を実体的に示している。   As shown in FIGS. 1 and 3 to 5, in the cylinder head 3, a combustion chamber recess is provided in order to suppress a temperature rise due to heat propagation from the combustion gas in the combustion chamber 6 and the exhaust collecting port 8. 3 b, an in-head coolant passage 30 (31 to 39, an in-head water jacket) is formed around the intake port 7 and the exhaust collecting port 8. The in-head coolant passage 30 is also formed as a cavity by a sand mold or the like when the cylinder head 3 is molded so that coolant such as cooling water, oil, or refrigerant flows, but in FIG. 4 and FIG. The coolant liquid passage 30 in the head, which is a space portion, is actually shown through.

ヘッド内冷却液通路30は、主冷却液通路31、上排気側冷却液通路32、下排気側冷却液通路33、排気側連結通路34、吸気側冷却液通路35、及び吸気側連結通路36等を主要素として有している。主冷却液通路31は、複数の燃焼室凹部3bの上方近傍を通過するようにシリンダヘッド3のシリンダ列方向(長手方向)に延在している。上排気側冷却液通路32及び下排気側冷却液通路33は、排気集合部8bを上下から挟むように配置され、それぞれシリンダヘッド3の長手方向に延在している。排気側連結通路34は、主冷却液通路31と上排気側冷却液通路32及び下排気側冷却液通路33とを連通する。吸気側冷却液通路35は、吸気ポート7の下方に配置され、シリンダヘッド3の長手方向に延在している。吸気側連結通路36は、主冷却液通路31と吸気側冷却液通路35とを連通する。   The in-head coolant passage 30 includes a main coolant passage 31, an upper exhaust side coolant passage 32, a lower exhaust side coolant passage 33, an exhaust side connection passage 34, an intake side coolant passage 35, an intake side connection passage 36, and the like. As the main element. The main coolant passage 31 extends in the cylinder row direction (longitudinal direction) of the cylinder head 3 so as to pass near the upper portion of the plurality of combustion chamber recesses 3b. The upper exhaust side coolant passage 32 and the lower exhaust side coolant passage 33 are disposed so as to sandwich the exhaust collecting portion 8b from above and below, and each extend in the longitudinal direction of the cylinder head 3. The exhaust side connection passage 34 communicates the main coolant passage 31 with the upper exhaust side coolant passage 32 and the lower exhaust side coolant passage 33. The intake-side coolant passage 35 is disposed below the intake port 7 and extends in the longitudinal direction of the cylinder head 3. The intake side connection passage 36 communicates the main coolant passage 31 and the intake side coolant passage 35.

図2中の破線は、シリンダブロック2とシリンダヘッド3とが締結された際に、ブロック内冷却液通路5の上端が接する部分を示している。ブロック内冷却液通路5では、白抜き矢印に示すように冷却液が流通する。シリンダ列方向の一端でブロック内冷却液通路5の上端が対ブロック接合面3aに接する部分には、対ブロック接合面3aからシリンダヘッド3内を上方へと延びてヘッド内冷却液通路30に連通する冷却液流入通路37が2つ形成されている。2つの冷却液流入通路37は、ヘッド内冷却液通路30のシリンダ列方向の一端側に配置された排気側連結通路34及び吸気側連結通路36にそれぞれ連通しており、ブロック内冷却液通路5から冷却液を流入させる。   A broken line in FIG. 2 indicates a portion where the upper end of the in-block coolant passage 5 contacts when the cylinder block 2 and the cylinder head 3 are fastened. In the in-block coolant passage 5, the coolant flows as indicated by the white arrows. At the end where the upper end of the in-block coolant passage 5 is in contact with the anti-block joint surface 3a at one end in the cylinder row direction, the cylinder head 3 extends upward from the anti-block joint surface 3a and communicates with the in-head coolant passage 30. Two coolant inflow passages 37 are formed. The two coolant inflow passages 37 communicate with the exhaust side connection passage 34 and the intake side connection passage 36 arranged on one end side in the cylinder row direction of the in-head coolant passage 30, respectively. Let the coolant flow in.

また、ブロック内冷却液通路5の上端が対ブロック接合面3aに接する破線部分のうち、冷却液流入通路37よりもシリンダ列方向の他端側には、対ブロック接合面3aからシリンダヘッド3内を上方へ延びてヘッド内冷却液通路30に連通するバイパス通路38が適所に形成されている。バイパス通路38は、ヘッド内冷却液通路30の排気側連結通路34、下排気側冷却液通路33、吸気側連結通路36又は吸気側冷却液通路35に連通している。各バイパス通路38は、冷却液流入通路37よりも流路断面積が小さく形成されている。   Of the broken line portion where the upper end of the in-block cooling fluid passage 5 is in contact with the anti-block joint surface 3a, the other end side in the cylinder row direction from the anti-block fluid inflow passage 37 is located in the cylinder head 3 from the anti-block joint surface 3a. A bypass passage 38 that extends upward and communicates with the in-head coolant passage 30 is formed at an appropriate position. The bypass passage 38 communicates with the exhaust side connection passage 34, the lower exhaust side coolant passage 33, the intake side connection passage 36, or the intake side coolant passage 35 of the in-head coolant passage 30. Each bypass passage 38 is formed to have a smaller channel cross-sectional area than the coolant inflow passage 37.

図4及び図5に示すように、上排気側冷却液通路32におけるシリンダ列方向の他端(冷却液流入通路37が設けられた側と異なる端部)には、冷却液をヘッド内冷却液通路30から排出するための冷却液流出通路39が形成されている。冷却液流出通路39の外端は、配管やホース等を介してラジエータ(図示しない)へと連通されている。主冷却液通路31、上排気側冷却液通路32、下排気側冷却液通路33及び吸気側冷却液通路35では、図3に黒色矢印で示すように冷却液がシリンダ列方向に流通する。   As shown in FIGS. 4 and 5, at the other end of the upper exhaust-side cooling fluid passage 32 in the cylinder row direction (the end different from the side where the cooling fluid inflow passage 37 is provided), the cooling fluid is supplied to the in-head cooling fluid. A coolant outflow passage 39 for discharging from the passage 30 is formed. The outer end of the coolant outflow passage 39 communicates with a radiator (not shown) through a pipe, a hose and the like. In the main coolant passage 31, the upper exhaust side coolant passage 32, the lower exhaust side coolant passage 33, and the intake side coolant passage 35, the coolant flows in the cylinder row direction as indicated by black arrows in FIG.

図6に示すように、上排気側冷却液通路32及び下排気側冷却液通路33は、膨出部19を形成する肉壁の内部にそれぞれ形成されている。つまり、シリンダ列方向に直交しかつ排気出口8cを通る図6に示す断面において、膨出部19は、上排気側冷却液通路32及び下排気側冷却液通路33の外側(排気集合ポート8を基準とする外側)の輪郭を画定する上下一対の上外壁41及び下外壁42、並びに上排気側冷却液通路32及び下排気側冷却液通路33の内側の輪郭を画定する上下一対の上内壁43及び下内壁44を有している。空洞を形成するように互いに離間して配置された上外壁41と上内壁43との間に上排気側冷却液通路32が形成され、空洞を形成するように互いに離間して配置された下外壁42と下内壁44との間に下排気側冷却液通路33が形成される。なお、図1に示すように、上外壁41には、動弁室11を画定するシリンダヘッド3の側壁3Sが一体形成されている。   As shown in FIG. 6, the upper exhaust side coolant passage 32 and the lower exhaust side coolant passage 33 are respectively formed inside the wall that forms the bulging portion 19. That is, in the cross section shown in FIG. 6 that is orthogonal to the cylinder row direction and passes through the exhaust outlet 8c, the bulging portion 19 is outside the upper exhaust side coolant passage 32 and the lower exhaust side coolant passage 33 (the exhaust collecting port 8 is connected). A pair of upper and lower upper outer walls 41 and lower outer walls 42 defining the contour of the outer side as a reference, and a pair of upper and lower upper inner walls 43 defining the inner contours of the upper exhaust side coolant passage 32 and the lower exhaust side coolant passage 33. And a lower inner wall 44. An upper exhaust-side coolant passage 32 is formed between an upper outer wall 41 and an upper inner wall 43 that are spaced apart from each other so as to form a cavity, and a lower outer wall that is spaced apart from each other so as to form a cavity. A lower exhaust-side coolant passage 33 is formed between 42 and the lower inner wall 44. As shown in FIG. 1, the upper outer wall 41 is integrally formed with a side wall 3 </ b> S of the cylinder head 3 that defines the valve operating chamber 11.

図6の断面において排気集合ポート8は概ね直線状に形成されている。すなわち、同断面において、上内壁43及び下内壁44の排気集合ポート8を画定する内面43i、44iが、概ね平行な平面状とされている。一方、図6及び図7に示すように、上内壁43及び下内壁44の上排気側冷却液通路32及び下排気側冷却液通路33を画定する外面43o、44oは、燃焼室6側(図中の左方)から排気出口8cに向けて(図中の右方に向けて)それぞれの内面43i、44iと平行に排気出口8cの手前まで延在する直線状の直線領域51、52と、排気出口8c近傍にて直線領域51、52に連続して、排気側冷却液通路32、33側(すなわち、排気集合ポート8を基準として外方)に曲率中心を置いて湾曲する湾曲領域53、54とを有している。つまり、上内壁43及び下内壁44は、湾曲領域53、54に至る手前の直線領域51、52において概ね一定の厚さとされている。   In the cross section of FIG. 6, the exhaust collecting port 8 is formed in a substantially straight line shape. That is, in the same cross section, the inner surfaces 43i, 44i that define the exhaust collecting port 8 of the upper inner wall 43 and the lower inner wall 44 are substantially parallel and flat. On the other hand, as shown in FIGS. 6 and 7, the outer surfaces 43o, 44o defining the upper exhaust side coolant passage 32 and the lower exhaust side coolant passage 33 of the upper inner wall 43 and the lower inner wall 44 are on the combustion chamber 6 side (see FIG. 6). Linear straight regions 51, 52 extending from the inside (left side) to the exhaust outlet 8c (to the right side in the drawing) in parallel with the respective inner surfaces 43i, 44i and before the exhaust outlet 8c; A curved region 53 that is curved with a center of curvature on the exhaust side coolant passages 32 and 33 side (that is, outward with respect to the exhaust collecting port 8) continuously to the straight regions 51 and 52 in the vicinity of the exhaust outlet 8c. 54. That is, the upper inner wall 43 and the lower inner wall 44 have a substantially constant thickness in the straight regions 51 and 52 before the curved regions 53 and 54.

一方、上外壁41の上排気側冷却液通路32を画定する内面41iは、上内壁43の外面43oの湾曲領域53に連続して排気出口8c側の端部に形成され、上排気側冷却液通路32側(すなわち、排気集合ポート8を基準として内方)に曲率中心を置いて第1曲率半径R1をもって湾曲する第1湾曲領域61と、第1湾曲領域61に連続して第1湾曲領域61の燃焼室6側に形成され、上排気側冷却液通路32側に曲率中心を置いて第1曲率半径R1よりも大きな第2曲率半径R2をもって湾曲する第2湾曲領域62とを含んでいる。第1湾曲領域61と第2湾曲領域62とは、滑らかに接続している。ここで、「滑らかに」とは、本明細書においては屈曲せずに接線の傾きを連続させた状態を意味する。本実施形態では、第1曲率半径R1は3mmとされ、第2曲率半径R2は110mmとされている。   On the other hand, the inner surface 41i that defines the upper exhaust side coolant passage 32 of the upper outer wall 41 is formed at the end on the exhaust outlet 8c side continuously to the curved region 53 of the outer surface 43o of the upper inner wall 43. A first curved region 61 that is curved with a first radius of curvature R1 with the center of curvature on the side of the passage 32 (that is, inward with respect to the exhaust collecting port 8), and a first curved region that is continuous with the first curved region 61. 61 is formed on the combustion chamber 6 side, and includes a second curved region 62 that is curved with a second curvature radius R2 larger than the first curvature radius R1 with the center of curvature on the upper exhaust side coolant passage 32 side. . The first curved region 61 and the second curved region 62 are smoothly connected. Here, “smoothly” means a state in which the inclination of the tangent line is continued without being bent in this specification. In the present embodiment, the first curvature radius R1 is 3 mm, and the second curvature radius R2 is 110 mm.

第2湾曲領域62は、排気出口8c側から燃焼室6側に向けて上排気側冷却液通路32の高さを漸増させる第1部分66と、第1部分66から燃焼室6側に連続し、排気出口8c側から燃焼室6側に向けて上排気側冷却液通路32の高さを漸減させる第2部分67とを含んでいる。第2湾曲領域62の燃焼室6側の端部は、上排気側冷却液通路32と相反する側に曲率中心を置いて湾曲する湾曲接続部64を介して、更に燃焼室6側に連続する直線領域65と滑らかに接続している。   The second curved region 62 is continuous from the exhaust outlet 8c side to the combustion chamber 6 side, the first portion 66 that gradually increases the height of the upper exhaust side coolant passage 32, and from the first portion 66 to the combustion chamber 6 side. And a second portion 67 for gradually reducing the height of the upper exhaust-side coolant passage 32 from the exhaust outlet 8c side toward the combustion chamber 6 side. The end portion of the second curved region 62 on the combustion chamber 6 side further continues to the combustion chamber 6 side via a curved connection portion 64 that curves with the center of curvature on the side opposite to the upper exhaust side coolant passage 32. The straight line region 65 is smoothly connected.

他方、下外壁42の下排気側冷却液通路33を画定する内面42iは、下内壁44の外面44oの湾曲領域54に連続して排気出口8c側の端部に形成され、下排気側冷却液通路33側に曲率中心を置いて第3曲率半径R3をもって湾曲する第3湾曲領域71と、第3湾曲領域71よりも燃焼室6側に形成され、下排気側冷却液通路33側に曲率中心を置いて第3曲率半径R3よりも大きな第4曲率半径R4をもって湾曲する第4湾曲領域72とを含む他、第3湾曲領域71と第4湾曲領域72との間に形成され、下排気側冷却液通路33側に曲率中心を置いて第3曲率半径R3よりも大きく第4曲率半径R4よりも小さな第5曲率半径R5をもって湾曲する第5湾曲領域73を含んでいる。第3湾曲領域71と第5湾曲領域73、及び第5湾曲領域73と第4湾曲領域72とは、それぞれ滑らかに接続している。本実施形態では、第3曲率半径R3は3mmとされ、第4曲率半径R4は110mmとされ、第5曲率半径R5は15mmとされている。   On the other hand, the inner surface 42i that defines the lower exhaust side coolant passage 33 of the lower outer wall 42 is formed at the end on the exhaust outlet 8c side continuously to the curved region 54 of the outer surface 44o of the lower inner wall 44. A third curved region 71 having a curvature center on the side of the passage 33 and curved with a third radius of curvature R3 is formed on the combustion chamber 6 side with respect to the third curved region 71, and the curvature center on the lower exhaust side coolant passage 33 side. And a fourth curved region 72 that is curved with a fourth radius of curvature R4 that is larger than the third radius of curvature R3, and is formed between the third curved region 71 and the fourth curved region 72, and the lower exhaust side It includes a fifth curved region 73 that is curved with a fifth radius of curvature R5 that is larger than the third radius of curvature R3 and smaller than the fourth radius of curvature R4 with the center of curvature on the coolant passage 33 side. The third curved region 71 and the fifth curved region 73 and the fifth curved region 73 and the fourth curved region 72 are smoothly connected to each other. In the present embodiment, the third curvature radius R3 is 3 mm, the fourth curvature radius R4 is 110 mm, and the fifth curvature radius R5 is 15 mm.

第4湾曲領域72は、排気出口8c側から燃焼室6側に向けて下排気側冷却液通路33の高さを漸増させる第1部分76と、第1部分76から燃焼室6側に連続し、排気出口8c側から燃焼室6側に向けて下排気側冷却液通路33の高さを漸減させる第2部分77とを含んでいる。第4湾曲領域72の燃焼室6側の端部には直線状の直線領域74が滑らかに接続しており、直線領域74の燃焼室6側の端部には、下排気側冷却液通路33と相反する側に曲率中心を置いて湾曲する第6湾曲領域75に滑らかに接続している。   The fourth curved region 72 is continuous from the exhaust outlet 8c side to the combustion chamber 6 side, the first portion 76 that gradually increases the height of the lower exhaust side coolant passage 33, and the first portion 76 to the combustion chamber 6 side. And a second portion 77 that gradually decreases the height of the lower exhaust-side coolant passage 33 from the exhaust outlet 8c side toward the combustion chamber 6 side. A straight linear region 74 is smoothly connected to the end of the fourth curved region 72 on the combustion chamber 6 side, and the lower exhaust side coolant passage 33 is connected to the end of the linear region 74 on the combustion chamber 6 side. Are smoothly connected to a sixth curved region 75 that is curved with the center of curvature on the opposite side.

下外壁42の外面42oは、内面42iの第4湾曲領域72に対応する部分において、下外壁42の厚さが概ね一定となるように形成された湾曲領域82と、湾曲領域82に連続して湾曲領域82の燃焼室6側に内面42iの直線領域74と平行にかつ直線領域74よりも短く形成された直線状の直線領域84とを有している。つまり、下外壁42における外面42oの直線領域84に対応する部分は、厚さが一定の平板状部分42aを構成している。直線領域84の燃焼室6側の端部は、下排気側冷却液通路33と相反する側に曲率中心を置いて湾曲する外面湾曲部85と滑らかに接続しており、この外面湾曲部85は対ブロック接合面3aと屈曲する状態で接続する。   The outer surface 42o of the lower outer wall 42 is continuous with the curved region 82 and a curved region 82 formed so that the thickness of the lower outer wall 42 is substantially constant at a portion corresponding to the fourth curved region 72 of the inner surface 42i. On the combustion chamber 6 side of the curved region 82, there is a straight linear region 84 formed in parallel with the linear region 74 of the inner surface 42i and shorter than the linear region 74. That is, a portion of the lower outer wall 42 corresponding to the straight region 84 of the outer surface 42o constitutes a flat plate portion 42a having a constant thickness. The end portion of the straight region 84 on the combustion chamber 6 side is smoothly connected to an outer curved portion 85 that is curved with the center of curvature on the side opposite to the lower exhaust side coolant passage 33, and the outer curved portion 85 is The connection is made in a bent state with the anti-block joint surface 3a.

下外壁42の第4湾曲領域72に対応する部分は、燃焼室6側の端部で若干厚みを漸増させており、この部分を除く全長(第4湾曲領域72に対応する部分の図6の左右方向における全長の大半)にわたって一定の厚さt1(図7)となっている。そして、下外壁42の平板状部分42aの厚さt2は、第4湾曲領域72に対応する部分の漸増した側の端部と同じ厚さで一定となっている。つまり、下外壁42の平板状部分42aの厚さt2は、第4湾曲領域72に対応する部分の平均厚さt1aveよりも厚くなっている。   The portion of the lower outer wall 42 corresponding to the fourth curved region 72 is slightly increased in thickness at the end on the combustion chamber 6 side, and the entire length excluding this portion (the portion corresponding to the fourth curved region 72 in FIG. 6). It has a constant thickness t1 (FIG. 7) over the entire length in the left-right direction). The thickness t2 of the flat plate portion 42a of the lower outer wall 42 is constant at the same thickness as the end portion on the gradually increasing side of the portion corresponding to the fourth curved region 72. That is, the thickness t2 of the flat portion 42a of the lower outer wall 42 is thicker than the average thickness t1ave of the portion corresponding to the fourth curved region 72.

以上のように構成されたエンジンEのシリンダヘッド3によれば、次のような作用効果が得られる。すなわち、図8に示すように、上外壁141の内面141i及び下外壁142の内面142iが平面的に形成された従来のシリンダヘッド103では、内壁143、144が排気によって加熱されて外壁141、142よりも高温となり、外壁141、142よりも大きく膨出方向に熱膨張すると、外壁141、142及び内壁143、144が図9に示すように変形する。なお、図9は、理解を容易にするために変形量を実際のものよりも極端に大きくして描いた図である。   According to the cylinder head 3 of the engine E configured as described above, the following operational effects can be obtained. That is, as shown in FIG. 8, in the conventional cylinder head 103 in which the inner surface 141i of the upper outer wall 141 and the inner surface 142i of the lower outer wall 142 are formed planarly, the inner walls 143 and 144 are heated by exhaust gas, and the outer walls 141 and 142 are heated. When the temperature is higher than that of the outer walls 141 and 142 and the thermal expansion is greater in the bulging direction, the outer walls 141 and 142 and the inner walls 143 and 144 are deformed as shown in FIG. Note that FIG. 9 is a diagram in which the amount of deformation is extremely larger than the actual one for easy understanding.

つまり、膨出部19の上側では、上内壁143の膨張が上外壁141によって抑制されるため、上内壁143の内部には圧縮応力が発生し、潰れる(縮む)ように歪みが生じる。一方、上内壁143と上外壁141との排気出口8c側の接続部では、上内壁143側に圧縮応力が、上外壁141に引張応力がそれぞれ発生し、上外壁141にも引張応力が発生する。ただし図示例では、上外壁141が上内壁143に比べて数倍厚く形成されているため、上外壁141の歪みは下側ほど大きく、上側ほど小さくなっており、排気出口8cが形成された接合面18aの歪みは比較的小さい。   That is, since the expansion of the upper inner wall 143 is suppressed by the upper outer wall 141 on the upper side of the bulging portion 19, a compressive stress is generated inside the upper inner wall 143, and distortion occurs so as to be crushed (shrink). On the other hand, at the connection portion between the upper inner wall 143 and the upper outer wall 141 on the exhaust outlet 8c side, compressive stress is generated on the upper inner wall 143 side, tensile stress is generated on the upper outer wall 141, and tensile stress is also generated on the upper outer wall 141. . However, in the illustrated example, since the upper outer wall 141 is formed several times thicker than the upper inner wall 143, the distortion of the upper outer wall 141 is larger on the lower side and smaller on the upper side, and the joint in which the exhaust outlet 8c is formed. The distortion of the surface 18a is relatively small.

一方、膨出部19の下側においても、下内壁144の膨張が下外壁142によって抑制され、下内壁144に圧縮応力が発生し、下外壁142に引張応力が発生するが、図示例では上記実施形態と同様に下外壁142が下外壁142と同等の厚さに形成されているため、排気出口8cが形成された接合面18aの歪みの影響により下内壁144及び下外壁142に曲げ力が加わる。この例では、下内壁144の排気出口8c側の端部に応力が集中し、下内壁144自体は下方(下外壁142側)に撓むように変形している。一方、下外壁142は、排気出口8cが形成された接合面18aの歪みの影響を受けて上方(下内壁144側)に撓むように変形する。   On the other hand, also on the lower side of the bulging portion 19, expansion of the lower inner wall 144 is suppressed by the lower outer wall 142, compressive stress is generated in the lower inner wall 144, and tensile stress is generated in the lower outer wall 142. Since the lower outer wall 142 is formed to have the same thickness as the lower outer wall 142 as in the embodiment, the bending force is exerted on the lower inner wall 144 and the lower outer wall 142 due to the distortion of the joint surface 18a on which the exhaust outlet 8c is formed. Join. In this example, stress concentrates on the end of the lower inner wall 144 on the exhaust outlet 8c side, and the lower inner wall 144 itself is deformed to bend downward (on the lower outer wall 142 side). On the other hand, the lower outer wall 142 is deformed so as to bend upward (on the lower inner wall 144 side) under the influence of the distortion of the joint surface 18a where the exhaust outlet 8c is formed.

これに対し、本実施形態では、図6及び図7に示すように、外壁41、42の内面41i、42iが第2湾曲領域62及び第4湾曲領域72を含んでいることにより、内壁43、44が排気によって加熱されて外壁41、42よりも高温となり、外壁41、42よりも大きく膨出方向に熱膨張した際に、応力が外壁41、42に分散し、外壁41、42と内壁43、44との接続部への応力集中が緩和される。   On the other hand, in the present embodiment, as shown in FIGS. 6 and 7, the inner surfaces 41 i, 42 i of the outer walls 41, 42 include the second curved region 62 and the fourth curved region 72, so that the inner wall 43, When 44 is heated by the exhaust gas and becomes hotter than the outer walls 41, 42 and is thermally expanded in the bulging direction larger than the outer walls 41, 42, the stress is distributed to the outer walls 41, 42, and the outer walls 41, 42 and the inner wall 43 , 44 is alleviated from stress concentration at the connecting portion.

また、図6及び図7に示すように、第2湾曲領域62及び第4湾曲領域72が排気側冷却液通路32、33の高さを漸増させる第1部分66、76を含むことにより、内壁43、44が外壁41、42よりも大きく膨出方向に熱膨張した際に、外壁41、42が内壁43、44に近付くように変形して直線形状に近付くことで外壁41、42の膨出方向の寸法が大きくなり、排気出口8cが形成された接合面18aの平坦性を損ねるような変形が抑制される。そのため、シリンダヘッド3と下流側排気通路部材20とのシール性が確保される。また、第2湾曲領域62及び第4湾曲領域72が排気側冷却液通路32、33の高さを漸増させる第1部分66、76を含むように形成されているため、外壁41、42が内壁43、44に近付くように変形した際にも排気側冷却液通路32、33の高さが確保され、排気集合部8b周辺の冷却性能が維持される。   Further, as shown in FIGS. 6 and 7, the second curved region 62 and the fourth curved region 72 include first portions 66 and 76 that gradually increase the height of the exhaust-side coolant passages 32 and 33. When the outer walls 41 and 42 are thermally expanded in the bulging direction larger than the outer walls 41 and 42, the outer walls 41 and 42 are deformed so as to approach the inner walls 43 and 44, and the outer walls 41 and 42 bulge by approaching a linear shape. The direction dimension is increased, and deformation that impairs the flatness of the joint surface 18a on which the exhaust outlet 8c is formed is suppressed. Therefore, the sealing performance between the cylinder head 3 and the downstream side exhaust passage member 20 is ensured. Further, since the second curved region 62 and the fourth curved region 72 are formed so as to include the first portions 66 and 76 that gradually increase the height of the exhaust-side coolant passages 32 and 33, the outer walls 41 and 42 are the inner walls. The height of the exhaust-side coolant passages 32 and 33 is secured even when deformed to approach 43 and 44, and the cooling performance around the exhaust collecting portion 8b is maintained.

更に、本実施形態では、第2湾曲領域62及び第4湾曲領域72が、第1部分66、76から燃焼室6側に連続して排気側冷却液通路32、33の高さを漸減させる第2部分67、77を含んでいる。これにより、第2曲率半径R2及び第4曲率半径R4を有する第2湾曲領域62及び第4湾曲領域72が膨出方向に長く形成され、応力が外壁41、42に一層分散する。また、外壁41、42が内壁43、44に近付くように変形した際の外壁41、42の膨出方向寸法がより大きくなるため、排気出口8cが形成された接合面18aの平坦性を損ねるような変形が一層抑制される。   Further, in the present embodiment, the second curved region 62 and the fourth curved region 72 are configured to gradually reduce the height of the exhaust-side coolant passages 32 and 33 continuously from the first portions 66 and 76 to the combustion chamber 6 side. 2 parts 67 and 77 are included. As a result, the second curved region 62 and the fourth curved region 72 having the second radius of curvature R2 and the fourth radius of curvature R4 are formed long in the bulging direction, and the stress is further dispersed in the outer walls 41 and 42. Further, since the dimensions of the outer walls 41 and 42 in the bulging direction when the outer walls 41 and 42 are deformed so as to approach the inner walls 43 and 44 become larger, the flatness of the joint surface 18a on which the exhaust outlet 8c is formed is impaired. Deformation is further suppressed.

下外壁42では、第3湾曲領域71と第4湾曲領域72との間にこれらの中間的な曲率半径を有する第5湾曲領域73が形成されている。そのため、熱膨張時における曲率の変化点への応力集中が抑制され、応力がより確実に分散される。   In the lower outer wall 42, a fifth curved region 73 having an intermediate radius of curvature is formed between the third curved region 71 and the fourth curved region 72. Therefore, stress concentration at the curvature change point during thermal expansion is suppressed, and the stress is more reliably dispersed.

本実施形態では、下外壁42の第4湾曲領域72に対応する部分の大半が一定の厚さt1を有している。そのため、応力の集中を抑制しつつ無駄な肉をなくすことができ、シリンダヘッド3が軽量化される。   In the present embodiment, most of the portion corresponding to the fourth curved region 72 of the lower outer wall 42 has a constant thickness t1. Therefore, wasteful meat can be eliminated while suppressing the concentration of stress, and the cylinder head 3 is reduced in weight.

一方、下外壁42において第4湾曲領域72に連続して平板状部分42aが存在すると、直線領域74部分に応力が集中しやすくなるが、本実施形態では直線領域74の厚さt2が第4湾曲領域72に対応する部分の平均厚さt1aveよりも厚くされていることにより、応力集中しやすい部分の剛性が高まり、変形が抑制される。   On the other hand, if the flat plate portion 42a exists continuously from the fourth curved region 72 in the lower outer wall 42, stress tends to concentrate on the linear region 74 portion, but in this embodiment, the thickness t2 of the linear region 74 is the fourth. By being thicker than the average thickness t1ave of the portion corresponding to the curved region 72, the rigidity of the portion where stress is likely to concentrate increases, and deformation is suppressed.

また本実施形態では、上外壁41は、シリンダヘッド3の側壁3Sが一体形成されるために比較的剛性が高く、シリンダヘッド3に接合される下流側排気通路部材20の荷重が発生するモーメントが引張力となって作用するため、熱膨張時に発生する応力が小さいが、側壁3Sが一体形成されず、かつ下流側排気通路部材20の荷重が圧縮力となって作用する下外壁42に第3湾曲領域71及び第4湾曲領域72や、第5湾曲領域73が形成されたことにより、大きな圧縮応力が発生しやすい下外壁42で効果的に応力が分散される。   Further, in the present embodiment, the upper outer wall 41 has a relatively high rigidity because the side wall 3S of the cylinder head 3 is integrally formed, and a moment that generates a load on the downstream side exhaust passage member 20 joined to the cylinder head 3 is generated. Since it acts as a tensile force, the stress generated at the time of thermal expansion is small, but the side wall 3S is not integrally formed and the load on the downstream side exhaust passage member 20 acts as a compressive force on the lower outer wall 42. Due to the formation of the curved region 71, the fourth curved region 72, and the fifth curved region 73, the stress is effectively dispersed at the lower outer wall 42 where large compressive stress is likely to occur.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態では、本発明を自動車用の4バルブ式の直列4気筒ガソリンエンジンに適用しているが、他の用途に用いる異なる形式の内燃機関に適用してもよい。また上記実施形態では、排気出口8cが1つだけ形成されているが、互いに近接する2つの気筒毎に2つの排気出口8cが形成され、複数の排気集合部8bがシリンダヘッド3内に形成されてもよい。この他、各部材や部位の具体的構成や配置、数量、角度など、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。一方、上記実施形態に示した本発明に係るシリンダヘッド3の各構成要素は必ずしも全てが必須ではなく、適宜選択してもよい。   Although the description of the specific embodiment is finished as described above, the present invention is not limited to the above embodiment and can be widely modified. For example, in the above embodiment, the present invention is applied to a four-valve in-line four-cylinder gasoline engine for automobiles, but may be applied to a different type of internal combustion engine used for other purposes. In the above embodiment, only one exhaust outlet 8c is formed. However, two exhaust outlets 8c are formed for every two cylinders close to each other, and a plurality of exhaust collecting portions 8b are formed in the cylinder head 3. May be. In addition, the specific configuration, arrangement, quantity, angle, and the like of each member and part can be changed as appropriate without departing from the spirit of the present invention. On the other hand, all the components of the cylinder head 3 according to the present invention shown in the above embodiment are not necessarily essential, and may be appropriately selected.

1 シリンダ
2 シリンダブロック
3 シリンダヘッド
3S 側壁
6 燃焼室
8 排気集合ポート
8a 排気ポート
8b 排気集合部
8c 排気出口
11 動弁室
18 排気出口管状部(排気出口を画定する部分)
19 膨出部
30 ヘッド内冷却液通路
32 上排気側冷却液通路
33 下排気側冷却液通路
41 上外壁
41i 内面
42 下外壁
42a 平板状部分
42i 内面
43 上内壁
44 下内壁
61 第1湾曲領域(第1の湾曲領域)
62 第2湾曲領域(第2の湾曲領域)
66 第1部分
67 第2部分
71 第3湾曲領域(第1の湾曲領域)
72 第4湾曲領域(第2の湾曲領域)
73 第5湾曲領域(第3の湾曲領域)
76 第1部分
77 第2部分
E エンジン
R1 第1曲率半径(第1の曲率半径)
R2 第2曲率半径(第2の曲率半径)
R3 第3曲率半径(第1の曲率半径)
R4 第4曲率半径(第2の曲率半径)
R5 第5曲率半径(第3の曲率半径)
t1ave 下外壁42の第4湾曲領域72に対応する部分の平均厚さ
t2 平板状部分42aの厚さ
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Cylinder block 3 Cylinder head 3S Side wall 6 Combustion chamber 8 Exhaust collecting port 8a Exhaust port 8b Exhaust collecting part 8c Exhaust outlet 11 Valve operating chamber 18 Exhaust outlet tubular part (part which defines exhaust outlet)
DESCRIPTION OF SYMBOLS 19 Swelling part 30 Head internal coolant passage 32 Upper exhaust side coolant passage 33 Lower exhaust side coolant passage 41 Upper outer wall 41i Inner surface 42 Lower outer wall 42a Flat plate portion 42i Inner surface 43 Upper inner wall 44 Lower inner wall 61 First curved region ( First curved region)
62 2nd bending area | region (2nd bending area | region)
66 1st part 67 2nd part 71 3rd curve area (1st curve area)
72 4th curved area (2nd curved area)
73 Fifth curved region (third curved region)
76 First part 77 Second part E Engine R1 First radius of curvature (first radius of curvature)
R2 second radius of curvature (second radius of curvature)
R3 3rd radius of curvature (first radius of curvature)
R4 Fourth radius of curvature (second radius of curvature)
R5 5th radius of curvature (3rd radius of curvature)
t1ave Average thickness of the portion corresponding to the fourth curved region 72 of the lower outer wall 42 t2 Thickness of the flat plate portion 42a

Claims (5)

複数のシリンダが一列に形成されたシリンダブロックの上部に締結され、前記シリンダ内を摺動するピストンの頂面との間に燃焼室を形成し、ヘッド内冷却液通路を備えた内燃機関のシリンダヘッドであって、
当該シリンダヘッド内には、上流端が前記燃焼室に開口する複数の排気ポートと、複数の前記排気ポートを合流させ、当該シリンダヘッドの一側面における長手方向の中間位置に排気出口を開口させる排気集合部とが形成され、
前記排気出口を画定する部分及びその近傍が、前記シリンダブロックに対して側方に膨出して前記排気集合部を形成する膨出部をなし、
前記ヘッド内冷却液通路が、前記排気集合部を挟むように前記膨出部に形成された一対の排気側冷却液通路を含み、
前記膨出部が、前記排気側冷却液通路を画定する一対の外壁及び一対の内壁を有し、
シリンダ列方向に直交しかつ前記排気出口を通る断面において、一対の前記外壁の少なくとも一方の内面が、前記排気出口側の端部に形成され、前記排気側冷却液通路側に曲率中心を置いて第1の曲率半径をもって湾曲する第1の湾曲領域と、前記第1の湾曲領域よりも前記燃焼室側に形成され、前記排気側冷却液通路側に曲率中心を置いて前記第1の曲率半径よりも大きな第2の曲率半径をもって湾曲する第2の湾曲領域とを含み、
前記第2の湾曲領域が、少なくとも前記排気出口側から前記燃焼室側に向けて前記排気側冷却液通路の高さを漸増させる第1部分を含み、
一対の前記外壁の少なくとも前記一方の前記第2の湾曲領域に対応する部分の大半が一定の厚さを有することを特徴とする内燃機関のシリンダヘッド。
A cylinder of an internal combustion engine, in which a plurality of cylinders are fastened to the upper part of a cylinder block formed in a line, a combustion chamber is formed between the top surface of a piston sliding in the cylinder, and an in-head coolant passage is provided Head,
Within the cylinder head, a plurality of exhaust ports with upstream ends open to the combustion chamber, is combined with a plurality of the exhaust ports, to open the exhaust outlet in the longitudinal direction of the intermediate position in the one side surface of the cylinder head exhaust A collective part is formed,
The portion defining the exhaust outlet and the vicinity thereof form a bulging portion that bulges laterally with respect to the cylinder block to form the exhaust collecting portion,
The in-head cooling fluid passage includes a pair of exhaust-side cooling fluid passages formed in the bulging portion so as to sandwich the exhaust collecting portion,
The bulging portion has a pair of outer walls and a pair of inner walls that define the exhaust-side coolant passage,
In cross-section through the orthogonal and the exhaust outlet to the cylinder row direction, at least one of the inner surfaces of the pair of the outer wall is formed in an end portion of the side of the exhaust outlet, the center of curvature on the side of the exhaust-side coolant passage the first curved region is curved with a first radius of curvature at the than the first turn region is formed on a side of the combustion chamber, wherein at the center of curvature on the side of the exhaust-side coolant passage first A second curved region that curves with a second radius of curvature greater than the radius of curvature of 1;
The second bending region is, viewed contains a first portion gradually increasing the height of the exhaust-side coolant passage toward at least the side of the exhaust outlet side of the combustion chamber,
A cylinder head for an internal combustion engine, characterized in that most of a part of the pair of outer walls corresponding to at least one of the second curved regions has a constant thickness .
一対の前記外壁の少なくとも前記一方の内面が、前記第2の湾曲領域よりも前記燃焼室側に形成され、前記第2の湾曲領域に連続する直線状の直線領域を更に含み、
一対の前記外壁の少なくとも前記一方が、前記直線領域の少なくとも前記第2の湾曲領域側の部分において一定の厚さを有する平板状部分を有し、当該平板状部分の厚さが前記第2の湾曲領域に対応する部分の平均厚さよりも厚いことを特徴とする請求項に記載の内燃機関のシリンダヘッド。
At least the one of the inner surfaces of the pair of the outer wall, than the second curved region are formed on a side of the combustion chamber further comprises a straight linear region continuous with the second bent region,
On at least said pair of said outer wall, said at least a side portion of the second curved region of the linear region has a flat portion having a constant thickness, the flat-plate-like portion of the thickness second The cylinder head of the internal combustion engine according to claim 1 , wherein the cylinder head is thicker than an average thickness of a portion corresponding to the curved region.
一対の前記外壁の少なくとも前記一方の内面が、前記第1の湾曲領域と前記第2の湾曲領域との間に形成され、前記排気側冷却液通路側に曲率中心を置いて前記第1の曲率半径よりも大きく前記第2の曲率半径よりも小さな第3の曲率半径をもって湾曲する第3湾曲領域を更に含み、
前記第3湾曲領域が前記第1の湾曲領域及び前記第2の湾曲領域と互いの接線の傾きを連続させるように接続していることを特徴とする請求項1又は請求項2に記載の内燃機関のシリンダヘッド。
At least the one of the inner surfaces of the pair of the outer wall, wherein the first turn region is formed between the second bending region, wherein the first at the center of curvature on the side of the exhaust-side coolant passage A third curved region that curves with a third radius of curvature that is greater than the radius of curvature and less than the second radius of curvature;
Internal combustion according to claim 1 or claim 2, wherein the third bending regions are connected so as to continuously said first curved region and the second bending region and mutual tangent slope Engine cylinder head.
前記第2の湾曲領域が、前記第1部分から前記燃焼室側に連続し、前記排気出口側から前記燃焼室側に向けて前記排気側冷却液通路の高さを漸減させる第2部分を更に含むことを特徴とする請求項1〜請求項3のいずれか一項に記載の内燃機関のシリンダヘッド。 The second bending region is continuous from the first portion to the side of the combustion chamber, second gradually decreasing the height of the exhaust-side coolant passage toward the side of the combustion chamber from the side of the exhaust outlet The cylinder head of the internal combustion engine according to any one of claims 1 to 3 , further comprising a portion. 当該シリンダヘッドが前記内燃機関における鉛直方向の上側に配置され、
一対の前記外壁が上側に配置された上外壁及び下側に配置された下外壁をなし、
前記上外壁には、動弁室を画定する側壁が一体形成され、
少なくとも前記下外壁の内面が前記第1の湾曲領域と前記第2の湾曲領域とを含むことを特徴とする請求項1〜請求項のいずれか一項に記載の内燃機関のシリンダヘッド。
The cylinder head is disposed above the vertical direction in the internal combustion engine;
A pair of the outer walls comprises an upper outer wall disposed on the upper side and a lower outer wall disposed on the lower side,
The upper outer wall is integrally formed with a side wall defining a valve operating chamber,
The cylinder head for an internal combustion engine according to any one of claims 1 to 4 , wherein at least an inner surface of the lower outer wall includes the first curved region and the second curved region.
JP2014167847A 2014-08-20 2014-08-20 Cylinder head of internal combustion engine Active JP5989048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167847A JP5989048B2 (en) 2014-08-20 2014-08-20 Cylinder head of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167847A JP5989048B2 (en) 2014-08-20 2014-08-20 Cylinder head of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2016044572A JP2016044572A (en) 2016-04-04
JP5989048B2 true JP5989048B2 (en) 2016-09-07

Family

ID=55635376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167847A Active JP5989048B2 (en) 2014-08-20 2014-08-20 Cylinder head of internal combustion engine

Country Status (1)

Country Link
JP (1) JP5989048B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519458B1 (en) * 2017-03-01 2018-07-15 Avl List Gmbh CYLINDER HEAD FOR AN INTERNAL COMBUSTION ENGINE
KR20190091581A (en) 2018-01-28 2019-08-07 김하영 Artificial Well System
JP7442355B2 (en) * 2020-03-17 2024-03-04 本田技研工業株式会社 Cylinder head of multi-cylinder engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070551A (en) * 2000-08-25 2002-03-08 Honda Motor Co Ltd Cylinder head for multicylinder engine
JP4961027B2 (en) * 2010-03-17 2012-06-27 本田技研工業株式会社 Cooling water passage structure in cylinder head of internal combustion engine
JP5551547B2 (en) * 2010-09-03 2014-07-16 本田技研工業株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP2016044572A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
JP3669275B2 (en) EGR gas cooling device for internal combustion engine
JP6055322B2 (en) Cooling structure for internal combustion engine and method for manufacturing internal combustion engine having the cooling structure
CN104411957A (en) Exhaust passage structure for internal combustion engine
JP5989048B2 (en) Cylinder head of internal combustion engine
JP2014145285A (en) Cylinder head of internal combustion engine
JP7079698B2 (en) Internal combustion engine cylinder head
JP6607130B2 (en) Exhaust gas recirculation structure of cylinder head
JP5551547B2 (en) Internal combustion engine
JP6096519B2 (en) Cylinder head cooling structure for internal combustion engine
JP6096518B2 (en) Cylinder head of internal combustion engine
CN104727966B (en) Cylinder head arrangement
JP2015206316A (en) Valve guide structure of internal combustion engine
CN113404604B (en) Cylinder head of multi-cylinder engine
JP7048657B2 (en) Water jacket
CN113404605B (en) Cylinder head of multi-cylinder engine
JP7219131B2 (en) Automotive internal combustion engine oil pan
JP7065901B2 (en) Cylinder head of multi-cylinder engine
JP7058683B2 (en) Internal combustion engine cylinder head
CN112855378B (en) Multi-cylinder internal combustion engine
CN204493032U (en) For the intake manifold of internal-combustion engine
JP2011127492A (en) Exhaust recirculation apparatus in internal combustion engine
JP5049103B2 (en) Cylinder head in an internal combustion engine with a supercharger
JP2936076B2 (en) Cylinder head cooling device for motorcycle engine
KR101181026B1 (en) The Exhaustion Structure For a Waste Gas Temperature Reduction
JP2004044488A (en) Engine exhaust system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5989048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250