[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5978045B2 - Decompression system - Google Patents

Decompression system Download PDF

Info

Publication number
JP5978045B2
JP5978045B2 JP2012165512A JP2012165512A JP5978045B2 JP 5978045 B2 JP5978045 B2 JP 5978045B2 JP 2012165512 A JP2012165512 A JP 2012165512A JP 2012165512 A JP2012165512 A JP 2012165512A JP 5978045 B2 JP5978045 B2 JP 5978045B2
Authority
JP
Japan
Prior art keywords
cooling
electric motor
temperature
decompression
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012165512A
Other languages
Japanese (ja)
Other versions
JP2014025625A (en
Inventor
藤井 佳詞
佳詞 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012165512A priority Critical patent/JP5978045B2/en
Publication of JP2014025625A publication Critical patent/JP2014025625A/en
Application granted granted Critical
Publication of JP5978045B2 publication Critical patent/JP5978045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、第1の電動機により駆動部を作動させ、第1の電動機の回転数に対応して冷却部を所定温度に冷却してこの冷却部にて冷媒を膨張させて気体を捕捉する複数の減圧手段と、第2の電動機により圧縮部を作動させてこの圧縮部で圧縮した冷媒を第2の電動機の回転速度に応じた流量で各減圧手段に夫々供給する単一の圧縮手段と、各減圧手段の冷却部の温度を夫々測定する測定手段とを備える減圧システムに関する。   In the present invention, a drive unit is operated by a first electric motor, a cooling unit is cooled to a predetermined temperature corresponding to the number of rotations of the first electric motor, and a refrigerant is expanded in the cooling unit to capture a gas. And a single compression unit that operates the compression unit with a second electric motor and supplies the refrigerant compressed by the compression unit to each decompression unit at a flow rate corresponding to the rotation speed of the second motor, The present invention relates to a decompression system comprising measuring means for measuring the temperature of the cooling part of each decompression means.

高真空領域の圧力まで真空排気する真空ポンプの一つにクライオポンプユニットがあり、このようなクライオポンプユニットは例えば特許文献1で知られている。図5(a)及び(b)を参照して、クライオポンプユニットは、真空チャンバ等の減圧対象物WにゲートバルブGVを介して装着される筒型のポンプケース1に内蔵される機械式冷凍機Cp(減圧手段)と、減圧対象物W外に設けられて機械式冷凍機Cpのヘリウム出入口21i,21oを介して冷媒としてのヘリウムガスを循環する、図示省略の第2に電動機を有する圧縮機Cm(圧縮手段)とで構成されている。機械式冷凍機Cpは、冷却部としてのコールドヘッド1段22とコールドヘッド2段23とを備え、コールドヘッド1段22にはポンプケース1の内側に沿った筒型のシールド22aが取り付けられると共に、コールドヘッド2段23にはクライオパネル23aが取り付けられ、シールド22aの開口部にはコールドヘッド1段22と同温度に冷却されるバッフル22bが設けられている。   There is a cryopump unit as one of vacuum pumps that evacuate to a pressure in a high vacuum region, and such a cryopump unit is known from, for example, Patent Document 1. 5 (a) and 5 (b), the cryopump unit is a mechanical refrigeration built in a cylindrical pump case 1 that is mounted on a pressure reduction target W such as a vacuum chamber via a gate valve GV. A compressor Cp (pressure reduction means) and a second motor (not shown) that is provided outside the object to be reduced pressure W and circulates helium gas as a refrigerant through the helium inlets / outlets 21i and 21o of the mechanical refrigerator Cp. Machine Cm (compression means). The mechanical refrigerator Cp includes a cold head first stage 22 and a cold head second stage 23 as a cooling unit, and a cylindrical shield 22a along the inner side of the pump case 1 is attached to the cold head first stage 22. A cryopanel 23a is attached to the second stage 23 of the cold head, and a baffle 22b that is cooled to the same temperature as the first stage 22 of the cold head is provided at the opening of the shield 22a.

コールドヘッド1段22及びコールドヘッド2段23の内部には、図5(b)に示す如く、1段蓄冷器24と1段膨張室25、及び、2段蓄冷器26と2段膨張室27を備える、駆動部としてのディスプレーサー28がモータ等の第1の電動機3により往復動自在に設けられる。そして、高圧バルブ41を開いて圧縮されたヘリウムガスを圧縮機Cmからディスプレーサー28へ送り込んだ後、各膨張室25,27を膨張させるように移動させると、各蓄冷器24,26で冷却されながら高圧ガスが各膨張室25,27に流入する。次に、高圧バルブ41を閉じて低圧バルブ42を開き、各膨張室25,27を縮小するようにディスプレーサー28を移動させると、膨張室25,27のヘリウムガスは膨張で蓄冷器24,26を冷却しながら圧縮機Cmへと戻る。これにより、減圧対象物W内に存在するガス分子のうち、凝縮温度の高いH2Oなどは80Kのバッフル22bやシールド22aに凝縮し、凝縮温度の低いAr、N2などは12〜13Kのクライオパネル23aに凝縮して排気される。 Inside the cold head first stage 22 and the cold head second stage 23, as shown in FIG. 5B, a first stage regenerator 24 and a first stage expansion chamber 25, and a second stage regenerator 26 and a second stage expansion chamber 27 are provided. A displacer 28 as a drive unit is provided so as to be reciprocally movable by a first electric motor 3 such as a motor. Then, after opening the high-pressure valve 41 and sending the compressed helium gas from the compressor Cm to the displacer 28, when the expansion chambers 25 and 27 are moved so as to expand, they are cooled by the regenerators 24 and 26. However, the high pressure gas flows into the expansion chambers 25 and 27. Next, when the high pressure valve 41 is closed and the low pressure valve 42 is opened and the displacer 28 is moved so as to reduce the expansion chambers 25 and 27, the helium gas in the expansion chambers 25 and 27 expands and the regenerators 24 and 26 are expanded. Return to the compressor Cm while cooling. Thereby, among the gas molecules present in the object to be decompressed W, H 2 O having a high condensation temperature is condensed on the baffle 22b and the shield 22a of 80K, and Ar and N 2 having a low condensation temperature are 12 to 13K. It is condensed and exhausted to the cryopanel 23a.

コールドヘッド1段22及びコールドヘッド2段23には温度センサTCが夫々設けられ、温度センサTCの検出温度に応じて第1及び第2の両電動機の作動が制御される。そして、例えばクラスターツールのような真空処理装置では、処理や搬送に利用される真空処理室や真空搬送室の数だけ減圧手段が必要となることから、真空処理装置の省スペース化等のため、真空処理室や真空搬送室に装着された複数台の機械式冷凍機に対して単一の圧縮機によりヘリウムガスを供給する減圧システムとして構築することが一般である。   A temperature sensor TC is provided in each of the cold head first stage 22 and the cold head second stage 23, and the operations of both the first and second electric motors are controlled in accordance with the temperature detected by the temperature sensor TC. And, for example, in a vacuum processing apparatus such as a cluster tool, as many decompression means as the number of vacuum processing chambers and vacuum transfer chambers used for processing and transport are required, so that the space for the vacuum processing apparatus is reduced. It is common to construct a decompression system that supplies helium gas to a plurality of mechanical refrigerators mounted in a vacuum processing chamber or a vacuum transfer chamber by a single compressor.

ところで、近年では、上述の真空処理装置に対しても省エネルギ化が強く求められ、この省エネルギ化には減圧システム自体の省エネルギ化が不可欠となる。然し、上記従来例の減圧システムでは、単一の圧縮手段により同等の流量で各減圧手段に冷媒を供給すると共に、各減圧手段の駆動部を一律に連続作動させていたため、減圧システム自体の省エネルギ化を図るのに妨げとなっていた。つまり、減圧手段が装着されている真空処理室毎に、内部で行われる処理(加熱処理、プラズマ処理や冷却処理)や内部環境(減圧手段への入熱等)に応じて、求められる排気性能(冷却部の冷却性能を含む)が異なるにもかかわらず、一律に冷媒を供給する等のため、減圧手段によっては必要以上の冷媒が供給されたり、または、冷媒供給が不足し、全ての減圧手段が求められる排気性能を発揮させるための運転時間が長くなり、その結果、消費電力が多くなって省エネルギ化を図るのに妨げとなっていた。   By the way, in recent years, energy saving is strongly demanded for the above-described vacuum processing apparatus, and energy saving of the decompression system itself is indispensable for this energy saving. However, in the above-described conventional decompression system, the refrigerant is supplied to each decompression unit at an equal flow rate by a single compression unit and the drive unit of each decompression unit is continuously operated uniformly. It was a hindrance to energy. In other words, for each vacuum processing chamber in which the decompression means is installed, the exhaust performance required depending on the internal processing (heat treatment, plasma treatment, cooling treatment) and the internal environment (heat input to the decompression means, etc.) Regardless of the difference (including the cooling performance of the cooling unit), the refrigerant is supplied uniformly, etc., so that depending on the decompression means, more refrigerant than necessary is supplied, or the refrigerant supply is insufficient, and all decompression As a result, the operation time required to exhibit the exhaust performance required by the means becomes longer, resulting in an increase in power consumption, which hinders energy saving.

特開2002−298966号公報JP 2002-298966 A

本発明は、以上の点に鑑み、消費電力を削減して省エネルギ化を図ることができる減圧システムを提供することをその課題とするものである。   In view of the above points, an object of the present invention is to provide a decompression system capable of reducing power consumption and saving energy.

上記課題を解決するために、第1の電動機により駆動部を作動させ、第1の電動機の回転数に対応して冷却部を所定温度に冷却してこの冷却部にて冷媒を膨張させて気体を捕捉する複数の減圧手段と、第2の電動機により圧縮部を作動させてこの圧縮部で圧縮した冷媒を第2の電動機の回転速度に応じた流量で各減圧手段に夫々供給する単一の圧縮手段と、各減圧手段の冷却部の温度を夫々測定する測定手段とを備える本発明の減圧システムは、第1の閾値と、この第1の閾値より低い第2の閾値との間に冷却部の温度が保持されるように第1及び第2の両電動機の作動を夫々制御する制御手段を備え、制御手段は、第1及び第2の両電動機を作動させて各減圧手段の冷却部の温度が第1の閾値から第2の閾値に達するまでの間で、各減圧手段の冷却部のうち最も降温速度が遅い一の減圧手段を選択し、残りの減圧手段の第1の電動機の回転数を夫々下げ、各減圧手段の冷却部が第2の閾値に夫々達すると、全ての減圧手段の第1の電動機を夫々作動停止させることを特徴とする。   In order to solve the above-described problem, the drive unit is operated by the first electric motor, the cooling unit is cooled to a predetermined temperature corresponding to the rotation speed of the first electric motor, and the refrigerant is expanded in the cooling unit to generate gas. A plurality of decompression means for capturing the refrigerant, and a single motor that operates the compression section by the second motor and supplies the refrigerant compressed by the compression section to each decompression means at a flow rate corresponding to the rotational speed of the second motor. The decompression system of the present invention comprising the compression means and the measurement means for measuring the temperature of the cooling unit of each decompression means cools between the first threshold and the second threshold lower than the first threshold. Control means for controlling the operation of both the first and second electric motors so that the temperature of each part is maintained, and the control means operates both the first and second electric motors to cool the cooling parts of the respective decompression means. Between the first threshold value and the second threshold value, One of the cooling units having the slowest cooling rate is selected, and the number of rotations of the first electric motors of the remaining decompression units is decreased, and when the cooling unit of each decompression unit reaches the second threshold value, The first electric motors of all the decompression means are stopped.

本発明によれば、減圧手段のいずれかが第1の閾値より高い温度になってその冷却部の冷却が必要になると、圧縮手段の第2の電動機が作動して各減圧手段の冷却部への冷媒供給が再開されると共に、各減圧手段の第1の電動機が夫々作動する。ここで、減圧手段が夫々装着されている真空処理室毎に、内部で行われる処理や内部環境により各減圧手段の冷却部の降温速度が異なる。そこで、各減圧手段の冷却部のうち最も降温速度が遅い一の減圧手段を選択し、残りの減圧手段の第1の電動機の回転数を夫々下げることで、降温速度が最も遅いものには、優先的に冷媒を供給し、比較的降温速度が速いものに供給される冷媒の供給量が少なくなることで、各減圧手段の冷却部での降温速度が平均化される。このとき、第1の電動機の回転数を下げる分だけ、消費電力が削減され、しかも、降温速度が最も遅いものを早期に第2の閾値まで降温できるため、全体の運転時間も短くなり、その分だけ更に消費電力が削減される。なお、本発明において、「電動機の回転数を下げる」には、回転数がゼロとなる電動機の作動停止を含む。   According to the present invention, when any one of the decompression means reaches a temperature higher than the first threshold value and the cooling unit needs to be cooled, the second electric motor of the compression unit is activated to the cooling unit of each decompression unit. The refrigerant supply is restarted, and the first electric motors of the decompression units are operated. Here, for each vacuum processing chamber in which the decompression means is mounted, the cooling rate of the cooling part of each decompression means varies depending on the processing performed internally and the internal environment. Therefore, by selecting the one decompression means having the slowest temperature decrease rate among the cooling parts of each decompression means, and lowering the number of rotations of the first electric motor of the remaining decompression means, respectively, Refrigerant is preferentially supplied, and the amount of refrigerant supplied to a relatively fast cooling rate is reduced, so that the cooling rate at the cooling part of each decompression means is averaged. At this time, the power consumption is reduced by the amount that the rotation speed of the first electric motor is lowered, and the slowest cooling rate can be lowered to the second threshold at an early stage. The power consumption is further reduced by that amount. In the present invention, “reducing the rotational speed of the electric motor” includes stopping the operation of the electric motor at which the rotational speed becomes zero.

ところで、各減圧手段が夫々装着される真空処理室では、通常、一定の処理が繰り返し行われることから、その減圧装置では、第1の閾値から第2の閾値までどのように温度降下し、更に、第1及び第2の両電動機を停止した後、第1の閾値まで温度上昇するかが判る。このため、減圧手段毎に、単位時間当たりの温度下降速度及び温度上昇速度を予め測定して制御手段に記憶させておき、これに応じて、各減圧手段の第1の電動機の作動を制御するようにすれば、例えば、各第1の電動機をオンオフ制御して、各減圧手段の冷却部での降温速度を平均化させることも可能となり、消費電力の更なる削減が可能となる。この場合、第1の電動機をACモータとし、インバータを設けて回転数制御するものと比較してコスト面でも有利となる。   By the way, in a vacuum processing chamber in which each decompression means is mounted, since a certain process is normally repeated, the decompression device reduces the temperature from the first threshold value to the second threshold value. It can be seen whether the temperature rises to the first threshold after both the first and second electric motors are stopped. For this reason, the temperature decreasing rate and the temperature increasing rate per unit time are measured in advance for each decompression unit and stored in the control unit, and the operation of the first electric motor of each decompression unit is controlled accordingly. In this way, for example, it is possible to control the on / off of each first electric motor to average the rate of temperature drop in the cooling section of each decompression means, thereby further reducing power consumption. In this case, the first electric motor is an AC motor, which is advantageous in terms of cost as compared with an inverter that controls the rotational speed.

本発明においては、圧縮した冷媒を貯蔵するアキュムレータを更に備え、前記制御手段は、全ての第1電動機が作動停止された後、このアキュムレータに所定体積の冷媒が貯蔵されると、第2の電動機の回転数を低下させ、この状態で各減圧手段の冷却部が昇温したとき、各減圧手段の冷却部のうち昇温速度が比較的早い減圧手段を少なくとも1つ選択し、この選択された減圧手段の第1の電動機の回転数を上げると共に、アキュムレータに貯蔵されている冷媒を供給し、当該減圧手段の冷却部のみを選択的に冷却することが好ましい。これによれば、選択されていない減圧手段の第1の電動機の作動開始を遅らせることができると共に、第2の電動機の作動をも遅らせることができ、更なる消費電力の削減が可能となる。なお、貯蔵されている冷媒がなくなると、例えば、当該減圧手段の第1の電動機の回転数を再度下げ、各減圧手段の冷却部の第2の閾値より高くなると、第1及び第2の両電動機を再度作動させればよい。   In the present invention, an accumulator for storing the compressed refrigerant is further provided, and the control means is configured such that after all the first electric motors are deactivated, a predetermined volume of the refrigerant is stored in the accumulator. In this state, when the temperature of the cooling unit of each decompression unit rises, at least one decompression unit having a relatively high temperature rise rate is selected from the cooling units of each decompression unit. It is preferable to increase the rotational speed of the first electric motor of the decompression means and supply the refrigerant stored in the accumulator to selectively cool only the cooling part of the decompression means. According to this, it is possible to delay the start of the operation of the first electric motor of the decompression means that has not been selected, and also to delay the operation of the second electric motor, thereby further reducing power consumption. When the stored refrigerant runs out, for example, when the rotational speed of the first electric motor of the decompression unit is lowered again and becomes higher than the second threshold value of the cooling unit of each decompression unit, both the first and second What is necessary is just to operate an electric motor again.

また、本発明においては、前記制御手段は、各減圧手段の冷却部における単位時間当たり温度上昇速度を算出し、第2の電動機の作動を再開させ、第1の閾値に到達する時間の早いものから順次第1の電動機の作動を再開することが好ましい。これによれば、第2の閾値から第1の閾値まで温度上昇する際、各減圧手段の第1の電動機の作動開始を個別に遅らせることができ、更なる消費電力の削減が可能となる。   In the present invention, the control means calculates the temperature rise rate per unit time in the cooling part of each decompression means, restarts the operation of the second electric motor, and has a fast time to reach the first threshold value. It is preferable to restart the operation of the first electric motor sequentially. According to this, when the temperature rises from the second threshold value to the first threshold value, it is possible to individually delay the start of operation of the first electric motor of each decompression means, and it is possible to further reduce power consumption.

本発明の減圧システムの構成を模式的に示す図。The figure which shows the structure of the pressure reduction system of this invention typically. 従来例に相当する減圧システムの作動手順を説明する図。The figure explaining the operation | movement procedure of the pressure reduction system corresponded to a prior art example. 本発明での減圧システムの作動手順を説明する図。The figure explaining the operation | movement procedure of the pressure reduction system in this invention. 本発明の変形例に係る減圧システムの作動手順の一部を説明する図。The figure explaining a part of operation | movement procedure of the pressure reduction system which concerns on the modification of this invention. (a)は、減圧手段としてのクライオポンプユニットの構成を説明する図。(b)は、その要部の拡大図。(A) is a figure explaining the structure of the cryopump unit as a pressure reduction means. (B) is an enlarged view of the main part.

以下、図面を参照して、減圧手段を機械式冷凍機とし、機械式冷凍機の複数台に単一の圧縮手段としての圧縮機を用いてヘリウムを供給するように構成した減圧システムを例に本発明の実施形態を説明する。以下においては、上記従来例のものと同一の部材、要素については同一の符号を用いるものとする。   Hereinafter, referring to the drawings, an example of a decompression system configured to supply helium to a plurality of mechanical refrigerators using a compressor as a single compression means is a mechanical refrigerator. An embodiment of the present invention will be described. In the following, the same reference numerals are used for the same members and elements as those of the conventional example.

図1を参照して、PSは、本実施形態の減圧システムであり、減圧システムPSは、複数台の機械式冷凍機Cpと、各機械式冷凍機Cpにヘリウムガス(冷媒)を供給する圧縮機Cmと、圧縮機Cmと各機械式冷凍機Cpのガス流入口21iとの間に介設されて、圧縮されたヘリウムガスを一旦貯蔵する高圧側アキュムレータ5と、各機械式冷凍機Cpのガス流出口21oからのヘリウムガスが合流する低圧側アキュムレータ6と、各機械式冷凍機Cpに夫々備えられた温度センサTCと、各機械式冷凍機Cp及び圧縮機Cmの作動を統括制御する制御手段Cuとを備える。   Referring to FIG. 1, PS is a decompression system according to the present embodiment. The decompression system PS compresses a plurality of mechanical refrigerators Cp and helium gas (refrigerant) to each mechanical refrigerator Cp. A compressor Cm, a high-pressure accumulator 5 that is interposed between the compressor Cm and the gas inlet 21i of each mechanical refrigerator Cp, and temporarily stores the compressed helium gas, and each mechanical refrigerator Cp. The low-pressure side accumulator 6 where helium gas from the gas outlet 21o merges, the temperature sensors TC provided in each mechanical refrigerator Cp, and the control for overall control of the operations of each mechanical refrigerator Cp and compressor Cm. Means Cu.

なお、本実施形態において、機械式冷凍機Cpのうち、コールドヘッド1段22とコールドヘッド2段23とで構成されるものが冷却部、モータ等の第1の電動機3により往復動自在に設けられるディスプレーサー28が駆動部を構成する。第1の電動機3としては、DCモータやACモータ等公知のものが利用でき、ACモータを用いる場合には、図示省略のインバータ回路を設けてインバータ回路によりACモータへの出力周波数を変化させてその回転数を変えるようにしてもよい。そして、第1の電動機3によりディスプレーサー28を作動し、第1の電動機3の回転数に対応してコールドヘッド1段22とコールドヘッド2段23とが所定温度に夫々冷却され、冷媒たるヘリウムガスを膨張させて減圧対象物W内に存する気体が捕捉される。   In the present embodiment, among the mechanical refrigerators Cp, the one constituted by the cold head first stage 22 and the cold head second stage 23 is provided so as to be reciprocally movable by the first electric motor 3 such as a cooling unit or a motor. The displacer 28 is a drive unit. As the first electric motor 3, a known motor such as a DC motor or an AC motor can be used. When an AC motor is used, an inverter circuit (not shown) is provided and the output frequency to the AC motor is changed by the inverter circuit. You may make it change the rotation speed. Then, the displacer 28 is operated by the first electric motor 3, and the cold head first stage 22 and the cold head second stage 23 are cooled to predetermined temperatures in accordance with the rotation speed of the first electric motor 3, respectively, and helium as a refrigerant The gas existing in the reduced pressure object W is expanded by expanding the gas.

圧縮機Cmとしては公知のものが利用でき、第2の電動機71により圧縮部72を作動させてこの圧縮部72で圧縮したヘリウムガスを第2の電動機71の回転速度に応じた流量で高圧側アキュムレータ5に圧縮されたヘリウムガスを供給する。第2の電動機71としては、DCモータやACモータ等公知のものが利用でき、上記同様、ACモータを用いる場合には、図示省略のインバータ回路を設けてインバータ回路によりACモータへの出力周波数を変化させてその回転数を変えるようにしてもよい。高圧側アキュムレータ5は、後述するように、特定の第1の電動機3のみを作動させるとき、その冷却部22,23に供給するのに必要な量のヘリウムを貯蔵できる容積を有する。制御手段Cuは、マイクロコンピュータ、シーケンサ、メモリ等を備えた公知のものであり、第1及び第2の各電動機3,71の作動等を統括制御したり、温度センサTCからの出力が入力されたりするようになっている。以下に、図2及び図3を参照して、減圧システムPSの作動手順を具体的に説明する。   A known compressor can be used as the compressor Cm, and the helium gas compressed by the compressor 72 by operating the compressor 72 by the second motor 71 at a flow rate corresponding to the rotational speed of the second motor 71 is increased on the high pressure side. Compressed helium gas is supplied to the accumulator 5. As the second electric motor 71, a known motor such as a DC motor or an AC motor can be used. Similarly to the above, when an AC motor is used, an inverter circuit (not shown) is provided, and the output frequency to the AC motor is controlled by the inverter circuit. You may make it change and change the rotation speed. As will be described later, the high-pressure side accumulator 5 has a volume capable of storing an amount of helium necessary to supply the cooling units 22 and 23 when only the specific first electric motor 3 is operated. The control means Cu is a well-known one provided with a microcomputer, a sequencer, a memory, etc., and controls the operation of the first and second electric motors 3 and 71 and receives an output from the temperature sensor TC. It has come to be. Hereinafter, an operation procedure of the decompression system PS will be described in detail with reference to FIGS. 2 and 3.

減圧対象物W内に存在するガス分子のうち、凝縮温度の高いH2Oなどをバッフル22bやシールド22aに凝縮させる場合を例に説明すると、制御手段Cuのメモリ(図示せず)には、バッフル22bやシールド22aの冷却の温度(80K)を基準とし、この温度より高い所定温度を第1の閾値T1と、この温度より高い所定温度を第2の閾値T2とが予め設定されている。そして、第1の電動機3と第2の電動機71とを作動し、各機械式冷凍機Cpの冷却部22,23の冷却を行う。次に、温度センサTCの検出温度が第1の閾値T1から降温して第2の閾値T2より低くなると、第1の電動機3と第2の電動機71とが夫々作動停止される。そして、温度センサTCの検出温度が第1の閾値T1より再び高くなると、第1の電動機3と第2の電動機71との作動が夫々再開される。 In the case of condensing H 2 O or the like having a high condensation temperature among the gas molecules present in the reduced pressure object W to the baffle 22b or the shield 22a as an example, the memory (not shown) of the control means Cu includes Based on the cooling temperature (80K) of the baffle 22b and the shield 22a, a predetermined temperature higher than this temperature is preset as a first threshold T1, and a predetermined temperature higher than this temperature is preset as a second threshold T2. And the 1st electric motor 3 and the 2nd electric motor 71 are act | operated, and the cooling parts 22 and 23 of each mechanical refrigerator Cp are cooled. Next, when the temperature detected by the temperature sensor TC falls from the first threshold value T1 and becomes lower than the second threshold value T2, the first electric motor 3 and the second electric motor 71 are deactivated. When the temperature detected by the temperature sensor TC becomes higher than the first threshold value T1, the operations of the first electric motor 3 and the second electric motor 71 are restarted.

ここで、図2に示すように、単一の圧縮機Cmにより略同等の流量で各機械的冷凍機Cpにヘリウムを供給する場合、冷却部22,23を第1の閾値T1から第2の閾値T2まで冷却するまでの間、各機械的冷凍機Cpが夫々装着されている減圧対象物Wの内部で行われる処理や内部環境によっては、冷却速度(図2中、線a、b、cで示すもの)が互いに異なる。具体的には、減圧対象物W内で加熱処理が行われ、その内部が比較的高い温度(例えば、415℃)となっている場合には、線aの如く、その冷却速度が遅い一方で、その内部が比較的低い温度(例えば、室温)となっている場合には、線cの如く、その冷却速度が速く、早期に第2の閾値T2に達することになる。この場合、全ての機械的冷凍機Cpにてその温度センサTCの検出温度が第2の閾値T2より低くならないと、第1の電動機3と第2の電動機71とを作動停止しないのでは、省エネルギ化を図ることができない。   Here, as shown in FIG. 2, when helium is supplied to each mechanical refrigerator Cp at a substantially equal flow rate by a single compressor Cm, the cooling units 22 and 23 are moved from the first threshold value T1 to the second threshold value. Depending on the processing performed in the reduced pressure object W to which each mechanical refrigerator Cp is mounted and the internal environment until cooling to the threshold value T2, the cooling rate (lines a, b, c in FIG. 2). Are different from each other). Specifically, when the heat treatment is performed in the object to be decompressed W and the inside is at a relatively high temperature (for example, 415 ° C.), the cooling rate is low as shown by the line a. When the interior is at a relatively low temperature (for example, room temperature), the cooling rate is fast as shown by line c, and the second threshold value T2 is reached early. In this case, if the temperature detected by the temperature sensor TC is not lower than the second threshold value T2 in all the mechanical refrigerators Cp, the first motor 3 and the second motor 71 are not stopped. Energy cannot be achieved.

そこで、本実施形態では、制御手段Cuのメモリに、減圧対象物Wの所定環境下にて第1の電動機3と第2の電動機71とを作動させて第1の閾値T1から第2の閾値T2まで冷却部22,23を冷却する場合の単位時間当たりの降温速度を機械的冷凍機Cp毎に夫々測定して予めデータとして記憶させておく。なお、「予め」とは、例えば事前の検証によって得られた結果を用いてもよいし、または、第1の閾値T1から第2の閾値T2に到達するまでの降温速度を参照して判断してもよい。いずれかの機械的冷凍機Cpが第1の閾値T1を超えた温度になった後、第1の電動機3と第2の電動機71とを作動させて機械的冷凍機Cpの冷却部22,23を更に冷却する場合、制御手段Cuは、上記データから最も降温速度が遅い一の機械的冷凍機Cp(例えば、図2中、線aのもの)を選択する。そして、残りの機械的冷凍機Cp(図2中、線b及びcのもの)の第1の電動機を夫々断続的にオンオフ制御する。   Therefore, in the present embodiment, the first electric motor 3 and the second electric motor 71 are operated in the memory of the control means Cu in a predetermined environment of the object to be depressurized W, and the second threshold value from the first threshold value T1. The cooling rate per unit time when the cooling units 22 and 23 are cooled to T2 is measured for each mechanical refrigerator Cp and stored in advance as data. Note that “preliminarily” may be determined using, for example, a result obtained by prior verification, or by referring to a temperature decrease rate from the first threshold T1 to the second threshold T2. May be. After any mechanical refrigerator Cp reaches a temperature exceeding the first threshold value T1, the first electric motor 3 and the second electric motor 71 are operated to cool the cooling units 22, 23 of the mechanical refrigerator Cp. In the case of further cooling, the control means Cu selects one mechanical refrigerator Cp (for example, line a in FIG. 2) having the slowest cooling rate from the above data. Then, the first electric motors of the remaining mechanical refrigerators Cp (on the lines b and c in FIG. 2) are intermittently turned on and off, respectively.

残りの機械的冷凍機Cpの各第1の電動機3を夫々オンオフ制御する時間は、予め取得したデータと、最も降温速度が遅い一の機械的冷凍機Cpの降温速度とから予め算出してプログラムしておくことができ、また、最も降温速度が遅い一の機械的冷凍機Cpの冷却部22,23の温度センサTCの出力に応じて、残りの機械的冷凍機Cpの各第1の電動機3をオンオフ制御することができる。これにより、図3に示すように、降温速度が最も遅いものには、優先的に冷媒が供給されるため、当該機械的冷凍機Cpの冷却部22,23は早期に降温し(図3中、線a’で示すもの)、残りの機械的冷凍機Cpの冷却部22,23が階段状に降温していき((図3中、線b’及び線c’で示すもの)、その結果、各機械的冷凍機Cpの冷却部22,23での降温速度が平均化される。   The time for ON / OFF control of the first electric motors 3 of the remaining mechanical refrigerators Cp is calculated in advance from the previously acquired data and the temperature decrease rate of the one mechanical refrigerator Cp having the slowest temperature decrease rate. Further, the first electric motors of the remaining mechanical refrigerators Cp can be used in accordance with the outputs of the temperature sensors TC of the cooling units 22 and 23 of the one mechanical refrigerator Cp having the slowest cooling rate. 3 can be controlled on and off. As a result, as shown in FIG. 3, since the refrigerant is preferentially supplied to the slowest cooling rate, the cooling units 22 and 23 of the mechanical refrigerator Cp cool down early (in FIG. 3). , And the cooling units 22 and 23 of the remaining mechanical refrigerators Cp cool down stepwise ((shown by lines b ′ and c ′ in FIG. 3), and the result The cooling rate at the cooling units 22 and 23 of each mechanical refrigerator Cp is averaged.

次に、全ての機械的冷凍機Cpにてその温度センサTCの検出温度が第2の閾値T2より低くなると、全ての第1の電動機3が作動停止された後、高圧側アキュムレータ5に所定体積の圧縮されたヘリウムが貯蔵されると、第2の電動機71が作動停止される。この状態で放置すると、各機械的冷凍機Cpへの入熱等により冷却部22,23が昇温していく。ここで、図2に示すように、減圧対象物Wの内部が比較的高い温度(例えば、415℃)である場合、線aの如く、その昇温速度も速く、早期に第1の閾値T1まで冷却部22,23が温度上昇し、これでは、第1の電動機3と第2の電動機71とを作動停止させている時間が短くなってしまう。   Next, when the detected temperature of the temperature sensor TC becomes lower than the second threshold value T2 in all the mechanical refrigerators Cp, all the first electric motors 3 are deactivated, and then a predetermined volume is added to the high-pressure side accumulator 5. When the compressed helium is stored, the second electric motor 71 is deactivated. If left in this state, the cooling units 22 and 23 are heated by heat input to the mechanical refrigerators Cp. Here, as shown in FIG. 2, when the inside of the depressurized object W is at a relatively high temperature (for example, 415 ° C.), the rate of temperature rise is fast as shown by line a, and the first threshold value T1 is early. Thus, the temperature of the cooling units 22 and 23 rises, and this shortens the time during which the first electric motor 3 and the second electric motor 71 are deactivated.

そこで、減圧対象物Wの所定環境下にて第2の閾値T2から第1の閾値T1まで冷却部22,23を昇温する場合の単位時間当たりの昇温速度を機械的冷凍機Cp毎に夫々測定して予めデータとして記憶されておく。そして、各機械的冷凍機Cpの冷却部22,23が昇温したとき、制御手段Cuは、各機械的冷凍機Cpの冷却部のうち昇温速度が比較的早いもの(図2中、線aのもの)を選択し、この選択された機械的冷凍機Cpの第1の電動機3のみの作動を再開すると共に、高圧側アキュムレータ5に貯蔵されているヘリウムを供給し、当該機械的冷凍機Cpの冷却部22,23のみを選択的に一旦冷却するようにした。これにより、図3中、線a’で示すように、第1の閾値T1に到達するまでの時間を長くすることができる。なお、作動再開する第1の電動機3の数は、高圧側アキュムレータ5に貯蔵されているヘリウム量等を考慮して適宜設定することができる。そして、各機械的冷凍機Cpの冷却部22,23が更に昇温したとき、制御手段Cuは、温度センサTCの測定温度から、各機械的冷凍機Cpの冷却部22,23における単位時間当たり温度上昇速度を算出し、第1の閾値に到達する時間の早いものから、当該第1の閾値に到達する前に順次第1の電動機3の作動を再開する。以降、減圧システムPSの運転中、上記操作を繰り返して、第1の閾値T1と、この第1の閾値より低い第2の閾値T2との間に各機械的冷凍機Cpの冷却部22,23の温度が夫々保持されるように第1の電動機3と第2の電動機71との作動が夫々制御される。なお、各機械的冷凍機Cpの冷却部22,23は、その経時変化によりその排気能力が劣化していくのが一般である。このため、例えば冷却部22,23の作動時間に応じて、第1の電動機3をオンオフ制御する時間を変えるようにしてもよい。   Therefore, the temperature increase rate per unit time when the temperature of the cooling units 22 and 23 is increased from the second threshold value T2 to the first threshold value T1 in a predetermined environment of the decompression target W is determined for each mechanical refrigerator Cp. Each is measured and stored in advance as data. When the cooling units 22 and 23 of each mechanical refrigerator Cp are heated, the control means Cu has a relatively high heating rate among the cooling units of each mechanical refrigerator Cp (in FIG. a), the operation of only the first electric motor 3 of the selected mechanical refrigerator Cp is resumed, and helium stored in the high-pressure side accumulator 5 is supplied to the mechanical refrigerator. Only the Cp cooling sections 22 and 23 were selectively cooled once. Thereby, as shown by line a 'in FIG. 3, it is possible to lengthen the time until the first threshold T1 is reached. Note that the number of the first electric motors 3 whose operation is resumed can be appropriately set in consideration of the amount of helium stored in the high-pressure side accumulator 5 or the like. When the cooling units 22 and 23 of each mechanical refrigerator Cp further rise in temperature, the control means Cu determines from the measured temperature of the temperature sensor TC per unit time in the cooling units 22 and 23 of each mechanical refrigerator Cp. The temperature increase rate is calculated, and the operation of the first electric motor 3 is sequentially restarted from the earliest time to reach the first threshold before reaching the first threshold. Thereafter, during the operation of the decompression system PS, the above operation is repeated, and the cooling units 22, 23 of each mechanical refrigerator Cp are between the first threshold T1 and the second threshold T2 lower than the first threshold. The operations of the first electric motor 3 and the second electric motor 71 are controlled so that the respective temperatures are maintained. In general, the cooling capacity of the cooling units 22 and 23 of each mechanical refrigerator Cp deteriorates due to a change with time. For this reason, you may make it change the time which carries out on-off control of the 1st electric motor 3 according to the operation time of the cooling parts 22 and 23, for example.

以上によれば、各機械的冷凍機Cpのいずれかが第1の閾値T1より高い温度になってその冷却部22,23の冷却が必要になると、圧縮機Cmの第2の電動機71が作動して各機械的冷凍機Cpの冷却部22,23にヘリウムが夫々供給されると共に、各機械的冷凍機Cpの第1の電動機3が夫々作動される。そして、各機械的冷凍機Cpの冷却部22,23のうち最も降温速度が遅い一の機械的冷凍機Cpを選択し、残りの機械的冷凍機Cpの第1の電動機3をオンオフ制御することで、降温速度が最も遅いものには、優先的に冷媒を供給されて、各冷却部22,23での降温速度が平均化される。このとき、第1の電動機3を作動停止している分だけ、消費電力が削減され、しかも、降温速度が最も遅いものを早期に第2の閾値まで降温できるため、全体の運転時間も短くなり、その分だけ更に消費電力が削減される。また、第1の電動機3を断続的にオンオフ制御するものであるため、インバータを設けて回転数制御するものと比較してコスト面でも有利となる。   According to the above, when any one of the mechanical refrigerators Cp reaches a temperature higher than the first threshold T1 and the cooling units 22 and 23 need to be cooled, the second electric motor 71 of the compressor Cm is activated. Then, helium is supplied to the cooling units 22 and 23 of each mechanical refrigerator Cp, and the first electric motor 3 of each mechanical refrigerator Cp is operated. Then, one mechanical refrigerator Cp having the slowest cooling rate is selected from the cooling units 22 and 23 of each mechanical refrigerator Cp, and the first electric motor 3 of the remaining mechanical refrigerators Cp is controlled to be turned on / off. Thus, the refrigerant having the slowest cooling rate is preferentially supplied with the refrigerant, and the cooling rate in each of the cooling units 22 and 23 is averaged. At this time, the power consumption is reduced by the amount that the first electric motor 3 is deactivated, and the slowest cooling rate can be lowered to the second threshold at an early stage, so that the entire operation time is shortened. The power consumption is further reduced by that amount. Further, since the first electric motor 3 is intermittently turned on / off, it is advantageous in terms of cost as compared with the case where the rotation speed is controlled by providing an inverter.

更に、第1及び第2の両電動機3,71が停止された後、各機械的冷凍機Cpが昇温する際、各機械的冷凍機Cpの冷却部のうち降温速度が比較的早い減圧手段を少なくとも1つ選択し、この選択された機械的冷凍機Cpの第1の電動機3のみを一旦オンし、高圧側アキュムレータ5に貯蔵されているヘリウムにより一時的に当該機械的冷凍機Cpの冷却部22,23のみを選択的に冷却するため、選択されていない各機械的冷凍機Cpの第1の電動機3の作動開始を遅らせることができると共に、第2の電動機71の作動をも遅らせることができ、更なる消費電力の削減が可能となる。なお、貯蔵されているヘリウムがなくなると、例えば、当該機械的冷凍機Cpの第1の電動機3をオフし、各機械的冷凍機Cpの冷却部22,23の第2の閾値Hより高くなると、第1及び第2の両電動機3,71を再度作動させればよい。また、第1の閾値T1に到達する時間の早いものから順次第1の電動機3の作動を再開するため、第2の閾値T2から第1の閾値T1まで温度上昇する際、各機械的冷凍機Cpの第1の電動機3の作動開始を個別に遅らせることができ、更なる消費電力の削減が可能となる。 Furthermore, when the temperature of each mechanical refrigerator Cp rises after both the first and second electric motors 3 and 71 are stopped, the pressure reducing means having a relatively fast temperature-decreasing speed in the cooling part of each mechanical refrigerator Cp. At least one of them, only the first electric motor 3 of the selected mechanical refrigerator Cp is temporarily turned on, and the mechanical refrigerator Cp is temporarily cooled by helium stored in the high-pressure accumulator 5. Since only the parts 22 and 23 are selectively cooled, the start of the operation of the first motor 3 of each mechanical refrigerator Cp that is not selected can be delayed, and the operation of the second motor 71 can also be delayed. It is possible to further reduce power consumption. Note that when helium is stored is eliminated, for example, turning off the first motor 3 of the mechanical refrigerator Cp, higher than the second threshold value of H 2 cooling portions 22 and 23 of the mechanical refrigerator Cp Then, both the first and second electric motors 3, 71 may be operated again. Further, in order to restart the operation of the first electric motor 3 in order from the earliest time to reach the first threshold T1, when the temperature rises from the second threshold T2 to the first threshold T1, each mechanical refrigerator The start of operation of the Cp first electric motor 3 can be individually delayed, and the power consumption can be further reduced.

以上、図面を参照して本発明の実施形態を説明したが、本発明は上記のもの限定されるものではない。本発明では、第1及び第2の両電動機3,71をオンオフ制御するものを例に説明したが、両電動機をACモータとし、インバータを設けて回転数を変化させて消費電力を削減するような場合にも当然に本発明は適用することができる。また、上記実施形態では、減圧手段としてクライオンポンプたる機械式冷凍機を例に説明したが、本発明はこれに限定されるものではなく、例えば、真空チャンバに設けるクライオパネル等にも本発明を適用することができる。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited above. In the present invention, the case where both the first and second electric motors 3, 71 are controlled to be turned on and off has been described as an example. However, both electric motors are AC motors, and an inverter is provided to reduce the power consumption by changing the rotation speed. In any case, the present invention can be applied naturally. In the above embodiment, the mechanical refrigerator as a cryopump is described as an example of the decompression means. However, the present invention is not limited to this, and the present invention is also applied to, for example, a cryopanel provided in a vacuum chamber. Can be applied.

更に、上記実施形態では、制御手段Cuのメモリに予めデータとして記憶させたものに基づき第1の電動機3と第2の電動機71との作動を夫々制御するものを例に説明したが、これに限定されるものではない。例えば、減圧対象物Wの所定環境下にて第1の電動機3と第2の電動機71とを作動させて第1の閾値T1から第2の閾値T2まで各機械的冷凍機Cpの冷却部22,23を冷却する場合、各機械的冷凍機Cpの冷却部22,23毎の温度をリアルタイムに測定し、この測定値に応じて第1の電動機3と第2の電動機71との作動を適宜制御するようにしてもよい。図4を参照して、2個の機械的冷凍機Cpの作動を制御する場合を例に説明すると、制御手段Cuは、冷却開始当初の所定時間において、各機械的冷凍機Cpのうち、上記測定値から定まる降温速度が最も遅い一の機械的冷凍機Cp(例えば、図4中、線dのもの)を選択する。そして、他の機械的冷凍機Cp(図4中、線eのもの)の第1の電動機3を断続的にオンオフ制御し、各冷却部22,23での降温速度を平均化する。   Furthermore, in the said embodiment, although demonstrated as an example what controls each operation | movement of the 1st electric motor 3 and the 2nd electric motor 71 based on what was previously memorize | stored as data in the memory of the control means Cu, It is not limited. For example, the cooling unit 22 of each mechanical refrigerator Cp is operated from the first threshold T1 to the second threshold T2 by operating the first electric motor 3 and the second electric motor 71 in a predetermined environment of the object to be decompressed W. , 23 is measured in real time for each cooling unit 22, 23 of each mechanical refrigerator Cp, and the operation of the first electric motor 3 and the second electric motor 71 is appropriately determined according to the measured value. You may make it control. With reference to FIG. 4, the case where the operation of the two mechanical refrigerators Cp is controlled will be described as an example. One mechanical refrigerator Cp (for example, line d in FIG. 4) having the slowest cooling rate determined from the measured value is selected. Then, the first electric motor 3 of another mechanical refrigerator Cp (in FIG. 4, line e) is intermittently turned on / off, and the temperature lowering speeds in the cooling units 22 and 23 are averaged.

ここで、上記のように各機械的冷凍機Cpの第1の電動機3をオンオフ制御する間に、他の機械的冷凍機Cpの冷却が行われないことで、その測定値が、一の機械的冷凍機Cpの測定温度を超え、最も降温速度が遅い機械的冷凍機Cpの選択が切り替わってしまう不具合が生じる虞がある。この場合、本来最も降温速度が遅い一の機械的冷凍機Cpに冷媒が供給されなくなり、不適である。そこで、上記他の機械的冷凍機Cpの測定温度が、制御手段Cuにより最初に決定された最も降温速度が遅い一の機械的冷凍機Cpの測定を超えないようにオンオフ制御されることが好ましい(図4参照)。   Here, while the first electric motor 3 of each mechanical refrigerator Cp is controlled to be turned on / off as described above, the other mechanical refrigerators Cp are not cooled, so that the measured value becomes one machine. There is a risk that a problem may occur in which the selection of the mechanical refrigerator Cp that exceeds the measured temperature of the mechanical refrigerator Cp and has the slowest temperature decrease rate is switched. In this case, the refrigerant is not supplied to the first mechanical refrigerator Cp, which is originally the slowest cooling rate, and is inappropriate. Therefore, it is preferable that on / off control is performed so that the measured temperature of the other mechanical refrigerator Cp does not exceed the measurement of the one mechanical refrigerator Cp having the slowest cooling rate determined first by the control means Cu. (See FIG. 4).

具体的には、オンオフ制御は、機器の応答速度を適宜考慮して、例えば、一の機械的冷凍機Cpの測定温度と他の機械的冷凍機Cpの測定温度との差が−5℃になると、第1の電動機3をオフし、一の機械的冷凍機Cpの測定温度と他の機械的冷凍機Cpの測定温度との差が−1℃になると、第1の電動機3をオンすればよい。これにより、降温速度が最も遅いものには、優先的に冷媒が供給されるため、当該一の機械的冷凍機Cpの冷却部22,23は早期に降温し(図4中、線dで示すもの)、他の機械的冷凍機Cpの冷却部22,23は、一の機械的冷凍機Cpの冷却部22,23より高い温度になることなく、階段状に降温していき((図4中、線eで示すもの)、その結果、各機械的冷凍機Cpの冷却部22,23での降温速度が確実に平均化される。   Specifically, the on / off control appropriately takes into account the response speed of the device, for example, the difference between the measured temperature of one mechanical refrigerator Cp and the measured temperature of another mechanical refrigerator Cp is -5 ° C. Then, the first electric motor 3 is turned off, and when the difference between the measured temperature of one mechanical refrigerator Cp and the measured temperature of the other mechanical refrigerator Cp becomes −1 ° C., the first electric motor 3 is turned on. That's fine. Thereby, since the refrigerant is preferentially supplied to the slowest cooling rate, the cooling units 22 and 23 of the one mechanical refrigerator Cp cool down early (indicated by a line d in FIG. 4). The cooling units 22 and 23 of the other mechanical refrigerators Cp are stepped down in a step-like manner without becoming higher than the cooling units 22 and 23 of one mechanical refrigerator Cp ((FIG. 4 As a result, the cooling rate at the cooling units 22 and 23 of each mechanical refrigerator Cp is reliably averaged.

PS…減圧システム、Cp…機械式冷凍機(減圧手段)、Cm…圧縮機(圧縮手段)、22…コールドヘッド1段(冷却部)、23…コールドヘッド2段(冷却部)、28…ディスプレーサー(駆動部)、3…第1の電動機、5…高圧側アキュムレータ(アキュムレータ)、第1の電動機、71…第2の電動機、72…圧縮部、TC…温度センサ(測定手段)。Cu…制御手段、T1…第1の閾値、T2…第2の閾値。
PS: Decompression system, Cp: Mechanical refrigerator (decompression unit), Cm: Compressor (compression unit), 22: Cold head 1 stage (cooling section), 23: Cold head 2 stages (cooling section), 28: Display Sir (drive unit), 3... First electric motor, 5... High-pressure side accumulator (accumulator), first electric motor, 71... Second electric motor, 72. Cu: control means, T1: first threshold, T2: second threshold.

Claims (3)

第1の電動機により駆動部を作動させ、第1の電動機の回転数に対応して冷却部を所定温度に冷却してこの冷却部にて冷媒を膨張させて気体を捕捉する複数の減圧手段と、第2の電動機により圧縮部を作動させてこの圧縮部で圧縮した冷媒を第2の電動機の回転速度に応じた流量で各減圧手段に夫々供給する単一の圧縮手段と、各減圧手段の冷却部の温度を夫々測定する測定手段とを備える減圧システムであって、
第1の閾値と、この第1の閾値より低い第2の閾値との間に冷却部の温度が保持されるように第1及び第2の両電動機の作動を夫々制御する制御手段を備えるものにおいて、
制御手段は、第1及び第2の両電動機を作動させて各減圧手段の冷却部の温度が第1の閾値から第2の閾値に達するまでの間で、各減圧手段の冷却部のうち最も降温速度が遅い一の減圧手段を選択し、残りの減圧手段の第1の電動機の回転数を夫々下げ、各減圧手段の冷却部が第2の閾値に夫々達すると、全ての減圧手段の第1の電動機を夫々作動停止させることを特徴とする減圧システム。
A plurality of decompression means for operating the drive unit by the first electric motor, cooling the cooling unit to a predetermined temperature corresponding to the number of rotations of the first electric motor, and expanding the refrigerant in the cooling unit to capture the gas; A single compressor that operates the compressor by the second motor and supplies the refrigerant compressed by the compressor to each decompressor at a flow rate corresponding to the rotational speed of the second motor; and A decompression system comprising measuring means for measuring the temperature of each cooling section,
Provided with control means for controlling the operation of both the first and second electric motors so that the temperature of the cooling section is maintained between the first threshold and a second threshold lower than the first threshold. In
The control means activates both the first and second electric motors until the temperature of the cooling section of each decompression means reaches the second threshold value from the first threshold value. When one pressure reducing means having a slow temperature drop rate is selected, the number of rotations of the first motors of the remaining pressure reducing means is decreased, and the cooling unit of each pressure reducing means reaches the second threshold value, the first of all the pressure reducing means A decompression system characterized in that the operation of each electric motor is stopped.
圧縮した冷媒を貯蔵するアキュムレータを更に備え、
前記制御手段は、全ての第1電動機が作動停止された後、このアキュムレータに所定体積の冷媒が貯蔵されると、第2の電動機の回転数を低下させ、この状態で各減圧手段の冷却部が昇温したとき、各減圧手段の冷却部のうち昇温速度が比較的早い減圧手段を少なくとも1つ選択し、この選択された減圧手段の第1の電動機の回転数を上げると共に、アキュムレータに貯蔵されている冷媒を供給し、当該減圧手段の冷却部のみを選択的に冷却することを特徴とする請求項1記載の減圧システム。
An accumulator for storing the compressed refrigerant;
The control means reduces the rotational speed of the second electric motor when a predetermined volume of refrigerant is stored in the accumulator after all the first electric motors are deactivated. When the temperature rises, at least one pressure reducing means having a relatively high temperature rising speed is selected from the cooling parts of each pressure reducing means, and the rotational speed of the first electric motor of the selected pressure reducing means is increased, and the accumulator is The decompression system according to claim 1, wherein the stored refrigerant is supplied and only the cooling part of the decompression means is selectively cooled.
前記制御手段は、各減圧手段の冷却部における単位時間当たり温度上昇速度を算出し、第2の電動機の作動を再開させ、第1の閾値に到達する時間の早いものから順次第1の電動機の作動を再開することを特徴とする請求項1または請求項2記載の減圧システム。
The control means calculates the temperature increase rate per unit time in the cooling part of each decompression means, restarts the operation of the second electric motor, and in order from the earliest time to reach the first threshold, The decompression system according to claim 1 or 2, wherein the operation is resumed.
JP2012165512A 2012-07-26 2012-07-26 Decompression system Active JP5978045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165512A JP5978045B2 (en) 2012-07-26 2012-07-26 Decompression system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165512A JP5978045B2 (en) 2012-07-26 2012-07-26 Decompression system

Publications (2)

Publication Number Publication Date
JP2014025625A JP2014025625A (en) 2014-02-06
JP5978045B2 true JP5978045B2 (en) 2016-08-24

Family

ID=50199432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165512A Active JP5978045B2 (en) 2012-07-26 2012-07-26 Decompression system

Country Status (1)

Country Link
JP (1) JP5978045B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121192A (en) * 1998-10-21 2000-04-28 Daikin Ind Ltd Cryogenic chiller
JP4445187B2 (en) * 2002-04-18 2010-04-07 住友重機械工業株式会社 Cryogenic refrigerator
ATE395565T1 (en) * 2003-08-20 2008-05-15 Oerlikon Leybold Vacuum Gmbh VACUUM DEVICE
KR101143800B1 (en) * 2008-09-30 2012-05-11 캐논 아네르바 가부시키가이샤 Vacuum evacuation system, substrate processing apparatus, method for manufacturing electronic device, and method for operating vacuum evacuation system
CN102428275B (en) * 2009-07-15 2015-03-11 株式会社爱发科 Pressure Reduction System And Vacuum Treatment Device
JP5545858B2 (en) * 2010-09-21 2014-07-09 住友重機械工業株式会社 Cryopump system and control method thereof

Also Published As

Publication number Publication date
JP2014025625A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
TWI600832B (en) Cryogenic pump, cryogenic pump control method and freezer
JP5084794B2 (en) Cryopump and cryopump monitoring method
KR101440721B1 (en) Cryo-pump system, operation method of cryo-pump system, and compressor unit
US20070256429A1 (en) Cryopump and regenerating method of the cryopump
JP5981180B2 (en) Turbo refrigerator and control method thereof
WO2010032733A1 (en) Refrigeration device
TWI599720B (en) Cryogenic pump system, and cryogenic pump system operation method
KR20140112000A (en) Cryopump system, operation method of cryopump system and compressor unit
US11371768B2 (en) Refrigerator and method for controlling the same
KR101763249B1 (en) Cold Trap and Controlling Method of Cold Trap
JP4927642B2 (en) Operation control method for two-stage refrigerator, operation control method for cryopump using two-stage refrigerator, two-stage refrigerator and cryopump
JP5113776B2 (en) Refrigeration equipment
US11078900B2 (en) Cryopump, cryopump controller, and cryopump control method
US11428216B2 (en) Cryopump and method for controlling cryopump
JP6373034B2 (en) refrigerator
JP5978045B2 (en) Decompression system
JP5458656B2 (en) Cooling system
JP4379322B2 (en) Vending machine cooling system
JP5261106B2 (en) Cooling system
JP6091077B2 (en) Refrigeration equipment
CN108027176A (en) Multiple compression refrigerating circulatory device
JP2010107180A (en) Refrigeration system
JP5404702B2 (en) Vacuum exhaust system
JP2017214936A (en) Cryopump system, and operation method of cryopump system
KR100251567B1 (en) Cooling cycle and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5978045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250