JP5984599B2 - Method for producing cement composition - Google Patents
Method for producing cement composition Download PDFInfo
- Publication number
- JP5984599B2 JP5984599B2 JP2012205724A JP2012205724A JP5984599B2 JP 5984599 B2 JP5984599 B2 JP 5984599B2 JP 2012205724 A JP2012205724 A JP 2012205724A JP 2012205724 A JP2012205724 A JP 2012205724A JP 5984599 B2 JP5984599 B2 JP 5984599B2
- Authority
- JP
- Japan
- Prior art keywords
- clinker
- slag
- cement
- mass
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 77
- 239000004568 cement Substances 0.000 title claims description 64
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000002893 slag Substances 0.000 claims description 75
- 239000003245 coal Substances 0.000 claims description 45
- 238000002309 gasification Methods 0.000 claims description 41
- 239000010440 gypsum Substances 0.000 claims description 20
- 229910052602 gypsum Inorganic materials 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 12
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 11
- 239000011707 mineral Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 23
- 239000011398 Portland cement Substances 0.000 description 20
- 229910001385 heavy metal Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 10
- 235000010755 mineral Nutrition 0.000 description 10
- 239000004567 concrete Substances 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000002699 waste material Substances 0.000 description 7
- 238000010276 construction Methods 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002956 ash Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000010801 sewage sludge Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000010883 coal ash Substances 0.000 description 2
- 150000004683 dihydrates Chemical class 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- -1 shells Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、石炭ガス化複合発電において副生する石炭ガス化溶融スラグ(以下「石炭ガス化スラグ」という。)を含むセメント組成物の製造方法に関する。 The present invention relates to a method for producing a cement composition containing coal gasification molten slag by-produced in coal gasification combined power generation (hereinafter referred to as “coal gasification slag”).
石炭ガス化複合発電は、石炭をガス化炉で部分燃焼させて生成するCOやH2等の可燃ガスを燃料に用い、ガスタービンと蒸気タービンを駆動させて発電するシステムである。そして、該システムからは前記可燃ガスとともに石炭中の灰分が溶融して固化した、鉄分を多く含む石炭ガス化スラグが副生する。
前記システムは熱効率が高くCO2の排出を削減できるため、原子力発電を補完又は代替する手段として期待されていることから、該システムの普及に伴う石炭ガス化スラグの増加が懸念されている。
Coal gasification combined power generation is a system that generates electricity by using a combustible gas such as CO or H 2 produced by partially burning coal in a gasification furnace as a fuel and driving a gas turbine and a steam turbine. And from this system, coal gasification slag containing much iron is produced as a by-product in which the ash in the coal is melted and solidified together with the combustible gas.
Since the system has high thermal efficiency and can reduce CO 2 emissions, it is expected as a means to supplement or substitute for nuclear power generation. Therefore, there is a concern about an increase in coal gasification slag accompanying the spread of the system.
従来、石炭ガス化スラグは、コンクリート用細骨材(非特許文献1)、人工軽量骨材(特許文献1)、及びセメント混合材用のポゾラン(特許文献2)等として活用が検討されてきた。
石炭ガス化スラグをセメント混合材に用いると、混合量に応じて混合セメントの色調が変化する。例えば、後掲の表2に示すように、白色度(ハンター表色系のL値、L値が0は完全な黒色で100は完全な白色である。)は石炭ガス化スラグで70.0(参考例3)と高く、普通ポルトランドセメントの50.3(参考例1)と大きく異なる。したがって、普通ポルトランドセメント100質量部に対し、石炭ガス化スラグを67質量部混合したセメント組成物の白色度は58.3(参考例2)と高くなり、元のセメントの色調とは大きく相違する。よって、石炭ガス化スラグの白色度や混合量が変動すると、得られた混合セメントの色調はバラつき易い。また、鉄分が多い石炭ガス化スラグを多く含むセメントコンクリートの表面には、鉄分の酸化に伴い色調が変化して色むらが生じ、コンクリート建築物の美観が損なわれるおそれがある。
したがって、前記問題がなく、セメント混合材として石炭ガス化スラグを有効に活用することができる技術が望まれている。
Conventionally, utilization of coal gasification slag has been studied as fine aggregate for concrete (Non-Patent Document 1), artificial lightweight aggregate (Patent Document 1), pozzolan for cement mixture (Patent Document 2), and the like. .
When coal gasification slag is used as a cement mixed material, the color tone of the mixed cement changes according to the mixing amount. For example, as shown in Table 2 below, the whiteness (L value of Hunter color system, L value of 0 is completely black and 100 is completely white) is 70.0 in coal gasification slag. It is as high as (Reference Example 3) and is significantly different from 50.3 (Reference Example 1) of ordinary Portland cement. Therefore, the whiteness of the cement composition in which 67 parts by mass of coal gasification slag is mixed with 100 parts by mass of normal Portland cement is as high as 58.3 (Reference Example 2), which is greatly different from the original tone of cement. . Therefore, when the whiteness and mixing amount of coal gasification slag vary, the color tone of the obtained mixed cement is likely to vary. In addition, the surface of cement concrete containing a large amount of coal gasification slag containing a large amount of iron may change color tone due to the oxidation of iron, resulting in uneven color, which may impair the appearance of the concrete building.
Therefore, there is a demand for a technique that can effectively utilize coal gasification slag as a cement mixture without the above problems.
かかる状況を受けて、本発明は、石炭ガス化スラグを大量に使用することができ、かつ、色調がポルトランドセメント等と同等で色調の経時変化が小さいセメント組成物の製造方法を提供することを目的とする。 In view of this situation, the present invention provides a method for producing a cement composition that can use a large amount of coal gasification slag and that has a color tone equivalent to that of Portland cement or the like and that has a small color change over time. Objective.
そこで、本発明者らは、前記目的にかなうセメント組成物の製造方法を検討したところ、
(i)後掲の表2の参考例3と4に示すように、石炭ガス化スラグ(L値は70.0)を1000℃で3分間、加熱処理したスラグの白色度(L値は49.7)は、ポルトランドセメントの白色度(L値は50〜55程度)と同等になること、そして、かかる知見を基にして、さらに検討したところ、
(ii)クリンカクーラー(以下「クーラー」という。)の特定の温度領域において、特定のセメント鉱物組成を有するクリンカに対し、特定の粒径を有する石炭ガス化スラグを投入して混合すると、該混合過程においてクリンカとスラグの間で熱交換が行われ、単にクーラーを用いる場合よりもクリンカはより速く冷却されると同時にスラグは加熱されて、水硬性が向上したクリンカと白色度が低下したスラグとの混合物が得られること、また、
(ii)前記混合物に石膏を添加して粉砕するだけで、強度発現性に優れ、かつ色調がポルトランドセメント等と同等で色調の経時変化が少ないセメント組成物を容易に製造できること、さらに、
(iii)この製造方法によれば石炭ガス化スラグを大量に使用でき、またクーラー内の余熱を利用するためエネルギー消費が少なく、その分製造コストが低減できること
等を見い出し、本発明を完成させた。
Therefore, the present inventors have examined a method for producing a cement composition that meets the above-mentioned purpose,
(I) As shown in Reference Examples 3 and 4 in Table 2 below, the whiteness (L value is 49) of slag obtained by heat-treating coal gasification slag (L value is 70.0) at 1000 ° C. for 3 minutes. .7) is equivalent to the whiteness of Portland cement (L value is about 50 to 55), and based on this finding,
(Ii) In a specific temperature range of a clinker cooler (hereinafter referred to as “cooler”), when a coal gasification slag having a specific particle size is introduced into and mixed with a clinker having a specific cement mineral composition, the mixing is performed. In the process, heat exchange takes place between the clinker and the slag, and the clinker is cooled faster than if a cooler is used, and at the same time the slag is heated, the clinker with improved hydraulic properties and the slag with reduced whiteness. That a mixture of
(Ii) By simply adding gypsum to the mixture and pulverizing it, it is possible to easily produce a cement composition that is excellent in strength development, has a color tone equivalent to Portland cement and the like, and has little color change with time,
(Iii) According to this production method, it was found that coal gasification slag can be used in a large amount, and because the remaining heat in the cooler is used, the energy consumption is low, and the production cost can be reduced correspondingly, thereby completing the present invention. .
すなわち、本発明は以下の構成を有するセメント組成物の製造方法を提供する。なお、%は特に示さない限り質量%である。
[1]以下の(A)〜(C)工程を含むセメント組成物の製造方法。
(A)ボーグ式を用いて算出したセメント鉱物組成が、C3Sで20〜80%、C2Sで3〜60%、C3Aで1〜16%、及びC4AFで6〜16%であるセメントクリンカを焼成して調製する、クリンカ調製工程
(B)前記クリンカ100質量部に対し、粒径が1mm以上の石炭ガス化スラグ(ただし、造粒品を除く。)を2〜100質量部の割合で、クーラー内の710〜1100℃の領域に投入してクリンカと混合させクリンカを冷却すると同時に前記スラグを加熱して、クリンカとスラグ加熱処理物との混合物を得る、スラグ加熱処理工程
(C)前記混合物に石膏を添加して粉砕する、混合粉砕工程
[2]前記(C)工程における石膏の添加量が、クリンカとスラグ加熱処理物との混合物100質量部に対しSO3換算で0.5〜4.0質量部である、前記[1]に記載のセメント組成物の製造方法。
That is, this invention provides the manufacturing method of the cement composition which has the following structures. In addition, unless otherwise indicated,% is the mass%.
[1] A method for producing a cement composition including the following steps (A) to (C).
Cement mineral composition calculated using (A) Borg formula, 20-80% by C 3 S, 3 to 60% for C 2 S, 1 to 16% in the C 3 A, and at C 4
本発明のセメント組成物の製造方法によれば、石炭ガス化スラグを大量に使用でき、また、少ないエネルギー消費でセメント組成物を製造できる。
また、本発明の製造方法により製造されたセメント組成物は、強度発現性に優れ、色調がポルトランドセメント等と同等で色調の経時変化が小さい。
According to the method for producing a cement composition of the present invention, a large amount of coal gasification slag can be used, and a cement composition can be produced with less energy consumption.
The cement composition produced by the production method of the present invention is excellent in strength development, has the same color tone as Portland cement and the like, and has little color change with time.
本発明のセメント組成物の製造方法は、前記のとおり、必須の工程として(A)クリンカ調製工程、(B)スラグ加熱処理工程、及び(C)混合粉砕工程を含み、さらに、任意の工程として(D)原料調合工程を含む。以下、本発明について各工程に分けて説明する。 As described above, the method for producing a cement composition of the present invention includes (A) a clinker preparation step, (B) a slag heat treatment step, and (C) a mixing and pulverizing step as essential steps. (D) The raw material preparation process is included. Hereinafter, the present invention will be described separately for each step.
(A)クリンカ調製工程
該工程は、ボーグ式を用いて算出したセメント鉱物組成が、C3Sで20〜80%、C2Sで3〜60%、C3Aで1〜16%、及びC4AFで6〜16%であるセメントクリンカを焼成して調製する工程である。セメント鉱物組成が該範囲のクリンカとして、普通ポルトランドセメントクリンカ、及び早強ポルトランドセメントクリンカ等のポルトランドセメントクリンカやエコセメントクリンカ等が挙げられる。
該工程の焼成温度は、好ましくは1000〜1500℃、より好ましくは1200〜1400℃である。該値が1000〜1500℃の範囲であれば、水硬性の高いセメント鉱物が生成する傾向がある。また、該工程における焼成時間は好ましくは30〜120分、より好ましくは40〜60分である。該時間が30分未満では焼成が十分でなく、120分を超えると時間がかかり生産性が低下する。
(A) clinker preparation step the process, cement mineral composition calculated using the Borg type, 20-80% by C 3 S, 3 to 60% for C 2 S, 1 to 16% in the C 3 A, and This is a step of baking and preparing a cement clinker that is 6 to 16% in C 4 AF. Examples of the clinker having a cement mineral composition within the above range include Portland cement clinker such as ordinary Portland cement clinker and early-strength Portland cement clinker, and eco-cement clinker.
The firing temperature in this step is preferably 1000 to 1500 ° C, more preferably 1200 to 1400 ° C. When the value is in the range of 1000 to 1500 ° C., cement minerals having high hydraulic properties tend to be generated. Moreover, the baking time in this process becomes like this. Preferably it is 30 to 120 minutes, More preferably, it is 40 to 60 minutes. If the time is less than 30 minutes, firing is not sufficient, and if it exceeds 120 minutes, it takes time and productivity is lowered.
また、本発明の製造方法において原料の一部に廃棄物を用いる場合、クリンカ中に重金属が混入するおそれがある。クリンカ中の重金属の含有量が規定値を超える場合は、クリンカ調製工程において塩化揮発法や還元焼成法を用い、重金属の含有量を規定値の範囲内に調整することができる。
ここで、塩化揮発法とは、調合原料中に含まれる重金属を沸点の低い塩化物の形で揮発させて除去する方法である。具体的には、該方法は、重金属を含む調合原料に塩化カルシウム等の塩素源を添加して、ロータリーキルン等の焼成炉を用いて焼成し、生成した重金属の塩化物を揮発させて除去する方法である。
また、還元焼成法とは、調合原料中に含まれる重金属を還元して、沸点の低い金属の形で揮発させて除去する方法である。具体的には、該方法は、重金属を含む調合原料を還元雰囲気下で、及び/又は、還元剤を添加して、ロータリーキルン等の焼成炉を用いて焼成して重金属を還元し、この還元した重金属を揮発させて除去する方法である。
In addition, when waste is used as part of the raw material in the production method of the present invention, heavy metals may be mixed in the clinker. When the content of heavy metal in the clinker exceeds a specified value, the content of heavy metal can be adjusted within the range of the specified value by using a chlorination volatilization method or a reduction firing method in the clinker preparation step.
Here, the chlorination volatilization method is a method in which heavy metals contained in the raw material for preparation are volatilized and removed in the form of chlorides having a low boiling point. Specifically, the method is a method in which a chlorine source such as calcium chloride is added to a raw material containing heavy metal, calcined using a calcining furnace such as a rotary kiln, and the generated heavy metal chloride is volatilized and removed. It is.
The reduction firing method is a method in which heavy metals contained in the raw material for preparation are reduced and volatilized and removed in the form of a metal having a low boiling point. Specifically, the method reduces the heavy metal by reducing the heavy metal by reducing the heavy metal containing raw material in a reducing atmosphere and / or adding a reducing agent and using a baking kiln such as a rotary kiln. This is a method of removing heavy metals by volatilization.
なお、前記C3S、C2S、C3A及びC4AFの含有率(組成)は、下記のボーグ式(1)〜(4)を用いて算出する。
C3S(%)=4.07×CaO(%)−7.60×SiO2(%)−6.72×Al2O3(%)−1.43×Fe2O3(%) ・・・(1)
C2S(%)=2.87×SiO2(%)−0.754×C3S(%) ・・・(2)
C3A(%)=2.65×Al2O3(%)−1.69×Fe2O3(%) ・・・(3)
C4AF(%)=3.04×Fe2O3(%) ・・・(4)
ただし、式中の化学式は、調合原料中又はクリンカ中における、化学式が表す化合物の含有率を表す。
In addition, the content rate (composition) of the C 3 S, C 2 S, C 3 A, and C 4 AF is calculated using the following Borg formulas (1) to (4).
C 3 S (%) = 4.07 × CaO (%) − 7.60 × SiO 2 (%) − 6.72 × Al 2 O 3 (%) − 1.43 × Fe 2 O 3 (%) (1)
C 2 S (%) = 2.87 × SiO 2 (%) − 0.754 × C 3 S (%) (2)
C 3 A (%) = 2.65 × Al 2 O 3 (%) − 1.69 × Fe 2 O 3 (%) (3)
C 4 AF (%) = 3.04 × Fe 2 O 3 (%) (4)
However, the chemical formula in the formula represents the content of the compound represented by the chemical formula in the preparation raw material or in the clinker.
(B)スラグ加熱処理工程
該工程は、前記クリンカ100質量部に対し、粒径1mm以上の石炭ガス化スラグを2〜100質量部の割合で、クーラー内の710〜1400℃の領域に投入してクリンカと混合させ、クリンカを冷却すると同時に前記スラグを加熱して、クリンカと、白色度が変化したスラグ加熱処理物との混合物を得る工程である。
該工程において、単にクーラーでクリンカを冷却するよりもクリンカの冷却が速いためクリンカの水硬性が向上する。一方、加熱処理により石炭ガス化スラグ中の鉄分は酸化されて白色度が低下し、ポルトランドセメント等の白色度と同等になる。
(B) Slag heat treatment step In this step, 2 to 100 parts by mass of coal gasification slag having a particle size of 1 mm or more is introduced into an area of 710 to 1400 ° C in the cooler with respect to 100 parts by mass of the clinker. Mixing the clinker and cooling the clinker and simultaneously heating the slag to obtain a mixture of the clinker and a slag heat-treated product having changed whiteness.
In this step, since the clinker is cooled faster than simply cooling the clinker with a cooler, the hydraulic property of the clinker is improved. On the other hand, the iron content in the coal gasification slag is oxidized by the heat treatment, and the whiteness is lowered, and becomes equal to the whiteness of Portland cement or the like.
また、石炭ガス化スラグの粒径は1mm以上である。該値が1mm未満では該スラグとクリンカとが反応し易くなり、クリンカの水硬性が低下するおそれがある。該値はセメント組成物の強度発現性等から、好ましくは1〜30mmである。
クーラー内の前記スラグを投入する領域の温度は710〜1400℃である。該値が710℃未満ではクリンカの水硬性やスラグの黒色化が低下する場合があり、1400℃を超えるとクリンカとスラグが反応し易くなり、クリンカの水硬性が低下するおそれがある。なお、該温度は好ましくは750〜1350℃、より好ましくは800〜1300℃である。
Moreover, the particle size of coal gasification slag is 1 mm or more. When the value is less than 1 mm, the slag and clinker are likely to react with each other, and the hydraulic property of the clinker may be reduced. The value is preferably 1 to 30 mm in view of strength development of the cement composition.
The temperature of the region where the slag is charged in the cooler is 710 to 1400 ° C. When the value is less than 710 ° C., the clinker hydraulic properties and the blackening of the slag may decrease. When the value exceeds 1400 ° C., the clinker and the slag easily react with each other, and the clinker hydraulic properties may decrease. In addition, this temperature becomes like this. Preferably it is 750-1350 degreeC, More preferably, it is 800-1300 degreeC.
また、石炭ガス化スラグの投入量(使用量)は前記クリンカ100質量部に対し2〜100質量部である。該値が2質量部未満ではスラグの使用量が少なくクリンカを急速に冷却することが困難なため、クリンカの水硬性の向上効果は低下する。また、該値が100質量部を超えるとセメント組成物の強度発現性が低下する傾向がある。なお、前記クリンカ100質量部に対し、該値の下限は好ましくは5質量部、より好ましくは10質量部であり、該値の上限は好ましくは90質量部、より好ましくは80質量部である。 Moreover, the input amount (usage amount) of coal gasification slag is 2-100 mass parts with respect to 100 mass parts of said clinker. If the value is less than 2 parts by mass, the amount of slag used is small and it is difficult to rapidly cool the clinker, so the hydraulic effect of the clinker is reduced. Moreover, when this value exceeds 100 mass parts, there exists a tendency for the intensity | strength expression property of a cement composition to fall. The lower limit of the value is preferably 5 parts by mass, more preferably 10 parts by mass with respect to 100 parts by mass of the clinker, and the upper limit of the value is preferably 90 parts by mass, more preferably 80 parts by mass.
本発明の製造方法において特筆すべき点は、後掲の表2の実施例1と実施例2に示すように、両実施例において石炭ガス化スラグの投入割合が20倍(実施例1で5質量部、実施例2で100質量部)の差があるにもかかわらず、両実施例のセメント組成物の白色度は同等であり、さらに、ポルトランドセメント等の白色度とも同等である点である。高炉水砕スラグや高炉徐冷スラグでは、表2の参考例5〜8に示すように加熱による白色度の変化は小さいかほとんどないことに照らすと、これらの点は石炭ガス化スラグを用いる本発明特有の効果である。したがって、本発明によれば、石炭ガス化スラグの投入割合を5〜100質量部の範囲で変えても、ポルトランドセメント等と同等の色調を有するセメント組成物を製造できる。これにより、該セメント組成物をポルトランドセメント等に大量に添加しても、セメントコンクリートの色調は変化しない。よって、所定の強度発現性が確保される範囲で、石炭ガス化スラグの大量投入や該スラグを含むセメント組成物の大量使用(併用)が可能になる。 In the production method of the present invention, the remarkable point is that, as shown in Example 1 and Example 2 in Table 2 below, the coal gasification slag charge ratio is 20 times in both Examples (5 in Example 1). Despite the difference of 100 parts by mass in Example 2), the whiteness of the cement compositions of both Examples is the same, and the whiteness of Portland cement and the like is also equivalent. . In the case of blast furnace granulated slag and blast furnace slow-cooled slag, as shown in Reference Examples 5 to 8 in Table 2, in light of the fact that there is little or no change in whiteness due to heating, these points are those using coal gasification slag. This is an effect unique to the invention. Therefore, according to this invention, even if it changes the injection | throwing-in ratio of coal gasification slag in the range of 5-100 mass parts, the cement composition which has a color tone equivalent to Portland cement etc. can be manufactured. Thereby, even if this cement composition is added in large quantities to Portland cement or the like, the color tone of cement concrete does not change. Therefore, a large amount of coal gasification slag can be input and a large amount of cement composition containing the slag can be used (combined) as long as a predetermined strength development is ensured.
(C)混合粉砕工程
該工程は、クーラーを通過した後のクリンカとスラグ加熱処理物の混合物に、石膏を添加して粉砕しセメント組成物を得る工程である。該混合物と石膏との混合粉砕は、1回の粉砕で済むため生産効率が高い。
ただし、前記混合物と石膏の被粉砕性が大きく異なる場合は、粒度分布の過度の拡大を抑制するため、前記混合物と石膏とを別々に粉砕した後に両者を混合してもよい。この場合、石膏のブレーン比表面積は、好ましくは2000〜5000cm2/g、より好ましくは3000〜4000cm2/gである。該値が2000〜5000cm2/gの範囲を外れると、強度発現性が低下したり水和熱が高くなるおそれがある。
(C) Mixing and crushing step This step is a step of adding a gypsum to the mixture of the clinker and slag heat-treated product after passing through the cooler and crushing to obtain a cement composition. Since the mixture and gypsum of the mixture and gypsum need only be pulverized once, the production efficiency is high.
However, when the pulverization properties of the mixture and gypsum are greatly different, the mixture and gypsum may be separately pulverized and then mixed in order to suppress excessive expansion of the particle size distribution. In this case, the brane specific surface area of gypsum is preferably 2000 to 5000 cm 2 / g, more preferably 3000 to 4000 cm 2 / g. When the value is out of the range of 2000 to 5000 cm 2 / g, there is a possibility that strength development property is lowered or heat of hydration is increased.
石膏の添加量は、クリンカとスラグ加熱処理物との混合物100質量部に対しSO3換算で、好ましくは0.5〜4.0質量部、より好ましくは1.0〜3.5質量部、さらに好ましくは1.4〜3.0質量部である。該値が0.5〜4.0質量部の範囲であれば、セメント組成物の強度発現性が高く流動性も良好である。
また、石膏の種類は特に限定されず、例えば、二水石膏、排煙脱硫石膏、リン酸石膏、チタン石膏、フッ酸石膏、精錬石膏、半水石膏、及び無水石膏等から選ばれる少なくとも1種以上が挙げられる。
The amount of gypsum added is preferably 0.5 to 4.0 parts by mass, more preferably 1.0 to 3.5 parts by mass in terms of SO 3 with respect to 100 parts by mass of the mixture of the clinker and the slag heat-treated product, More preferably, it is 1.4-3.0 mass parts. When the value is in the range of 0.5 to 4.0 parts by mass, the cement composition has high strength and good fluidity.
The type of gypsum is not particularly limited, and for example, at least one selected from dihydrate gypsum, flue gas desulfurization gypsum, phosphate gypsum, titanium gypsum, hydrofluoric gypsum, refined gypsum, hemihydrate gypsum, anhydrous gypsum, and the like. The above is mentioned.
前記粉砕において、クリンカとスラグ加熱処理物との混合物はそのまま粉砕してもよいが、好ましくは粉砕効率を高めるために粉砕助剤を添加して粉砕する。該助剤として、ジエチレングリコール、トリエタノールアミン、及びトリイソプロパノールアミン等から選ばれる1種以上が挙げられる。これらの粉砕助剤の添加割合は、前記混合物100質量部に対し0.01〜1質量部が好ましい。なお、粉砕機はボールミルやロッドミル等を用いることができる。 In the pulverization, the mixture of the clinker and the slag heat-treated product may be pulverized as it is. Examples of the auxiliary agent include one or more selected from diethylene glycol, triethanolamine, triisopropanolamine, and the like. The addition ratio of these grinding aids is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the mixture. As the pulverizer, a ball mill, a rod mill, or the like can be used.
本発明により製造されるセメント組成物の粉末度は、強度発現性、作業性、及び製造コストなどの点から、ブレーン比表面積で、好ましくは2000〜5000cm2/g、より好ましくは2500〜4700cm2/g、さらに好ましくは3000〜4000cm2/gである。
また、該セメント組成物は、さらにフライアッシュ、石炭灰、シリカフューム、シリカ粉末、石灰石粉末等を、セメント組成物の物性が損なわれない範囲で含んでもよい。
Fineness of the cement compositions produced according to the present invention, strength development, workability, and in view of manufacturing cost, Blaine specific surface area, preferably 2000~5000cm 2 / g, more preferably 2500~4700Cm 2 / G, more preferably 3000 to 4000 cm 2 / g.
The cement composition may further contain fly ash, coal ash, silica fume, silica powder, limestone powder, and the like as long as the physical properties of the cement composition are not impaired.
(D)原料調合工程
さらに、本発明の製造方法は、任意の工程として、前記(A)工程の前に原料を調合するための原料調合工程を含むことができる。
該工程では、カルシウム原料、ケイ素原料、アルミニウム原料、及び鉄原料等の原料を、前記(1)〜(4)式のボーグ式を用いて、前記セメント鉱物組成の範囲に含まれるように調合して調合原料を調製する。ここで、カルシウム原料として石灰石、生石灰、及び消石灰等が、ケイ素原料として珪石や粘土等が、アルミニウム原料として粘土等が、鉄原料として鉄滓や鉄ケーキ等が挙げられる。
(D) Raw material preparation process Furthermore, the manufacturing method of this invention can include the raw material preparation process for preparing a raw material before the said (A) process as arbitrary processes.
In this step, raw materials such as calcium raw material, silicon raw material, aluminum raw material, and iron raw material are prepared so as to be included in the range of the cement mineral composition by using the Borg formulas of the formulas (1) to (4). Prepare the ingredients. Here, limestone, quicklime, slaked lime, and the like are used as the calcium material, silica and clay are used as the silicon material, clay is used as the aluminum material, and iron cake and iron cake are used as the iron material.
なお、焼成前の調合原料の化学組成は、焼成後のクリンカの化学組成とほぼ同一となる場合が多いため、前記セメント鉱物組成を有するクリンカを得るには、通常、ボーグ式に基づき計算して該鉱物組成を満たす原料を調合すれば足りる。ただし、正確を期すために、該原料の一部を電気炉等で焼成して、該原料中と焼成して得たクリンカ中の鉱物組成の相関を事前に把握しておき、該相関に基づき原料の混合割合を、目的とするクリンカ中の鉱物組成になるように修正することが好ましい。 In addition, since the chemical composition of the prepared raw material before firing is often almost the same as the chemical composition of the clinker after firing, in order to obtain a clinker having the cement mineral composition, it is usually calculated based on the Borg equation. It is sufficient to prepare raw materials that satisfy the mineral composition. However, for the sake of accuracy, a part of the raw material is fired in an electric furnace or the like, and the correlation between the raw material and the mineral composition in the clinker obtained by firing is grasped in advance. It is preferable to correct the mixing ratio of the raw materials so that the target mineral composition in the clinker is obtained.
前記原料として、天然原料のほか、産業廃棄物、一般廃棄物及び/又は建設発生土等の廃棄物を原料の一部に用いることができる。
該産業廃棄物として、例えば、石炭灰、生コンクリートスラッジ、建設汚泥、製鉄汚泥等の各種汚泥、ボーリング廃土、各種焼却灰、鋳物砂、ロックウール、高炉二次灰、建設廃材、及びコンクリート廃材等が挙げられる。
また、前記一般廃棄物として、例えば、浄水汚泥、下水汚泥、下水汚泥乾粉、都市ごみ焼却灰、貝殻、及び下水汚泥焼却灰等が挙げられる。
また、前記建設発生土として、建設現場や工事現場等から発生する土壌や残土等が挙げられる。
なお、調合原料の粉末度を調整する必要がある場合は、ボールミル等の原料粉砕機で所定の粉末度になるまで粉砕して調整する。
As the raw material, in addition to natural raw materials, industrial waste, general waste, and / or waste such as construction generated soil can be used as part of the raw material.
Examples of the industrial waste include various types of sludge such as coal ash, ready-mixed concrete sludge, construction sludge, steel sludge, boring waste soil, various incineration ash, foundry sand, rock wool, blast furnace secondary ash, construction waste, and concrete waste Etc.
Examples of the general waste include purified water sludge, sewage sludge, sewage sludge dry powder, municipal waste incineration ash, shells, and sewage sludge incineration ash.
Examples of the soil generated from construction include soil generated from construction sites and construction sites, residual soil, and the like.
In addition, when it is necessary to adjust the fineness of a preparation raw material, it grind | pulverizes and adjusts to a predetermined fineness with raw material grinders, such as a ball mill.
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.セメント組成物の製造
ロータリーキルン1を用いて、1200〜1500℃の範囲で普通ポルトランドセメントクリンカ(C3Sを56%、C2Sを20%、C3Aを10%、及びC4AFを10%含む。)を焼成し、該クリンカをロータリーキルン1からクーラー3に落下させた。次に、クーラー3内の1100℃の領域に、表1に示すキャラクターを有し粒径が1〜10mmの範囲にある石炭ガス化スラグ(実施例1、2及び比較例4)及び高炉水砕スラグ(比較例1)を、表2に示す投入割合で圧縮空気を用いて前記クリンカに吹きつけて投入した。
なお、表1に記載のig.lossがマイナスなのは、スラグ中の鉄分が酸化されて質量が増えたためと推定される。
また、クーラー温度の効果を確認するため、前記吹きつけはクーラー3内の600℃の領域においても行った(比較例3)。
クリンカとスラグはクーラー3内を移動しつつ混合し、クーラー3の出口において冷却したクリンカ及びスラグ加熱処理物との混合物を得た。
また、石炭ガス化スラグによるクリンカの冷却効果(水硬性向上効果)を確認するため、該スラグをクーラーに投入することなく非加熱のままで前記クリンカと混合して、比較例2の混合物を調製した。
次に、前記の各種混合物100質量部に対し、二水石膏をSO3換算で1.4質量部添加した後、小型ボールミルで粉砕して実施例1、2及び比較例1〜4のセメント組成物を製造した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Production of cement composition Using a rotary kiln 1, ordinary Portland cement clinker (C 3 S 56%, C 2 S 20%, C 3 A 10%, and C 4 AF 10 in the range of 1200-1500 ° C. The clinker was dropped from the rotary kiln 1 to the cooler 3. Next, coal gasification slag (Examples 1 and 2 and Comparative Example 4) having a character shown in Table 1 and having a particle size in the range of 1 to 10 mm in an area of 1100 ° C. in the cooler 3 and blast furnace water granulation Slag (Comparative Example 1) was blown into the clinker using compressed air at the charging rate shown in Table 2 and charged.
In addition, ig. It is estimated that the loss is negative because the iron content in the slag was oxidized and the mass increased.
Moreover, in order to confirm the effect of cooler temperature, the said spraying was performed also in the 600 degreeC area | region in the cooler 3 (comparative example 3).
The clinker and the slag were mixed while moving in the cooler 3 to obtain a mixture of the clinker and the slag heat-treated product cooled at the outlet of the cooler 3.
Moreover, in order to confirm the cooling effect (hydraulic improvement effect) of the clinker by the coal gasification slag, the slag is mixed with the clinker without being heated without being put into a cooler to prepare a mixture of Comparative Example 2. did.
Next, after adding 1.4 parts by mass of dihydrate gypsum in terms of SO 3 to 100 parts by mass of the various mixtures, the cement compositions of Examples 1 and 2 and Comparative Examples 1 to 4 were pulverized with a small ball mill. The thing was manufactured.
2.セメント組成物の白色度及びモルタルの圧縮強さの測定方法
前記セメント組成物の白色度は、JIS Z 8722「色の測定方法−反射及び透過物体色」に準拠して、分光色差計(型番:SE−6000、日本電色工業社製)を用いて測定した。また、参考のため、普通ポルトランドセメント、該セメント100質量部に対し石炭ガス化スラグを67質量部混合したセメント組成物、及び石炭ガス化スラグ等の白色度も測定した。
また、前記セメント組成物を用いたモルタルの圧縮強さは、JIS R 5201「セメントの物理試験方法」に準拠して測定した。
以上の結果を表2に示す。
2. Method for Measuring Whiteness of Cement Composition and Compressive Strength of Mortar The whiteness of the cement composition is determined according to JIS Z 8722 “Color Measurement Method—Reflection and Transmission Object Color”. SE-6000, manufactured by Nippon Denshoku Industries Co., Ltd.). For reference, the whiteness of ordinary Portland cement, a cement composition in which 67 parts by mass of coal gasification slag was mixed with 100 parts by mass of the cement, and coal gasification slag was also measured.
The compressive strength of the mortar using the cement composition was measured in accordance with JIS R 5201 “Physical test method for cement”.
The results are shown in Table 2.
3.セメント組成物の白色度について
表2に示すように、白色度は、石炭ガス化スラグの投入割合が5質量部の実施例1、及び該投入割合が100質量部の実施例2で、それぞれ50.7及び50.4であり、参考例1の普通ポルトランドセメントで50.3である。したがって、石炭ガス化スラグの投入割合が20倍も相違するにもかかわらず実施例1と実施例2の白色度は同等であり、普通ポルトランドセメントの白色度とも同等である。
また、本発明の製造方法に係るセメント組成物の白色度は、長期にわたり変化しなかった。これは、スラグ加熱処理工程において石炭ガス化スラグ中の鉄分の酸化等が十分に進行したためと推定する。
一方、石炭ガス化スラグを加熱しないで単に混合しただけの比較例2のセメント組成物の白色度、及びクーラー温度が600℃の領域に石炭ガス化スラグを投入して得た比較例3のセメント組成物の白色度は、それぞれ60.2及び57.5であり、普通ポルトランドセメントの白色度(50.3)と大きく異なる。
3. Regarding the whiteness of the cement composition As shown in Table 2, the whiteness was 50% in Example 1 in which the charging rate of coal gasification slag was 5 parts by mass, and in Example 2 in which the charging rate was 100 parts by mass. 0.7 and 50.4, and 50.3 for the ordinary Portland cement of Reference Example 1. Therefore, the whiteness of Example 1 and Example 2 is equivalent even if the charging ratio of coal gasification slag is 20 times different, and the whiteness of ordinary Portland cement is also equivalent.
Moreover, the whiteness of the cement composition according to the production method of the present invention did not change over a long period of time. This is presumed that the oxidation of iron in the coal gasification slag has sufficiently progressed in the slag heat treatment step.
On the other hand, the cement of Comparative Example 3 obtained by introducing the coal gasified slag into a region where the whiteness of the cement composition of Comparative Example 2 was simply mixed without heating the coal gasified slag and the cooler temperature was 600 ° C. The whiteness of the composition is 60.2 and 57.5, respectively, which is very different from the whiteness (50.3) of normal Portland cement.
4.モルタルの圧縮強さについて
表2に示すように、高炉水砕スラグを含む比較例1に対する実施例1のモルタルの圧縮強さ比は、すべての材齢において約100%で同等である。また、石炭ガス化スラグを加熱処理せずに単に混合しただけの比較例2に対する実施例2のモルタルの圧縮強さ比は、5〜7%程度高い。よって、本発明の製造方法に係るセメント組成物は、潜在水硬性が劣る石炭ガス化スラグを含むにもかかわらずクリンカの水硬性が向上した結果、潜在水硬性が勝る高炉水砕スラグを含むセメント組成物と同等の強度発現性を有している。
ただし、石炭ガス化スラグの投入割合が150質量部と多い比較例4のモルタルの圧縮強さは、実施例2と比べ20%程度低い。
4). About the compressive strength of mortar As shown in Table 2, the compressive strength ratio of the mortar of Example 1 with respect to Comparative Example 1 containing blast furnace granulated slag is equivalent at about 100% in all ages. Moreover, the compressive strength ratio of the mortar of Example 2 with respect to the comparative example 2 which only mixed coal gasification slag without heat processing is about 5 to 7% high. Therefore, the cement composition according to the production method of the present invention is a cement containing a granulated blast furnace slag that is superior in latent hydraulic properties as a result of improved hydraulic properties of the clinker despite including coal gasified slag having poor latent hydraulic properties. It has the same strength development as the composition.
However, the compressive strength of the mortar of Comparative Example 4 having a large proportion of coal gasification slag as high as 150 parts by mass is about 20% lower than that of Example 2.
5.その他
本発明の製造方法は、クーラー内の余熱を有効に利用して石炭ガス化スラグの白色度をポルトランドセメント等の白色度と同等にすることができるため、新たな加熱設備の設置が不要でエネルギー消費が少ない。
5). Others The production method of the present invention can effectively utilize the residual heat in the cooler to make the whiteness of coal gasification slag equivalent to the whiteness of Portland cement, etc. Low energy consumption.
よって、本発明の製造方法によれば、石炭ガス化スラグを大量に使用でき、また、少ないエネルギー消費でセメント組成物を製造できる。また、本発明の製造方法に係るセメント組成物は、強度発現性に優れ、色調がポルトランドセメント等と同等で色調の経時変化が少ない。 Therefore, according to the production method of the present invention, a large amount of coal gasification slag can be used, and a cement composition can be produced with less energy consumption. Moreover, the cement composition according to the production method of the present invention is excellent in strength development, has a color tone equivalent to Portland cement and the like, and has little change in color tone with time.
1 ロータリーキルン
2 プレヒーター
3 クリンカクーラー
4 窯前
5 メインバーナー
6 セメントクリンカ
1 Rotary kiln 2 Preheater 3 Clinker cooler 4 In front of
Claims (2)
(A)ボーグ式を用いて算出したセメント鉱物組成が、C3Sで20〜80%、C2Sで3〜60%、C3Aで1〜16%、及びC4AFで6〜16%であるセメントクリンカを焼成して調製する、クリンカ調製工程
(B)前記クリンカ100質量部に対し、粒径が1mm以上の石炭ガス化溶融スラグ(ただし、造粒品を除く。)を2〜100質量部の割合で、クーラー内の710〜1100℃の領域に投入してクリンカと混合させ、クリンカを冷却すると同時に前記スラグを加熱して、クリンカとスラグ加熱処理物との混合物を得る、スラグ加熱処理工程
(C)前記混合物に石膏を添加して粉砕する、混合粉砕工程 The manufacturing method of the cement composition including the following (A)-(C) processes.
Cement mineral composition calculated using (A) Borg formula, 20-80% by C 3 S, 3 to 60% for C 2 S, 1 to 16% in the C 3 A, and at C 4 AF 6 to 16 The clinker preparation step (B) prepared by firing cement clinker that is 1%, the coal gasification molten slag having a particle size of 1 mm or more (excluding the granulated product) is 2 to 100 parts by mass of the clinker . In a ratio of 100 parts by mass, the mixture is introduced into the region of 710 to 1100 ° C. in the cooler and mixed with the clinker, the clinker is cooled, and at the same time, the slag is heated to obtain a mixture of the clinker and the slag heat-treated product. Heat treatment step (C) Mixing and grinding step of adding gypsum to the mixture and crushing
The cement composition according to claim 1, wherein the amount of gypsum added in the step (C) is 0.5 to 4.0 parts by mass in terms of SO 3 with respect to 100 parts by mass of the mixture of the clinker and the slag heat-treated product. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205724A JP5984599B2 (en) | 2012-09-19 | 2012-09-19 | Method for producing cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205724A JP5984599B2 (en) | 2012-09-19 | 2012-09-19 | Method for producing cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014058431A JP2014058431A (en) | 2014-04-03 |
JP5984599B2 true JP5984599B2 (en) | 2016-09-06 |
Family
ID=50615276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012205724A Active JP5984599B2 (en) | 2012-09-19 | 2012-09-19 | Method for producing cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5984599B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6356057B2 (en) * | 2014-12-15 | 2018-07-11 | 株式会社トクヤマ | Hydraulic composition containing bottom ash |
KR101904172B1 (en) | 2017-05-24 | 2018-11-28 | 민성기 | High Early Cement Composition for Road Pavement and Pavement Method Using Thereof |
CN108191270B (en) * | 2018-03-09 | 2020-06-23 | 湖南科技大学 | Method for preparing low clinker cement by using suspension roasting coal gasification slag |
JP7241535B2 (en) * | 2018-12-28 | 2023-03-17 | 太平洋セメント株式会社 | Cement composition and manufacturing method thereof |
JP7529426B2 (en) | 2020-03-31 | 2024-08-06 | Ube三菱セメント株式会社 | Cement composition, its manufacturing method, and durability improving admixture |
CN113526882B (en) * | 2020-04-13 | 2023-10-03 | 内蒙古亿利冀东水泥有限责任公司 | Portland cement clinker and preparation method thereof |
CN113213858B (en) * | 2021-05-14 | 2022-08-23 | 中国科学院生态环境研究中心 | Method for preparing aluminate-based 3D printing material by gasifying slag |
CN114477907B (en) * | 2022-02-18 | 2023-04-25 | 涉县清漳水泥制造有限公司 | Premixed pumping concrete prepared from coal-to-liquid slag and preparation method thereof |
CN114656173A (en) * | 2022-03-03 | 2022-06-24 | 冀东水泥(烟台)有限责任公司 | Method for producing cement clinker by using gasified slag |
CN116903274B (en) * | 2023-08-02 | 2024-09-13 | 宁夏交通建设股份有限公司 | High-doping-amount coal gasification furnace slag-based green low-carbon gelling material and preparation method thereof |
CN117447103B (en) * | 2023-10-25 | 2024-05-10 | 南京工业大学 | Resource utilization method for coal slag of power plant |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61251551A (en) * | 1985-04-30 | 1986-11-08 | 宇部興産株式会社 | Inorganic foam and manufacture |
US5976243A (en) * | 1998-09-24 | 1999-11-02 | Lafarge Canada Inc. | Process for producing cement clinker containing blast furnace slag |
US6391105B1 (en) * | 2001-02-16 | 2002-05-21 | Lafarge Canada Inc. | Enhancement of cement clinker yield |
JP2004299955A (en) * | 2003-03-31 | 2004-10-28 | Ube Ind Ltd | Method of producing cement utilizing waste |
JP5099758B2 (en) * | 2007-10-09 | 2012-12-19 | 一般財団法人電力中央研究所 | Needle-like slag removal device |
-
2012
- 2012-09-19 JP JP2012205724A patent/JP5984599B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014058431A (en) | 2014-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5984599B2 (en) | Method for producing cement composition | |
CN102690068B (en) | The manufacture method of clinker | |
JP2011132111A (en) | Hydraulic composition | |
JP2013023422A (en) | Method of manufacturing burned product | |
JP5932478B2 (en) | Cement composition and method for producing the same | |
JP6333690B2 (en) | Cement clinker, manufacturing method thereof, and solidified material | |
JP2014189439A (en) | Method for manufacturing cement clinker | |
JP2013224227A (en) | Method for producing cement composition | |
JP2010064905A (en) | Cement clinker and solidifying material using the same | |
JP2013107780A (en) | Cement clinker and cement composition | |
JP2014224033A (en) | Fluidity improvement type cement clinker | |
JP2013184834A (en) | Fly ash-mixing cement | |
JP5818623B2 (en) | Low hydration heat cement clinker and low hydration heat cement composition | |
JP2019119641A (en) | Method for producing portland cement | |
JP5794696B2 (en) | Manufacturing method of ordinary Portland cement clinker | |
JP5980044B2 (en) | Method for producing cement composition | |
JP6217305B2 (en) | Low hydration thermal cement composition and method for producing the same | |
JP6440537B2 (en) | Solidified material and method for producing the same | |
JP2016064940A (en) | Manufacturing method of cement clinker | |
JP6683025B2 (en) | Cement composition and method for producing the same | |
JP6472280B2 (en) | Solidified material and method for producing the same | |
JP2013087036A (en) | Low hydration heat cement clinker and low hydration heat cement composition | |
JP5850708B2 (en) | Portland cement | |
JP2014076919A (en) | Method of manufacturing portland cement clinker | |
JP5474604B2 (en) | Hydraulic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5984599 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |