JP5967391B2 - Polymerizable compound, liquid crystal display element, and method for producing liquid crystal display element - Google Patents
Polymerizable compound, liquid crystal display element, and method for producing liquid crystal display element Download PDFInfo
- Publication number
- JP5967391B2 JP5967391B2 JP2015100420A JP2015100420A JP5967391B2 JP 5967391 B2 JP5967391 B2 JP 5967391B2 JP 2015100420 A JP2015100420 A JP 2015100420A JP 2015100420 A JP2015100420 A JP 2015100420A JP 5967391 B2 JP5967391 B2 JP 5967391B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- aligning agent
- crystal aligning
- group
- polymerizable compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 *1N=CN=CC=CC=C1 Chemical compound *1N=CN=CC=CC=C1 0.000 description 19
- GBGFUQOSVTZLFA-YZKFAUGJSA-N C(C[C@H]1CC2)C[C@H]1[C@H]1C2c2ccccc2CC1 Chemical compound C(C[C@H]1CC2)C[C@H]1[C@H]1C2c2ccccc2CC1 GBGFUQOSVTZLFA-YZKFAUGJSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N c1ccc2[nH]c3ccccc3c2c1 Chemical compound c1ccc2[nH]c3ccccc3c2c1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N c1ccc2ncncc2c1 Chemical compound c1ccc2ncncc2c1 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N c1nc2ccccc2[o]1 Chemical compound c1nc2ccccc2[o]1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F24/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/56—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/58—One oxygen atom, e.g. butenolide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Furan Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、液晶分子に電圧を印加した状態で紫外線を照射することによって作製される垂直配向方式の液晶表示素子の製造に使用できる重合性化合物及び液晶表示素子並びに液晶表示素子の製造方法に関する。 The present invention relates to a polymerizable compound, a liquid crystal display element, and a method for producing a liquid crystal display element, which can be used in the production of a liquid crystal display element of a vertical alignment type produced by irradiating ultraviolet rays with voltage applied to liquid crystal molecules. .
液晶表示素子は、通常、液晶を配向させる液晶配向膜が形成された電極と液晶とを有する。この液晶配向膜を形成するための液晶配向剤の材料として、ポリイミド等の有機系の液晶配向膜材料や、アルコキシシランを重縮合等して得られるポリシロキサン系の液晶配向膜材料が知られている(特許文献1及び特許文献2参照)。このような液晶表示素子の表示方式として、基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)があり、その液晶表示素子の中には、その製造過程において液晶分子に電圧を印加しながら紫外線を照射する工程を含むものがある。 A liquid crystal display element usually has an electrode on which a liquid crystal alignment film for aligning liquid crystals is formed and a liquid crystal. As materials for the liquid crystal alignment agent for forming this liquid crystal alignment film, organic liquid crystal alignment film materials such as polyimide and polysiloxane liquid crystal alignment film materials obtained by polycondensation of alkoxysilane are known. (See Patent Document 1 and Patent Document 2). As a display method of such a liquid crystal display element, there is a method (also referred to as a vertical alignment (VA) method) in which liquid crystal molecules aligned perpendicular to a substrate are responded by an electric field. Some manufacturing processes include a step of irradiating ultraviolet rays while applying a voltage to liquid crystal molecules.
このような垂直配向方式の液晶表示素子では、あらかじめ液晶組成物中に光重合性化合物を添加し、ポリイミド等の垂直配向膜と共に用いて、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(例えば、特許文献3、特許文献4及び非特許文献1参照。)が知られている(PSA(Polymer sustained Alignment)型液晶ディスプレイ)。通常、電界に応答した液晶分子の傾く方向は、基板上に設けられた突起や表示用電極に設けられたスリットなどによって制御されているが、液晶組成物中に光重合性化合物を添加し液晶セルに電圧を印加しながら紫外線を照射することにより、液晶分子の傾いていた方向が記憶されたポリマー構造物が液晶配向膜上に形成されるので、突起やスリットのみで液晶分子の傾き方向を制御する方法と比べて、液晶表示素子の応答速度が速くなるといわれている。 In such a vertical alignment type liquid crystal display element, a photopolymerizable compound is added to a liquid crystal composition in advance and used together with a vertical alignment film such as polyimide to irradiate ultraviolet rays while applying a voltage to a liquid crystal cell. A technique for increasing the response speed of liquid crystals (see, for example, Patent Document 3, Patent Document 4, and Non-Patent Document 1) is known (PSA (Polymer sustained Alignment) type liquid crystal display). Usually, the direction in which the liquid crystal molecules tilt in response to an electric field is controlled by protrusions provided on the substrate or slits provided on the display electrode, but a liquid crystal composition is added with a photopolymerizable compound. By irradiating ultraviolet rays while applying voltage to the cell, a polymer structure in which the tilted direction of the liquid crystal molecules is memorized is formed on the liquid crystal alignment film. It is said that the response speed of the liquid crystal display element is faster than the control method.
また、光重合性化合物を液晶組成物中ではなく液晶配向膜中に添加することによっても、液晶表示素子の応答速度が速くなることが報告されている(SC−PVA型液晶ディスプレイ)(例えば、非特許文献2参照)。 Further, it has been reported that the response speed of the liquid crystal display element is increased by adding a photopolymerizable compound to the liquid crystal alignment film instead of the liquid crystal composition (SC-PVA liquid crystal display) (for example, Non-patent document 2).
しかしながら、液晶表示素子の応答速度をさらに速くすることが望まれている。なお、光重合性化合物の添加量を多くすることにより液晶表示素子の応答速度を速くすることが考えられるが、この光重合性化合物が液晶中に未反応のまま残留すると不純物(コンタミ)となり、液晶表示素子の信頼性を低下させる原因となるため、少ない添加量で応答速度を速くすることができる重合性化合物が望ましい。 However, it is desired to further increase the response speed of the liquid crystal display element. It is possible to increase the response speed of the liquid crystal display element by increasing the addition amount of the photopolymerizable compound, but if this photopolymerizable compound remains unreacted in the liquid crystal, it becomes an impurity (contamination), A polymerizable compound capable of increasing the response speed with a small addition amount is desirable because it causes a decrease in the reliability of the liquid crystal display element.
本発明の課題は、上述の従来技術の問題点を解決することにあり、垂直配向方式の液晶表示素子の応答速度を向上させることができる重合性化合物及び液晶表示素子並びに液晶表示素子の製造方法を提供することにある。 An object of the present invention is to solve the above-described problems of the prior art, and a polymerizable compound , a liquid crystal display element, and a liquid crystal display element that can improve the response speed of a vertical alignment type liquid crystal display element It is to provide a method.
上記課題を解決する本発明の重合性化合物は、下記式(1)で表されることを特徴とする。 The polymerizable compound of the present invention that solves the above problems is represented by the following formula (1).
[化 1]
[Chemical 1]
(式(1)中、Vは単結合又は−R1O−で表されR1は直鎖もしくは分岐の炭素数1〜10のアルキレン基であり、Wは単結合又は−OR2−で表されR2は直鎖もしくは分岐の炭素数1〜10のアルキレン基である。ただし、V又はWの一方が単結合の場合、もう一方は単結合又は−R 1 O−もしくは−OR 2 −で表されR 1 もしくはR 2 は直鎖もしくは分岐の炭素数1〜3のアルキレン基である。) (In the formula (1), V is a single bond or -R 1 O-, R 1 is a linear or branched alkylene group having 1 to 10 carbon atoms, and W is a single bond or -OR 2-. R 2 is a linear or branched alkylene group having 1 to 10 carbon atoms, provided that when one of V and W is a single bond, the other is a single bond or —R 1 O— or —OR 2 —. R 1 or R 2 is a linear or branched alkylene group having 1 to 3 carbon atoms.
そして、本発明の液晶表示素子は、液晶中又は液晶配向膜中に上記重合性化合物を含有させ、これに電圧を印加しながら紫外線を照射し該重合性化合物の重合体を形成して作製された液晶セルを具備することを特徴とする。 The liquid crystal display element of the present invention is produced by containing the polymerizable compound in a liquid crystal or a liquid crystal alignment film, and irradiating ultraviolet rays while applying a voltage thereto to form a polymer of the polymerizable compound. The liquid crystal cell is provided.
また、本発明の液晶表示素子の製造方法は、液晶中又は液晶配向膜中に上記重合性化合物を含有させ、これに電圧を印加しながら紫外線を照射して液晶セルを作製することを特徴とする。
The method for producing a liquid crystal display element of the present invention is characterized in that the polymerizable compound is contained in a liquid crystal or a liquid crystal alignment film, and a liquid crystal cell is produced by irradiating ultraviolet rays while applying a voltage thereto. To do.
以下、本発明について詳細に説明する。本発明の重合性化合物は、上記式(1)で表される。上記式(1)において、Vは、単結合又は−R1O−で表されR1は直鎖もしくは分岐の炭素数1〜10のアルキレン基であり、好ましくは、−R1O−で表されR1は直鎖もしくは分岐の炭素数2〜6のアルキレン基である。また、Wは、単結合又は−OR2−で表されR2は直鎖もしくは分岐の炭素数1〜10のアルキレン基であり、好ましくは、−OR2−で表されR2は直鎖もしくは分岐の炭素数2〜6のアルキレン基である。なお、V及びWは同一の構造でも異なっていてもよいが、同一であると合成が容易である。 Hereinafter, the present invention will be described in detail. The polymerizable compound of the present invention is represented by the above formula (1). In the above formula (1), V is represented by a single bond or —R 1 O—, and R 1 is a linear or branched alkylene group having 1 to 10 carbon atoms, preferably represented by —R 1 O—. R 1 is a linear or branched alkylene group having 2 to 6 carbon atoms. W represents a single bond or —OR 2 —, and R 2 represents a linear or branched alkylene group having 1 to 10 carbon atoms, and preferably represents —OR 2 — and R 2 represents a straight chain or It is a branched alkylene group having 2 to 6 carbon atoms. V and W may be the same or different, but if they are the same, synthesis is easy.
この上記式(1)で表される重合性化合物は、両末端に重合性基であるα −メチレン−γ−ブチロラクトン基を有する特定の構造の化合物なので、重合体がリジッドな構造をとり液晶の配向固定化能力に優れているためか、後述する実施例に示すように、PSA型液晶ディスプレイやSC−PVA型液晶ディスプレイ等の垂直配向方式の液晶表示素子の製造に用いることにより、応答速度を大幅に向上させることができる。本発明においては、両末端に有する重合性基はα−メチレン−γ−ブチロラクトン基である必要があり、例えば特許文献1に記載されるアクリレート基、メタクリレート基、ビニル基、ビニロキシ基、エポキシ基などの重合性基を有する化合物では、本発明の上記式(1)で表される化合物のように少量の添加で垂直配向方式の液晶表示素子の応答速度を大幅に向上させることはできない。また、一般的に液晶配向膜の形成過程には溶媒を完全に取り除くために高温で焼成する工程が含まれるが、アクリレート基、メタクリレート基、ビニル基、ビニロキシ基、エポキシ基などの重合性基を有する化合物では熱安定性に乏しく、高温での焼成に耐えることが難しい。一方、本発明の上記式(1)で表される重合性化合物は熱重合性に乏しい構造なためか、高温、例えば200℃以上の焼成温度に十分耐えることができる。 Since the polymerizable compound represented by the above formula (1) is a compound having a specific structure having α-methylene-γ-butyrolactone groups which are polymerizable groups at both ends, the polymer has a rigid structure and has a liquid crystal structure. The response speed can be improved by using it for the production of vertical alignment type liquid crystal display elements such as PSA type liquid crystal display and SC-PVA type liquid crystal display, as shown in the examples described later. It can be greatly improved. In the present invention, the polymerizable group at both ends must be an α-methylene-γ-butyrolactone group, such as an acrylate group, a methacrylate group, a vinyl group, a vinyloxy group, and an epoxy group described in Patent Document 1. In the case of the compound having a polymerizable group, the response speed of the liquid crystal display element of the vertical alignment type cannot be significantly improved by addition of a small amount like the compound represented by the above formula (1) of the present invention. In general, the process of forming the liquid crystal alignment film includes a step of baking at a high temperature to completely remove the solvent. However, a polymerizable group such as an acrylate group, a methacrylate group, a vinyl group, a vinyloxy group, or an epoxy group is added. The compounds that are possessed have poor thermal stability and are difficult to withstand firing at high temperatures. On the other hand, the polymerizable compound represented by the above formula (1) of the present invention can sufficiently withstand a high temperature, for example, a firing temperature of 200 ° C. or higher, because of its poor thermal polymerizability.
このような上記式(1)で表される本発明の重合性化合物は、有機合成化学における手法を組み合わせることによって合成することができ、その合成法は特に限定されない。例えば、下記反応式で表されるタラガ等がP.Talaga,M.Schaeffer,C.Benezra and J.L.Stampf,Synthesis,530(1990)で提案する方法により、SnCl2を用いて2−(ブロモメチル)アクリル酸(2-(bromomethyl)propenoic acid)と、アルデヒドまたはケトンとを反応させて、合成することができる。なお、Amberlyst 15 は、ロームアンドハース社製の強酸性イオン交換樹脂である。 The polymerizable compound of the present invention represented by the above formula (1) can be synthesized by combining techniques in organic synthetic chemistry, and the synthesis method is not particularly limited. For example, taraga and the like represented by the following reaction formula are prepared by the method proposed by P. Talaga, M. Schaeffer, C. Benezra and JLStampf, Synthesis, 530 (1990) using SnCl 2 and 2- (bromomethyl) acrylic acid. It can be synthesized by reacting (2- (bromomethyl) propenoic acid) with aldehyde or ketone. Amberlyst 15 is a strongly acidic ion exchange resin manufactured by Rohm and Haas.
[化 2]
[Chemical 2]
(式中、R′は一価の有機基を表す。) (In the formula, R ′ represents a monovalent organic group.)
また、2−(ブロモメチル)アクリル酸は、下記反応式で表されるラマラーン等がK.Ramarajan,K.Kamalingam,D.J.O’Donnell and K.D.Berlin,Organic Synthesis,vol.61,56-59(1983)で提案する方法で合成することができる。 In addition, 2- (bromomethyl) acrylic acid is represented by the following reaction formula: K. Ramarajan, K. Kamalingam, DJO'Donnell and KDBerlin, Organic Synthesis, vol. 61, 56-59 (1983). It can be synthesized by the method proposed in.
[化 3]
[Chemical 3]
具体的な合成例としては、Vが−R1O−、Wが−OR2−でR1とR2が同一である上記式(1)で表される重合性化合物を合成する場合は、下記反応式で示される2つの方法が挙げられる。 As a specific synthesis example, when synthesizing a polymerizable compound represented by the above formula (1) in which V is —R 1 O—, W is —OR 2 —, and R 1 and R 2 are the same, There are two methods shown in the following reaction formula.
[化 4]
[Chemical 4]
[化 5]
[Chemical 5]
また、R1とR2が異なる上記式(1)で表される重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。 Moreover, when synthesizing the polymerizable compound represented by the above formula (1) in which R 1 and R 2 are different, a method represented by the following reaction formula is exemplified.
[化 6]
[Chemical 6]
そして、V及びWが単結合である上記式(1)で表される重合性化合物を合成する場合は、下記反応式で示される方法が挙げられる。 And when synthesize | combining the polymeric compound represented by the said Formula (1) whose V and W are single bonds, the method shown by following Reaction Formula is mentioned.
[化 7]
[Chemical 7]
上記式(1)で表される重合性化合物は、液晶配向剤に含有させることができる。具体的には、本発明の液晶配向剤は、上記式(1)で表される重合性化合物と、液晶を垂直に配向させる液晶配向膜を形成する重合体と、溶媒とを有する。例えば、公知の垂直配向用の液晶配向剤に上記式(1)で表される重合性化合物を添加したものである。なお、液晶配向剤とは液晶配向膜を作成するための溶液であり、液晶配向膜とは液晶を所定の方向、本発明においては垂直方向に配向させるための膜である。 The polymerizable compound represented by the above formula (1) can be contained in the liquid crystal aligning agent. Specifically, the liquid crystal aligning agent of this invention has the polymeric compound represented by the said Formula (1), the polymer which forms the liquid crystal aligning film which orientates a liquid crystal vertically, and a solvent. For example, a polymerizable compound represented by the above formula (1) is added to a known liquid crystal aligning agent for vertical alignment. The liquid crystal alignment agent is a solution for forming a liquid crystal alignment film, and the liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction, in the present invention, in the vertical direction.
液晶を垂直に配向させる液晶配向膜を形成する重合体は、基板上に形成された液晶配向膜上の液晶を基板に対して垂直に配向させることができるものであれば特に限定されず、ポリイミド前駆体や該ポリイミド前駆体をイミド化させて得られるポリイミド等の有機系の液晶配向膜材料でも、ポリエステル、(メタ)アクリロイル、ポリシロキサン系の液晶配向膜材料でもよいが、例えば、液晶を垂直に配向させる側鎖を有する重合体であることが好ましく、例えば、液晶を垂直に配向させる側鎖を有するポリイミド前駆体、該ポリイミド前駆体をイミド化させて得られるポリイミド、及び、液晶を垂直に配向させる側鎖を有するポリシロキサンから選択される少なくとも一種が挙げられる。液晶を垂直に配向させる液晶配向膜を形成する重合体は、一種類のみでもよく、また、二種類以上でもよい。なお、ポリイミド前駆体としては、ポリアミック酸(ポリアミド酸ともいわれる)や、ポリアミック酸エステルが挙げられる。 The polymer that forms the liquid crystal alignment film that aligns the liquid crystal vertically is not particularly limited as long as the liquid crystal on the liquid crystal alignment film formed on the substrate can be aligned perpendicular to the substrate. An organic liquid crystal alignment film material such as a polyimide obtained by imidizing the precursor or the polyimide precursor may be a polyester, (meth) acryloyl, or polysiloxane liquid crystal alignment film material. It is preferable that the polymer has a side chain that is aligned in the direction of, for example, a polyimide precursor having a side chain that aligns liquid crystal vertically, a polyimide obtained by imidizing the polyimide precursor, and a liquid crystal vertically. Examples thereof include at least one selected from polysiloxanes having side chains to be oriented. The polymer forming the liquid crystal alignment film for vertically aligning the liquid crystal may be only one type or two or more types. Examples of the polyimide precursor include polyamic acid (also referred to as polyamic acid) and polyamic acid ester.
液晶を垂直に配向させる側鎖は、液晶を基板に対して垂直に配向させることができる構造であれば限定されないが、例えば、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基等の炭化水素基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基などが挙げられる。勿論、二種類以上の液晶を垂直に配向させる側鎖を有していてもよい。液晶を垂直に配向させる側鎖は、ポリイミド前駆体、ポリイミド又はポリシロキサン等の重合体の主鎖、すなわち、ポリアミック酸骨格、ポリイミド骨格又はポリシロキサン骨格等に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。液晶を垂直に配向させる側鎖としては、例えば、水素原子がフッ素で置換されていてもよい炭素数が8〜30、好ましくは8〜22の炭化水素基、具体的には、アルキル基、フルオロアルキル基、アルケニル基、フェネチル基、スチリルアルキル基、ナフチル基、フルオロフェニルアルキル基等が挙げられる。その他の液晶を垂直に配向させる側鎖として、例えば下記式(a)で表されるものが挙げられる。 The side chain for vertically aligning the liquid crystal is not limited as long as the liquid crystal can be aligned vertically with respect to the substrate. For example, a long chain alkyl group, a ring structure or a branch in the middle of the long chain alkyl group may be used. Examples thereof include a group having a structure, a hydrocarbon group such as a steroid group, and a group in which some or all of the hydrogen atoms of these groups are replaced with fluorine atoms. Of course, you may have the side chain which orientates two or more types of liquid crystal vertically. The side chain for vertically aligning the liquid crystal may be directly bonded to the main chain of the polymer such as polyimide precursor, polyimide or polysiloxane, that is, polyamic acid skeleton, polyimide skeleton or polysiloxane skeleton, You may couple | bond together through a suitable coupling group. Examples of the side chain for vertically aligning the liquid crystal include a hydrocarbon group having 8 to 30 carbon atoms, preferably 8 to 22 carbon atoms in which hydrogen atoms may be substituted with fluorine, specifically alkyl groups, fluoro Examples thereof include an alkyl group, an alkenyl group, a phenethyl group, a styrylalkyl group, a naphthyl group, and a fluorophenylalkyl group. Examples of the side chain for vertically aligning other liquid crystals include those represented by the following formula (a).
[化 8]
[Chemical 8]
(式(a)中l、m及びnはそれぞれ独立に0又は1の整数を表し、R3は炭素数2〜6のアルキレン基、−O−、−COO−、−OCO−、−NHCO−、−CONH−、又は炭素数1〜3のアルキレン−エーテル基を表し、R4、R5及びR6はそれぞれ独立にフェニレン基又はシクロアルキレン基を表し、R7は水素原子、炭素数2〜24のアルキル基又はフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、又はそれらからなる一価の大環状置換体を表す。) (In the formula (a), l, m and n each independently represents an integer of 0 or 1, and R 3 represents an alkylene group having 2 to 6 carbon atoms, —O—, —COO—, —OCO—, —NHCO—. , -CONH-, or an alkylene ether group having 1 to 3 carbon atoms, R 4 , R 5 and R 6 each independently represent a phenylene group or a cycloalkylene group, R 7 is a hydrogen atom, 24 represents an alkyl group or a fluorine-containing alkyl group, a monovalent aromatic ring, a monovalent aliphatic ring, a monovalent heterocyclic ring, or a monovalent macrocyclic substituent comprising them.)
なお、上記式(a)中のR3は、合成の容易性の観点からは、−O−、−COO−、−CONH−、炭素数1〜3のアルキレン−エーテル基が好ましい。 R 3 in the above formula (a) is preferably —O—, —COO—, —CONH—, or an alkylene ether group having 1 to 3 carbon atoms from the viewpoint of ease of synthesis.
また、式(a)中のR4、R5及びR6は、合成の容易性及び液晶を垂直に配向させる能力の観点から、下記表1に示すl、m、n、R4、R5及びR6の組み合わせが好ましい。 R 4 , R 5 and R 6 in the formula (a) are l, m, n, R 4 and R 5 shown in Table 1 below from the viewpoint of ease of synthesis and ability to align liquid crystals vertically. And a combination of R 6 is preferred.
[表 1]
[table 1]
そして、l、m、nの少なくとも一つが1である場合、式(a)中のR7は、好ましくは水素原子または炭素数2〜14のアルキル基もしくはフッ素含有アルキル基であり、より好ましくは水素原子または炭素数2〜12のアルキル基もしくはフッ素含有アルキル基である。また、l、m、nがともに0である場合、R7は、好ましくは炭素数12〜22のアルキル基またはフッ素含有アルキル基、一価の芳香環、一価の脂肪族環、一価の複素環、それらからなる一価の大環状置換体であり、より好ましくは炭素数12〜20のアルキル基またはフッ素含有アルキル基である。 When at least one of l, m and n is 1, R 7 in formula (a) is preferably a hydrogen atom, an alkyl group having 2 to 14 carbon atoms or a fluorine-containing alkyl group, more preferably A hydrogen atom, an alkyl group having 2 to 12 carbon atoms, or a fluorine-containing alkyl group. When l, m, and n are all 0, R 7 is preferably an alkyl group having 12 to 22 carbon atoms or a fluorine-containing alkyl group, a monovalent aromatic ring, a monovalent aliphatic ring, a monovalent Heterocycles and monovalent macrocyclic substituents made of them, more preferably alkyl groups having 12 to 20 carbon atoms or fluorine-containing alkyl groups.
液晶を垂直に配向させる側鎖の存在量は、液晶配向膜が液晶を垂直に配向させることができる範囲であれば特に限定されない。但し、前記液晶配向膜を具備する液晶表示素子において、電圧保持率や残留DC電圧の蓄積など、素子の表示特性を損なわない範囲内で、液晶を垂直に配向させる側鎖の存在量は可能な限り少ない方が好ましい。 The amount of the side chain that vertically aligns the liquid crystal is not particularly limited as long as the liquid crystal alignment film can align the liquid crystal vertically. However, in the liquid crystal display element having the liquid crystal alignment film, the amount of side chains that vertically align the liquid crystal is possible within a range that does not impair the display characteristics of the element such as voltage holding ratio and accumulation of residual DC voltage. As few as possible is preferable.
なお、液晶を垂直に配向させる側鎖を有する重合体が液晶を垂直に配向させる能力は、液晶を垂直に配向させる側鎖の構造によって異なるが、一般的に、液晶を垂直に配向させる側鎖の量が多くなると液晶を垂直に配向させる能力は上がり、少なくなると下がる。また、環状構造を有すると、環状構造を有さないものと比較して、液晶を垂直に配向させる能力が高い傾向がある。 The ability of a polymer having side chains for vertically aligning liquid crystals to align liquid crystals vertically varies depending on the structure of the side chains for vertically aligning liquid crystals, but in general, the side chains for vertically aligning liquid crystals. As the amount increases, the ability to align the liquid crystal vertically increases, and as the amount decreases, it decreases. Moreover, when it has a cyclic structure, compared with what does not have a cyclic structure, there exists a tendency for the capability to orientate a liquid crystal vertically.
また、液晶を垂直に配向させる液晶配向膜を形成する重合体は、光反応性の側鎖を有することが好ましい。光反応性の側鎖を有すると、応答速度をより向上させることができる。光反応性の側鎖とは、紫外線(UV)等の光の照射によって反応し、共有結合を形成し得る官能基(以下、光反応性基とも言う)を有する側鎖であり、この能力を有していればその構造は限定されない。光反応性の側鎖としては、例えば光反応性基としてビニル基、アクリル基、メタクリル基、アリル基、スチリル基、シンナモイル基、カルコニル基、クマリン基、マレイミド基、エポキシ基、ビニロキシ基、アクリロキシ基などを有する側鎖、例えば、これらの光反応性基自体や、これらの光反応性基で水素原子が置換されたアルキル基などが挙げられる。置換されている水素原子は1つ以上であり、好ましくは1つである。水素原子が光反応性基で置換されるアルキル基の炭素数は、応答速度と垂直配向性の観点から1〜30が好ましく、より好ましくは1〜10であり、更に好ましくは1〜5である。勿論、二種類以上の光反応性の側鎖を有していてもよい。光反応性の側鎖は、ポリイミド前駆体、ポリイミド又はポリシロキサン等の重合体の主鎖に直接結合していてもよく、また、適当な結合基を介して結合していてもよい。光反応性の側鎖としては、例えば下記式(b)で表されるものが挙げられる。 Moreover, it is preferable that the polymer which forms the liquid crystal aligning film which aligns a liquid crystal vertically has a photoreactive side chain. When it has a photoreactive side chain, the response speed can be further improved. The photoreactive side chain is a side chain having a functional group (hereinafter also referred to as a photoreactive group) that can react by irradiation with light such as ultraviolet rays (UV) to form a covalent bond. If it has, the structure is not limited. Examples of photoreactive side chains include vinyl groups, acrylic groups, methacryl groups, allyl groups, styryl groups, cinnamoyl groups, chalconyl groups, coumarin groups, maleimide groups, epoxy groups, vinyloxy groups, acryloxy groups as photoreactive groups. And the like, for example, these photoreactive groups themselves, and alkyl groups in which hydrogen atoms are substituted with these photoreactive groups. The number of substituted hydrogen atoms is one or more, preferably one. The number of carbon atoms of the alkyl group in which a hydrogen atom is substituted with a photoreactive group is preferably 1-30, more preferably 1-10, and still more preferably 1-5, from the viewpoint of response speed and vertical alignment. . Of course, you may have two or more types of photoreactive side chains. The photoreactive side chain may be directly bonded to the main chain of a polymer such as a polyimide precursor, polyimide or polysiloxane, or may be bonded via an appropriate bonding group. Examples of the photoreactive side chain include those represented by the following formula (b).
[化 9]
[Chemical 9]
(式(b)中、R8は単結合又は−CH2−、−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、−CH2O−、−N(CH3)−、−CON(CH3)−、−N(CH3)CO−、のいずれかを表し、R9は単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表し、アルキレン基の−CH2−は−CF2−又は−CH=CH−で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;−O−、−COO−、−OCO−、−NHCO−、−CONH−、−NH−、二価の炭素環、二価の複素環。R10はビニル基、アクリル基、メタクリル基、アリル基、スチリル基、−N(CH2CHCH2)2、又は下記式で表される構造を表す。) (In the formula (b), R 8 is a single bond or —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N It represents any one of (CH 3 ) —, —CON (CH 3 ) —, —N (CH 3 ) CO—, and R 9 is a single bond, unsubstituted or substituted with a fluorine atom. Represents an alkylene group of ˜20, and —CH 2 — of the alkylene group may be optionally replaced by —CF 2 — or —CH═CH—, and when any of the following groups is not adjacent to each other: , may be substituted with these groups; -O -, - COO -, - OCO -, - NHCO -, - CONH -, - NH-, a divalent carbocyclic, divalent heterocyclic .R 10 Is vinyl group, acrylic group, methacryl group, allyl group, styryl group,- (CH 2 CHCH 2) represents a 2, or represented by the following formula structure.)
[化10]
[Chemical 10]
なお、上記式(b)中のR8は、通常の有機合成的手法で形成させることができるが、合成の容易性の観点から、−CH2−、−O−、−COO−、−NHCO−、−NH−、−CH2O−が好ましい。 R 8 in the above formula (b) can be formed by a general organic synthetic method, but from the viewpoint of ease of synthesis, —CH 2 —, —O—, —COO—, —NHCO. -, - NH -, - CH 2 O- are preferable.
また、R9の任意の−CH2−を置き換える二価の炭素環や二価の複素環の炭素環や複素環としては、具体的には以下のような構造が挙げられるが、これに限定されるものではない。 Specific examples of the divalent carbocycle or divalent heterocycle carbocycle or heterocycle for replacing any —CH 2 — in R 9 include the following structures, but are not limited thereto. Is not to be done.
[化11]
[Chemical 11]
R10は、光反応性の観点から、ビニル基、アクリル基、メタクリル基、アリル基、スチリル基、−N(CH2CHCH2)2又は下記式で表される構造であることが好ましい。 R 10 is preferably a vinyl group, an acrylic group, a methacryl group, an allyl group, a styryl group, —N (CH 2 CHCH 2 ) 2 or a structure represented by the following formula from the viewpoint of photoreactivity.
[化12]
[Chemical 12]
また、上記式(b)は、より好ましくは下記の構造である。 The above formula (b) is more preferably the following structure.
[化13]
[Chemical 13]
光反応性の側鎖の存在量は、紫外線の照射によって反応し共有結合を形成することにより液晶の応答速度を速めることができる範囲であることが好ましく、液晶の応答速度をより速めるためには、他の特性に影響が出ない範囲で、可能な限り多いほうが好ましい。 The amount of the photoreactive side chain is preferably within a range in which the response speed of the liquid crystal can be increased by reacting with ultraviolet irradiation to form a covalent bond. In order to further increase the response speed of the liquid crystal As many as possible are preferable as long as other characteristics are not affected.
また、液晶を垂直に配向させる液晶配向膜を形成する重合体は、液晶を垂直に配向させる側鎖や光反応性の側鎖以外のその他の側鎖を有していてもよい。その他の側鎖としては、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基若しくはウレイド基で置換されていてもよい、炭素数1〜6の炭化水素基が挙げられる。これらの基を有するポリシロキサンとすると、得られる液晶配向膜の基板との密着性や、液晶分子との親和性を向上させることができる。 The polymer forming the liquid crystal alignment film for vertically aligning the liquid crystal may have other side chains other than the side chain for vertically aligning the liquid crystal and the photoreactive side chain. Examples of the other side chain include a hydrogen atom, or a hydrocarbon group having 1 to 6 carbon atoms which may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group. It is done. When polysiloxane having these groups is used, the adhesion of the obtained liquid crystal alignment film to the substrate and the affinity with liquid crystal molecules can be improved.
このような液晶を垂直に配向させる液晶配向膜を形成する重合体を製造する方法は特に限定されないが、例えば、液晶を垂直に配向させる側鎖を有するポリアミック酸を製造する場合は、ジアミンとテトラカルボン酸二無水物との反応によってポリアミック酸を得る方法において、液晶を垂直に配向させる側鎖を有するジアミン又は液晶を垂直に配向させる側鎖を有するテトラカルボン酸二無水物を共重合させる方法が簡便である。また、液晶を垂直に配向させる液晶配向膜を形成する重合体に光反応性の側鎖を含有させる場合は、光反応性の側鎖を有するジアミン又は光反応性の側鎖を有するテトラカルボン酸二無水物を共重合させればよい。 A method for producing a polymer for forming a liquid crystal alignment film for vertically aligning such liquid crystals is not particularly limited. For example, in the case of producing a polyamic acid having a side chain for vertically aligning liquid crystals, diamine and tetra In a method of obtaining a polyamic acid by reaction with a carboxylic dianhydride, a method of copolymerizing a diamine having a side chain for vertically aligning a liquid crystal or a tetracarboxylic dianhydride having a side chain for vertically aligning a liquid crystal Convenient. In addition, when a polymer forming a liquid crystal alignment film for vertically aligning liquid crystals contains a photoreactive side chain, a diamine having a photoreactive side chain or a tetracarboxylic acid having a photoreactive side chain A dianhydride may be copolymerized.
液晶を垂直に配向させる側鎖を有するジアミンとしては、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基等の炭化水素基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するジアミン、例えば上記式(a)で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば、水素原子がフッ素で置換されていてもよい炭素数が8〜30の炭化水素基等を有するジアミンや、下記式(2)、(3)、(4)、(5)で表されるジアミンを挙げることができるが、これに限定されるものではない。 Examples of the diamine having a side chain for vertically aligning the liquid crystal include a long chain alkyl group, a group having a ring structure or a branched structure in the middle of the long chain alkyl group, a hydrocarbon group such as a steroid group, and the hydrogen of these groups. A diamine having a side chain with a group in which some or all of the atoms are replaced with fluorine atoms, for example, a diamine having a side chain represented by the above formula (a) can be mentioned. More specifically, for example, a diamine having a hydrocarbon group having 8 to 30 carbon atoms in which a hydrogen atom may be substituted with fluorine, or the following formulas (2), (3), (4), (5 The diamine represented by this can be mentioned, However, It is not limited to this.
[化14]
[Chemical 14]
(式(2)中のl、m、n、R3〜R7の定義は、上記式(a)と同じである。) (The definitions of l, m, n, and R 3 to R 7 in Formula (2) are the same as those in Formula (a) above.)
[化15]
[Chemical 15]
(式(3)及び式(4)中、A10は−COO−、−OCO−、−CONH−、−NHCO−、−CH2−、−O−、−CO−、又は−NH−を表し、A11は単結合若しくはフェニレン基を表し、aは上記式(a)で表される液晶を垂直に配向させる側鎖と同一の構造を表し、a’は上記式(a)で表される液晶を垂直に配向させる側鎖と同一の構造から水素等の元素が一つ取れた構造である二価の基を表す。) (Equation (3) and the formula (4), A 10 is -COO -, - OCO -, - CONH -, - NHCO -, - CH 2 -, - O -, - CO-, or -NH- and represents , A 11 represents a single bond or a phenylene group, a represents the same structure as a side chain for vertically aligning the liquid crystal represented by the above formula (a), and a ′ is represented by the above formula (a). (This represents a divalent group having a structure in which one element such as hydrogen is removed from the same structure as the side chain that vertically aligns the liquid crystal.)
[化16]
[Chemical 16]
(式(5)中、A14は、フッ素原子で置換されていてもよい、炭素数3〜20のアルキル基であり、A15は、1,4−シクロへキシレン基、又は1,4−フェニレン基であり、A16は、酸素原子、又は−COO−*(ただし、「*」を付した結合手がA15と結合する)であり、A17は酸素原子、又は−COO−*(ただし、「*」を付した結合手が(CH2)a2と結合する。)である。また、a1は0、又は1の整数であり、a2は2〜10の整数であり、a3は0、又は1の整数である。) (In the formula (5), A 14 is a fluorine atom may be substituted, an alkyl group having 3 to 20 carbon atoms, A 15 is 1,4-cyclohexylene group, or 1,4 A phenylene group, A 16 is an oxygen atom or —COO— * (where a bond marked with “*” is bonded to A 15 ), and A 17 is an oxygen atom or —COO — * ( However, "*" is a bond marked with a (CH 2) binds to a 2.). Further, a 1 is 0, or an integer 1, a 2 is an integer from 2 to 10, a 3 is 0 or an integer of 1.
式(2)における二つのアミノ基(−NH2)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。 Binding positions of the two amino group (-NH 2) in equation (2) is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
式(2)の具体的な構造としては、下記の式[A−1]〜式[A−24]で示されるジアミンを例示することができるが、これに限定されるものではない。 Specific examples of the structure of the formula (2) include diamines represented by the following formulas [A-1] to [A-24], but are not limited thereto.
[化17]
[Chemical 17]
(式[A−1]〜式[A−5]中、A1は、炭素数2〜24のアルキル基又はフッ素含有アルキル基である。) (In Formula [A-1] to Formula [A-5], A 1 is an alkyl group having 2 to 24 carbon atoms or a fluorine-containing alkyl group.)
[化18]
[Chemical 18]
(式[A−6]及び式[A−7]中、A2は、−O−、−OCH2−、−CH2O−、−COOCH2−、又は−CH2OCO−を示し、A3は炭素数1〜22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。) (In Formula [A-6] and Formula [A-7], A 2 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and 3 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
[化19]
[Chemical 19]
(式[A−8]〜式[A−10]中、A4は、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH2−、−CH2OCO−、−CH2O−、−OCH2−、又は−CH2−を示し、A5は炭素数1〜22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。) (In formula [A-8] to formula [A-10], A 4 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2. O—, —OCH 2 —, or —CH 2 — is shown, and A 5 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
[化20]
[Chemical 20]
(式[A−11]及び式[A−12]中、A6は、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH2−、−CH2OCO−、−CH2O−、−OCH2−、−CH2−、−O−、又は−NH−を示し、A7はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。) (In Formula [A-11] and Formula [A-12], A 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2. O—, —OCH 2 —, —CH 2 —, —O—, or —NH— is shown, and A 7 is fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy Group or hydroxyl group.)
[化21]
[Chemical 21]
(式[A−13]及び式[A−14]中、A8は、炭素数3〜12のアルキル基であり、1,4-シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。) (In Formula [A-13] and Formula [A-14], A 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)
[化22]
[Chemical 22]
(式[A−15]及び式[A−16]中、A9は、炭素数3〜12のアルキル基であり、1,4−シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。) (In Formula [A-15] and Formula [A-16], A 9 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)
[化23]
[Chemical 23]
式(3)で表されるジアミンの具体例としては、下記の式[A−25]〜式[A−30]で示されるジアミンを挙げることができるが、これに限るものではない。 Specific examples of the diamine represented by the formula (3) include diamines represented by the following formulas [A-25] to [A-30], but are not limited thereto.
[化24]
[Chemical 24]
(式[A−25]〜式[A−30]中、A12は、−COO−、−OCO−、−CONH−、−NHCO−、−CH2−、−O−、−CO−、又は−NH−を示し、A13は炭素数1〜22のアルキル基又はフッ素含有アルキル基を示す。) (In the formulas [A-25] to [A-30], A 12 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or It indicates -NH-, a 13 represents an alkyl group or a fluorine-containing alkyl group having 1 to 22 carbon atoms.)
式(4)で表されるジアミンの具体例としては、下記の式[A−31]〜式[A−32]で示されるジアミンを挙げることができるが、これに限るも
のではない。
Specific examples of the diamine represented by the formula (4) include diamines represented by the following formulas [A-31] to [A-32], but are not limited thereto.
[化25]
[Chemical 25]
この中でも、液晶を垂直に配向させる能力、液晶の応答速度の観点から、[A−1]、[A−2]、[A−3]、[A−4]、[A−5]、[A−25]、[A−26]、[A−27]、[A−28]、[A−29]、[A−30]のジアミンが好ましい。 Among these, [A-1], [A-2], [A-3], [A-4], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5], [A-5] The diamines of A-25], [A-26], [A-27], [A-28], [A-29], and [A-30] are preferable.
上記のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The diamine may be used alone or in combination of two or more depending on the liquid crystal alignment properties, pretilt angle, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
このような液晶を垂直に配向させる側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の5〜50モル%となる量を用いることが好ましく、より好ましくはジアミン成分の10〜40モル%が液晶を垂直に配向させる側鎖を有するジアミンであり、特に好ましくは15〜30モル%である。このように液晶を垂直に配向させる側鎖を有するジアミンを、ポリアミック酸の合成に用いるジアミン成分の5〜50モル%量用いると、応答速度の向上や液晶の配向固定化能力の点で特に優れる。 The diamine having a side chain for vertically aligning the liquid crystal is preferably used in an amount of 5 to 50 mol% of the diamine component used for the synthesis of the polyamic acid, more preferably 10 to 40 mol% of the diamine component. Is a diamine having a side chain for vertically aligning the liquid crystal, particularly preferably 15 to 30 mol%. When the diamine having a side chain for vertically aligning the liquid crystal is used in an amount of 5 to 50 mol% of the diamine component used for the synthesis of the polyamic acid, it is particularly excellent in terms of improving the response speed and the ability to fix the alignment of the liquid crystal. .
光反応性の側鎖を有するジアミンとしては、ビニル基、アクリル基、メタクリル基、アリル基、スチリル基、シンナモイル基、カルコニル基、クマリン基、マレイミド基、エポキシ基、ビニロキシ基、アクリロキシ基などの光反応性基を側鎖として有するジアミン、例えば、上記式(b)で表される側鎖を有するジアミンを挙げることができる。より具体的には例えば下記の一般式(6)で表されるジアミンを挙げることができるが、これに限定されるものではない。 Examples of diamines having photoreactive side chains include vinyl, acryl, methacryl, allyl, styryl, cinnamoyl, chalcone, coumarin, maleimide, epoxy, vinyloxy, and acryloxy groups. Examples thereof include diamines having a reactive group as a side chain, such as diamines having a side chain represented by the above formula (b). More specifically, examples include diamines represented by the following general formula (6), but are not limited thereto.
[化26]
[Chemical 26]
(式(6)中のR8、R9及びR10の定義は、上記式(b)と同じである。) (The definitions of R 8 , R 9 and R 10 in Formula (6) are the same as those in Formula (b) above.)
式(6)における二つのアミノ基(−NH2)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in Formula (6) is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
光反応性の側鎖を有するジアミンとしては、具体的には以下のような化合物が挙げられるが、これに限定されるものではない。 Specific examples of the diamine having a photoreactive side chain include, but are not limited to, the following compounds.
[化27]
[Chemical 27]
(式中、Xは単結合、又は、−O−、−COO−、−NHCO−、−NH−より選ばれる結合基、Yは単結合、又は、非置換またはフッ素原子によって置換されている炭素数1〜20のアルキレン基を表す。) (In the formula, X is a single bond or a linking group selected from —O—, —COO—, —NHCO—, and —NH—, Y is a single bond, or carbon that is unsubstituted or substituted by a fluorine atom. Represents an alkylene group of the number 1-20.)
上記光反応性基を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類または2種類以上を混合して使用することもできる。 The diamine having the photoreactive group depends on the liquid crystal orientation when used as a liquid crystal alignment film, the pretilt angle, voltage holding characteristics, characteristics such as stored charge, the response speed of the liquid crystal when used as a liquid crystal display element, One type or a mixture of two or more types can also be used.
また、このような光反応性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の10〜70モル%となる量を用いることが好ましく、より好ましくは20〜60モル%、特に好ましくは30〜50モル%である。 Further, the diamine having such a photoreactive side chain is preferably used in an amount of 10 to 70 mol%, more preferably 20 to 60 mol%, particularly preferably diamine components used for the synthesis of polyamic acid. Is 30 to 50 mol%.
なお、ポリアミック酸は、本発明の効果を損わない限りにおいて、上記液晶を垂直に配向させる側鎖を有するジアミンや、光反応性の側鎖を有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、例えば、p−フェニレンジアミン、2,3,5,6−テトラメチル−p−フェニレンジアミン、2,5−ジメチル−p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジメチル−m−フェニレンジアミン、2,5−ジアミノトルエン、2,6−ジアミノトルエン、2,5−ジアミノフェノール、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシ−4,4 ’−ジアミノビフェニル、3,3’−ジカルボキシ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’−ビフェニル、3,3’−トリフルオロメチル−4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、2,2’−ジアミノビフェニル、2,3’−ジアミノビフェニル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2’−ジアミノジフェニルメタン、2,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、2,3’−ジアミノジフェニルエーテル、4,4’ −スルホニルジアニリン、3,3’−スルホニルジアニリン、ビス(4−アミノフェニル)シラン、ビス(3−アミノフェニル)シラン、ジメチル−ビス(4−アミノフェニル)シラン、ジメチル−ビス(3−アミノフェニル)シラン、4,4’−チオジアニリン、3,3’−チオジアニリン、4,4’ −ジアミノジフェニルアミン、3,3’−ジアミノジフェニルアミン、3,4’−ジアミノジフェニルアミン、2,2’−ジアミノジフェニルアミン、2,3’−ジアミノジフェニルアミン、N−メチル(4,4’−ジアミノジフェニル)アミン、N−メチル(3,3’−ジアミノジフェニル)アミン、N−メチル(3,4’−ジアミノジフェニル)アミン、N−メチル(2,2 ’−ジアミノジフェニル)アミン、N−メチル(2,3’−ジアミノジフェニル)アミン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、1,4−ジアミノナフタレン、2,2’−ジアミノベンゾフェノン、2,3’−ジアミノベンゾフェノン、1,5−ジアミノナフタレン、1,6−ジアミノナフタレン、1,7−ジアミノナフタレン、1,8−ジアミノナフタレン、2,5−ジアミノナフタレン、2,6ジアミノナフタレン、2,7−ジアミノナフタレン、2,8−ジアミノナフタレン、1,2−ビス(4−アミノフェニル)エタン、1,2−ビス(3−アミノフェニル)エタン、1,3−ビス(4−アミノフェニル)プロパン、1,3−ビス(3−アミノフェニル)プロパン、1,4−ビス(4−アミノフェニル)ブタン、1,4−ビス(3−アミノフェニル)ブタン、ビス(3,5−ジエチル−4−アミノフェニル)メタン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(4−アミノベンジル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’ −[1,4−フェニレンビス(メチレン)]ジアニリン、4,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,3−フェニレンビス(メチレン)]ジアニリン、1,4−フェニレンビス[(4−アミノフェニル)メタノン]、1,4−フェニレンビス[(3−アミノフェニル)メタノン]、1,3−フェニレンビス[(4−アミノフェニル)メタノン]、1,3−フェニレンビス[(3−アミノフェニル)メタノン]、1,4−フェニレンビス(4−アミノベンゾエート)、1,4−フェニレンビス(3−アミノベンゾエート)、1,3−フェニレンビス(4−アミノベンゾエート)、1,3−フェニレンビス(3−アミノベンゾエート)、ビス(4−アミノフェニル)テレフタレート、ビス(3−アミノフェニル)テレフタレート、ビス(4−アミノフェニル)イソフタレート、ビス(3−アミノフェニル)イソフタレート、N,N’−(1,4−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,4−フェニレン)ビス(3−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(3−アミノベンズアミド)、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−ビス(3−アミノフェニル)テレフタルアミド、N,N’−ビス(4−アミノフェニル)イソフタルアミド、N,N’−ビス(3−アミノフェニル)イソフタルアミド、9,10−ビス(4−アミノフェニル)アントラセン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(3−アミノフェニル)プロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)プロパン、3,5−ジアミノ安息香酸、2,5−ジアミノ安息香酸、1,3−ビス(4−アミノフェノキシ)プロパン、1,3−ビス(3−アミノフェノキシ)プロパン、1,4−ビス(4−アミノフェノキシ)ブタン、1,4−ビス(3−アミノフェノキシ)ブタン、1,5−ビス(4−アミノフェノキシ)ペンタン、1,5−ビス(3−アミノフェノキシ)ペンタン、1,6−ビス(4−アミノフェノキシ)へキサン、1,6−ビス(3−アミノフェノキシ)へキサン、1,7−ビス(4−アミノフェノキシ)ヘプタン、1,7−(3−アミノフェノキシ)ヘプタン、1,8−ビス(4−アミノフェノキシ)オクタン、1,8−ビス(3−アミノフェノキシ)オクタン、1,9−ビス(4−アミノフェノキシ)ノナン、1,9−ビス(3−アミノフェノキシ)ノナン、1,10−(4−アミノフェノキシ)デカン、1,10−(3−アミノフェノキシ)デカン、1,11−(4−アミノフェノキシ)ウンデカン、1,11−(3−アミノフェノキシ)ウンデカン、1,12−(4−アミノフェノキシ)ドデカン、1,12−(3−アミノフェノキシ)ドデカンなどの芳香族ジアミン、ビス(4−アミノシクロヘキシル)メタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノへキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカンなどの脂肪族ジアミンが挙げられる。 In addition, as long as the polyamic acid does not impair the effect of the present invention, other diamines other than the diamine having a side chain for vertically aligning the liquid crystal and the diamine having a photoreactive side chain are used as a diamine component. Can be used together. Specifically, for example, p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl- m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2, 4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl 3,3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4,4′- Diaminobiphenyl, 3,3′-difluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 2,3′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2, 3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4 ' -Sulphonyldianiline, 3,3'-sulfonyl Dianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, 3 , 3′-thiodianiline, 4,4′-diaminodiphenylamine, 3,3′-diaminodiphenylamine, 3,4′-diaminodiphenylamine, 2,2′-diaminodiphenylamine, 2,3′-diaminodiphenylamine, N-methyl ( 4,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) Amine, N-methyl (2,3′-diaminodiphenyl) amine, 4,4′-dia Nobenzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1, , 6-Diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2 -Bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, , 4-bis (4-aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis ( 3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) Benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4 -Phenylenebis (methylene)] dianiline, 4,4 '-[1,3-phenylenebis (methylene)] dianiline, 3,4'-[1,4-phenylenebis (methylene)] dianiline, 3,4'- [1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] di Aniline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4 -Aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3- Aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenza) ), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1 , 3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis ( 4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, , 2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 3,5 -Diaminobenzoic acid, 2,5-diaminobenzoic acid, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) Butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, , 6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) Heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-amino) Phenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) Aromatic diamines such as undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, bis (4-aminocyclohexane) Sil) methane, alicyclic diamines such as bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diamino Aliphatic diamines such as xane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane .
上記その他のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を混合して使用することもできる。 The above-mentioned other diamines can be used alone or in combination of two or more according to properties such as liquid crystal orientation, pretilt angle, voltage holding property, and accumulated charge when the liquid crystal alignment film is formed.
ポリアミック酸の合成で上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7−アントラセンテトラカルボン酸、1,2,5,6−アントラセンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3 ’,4−ビフェニルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)エーテル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)ジメチルシラン、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン、2,3,4,5−ピリジンテトラカルボン酸、2,6−ビス(3,4−ジカルボキシフェニル)ピリジン、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸、1,3−ジフェニル−1,2,3,4−シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸、1,2,3,4−シクロヘプタンテトラカルボン酸、2,3,4,5−テトラヒドロフランテトラカルボン酸、3,4−ジカルボキシ−1−シクロへキシルコハク酸、2,3,5−トリカルボキシシクロペンチル酢酸、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸、ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸、ビシクロ[4,3,0]ノナン−2,4,7,9−テトラカルボン酸、ビシクロ[4,4,0]デカン−2,4,7,9−テトラカルボン酸、ビシクロ[4,4,0]デカン−2,4,8,10−テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン−3,5,9,11−テトラカルボン酸、1,2,3,4−ブタンテトラカルボン酸、4−(2,5−ジオキソテトラヒドロフラン−3−イル)−1,2,3,4−テトラヒドリナフタレン−1,2−ジカルボン酸、ビシクロ[2,2,2]オクト−7−エン−2,3,5,6−テトラカルボン酸、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロへキサン−1,2−ジカルボン酸、テトラシクロ[6,2,1,1,0,2,7]ドデカ−4,5,9,10−テトラカルボン酸、3,5,6−トリカルボキシノルボルナン−2:3,5:6ジカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸等が挙げられる。勿論、テトラカルボン酸二無水物も、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上併用してもよい。 The tetracarboxylic dianhydride to be reacted with the diamine component in the synthesis of polyamic acid is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetra Carboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxy) Phenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphe) Nyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3 , 4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3 4-cyclobutanetetracarboxylic acid, oxydiphthaltetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexane Tetracarboxylic acid, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl-1,2,3,4 Cyclobutanetetracarboxylic acid, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cycloheptanetetracarboxylic acid, 2,3,4,5-tetrahydrofurantetracarboxylic acid 3,4-dicarboxy-1-cyclohexylsuccinic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid, bicyclo [4,3,0] nonane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0 ] Decane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,8,10-tetracarboxylic acid, tricyclo [6.3.0.0 <2,6 >] Ndecane-3,5,9,11-tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydraphthalene-1,2-dicarboxylic acid, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic acid, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexane-1,2-dicarboxylic acid, tetracyclo [6,2,1,1,0,2,7] dodeca-4,5,9,10-tetracarboxylic acid, 3, Examples include 5,6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic acid and 1,2,4,5-cyclohexanetetracarboxylic acid. Of course, tetracarboxylic dianhydride may be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
ジアミン成分とテトラカルボン酸二無水物との反応により、ポリアミック酸を得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる方法である。ジアミン成分とテトラカルボン酸二無水物との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。 In obtaining a polyamic acid by a reaction between a diamine component and tetracarboxylic dianhydride, a known synthesis method can be used. In general, the diamine component and tetracarboxylic dianhydride are reacted in an organic solvent. The reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
上記反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。さらに、ポリアミック酸が溶解しない有機溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。反応に用いる有機溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N−メチルホルムアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミド、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ −ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノン、2−エチル−1−ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。 The organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid dissolves. Furthermore, even if it is an organic solvent in which a polyamic acid does not melt | dissolve, you may mix and use the said solvent in the range which the produced | generated polyamic acid does not precipitate. In addition, since the water | moisture content in an organic solvent inhibits a polymerization reaction and also causes the produced polyamic acid to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent. Examples of the organic solvent used in the reaction include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2- Pyrrolidone, 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl Rosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether , Propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Propylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, dioxane, n-hexane, n-pentane, n-octane, Diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, Methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl -2-pentanone, 2-ethyl-1-hexanol and the like. These organic solvents may be used alone or in combination.
ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌し、テトラカルボン酸二無水物成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。 When the diamine component and the tetracarboxylic dianhydride component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or in an organic solvent. A method of adding by dispersing or dissolving in a solvent, a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component. The method of adding alternately etc. is mentioned, You may use any of these methods. In addition, when the diamine component or tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. The body may be mixed and reacted to form a high molecular weight body.
ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば−20℃〜150℃、好ましくは−5℃〜100℃の範囲である。また、反応は任意の濃度で行うことができ、例えば反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1〜50質量%、好ましくは5〜30質量%である。 The temperature at the time of making a diamine component and a tetracarboxylic dianhydride component react can select arbitrary temperatures, for example, -20 degreeC-150 degreeC, Preferably it is the range of -5 degreeC-100 degreeC. Moreover, reaction can be performed by arbitrary density | concentrations, for example, the total amount of a diamine component and a tetracarboxylic dianhydride component is 1-50 mass% with respect to the reaction liquid, Preferably it is 5-30 mass%.
上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。あえて好ましい範囲を示すならば0.8〜1.2である。 The ratio of the total number of moles of the tetracarboxylic dianhydride component with respect to the total number of moles of the diamine component in the polymerization reaction can be selected according to the molecular weight of the polyamic acid to be obtained. Similar to the normal polycondensation reaction, the molecular weight of the polyamic acid produced increases as the molar ratio approaches 1.0. If it shows a preferable range, it is 0.8 to 1.2.
本発明に用いられるポリアミック酸を合成する方法は上記の手法に限定されず、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。 The method for synthesizing the polyamic acid used in the present invention is not limited to the above-described method, and in the same manner as the general polyamic acid synthesis method, instead of the tetracarboxylic dianhydride, a tetracarboxylic acid having a corresponding structure is used. The corresponding polyamic acid can also be obtained by reacting by a known method using a tetracarboxylic acid derivative such as acid or tetracarboxylic acid dihalide.
上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、必ずしも100%である必要はない。 Examples of the method for imidizing the polyamic acid to form a polyimide include thermal imidization in which a polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution. The imidation ratio from polyamic acid to polyimide is not necessarily 100%.
ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃〜400℃、好ましくは120℃〜250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。 The temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably performed while removing water generated by the imidation reaction from the system.
ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、−20〜250℃、好ましくは0〜180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5〜30モル倍、好ましくは2〜20モル倍であり、酸無水物の量はアミド酸基の1〜50モル倍、好ましくは3〜30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより
制御することができる。
The catalytic imidation of the polyamic acid can be performed by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
また、ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドと、上記ポリアミック酸の合成と同様のジアミンとの反応や、テトラカルボン酸ジエステルと上記ポリアミック酸の合成と同様のジアミンとを適当な縮合剤や、塩基の存在下等にて反応させることにより、製造することができる。または、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してアミック酸中のカルボン酸をエステル化することでも得ることができる。具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で−20℃〜150℃、好ましくは0℃〜50 ℃において、30分〜24時間、好ましくは1時間〜4時間反応させることによって、ポリアミック酸エステルを合成することができる。そして、ポリアミック酸エステルを高温で加熱し、脱アルコールを促し閉環させることに
よっても、ポリイミドを得ることができる。
The polyamic acid ester is a reaction of a tetracarboxylic acid diester dichloride with a diamine similar to the synthesis of the polyamic acid, a suitable condensing agent with a diamine similar to the synthesis of the tetracarboxylic acid diester and the polyamic acid, It can be produced by reacting in the presence of a base or the like. Alternatively, it can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxylic acid in the amic acid using a polymer reaction. Specifically, for example, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 hour. A polyamic acid ester can be synthesized by reacting for ˜4 hours. The polyimide can also be obtained by heating the polyamic acid ester at a high temperature to promote dealcoholization and ring closure.
ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体又はポリイミドの反応溶液から、生成したポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2〜10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the polyimide precursor or polyimide such as polyamic acid and polyamic acid ester produced from the polyimide precursor or polyimide reaction solution such as polyamic acid and polyamic acid ester, the reaction solution is poured into a poor solvent and precipitated. You can do it. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating. Moreover, when the polymer which carried out precipitation collection | recovery is re-dissolved in an organic solvent and the operation which carries out reprecipitation collection | recovery is repeated 2 to 10 times, the impurity in a polymer can be decreased. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
また、液晶を垂直に配向させる側鎖を有するポリシロキサンを製造する方法は特に限定されないが、例えば、アルコキシシランやアルコキシシランの縮合物を重縮合することにより製造することができる。なお、アルコキシシランの縮合物とは、アルコキシシランの2量体等、アルコキシシランの多量体である。このアルコキシシランとして、液晶を垂直に配向させる側鎖を有するアルコキシシランを用いれば、液晶を垂直に配向させる側鎖を有するポリシロキサンを形成できる。また、液晶を垂直に配向させるポリシロキサンに、光反応性の側鎖を含有させる場合は、光反応性の側鎖を有するアルコキシシランやその縮合体を用いればよい。 The method for producing a polysiloxane having a side chain for vertically aligning the liquid crystal is not particularly limited. For example, it can be produced by polycondensing alkoxysilane or a condensate of alkoxysilane. The alkoxysilane condensate is a multimer of alkoxysilane such as a dimer of alkoxysilane. If an alkoxysilane having a side chain for vertically aligning the liquid crystal is used as the alkoxysilane, a polysiloxane having a side chain for vertically aligning the liquid crystal can be formed. In addition, when the polysiloxane that vertically aligns the liquid crystal contains a photoreactive side chain, an alkoxysilane having a photoreactive side chain or a condensate thereof may be used.
液晶を垂直に配向させる側鎖を有するアルコキシシランとしては、長鎖のアルキル基、長鎖アルキル基の途中に環構造や枝分かれ構造を有する基、ステロイド基等の炭化水素基や、これらの基の水素原子の一部又は全部をフッ素原子に置き換えた基を側鎖として有するアルコキシシラン、例えば、上記式(7)で表されるアルコキシシランが挙げられる。上記式(7)において、好ましくはR11がアルキル基又はフルオロアルキル基であり、特に好ましくはアルキル基である。また、R12は、炭素数1〜5のアルキル基が好ましく、特に好ましくは炭素数1〜3のアルキル基である。より好ましくは、R12がメチル基又はエチル基である。 Examples of alkoxysilanes having side chains for vertically aligning liquid crystals include long-chain alkyl groups, groups having a ring structure or a branched structure in the middle of long-chain alkyl groups, hydrocarbon groups such as steroid groups, and the like of these groups. Examples include alkoxysilanes having a group in which part or all of the hydrogen atoms are replaced with fluorine atoms as side chains, for example, alkoxysilanes represented by the above formula (7). In the above formula (7), R 11 is preferably an alkyl group or a fluoroalkyl group, and particularly preferably an alkyl group. R 12 is preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably an alkyl group having 1 to 3 carbon atoms. More preferably, R 12 is a methyl group or an ethyl group.
このような上記式(7)で表されるアルコキシシランの具体例は、例えば、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、ウンデシルトリエトキシシラン、ウンデシルトリメトキシシラン、21−ドコセニルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、イソオクチルトリエトキシシラン、フェネチルトリエトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、(1−ナフチル)トリエトキシシラン、(1−ナフチル)トリメトキシシラン等が挙げられる。なかでも、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリメトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、ノナデシルトリメトキシシラン、ノナデシルトリエトキシシラン、ウンデシルトリエトキシシラン、又はウンデシルトリメトキシシラン、トリエトキシビニルシラン、トリメトキシビニルシラン、トリエトキシアリルシラン、トリメトキシアリルシラン、トリエトキシススチリルシラン、トリメトキシスチリルシランが好ましい。 Specific examples of the alkoxysilane represented by the above formula (7) include, for example, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, and dodecyltriethoxysilane. , Hexadecyltrimethoxysilane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane, heptadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadecyltrimethoxysilane, nonadecyltriethoxysilane, undecyltri Ethoxysilane, undecyltrimethoxysilane, 21-docosenyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane Heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, isooctyltriethoxysilane, phenethyltriethoxysilane, pentafluorophenylpropyltrimethoxysilane, (1-naphthyl) triethoxysilane, (1-naphthyl) trimethoxy Silane etc. are mentioned. Among them, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, heptadecyltrimethoxysilane , Heptadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, nonadecyltrimethoxysilane, nonadecyltriethoxysilane, undecyltriethoxysilane, or undecyltrimethoxysilane, triethoxyvinylsilane, trimethoxyvinylsilane, Triethoxyallylsilane, trimethoxyallylsilane, triethoxystyrylsilane, and trimethoxystyrylsilane are preferable.
その他の液晶を垂直に配向させる側鎖を有するアルコキシシランとして、上記式(a)で表される側鎖を有するアルコキシシランを挙げることができる。 Examples of the alkoxysilane having a side chain for vertically aligning the liquid crystal include an alkoxysilane having a side chain represented by the above formula (a).
上記式(7)で表されるアルコキシシランや、上記式(a)で表される側鎖を有するアルコキシシラン等の液晶を垂直に配向させる側鎖を有するアルコキシシランは、良好な液晶配向性を得るために、ポリシロキサンを得るために用いる全アルコキシシラン中において、0.1モル%以上が好ましく、より好ましくは0.5モル%以上、更に好ましくは1モル%以上である。また、形成される液晶配向膜が充分な硬化特性を得るためには、30モル%以下が好ましく、より好ましくは22モル%以下である。 An alkoxysilane having a side chain that vertically aligns a liquid crystal such as an alkoxysilane represented by the above formula (7) or an alkoxysilane having a side chain represented by the above formula (a) has good liquid crystal orientation. In order to obtain, in all the alkoxysilanes used for obtaining polysiloxane, 0.1 mol% or more is preferable, More preferably, it is 0.5 mol% or more, More preferably, it is 1 mol% or more. Moreover, in order for the liquid crystal aligning film formed to acquire sufficient hardening characteristics, 30 mol% or less is preferable, More preferably, it is 22 mol% or less.
また、光反応性の側鎖を有するアルコキシシランとしては、ビニル基、アクリル基、メタクリル基、アリル基、スチリル基、シンナモイル基、カルコニル基、クマリン基、マレイミド基、エポキシ基、ビニロキシ基、アクリロキシ基などの光反応性基を有する側鎖、例えば、これらの光反応性基自体や、これらの光反応性基で水素原子が置換されたアルキル基などを側鎖として有するアルコキシシラン、具体的には、上記式(8)で表されるアルコキシシランが挙げられる。上記式(8)において、R13で置換されている水素原子は1つ以上であり、好ましくは1つである。また、R13のアルキル基の炭素数は1〜30が好ましく、より好ましくは1〜10、更に好ましくは1〜5である。R14は、炭素数1〜5のアルキル基が好ましく、特に好ましくは炭素数1〜3のアルキル基である。より好ましくは、R14がメチル基又はエチル基である。 Examples of the alkoxysilane having a photoreactive side chain include a vinyl group, an acrylic group, a methacryl group, an allyl group, a styryl group, a cinnamoyl group, a chalcone group, a coumarin group, a maleimide group, an epoxy group, a vinyloxy group, and an acryloxy group. A side chain having a photoreactive group such as, for example, these photoreactive groups themselves, or an alkoxysilane having, as a side chain, an alkyl group in which a hydrogen atom is substituted with these photoreactive groups, And alkoxysilanes represented by the above formula (8). In the above formula (8), the number of hydrogen atoms substituted with R 13 is one or more, preferably one. The number of carbon atoms in the alkyl group of R 13 is preferably 1 to 30, more preferably 1 to 10, more preferably from 1 to 5. R 14 is preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably an alkyl group having 1 to 3 carbon atoms. More preferably, R 14 is a methyl group or an ethyl group.
このような上記式(8)で表されるアルコキシシランの具体例は、例えば、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン等が挙げられる。 Specific examples of the alkoxysilane represented by the above formula (8) include, for example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltrimethyl. Examples include ethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, acryloxyethyltrimethoxysilane, and acryloxyethyltriethoxysilane.
その他の光反応性の側鎖を有するアルコキシシランとしては、上記式(b)で表される側鎖を有するアルコキシシランを挙げることができる。 Examples of other alkoxysilanes having photoreactive side chains include alkoxysilanes having side chains represented by the above formula (b).
上記式(8)で表されるアルコキシシランや、上記式(b)で表される側鎖を有するアルコキシシラン等の光反応性の側鎖を有するアルコキシシランは、形成される液晶配向膜を充分に硬化させるためには、ポリシロキサンを得るために用いる全アルコキシシラン中において、60モル%以下が好ましいが、垂直配向性の観点からは60モル%以上含有させると低下の懸念があるため20〜50モル%が好ましい。 An alkoxysilane having a photoreactive side chain such as an alkoxysilane represented by the above formula (8) or an alkoxysilane having a side chain represented by the above formula (b) is sufficient to form a liquid crystal alignment film. In order to cure it, it is preferably 60 mol% or less in all alkoxysilanes used to obtain polysiloxane, but from the viewpoint of vertical alignment, if it is contained in an amount of 60 mol% or more, there is a concern that the content will decrease. 50 mol% is preferable.
また、その他のアルコキシシランを用いてもよい。その他のアルコキシシランとしては、下記式(9)で表されるアルコキシシランが挙げられる。下記式(9)で表されるアルコキシシランを一種又は複数種用いることにより、基板との密着性、液晶分子との親和性を向上させることができる。 Further, other alkoxysilanes may be used. Examples of other alkoxysilanes include alkoxysilanes represented by the following formula (9). By using one or a plurality of alkoxysilanes represented by the following formula (9), the adhesion with the substrate and the affinity with the liquid crystal molecules can be improved.
(R15)nSi(OR16)4-n (9)
(式(9)中、R15は、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基若しくはウレイド基で置換されていてもよい、炭素数1〜6の炭化水素基であり、R16は炭素原子数1〜5のアルキル基であり、nは0〜3の整数を表す。)
(R 15 ) n Si (OR 16 ) 4-n (9)
(In the formula (9), R 15 is a carbon atom having 1 to 6 carbon atoms which may be substituted with a hydrogen atom, a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group. A hydrogen group, R 16 is an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 3.)
上記式(9)のアルコキシシランにおいて、R15が水素原子である場合の具体例としては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン等が挙げられる。 In the alkoxysilane of the above formula (9), specific examples when R 15 is a hydrogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane and the like.
また、上記式(9)のアルコキシシランにおいて、R15がヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基若しくはウレイド基で置換されていてもよい、炭素数1〜6の炭化水素基である場合の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリエトキシシラン、2−アミノエチルアミノメチルトリメトキシシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、3−メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシラン及びγ−ウレイドプロピルトリプロポキシシラン等が挙げられる。 Further, in the alkoxysilane of the above formula (9), R 15 may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group. Specific examples of the hydrogen group include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, methyltripropoxysilane, and 3-aminopropyl. Trimethoxysilane, 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) Propyl) trimethoxysila 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltri Methoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxy Silane, diethyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethyl Tokishishiran, trimethyl silane, trimethyl silane, .gamma.-ureidopropyltriethoxysilane, .gamma.-ureidopropyltrimethoxysilane and .gamma.-ureidopropyl tripropoxysilane, and the like.
上記式(9)で表されるアルコキシシランにおいて、nが0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、上記式(7)で表されるアルコキシシラン及び上記式(8)で表されるアルコキシシランと重縮合し易いため、用いることが好ましい。このような上記式(9)においてnが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランが好ましく、特にテトラメトキシシラン又はテトラエトキシシランが好ましい。 In the alkoxysilane represented by the above formula (9), the alkoxysilane in which n is 0 is tetraalkoxysilane. Tetraalkoxysilane is preferably used because it easily polycondenses with the alkoxysilane represented by the above formula (7) and the alkoxysilane represented by the above formula (8). As the alkoxysilane in which n is 0 in the above formula (9), tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
上記式(9)で表されるアルコキシシランを用いる場合、上記式(9)で表されるアルコキシシランの使用量は、ポリシロキサンを得るために用いる全アルコキシシラン中において、10〜99.8モル%であることが好ましく、より好ましくは、35〜96.9モル%である。 When the alkoxysilane represented by the above formula (9) is used, the amount of the alkoxysilane represented by the above formula (9) is 10 to 99.8 mol in all alkoxysilanes used for obtaining the polysiloxane. %, More preferably 35-96.9 mol%.
このようなアルコキシシランやその縮合物を重縮合する方法として、例えば、アルコキシシランやその縮合物をアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシランやその縮合物中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5〜2.5倍モルであるのが好ましい。 Examples of a method for polycondensing such alkoxysilane and its condensate include a method of hydrolyzing and condensing alkoxysilane and its condensate in a solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, it is theoretically necessary to add 0.5 moles of water of all alkoxy groups in the alkoxysilane or its condensate, but usually an excess of water is added in excess of 0.5 moles. Is preferred. In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually preferably 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩;などの触媒が用いられる。加えて、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌したり、還流下で1時間加熱・撹拌するなどの方法が挙げられる。 Usually, for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, triethylamine A metal salt such as hydrochloric acid, sulfuric acid or nitric acid; In addition, it is also common to further promote the hydrolysis / condensation reaction by heating the solution in which the alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, heating and stirring at 50 ° C. for 24 hours, heating and stirring for 1 hour under reflux, and the like can be mentioned.
また、別法として、例えば、アルコキシシランやその縮合物、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランやその縮合物を混合する方法である。その際、用いる蓚酸の量は、アルコキシシランやその縮合物が有する全アルコキシ基の1モルに対して0.2〜2モルとすることが好ましい。この方法における加熱は、液温50〜180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分から十数時間加熱する方法である。 As another method, for example, a method of polycondensation by heating a mixture of alkoxysilane, its condensate, solvent and oxalic acid can be mentioned. Specifically, oxalic acid is added to alcohol in advance to obtain an alcohol solution of oxalic acid, and then the alkoxysilane and its condensate are mixed while the solution is heated. At that time, the amount of succinic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all alkoxy groups contained in the alkoxysilane or its condensate. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. Preferably, it is a method of heating for several tens of minutes to several tens of hours under reflux so that evaporation or volatilization of the liquid does not occur.
ポリシロキサンを得る際に、アルコキシシランやその縮合物を複数種用いる場合は、アルコキシシランやその縮合物をあらかじめ混合した混合物として混合してもよいし、複数種のアルコキシシランやその縮合物を順次混合してもよい。 When using multiple types of alkoxysilane and its condensate when obtaining polysiloxane, the alkoxysilane and its condensate may be mixed as a premixed mixture, or multiple types of alkoxysilane and its condensate are sequentially added. You may mix.
アルコキシシランやその縮合物を重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、アルコキシシランやその縮合物を溶解するものであれば特に限定されない。また、アルコキシシランやその縮合物が溶解しない場合でも、アルコキシシランやその縮合物の重縮合反応の進行とともに溶解するものであればよい。一般的には、アルコキシシランやその縮合物の重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。 The solvent used for polycondensation of alkoxysilane and its condensate (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it dissolves alkoxysilane and its condensate. Moreover, even if alkoxysilane and its condensate do not melt | dissolve, what is necessary is just to melt | dissolve with progress of the polycondensation reaction of alkoxysilane and its condensate. In general, since an alcohol is generated by a polycondensation reaction of alkoxysilane or its condensate, alcohols, glycols, glycol ethers, or organic solvents having good compatibility with alcohols are used.
このような重縮合溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類:エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,2−ペンタンジオール、1,3−ペンタンジオール、1,4−ペンタンジオール、1,5−ペンタンジオール、2,4−ペンタンジオール、2,3−ペンタンジオール、1,6−ヘキサンジオール等のグリコール類:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、γ−ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m−クレゾール等が挙げられる。重合溶媒は、複数種混合して用いてもよい。 Specific examples of such a polycondensation solvent include alcohols such as methanol, ethanol, propanol, butanol, and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, and 1,3-propanediol. 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, Glycols such as 1,5-pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether Ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether Ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether Glycol ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone , Dimethyl sulfoxide, tetramethylurea, hexamethylphosphotriamide, m-cresol and the like. A plurality of polymerization solvents may be used as a mixture.
上記の方法で得られたポリシロキサンの重合溶液(以下、重合溶液ともいう。)は、原料として用いた全アルコキシシランのケイ素原子をSiO2に換算した濃度(以下、SiO2換算濃度と称す。)が、好ましくは20質量%以下、さらに好ましくは5〜15質量%である。この濃度範囲において任意の濃度を選択することにより、ゲルの生成を抑え、均質な溶液を得ることができる。 The polysiloxane polymerization solution (hereinafter, also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes used as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). ) Is preferably 20% by mass or less, more preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.
なお、本発明においては、上記の方法で得られた重合溶液をそのまま液晶配向剤に含有させてもよいし、ポリシロキサンを析出させて固体として液晶配向剤に含有させてもよいし、また、上記の方法で得られた溶液を、濃縮したり、溶媒を加えて希釈したり又は他の溶媒に置換して、液晶配向剤に含有させてもよい。その際、用いる溶媒(以下、添加溶媒ともいう)は、重合溶媒と同じでもよいし、別の溶媒でもよい。この添加溶媒は、ポリシロキサンが均一に溶解している限りにおいて特に限定されず、一種でも複数種でも任意に選択して用いることができる。このような添加溶媒の具体例としては、上記した重合溶媒の例として挙げた溶媒のほかに、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸メチル、酢酸エチル、乳酸エチル等のエステル類が挙げられる。これらの溶媒は、液晶配向剤の粘度の調整、又はスピンコート、フレキソ印刷、インクジェット等で液晶配向剤を基板上に塗布する際の塗布性を向上できるものである。 In the present invention, the polymerization solution obtained by the above method may be contained in the liquid crystal aligning agent as it is, or the polysiloxane may be precipitated and contained as a solid in the liquid crystal aligning agent. The solution obtained by the above method may be concentrated, diluted by adding a solvent, or substituted with another solvent and contained in the liquid crystal aligning agent. In that case, the solvent to be used (hereinafter also referred to as additive solvent) may be the same as the polymerization solvent, or may be another solvent. The additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used. Specific examples of such an additive solvent include, in addition to the solvents mentioned as examples of the polymerization solvent described above, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as methyl acetate, ethyl acetate, and ethyl lactate. Can be mentioned. These solvents can improve the coating property when the liquid crystal aligning agent is applied onto the substrate by adjusting the viscosity of the liquid crystal aligning agent, or by spin coating, flexographic printing, ink jetting or the like.
本発明の液晶配向剤は、上述したように上記式(1)で表される重合性化合物と、液晶を垂直に配向させる液晶配向膜を形成する重合体と、溶媒とを有するものであればよく、その配合割合に特に限定はないが、上記式(1)で表される重合性化合物の含有量は、液晶を垂直に配向させる液晶配向膜を形成する重合体100質量部に対して、1〜50質量部であることが好ましく、さらに好ましくは5〜30質量部である。また、液晶配向剤に含有させる液晶を垂直に配向させる液晶配向膜を形成する重合体の含有量は1質量%〜20質量%が好ましく、より好ましくは3質量%〜15質量%、特に好ましくは3質量%〜10質量%である。 As long as the liquid crystal aligning agent of the present invention has the polymerizable compound represented by the above formula (1), the polymer forming the liquid crystal aligning film for vertically aligning the liquid crystal, and the solvent as described above. Well, the mixing ratio is not particularly limited, but the content of the polymerizable compound represented by the above formula (1) is based on 100 parts by mass of the polymer that forms the liquid crystal alignment film that aligns the liquid crystal vertically. It is preferable that it is 1-50 mass parts, More preferably, it is 5-30 mass parts. The content of the polymer forming the liquid crystal alignment film for vertically aligning the liquid crystal contained in the liquid crystal aligning agent is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably. 3% by mass to 10% by mass.
また、本発明の液晶配向剤は、液晶を垂直に配向させる液晶配向膜を形成する重合体以外の他の重合体を含有していてもよい。その際、重合体全成分中におけるかかる他の重合体の含有量は0.5質量%〜15質量%が好ましく、より好ましくは1質量%〜10質量%である。 Moreover, the liquid crystal aligning agent of this invention may contain other polymers other than the polymer which forms the liquid crystal aligning film which orientates a liquid crystal vertically. In that case, 0.5 mass%-15 mass% are preferable, and, as for content of this other polymer in a polymer whole component, More preferably, they are 1 mass%-10 mass%.
液晶配向剤が有する重合体の分子量は、液晶配向剤を塗布して得られる液晶配向膜の強度及び、塗膜形成時の作業性、塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000〜1,000,000とするのが好ましく、より好ましくは、10,000〜150,000である。 The molecular weight of the polymer of the liquid crystal aligning agent is determined based on GPC (Gel Permeation Chromatography) in consideration of the strength of the liquid crystal aligning film obtained by applying the liquid crystal aligning agent, workability during coating film formation, and uniformity of the coating film. ) Is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000 in terms of weight average molecular weight measured by the method.
液晶配向剤が含有する溶媒に特に限定はなく、上記式(1)で表される重合性化合物や、液晶を垂直に配向させる液晶配向膜を形成する重合体等の含有成分を溶解または分散できるものであればよい。例えば、上記のポリアミック酸の合成で例示したような有機溶媒や、ポリシロキサンの合成で示した重合溶媒や添加溶媒を挙げることができる。中でもN−メチル−2−ピロリドン、γ−ブチロラクトン、N−エチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミドは、溶解性の観点から好ましい。勿論、2種類以上の混合溶媒を用いてもよい。 There is no particular limitation on the solvent contained in the liquid crystal aligning agent, and it is possible to dissolve or disperse the components such as the polymerizable compound represented by the above formula (1) and the polymer that forms the liquid crystal alignment film that vertically aligns the liquid crystal. Anything is acceptable. For example, organic solvents as exemplified in the above synthesis of polyamic acid, polymerization solvents and additive solvents shown in the synthesis of polysiloxane can be mentioned. Among these, N-methyl-2-pyrrolidone, γ-butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and 3-methoxy-N, N-dimethylpropanamide are soluble. To preferred. Of course, two or more kinds of mixed solvents may be used.
また、塗膜の均一性や平滑性を向上させる溶媒を、液晶配向剤の含有成分の溶解性が高い溶媒に混合して使用すると好ましい。塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル、2−エチル−1−ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5〜80質量%であることが好ましく、より好ましくは20〜60質量%である。 Moreover, it is preferable to mix and use the solvent which improves the uniformity and smoothness of a coating film in the solvent with the high solubility of the component of a liquid crystal aligning agent. Solvents that improve the uniformity and smoothness of the coating include, for example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol Tolu, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether , Dipropylene glycol monomethyl Ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether Dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, dii Butylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, acetic acid Ethyl, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1- Phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2- Ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester, 2-ethyl-1-hexanol and the like. A plurality of these solvents may be mixed. When using these solvents, it is preferable that it is 5-80 mass% of the whole solvent contained in a liquid crystal aligning agent, More preferably, it is 20-60 mass%.
液晶配向剤には、上記以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜と基板との密着性を向上させる化合物などが挙げられる。 The liquid crystal aligning agent may contain components other than those described above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate.
膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R−30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、液晶配向剤に含有される重合体の総量100質量部に対して、好ましくは0.01〜2質量部、より好ましくは0.01〜1質量部である。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) ), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). When these surfactants are used, the use ratio thereof is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent. 1 part by mass.
液晶配向膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’ −テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4、4’−ジアミノジフェニルメタン、3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシラン、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。また液晶配向膜の膜強度をさらに上げるために2,2’−ビス(4−ヒドロキシ−3,5−ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、液晶配向剤に含有される重合体の総量100質量部に対して0.1〜30質量部であることが好ましく、より好ましくは1〜20質量部である。 Specific examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N′-tetraglycidyl-4, 4′-diaminodiphenylmethane, 3- (N-allyl-N-glycidyl) aminopropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane and the like. . In order to further increase the film strength of the liquid crystal alignment film, a phenol compound such as 2,2'-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added. When using these compounds, it is preferable that it is 0.1-30 mass parts with respect to 100 mass parts of total amounts of the polymer contained in a liquid crystal aligning agent, More preferably, it is 1-20 mass parts.
さらに、液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 In addition to the above, the liquid crystal aligning agent is added with a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant or conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. May be.
また、液晶配向剤に無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤などを含有させてもよい。 Further, the liquid crystal aligning agent may contain inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, surfactants, and the like.
無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、又はフッ化マグネシウム微粒子等の微粒子が好ましく、特にコロイド溶液の状態であるものが好ましい。このコロイド溶液は、無機微粒子を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状及びその他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径が0.001〜0.2μmであることが好ましく、更に好ましくは0.001〜0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。 As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and those in the state of a colloidal solution are particularly preferable. This colloidal solution may be a dispersion of inorganic fine particles in a dispersion medium, or a commercially available colloidal solution. In the present invention, the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions. The inorganic fine particles preferably have an average particle size of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm. When the average particle diameter of the inorganic fine particles exceeds 0.2 μm, the transparency of the cured film formed using the prepared coating liquid may be lowered.
無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが1〜10に調整されていることが好ましい。より好ましくは2〜7である。 Examples of the dispersion medium for the inorganic fine particles include water and organic solvents. As a colloidal solution, it is preferable that pH or pKa is adjusted to 1-10 from the viewpoint of the stability of the coating liquid for forming a film. More preferably, it is 2-7.
コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン等のエステル類;テトラヒドロフラン、1,4−ジオキサン等のエ−テル類を挙げることができる。これらの中で、アルコール類又はケトン類が好ましい。これら有機溶剤は、単独で又は2種以上を混合して分散媒として使用することができる。 Examples of the organic solvent used for the dispersion medium of the colloidal solution include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; Examples include ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols or ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
メタロキサンオリゴマー、メタロキサンポリマーとしては、ケイ素、チタン、アルミニウム、タンタル、アンチモン、ビスマス、錫、インジウム、亜鉛等の単独又は複合酸化物前駆体が用いられる。メタロキサンオリゴマー、メタロキサンポリマーとしては、市販品であっても、金属アルコキシド、硝酸塩、塩酸塩、カルボン酸塩等のモノマーから、加水分解等の常法により得られたものであってもよい。 As the metalloxane oligomer and metalloxane polymer, single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used. The metalloxane oligomer or metalloxane polymer may be a commercially available product or may be obtained from a monomer such as a metal alkoxide, nitrate, hydrochloride, or carboxylate by a conventional method such as hydrolysis.
市販品のメタロキサンオリゴマー、メタロキサンポリマーの具体例としては、コルコート社製の、メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48、EMS−485、SS−101等のシロキサンオリゴマー又はシロキサンポリマー、関東化学社製のチタニウム−n−ブトキシドテトラマー等のチタノキサンオリゴマーが挙げられる。これらは単独又は2種以上混合して使用してもよい。 Specific examples of commercially available metalloxane oligomers and metalloxane polymers include siloxane oligomers or siloxanes such as methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, and SS-101 manufactured by Colcoat. Examples thereof include titanoxane oligomers such as a polymer and titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Inc. You may use these individually or in mixture of 2 or more types.
また、レベリング剤及び界面活性剤等は、公知のものを用いることができ、特に市販品は入手が容易なので好ましい。 Moreover, a leveling agent, surfactant, etc. can use a well-known thing, and since a commercial item is easy to acquire especially, it is preferable.
本発明の液晶配向剤を調製する方法は特に限定されない。上記式(1)で表される重合性化合物、液晶を垂直に配向させる液晶配向膜を形成する重合体、その他必要に応じて加えられるその他の成分が均一に混合した状態になるようにすればよい。例えば、通常、ポリシロキサンは、上記のように溶媒中で重縮合されるので、ポリシロキサンの溶液をそのまま用いるか、ポリシロキサンの溶液に必要に応じてその他の成分を添加することが簡便である。更に、ポリシロキサンの重合溶液をそのまま用いる方法が最も簡便である。 The method for preparing the liquid crystal aligning agent of the present invention is not particularly limited. If the polymerizable compound represented by the above formula (1), the polymer forming the liquid crystal alignment film for vertically aligning the liquid crystal, and other components added as needed are mixed uniformly. Good. For example, since polysiloxane is usually polycondensed in a solvent as described above, it is convenient to use the polysiloxane solution as it is or to add other components to the polysiloxane solution as necessary. . Furthermore, the most convenient method is to use the polysiloxane polymerization solution as it is.
また、液晶配向剤中における液晶を垂直に配向させる液晶配向膜を形成する重合体の含有量を調整する際には、上述したポリアミック酸の合成で例示したような有機溶媒や、ポリシロキサンの重合溶媒及び添加溶媒からなる群から選ばれる溶媒を用いることができる。 In addition, when adjusting the content of the polymer that forms the liquid crystal alignment film that vertically aligns the liquid crystal in the liquid crystal aligning agent, an organic solvent such as exemplified in the synthesis of the polyamic acid described above, or polymerization of polysiloxane is used. A solvent selected from the group consisting of a solvent and an additive solvent can be used.
この液晶配向剤を基板上に塗布して焼成することにより、液晶を垂直に配向させる液晶配向膜を形成することができる。本発明の液晶配向剤は、上記式(1)で表される重合性化合物を有するため、得られる液晶配向膜を用いた液晶表示素子の応答速度を速いものとすることができる。 By applying and baking this liquid crystal aligning agent on a substrate, a liquid crystal alignment film for vertically aligning liquid crystals can be formed. Since the liquid crystal aligning agent of this invention has a polymeric compound represented by the said Formula (1), it can make the response speed of the liquid crystal display element using the obtained liquid crystal aligning film quick.
例えば、本発明の液晶配向剤を、基板に塗布した後、必要に応じて乾燥し、焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子に電圧を印加した状態でUVを照射することも可能である。特に、PSA用配向膜として使用することが有用である。 For example, after apply | coating the liquid crystal aligning agent of this invention to a board | substrate, after drying as needed, the cured film obtained by baking can also be used as a liquid crystal aligning film as it is. In addition, the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam, or a voltage is applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film It is also possible to irradiate with UV. In particular, it is useful to use as an alignment film for PSA.
この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。 At this time, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, Plastic substrates such as trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose can be used. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
液晶配向剤の塗布方法は特に限定されず、スクリーン印刷、オフセット印刷、フレキソ印刷等の印刷法、インクジェット法、スプレー法、ロールコート法や、ディップ、ロールコーター、スリットコーター、スピンナーなどが挙げられる。生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。 The method for applying the liquid crystal aligning agent is not particularly limited, and examples thereof include screen printing, offset printing, flexographic printing, and other printing methods, ink jet methods, spray methods, roll coating methods, dip, roll coater, slit coater, and spinner. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.
液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃〜150℃、好ましくは60℃〜100℃のホットプレート上で、0.5分〜30分、好ましくは1分〜5分乾燥させる方法が挙げられる。 The drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. It is preferable. The drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes.
上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。液晶配向剤を塗布することにより形成された塗膜の焼成温度は限定されず、例えば100〜350℃の任意の温度で行うことができる。液晶配向剤が液晶を垂直に配向させる側鎖を有するポリイミド前駆体や該ポリイミド前駆体をイミド化させて得られるポリイミドを含有する場合は、好ましくは120℃〜300℃であり、さらに好ましくは150℃〜250℃である。また、液晶配向剤が液晶を垂直に配向させる側鎖を有するポリシロキサンを含有する場合は、好ましくは140℃〜300℃であり、より好ましくは150℃〜230℃、更に好ましくは160℃〜220℃である。焼成時間は5分〜240分の任意の時間で焼成を行うことができる。好ましくは10分〜90分であり、より好ましくは20分〜90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉、IRオーブン、ベルト炉などで行うことができる。 The coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film. The baking temperature of the coating film formed by applying a liquid crystal aligning agent is not limited, For example, it can carry out at arbitrary temperatures of 100-350 degreeC. When the liquid crystal aligning agent contains a polyimide precursor having a side chain for vertically aligning liquid crystal or a polyimide obtained by imidizing the polyimide precursor, the temperature is preferably 120 ° C to 300 ° C, more preferably 150 ° C. C. to 250.degree. Moreover, when the liquid crystal aligning agent contains polysiloxane having a side chain for vertically aligning the liquid crystal, it is preferably 140 ° C to 300 ° C, more preferably 150 ° C to 230 ° C, and further preferably 160 ° C to 220 ° C. ° C. Firing can be performed at an arbitrary time of 5 minutes to 240 minutes. Preferably it is 10 minutes-90 minutes, More preferably, it is 20 minutes-90 minutes. Heating can be performed by a generally known method, for example, a hot plate, a hot air circulating furnace, an infrared furnace, an IR oven, a belt furnace, or the like.
液晶配向膜中のポリシロキサンは、この焼成工程において重縮合が進行する。しかし、本発明においては、本発明の効果を損なわない限り、完全に重縮合させる必要はない。但し、液晶セル製造行程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。 The polysiloxane in the liquid crystal alignment film undergoes polycondensation in this baking step. However, in the present invention, it is not necessary to completely polycondense unless the effects of the present invention are impaired. However, firing is preferably performed at a temperature higher by 10 ° C. or more than the heat treatment temperature required for the liquid crystal cell production process, such as curing of the sealant.
また、焼成して得られる液晶配向膜の厚みは特に限定されないが、液晶表示素子の信頼性が得られ易いので、好ましくは5nm以上、より好ましくは10nm以上である。また、液晶表示素子の消費電力が極端に大きくならないので、液晶配向膜の厚みは好ましくは300nm以下、より好ましくは150nm以下、さらに好ましくは100nm以下である。 The thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more because the reliability of the liquid crystal display element can be easily obtained. Further, since the power consumption of the liquid crystal display element does not become extremely large, the thickness of the liquid crystal alignment film is preferably 300 nm or less, more preferably 150 nm or less, and further preferably 100 nm or less.
そして、本発明の液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製して得ることができる。液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、本発明の液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、すなわち、液晶配向膜に接触させて液晶層を設け、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。このように本発明の液晶配向剤により形成された液晶配向膜を用い、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射して上記式(1)で表される重合性化合物を重合させることにより、応答速度に優れた液晶表示素子となる。 And the liquid crystal display element of this invention can produce a liquid crystal cell by a well-known method, after forming a liquid crystal aligning film in a board | substrate by said method. Specific examples of the liquid crystal display element include two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrate and the liquid crystal layer. A vertical alignment type liquid crystal display device comprising a liquid crystal cell having the above-described liquid crystal alignment film. Specifically, the liquid crystal aligning agent of the present invention is applied onto two substrates and baked to form a liquid crystal aligning film, and the two substrates are arranged so that the liquid crystal aligning films face each other. A liquid crystal layer composed of liquid crystal is sandwiched between two substrates, that is, a liquid crystal layer is provided in contact with the liquid crystal alignment film, and ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film and the liquid crystal layer. This is a vertical alignment type liquid crystal display device including a liquid crystal cell to be manufactured. Thus, using the liquid crystal aligning film formed with the liquid crystal aligning agent of the present invention, the polymerizable compound represented by the above formula (1) is polymerized by irradiating ultraviolet rays while applying voltage to the liquid crystal aligning film and the liquid crystal layer. By doing so, a liquid crystal display element excellent in response speed is obtained.
本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。従来の電極パターンや突起パターンが設けられた基板を用いてもよいが、本発明の液晶表示素子においては、液晶配向膜を形成する液晶配向剤として上記式(1)で表される重合性化合物を有する本発明の液晶配向剤を用いているため、片側基板に例えば1から10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。 The substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. As a specific example, the thing similar to the board | substrate described with the said liquid crystal aligning film can be mentioned. A substrate provided with a conventional electrode pattern or protrusion pattern may be used, but in the liquid crystal display element of the present invention, a polymerizable compound represented by the above formula (1) as a liquid crystal aligning agent for forming a liquid crystal aligning film. Since the liquid crystal aligning agent of the present invention having the above is used, it is possible to operate even in a structure in which a line / slit electrode pattern of 1 to 10 μm, for example, is formed on one side substrate and no slit pattern or projection pattern is formed on the opposite substrate The liquid crystal display element having this structure can simplify the manufacturing process and obtain high transmittance.
また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 As a high-performance element such as a TFT type element, an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。 In the case of a transmissive liquid crystal display element, it is common to use a substrate as described above. However, in a reflective liquid crystal display element, if only one substrate is used, an opaque substrate such as a silicon wafer may be used. Is possible. At that time, a material such as aluminum that reflects light may be used for the electrode formed on the substrate.
液晶配向膜は、この基板上に本発明の液晶配向剤を塗布した後焼成することにより形成されるものであり、詳しくは上述したとおりである。 The liquid crystal alignment film is formed by applying the liquid crystal aligning agent of the present invention on this substrate and baking it, and the details are as described above.
本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えばメルク社製のMLC−6608やMLC−6609などのネガ型の液晶を用いることができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a liquid crystal material used in a conventional vertical alignment method, for example, a negative type liquid crystal such as MLC-6608 or MLC-6609 manufactured by Merck Can be used.
この液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製することができる。このときのスペーサーの厚みは、好ましくは1〜30μm、より好ましくは2〜10μmである。 As a method of sandwiching the liquid crystal layer between two substrates, a known method can be exemplified. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal. Also, a pair of substrates on which a liquid crystal alignment film is formed are prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate, and then liquid crystal is dropped, and then the surface on which the liquid crystal alignment film is formed A liquid crystal cell can also be produced by a method in which the other substrate is bonded to the inside so as to be inside and sealed. The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては例えば5〜30Vp−p、好ましくは5〜20Vp−pである。紫外線の照射量は、例えば1〜60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。 The step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying an electric field between the electrodes installed on the substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And applying ultraviolet rays while maintaining this electric field. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is improved.
このように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、上記式(1)で表される重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。 Thus, when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound represented by the above formula (1) reacts to form a polymer, and the liquid crystal molecules are formed by this polymer. Since the tilt direction is stored, the response speed of the obtained liquid crystal display element can be increased.
上記では、液晶配向膜を形成する液晶配向剤に上記式(1)で表される重合性化合物を含有させて作製された液晶表示素子について説明したが、本発明の液晶表示素子は、液晶に上記式(1)で表される重合性化合物を含有させて作製されたものであってもよい。具体的には、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子であって、液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に上記式(1)で表される重合性化合物を含有する液晶で構成された液晶層を挟持し、液晶層に電圧を印加しながら紫外線を照射することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。このように本発明の上記式(1)で表される重合性化合物を含有させた液晶層に電圧を印加しながら紫外線を照射して上記式(1)で表される重合性化合物を重合させることにより、応答速度に優れた液晶表示装置となる。 Although the liquid crystal display element produced by making the liquid crystal aligning agent which forms a liquid crystal aligning film contain the polymeric compound represented by the said Formula (1) was demonstrated above, the liquid crystal display element of this invention is liquid crystal. It may be prepared by containing a polymerizable compound represented by the above formula (1). Specifically, a vertical cell comprising a liquid crystal cell having two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment film provided between the substrate and the liquid crystal layer. An alignment type liquid crystal display element, in which a liquid crystal alignment film is formed by applying and baking a liquid crystal alignment agent on two substrates, and the two substrates are arranged so that the liquid crystal alignment films face each other. A liquid crystal layer composed of a liquid crystal containing a polymerizable compound represented by the above formula (1) is sandwiched between the two substrates, and is produced by irradiating ultraviolet rays while applying a voltage to the liquid crystal layer. The liquid crystal display element is a vertical alignment type liquid crystal display device including a liquid crystal cell. Thus, the polymerizable compound represented by the above formula (1) is polymerized by irradiating the liquid crystal layer containing the polymerizable compound represented by the above formula (1) of the present invention with ultraviolet rays while applying a voltage. As a result, a liquid crystal display device excellent in response speed is obtained.
基板は、液晶配向膜を形成する液晶配向剤に上記式(1)で表される重合性化合物を含有させて作製された上記液晶表示素子と同様である。 The substrate is the same as the above-mentioned liquid crystal display element produced by containing the polymerizable compound represented by the above formula (1) in the liquid crystal aligning agent that forms the liquid crystal aligning film.
液晶配向膜は、本発明の液晶配向剤から上記式(1)で表される重合性化合物を除いたもの、例えば従来の液晶配向剤を塗布した後焼成することにより形成されるものであり、上述した液晶配向膜の作成方法と同様の操作で形成できる。 The liquid crystal alignment film is formed by removing the polymerizable compound represented by the above formula (1) from the liquid crystal aligning agent of the present invention, for example, by applying a conventional liquid crystal aligning agent and baking it. The liquid crystal alignment film can be formed by the same operation as described above.
そして、液晶層を構成する液晶として、上記式(1)で表される重合性化合物を含有するものを用いる。上記式(1)で表される重合性化合物の含有量は、例えば液晶100質量部に対して0.01質量部〜0.10質量部である。このように、液晶に含有させる重合性化合物の含有量を少量としても、本発明においては上記式(1)で表される化合物を用いているため、液晶表示素子の応答速度を十分に向上させることができる。なお、液晶材料は上記と同様にメルク社製のMLC−6608やMLC−6609などのネガ型の液晶等、従来の垂直配向方式で使用される液晶材料を用いることができる。 And what contains the polymeric compound represented by the said Formula (1) is used as a liquid crystal which comprises a liquid-crystal layer. Content of the polymeric compound represented by the said Formula (1) is 0.01 mass part-0.10 mass part with respect to 100 mass parts of liquid crystals, for example. Thus, even if the content of the polymerizable compound to be contained in the liquid crystal is small, the response speed of the liquid crystal display element is sufficiently improved because the compound represented by the above formula (1) is used in the present invention. be able to. As the liquid crystal material, a liquid crystal material used in a conventional vertical alignment method such as negative liquid crystal such as MLC-6608 or MLC-6609 manufactured by Merck can be used.
この液晶層を2枚の基板の間に挟持させる方法は、液晶配向膜を形成する液晶配向剤に上記式(1)で表される重合性化合物を含有させて作製された上記液晶表示素子と同様である。 The method of sandwiching the liquid crystal layer between two substrates includes the liquid crystal display element prepared by adding a polymerizable compound represented by the above formula (1) to a liquid crystal aligning agent that forms a liquid crystal alignment film. It is the same.
液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶層に電圧を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては例えば5〜30Vp−p、好ましくは5〜20Vp−pである。紫外線の照射量は、例えば1〜60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。 The process of manufacturing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal layer is applied, for example, by applying a voltage between the electrodes placed on the substrate to maintain this electric field. And a method of irradiating with ultraviolet rays. Here, the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p. The irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is improved.
このように、液晶層に電圧を印加しながら紫外線を照射すると、上記式(1)で表される重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。 Thus, when ultraviolet rays are applied while applying a voltage to the liquid crystal layer, the polymerizable compound represented by the above formula (1) reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is memorized by this polymer. As a result, the response speed of the obtained liquid crystal display element can be increased.
なお、液晶配向膜を形成する液晶配向剤に上記式(1)で表される重合性化合物を含有させ、且つ、液晶に上記式(1)で表される重合性化合物を含有させて作製された液晶表示素子としてもよい。また、二つの基板に形成された液晶配向膜の両方を、上記式(1)で表される重合性化合物を含有させた液晶配向剤を用いて形成した液晶配向膜としてもよいが、一方の液晶配向膜のみを上記式(1)で表される重合性化合物を含有させた液晶配向剤を用いて形成されたものとし、もう一方の液晶配向膜は上記式(1)で表される重合性化合物を含有しない液晶配向剤を用いて形成されたものとしてもよい。 In addition, the liquid crystal aligning agent which forms a liquid crystal aligning film is made to contain the polymeric compound represented by the said Formula (1), and the liquid crystal is made to contain the polymeric compound represented by the said Formula (1). A liquid crystal display element may be used. In addition, both of the liquid crystal alignment films formed on the two substrates may be liquid crystal alignment films formed using a liquid crystal alignment agent containing the polymerizable compound represented by the above formula (1). Only the liquid crystal alignment film is formed using a liquid crystal aligning agent containing the polymerizable compound represented by the above formula (1), and the other liquid crystal alignment film is a polymerization represented by the above formula (1). It is good also as what was formed using the liquid crystal aligning agent which does not contain an ionic compound.
また、上記液晶配向剤は、PSA型液晶ディスプレイやSC−PVA型液晶ディスプレイ等の垂直配向方式の液晶表示素子を作製するための液晶配向剤として有用なだけでなく、ラビング処理や光配向処理によって作製される液晶配向膜の用途でも好適に使用できる。 The liquid crystal aligning agent is not only useful as a liquid crystal aligning agent for producing a vertical alignment type liquid crystal display element such as a PSA type liquid crystal display or an SC-PVA type liquid crystal display, but also by rubbing treatment or photo-alignment treatment. It can also be suitably used for applications of the liquid crystal alignment film to be produced.
以下、実施例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
<重合性化合物の合成>
(実施例1)
重合性化合物(RM1)の合成冷却管付き300mlナスフラスコに、4、4’−ビフェノール 6.7g(35.9mmol)、2−(4−ブロモブチル)−1,3−ジオキソラン 15.0g(71.7mmol)、炭酸カリウム19.8g(143mmol)、およびアセトン150mlを加えて混合物とし、60℃で48時間攪拌しながら反応させた。反応終了後、減圧下で溶媒を留去し、黄色の湿潤固体を得た。その後、この固体と水200mlを混合し、クロロホルム80mlを加えて抽出した。抽出は3回行った。
<Synthesis of polymerizable compound>
Example 1
Synthesis of polymerizable compound (RM1) In a 300 ml eggplant flask with a condenser tube, 6.7 g (35.9 mmol) of 4,4′-biphenol, 15.0 g of 2- (4-bromobutyl) -1,3-dioxolane (71. 7 mmol), 19.8 g (143 mmol) of potassium carbonate, and 150 ml of acetone were added to form a mixture, which was reacted at 60 ° C. for 48 hours with stirring. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain a yellow wet solid. Then, this solid and 200 ml of water were mixed and extracted by adding 80 ml of chloroform. Extraction was performed three times.
分液した有機層に、無水硫酸マグネシウムを加えて乾燥し、濾過した後に減圧下で溶媒を留去し、黄色の固体を得た。この固体を再結晶(ヘキサン/クロロホルム=4/1(体積比))で精製することにより、白色固体14.6gを得た。得られた白色固体をNMRで測定した結果を以下に示す。なお、得られた固体を重水素化クロロホルム(CDCl3)に溶解し、核磁気共鳴装置(ジオール社製)を用いて300MHzで測定した。この結果から、この白色固体が、下記の反応式に示される中間体化合物(RM1−A)であることが確認された。収率は92%であった。 The separated organic layer was dried over anhydrous magnesium sulfate, filtered, and then the solvent was distilled off under reduced pressure to obtain a yellow solid. The solid was purified by recrystallization (hexane / chloroform = 4/1 (volume ratio)) to obtain 14.6 g of a white solid. The result of having measured the obtained white solid by NMR is shown below. The obtained solid was dissolved in deuterated chloroform (CDCl 3 ) and measured at 300 MHz using a nuclear magnetic resonance apparatus (manufactured by Diol). From this result, it was confirmed that this white solid was an intermediate compound (RM1-A) represented by the following reaction formula. The yield was 92%.
1H-NMR(CDCl3) δ:1.65(m, 4H), 1.74(m, 4H), 1.87(m, 4H), 3.86(m, 4 H),3.97(m, 8H), 4.89(t, 2H), 6.92(m, 4H), 7.44(m, 4 H ). 1 H-NMR (CDCl 3 ) δ: 1.65 (m, 4H), 1.74 (m, 4H), 1.87 (m, 4H), 3.86 (m, 4 H), 3.97 (m, 8H), 4.89 (t, 2H), 6.92 (m, 4H), 7.44 (m, 4H).
[化28]
[Chemical 28]
次に、冷却管付き500mlナスフラスコに、上記で得られた中間体化合物(RM1−A)13.3g(30mmol)、2−(ブロモメチル)アクリル酸11.6g(70mmol)、10%塩酸(aq)50ml、テトラヒドロフラン(THF)160ml、塩化スズ(II)13.2g(70mmol)を加えて混合物とし、70℃で20時間攪拌して反応させた。反応終了後、反応液を減圧濾過して純水200mlと混合し、そこにジクロロホルム100mlを加えて抽出した。抽出は3回行った。 Next, in a 500 ml eggplant flask equipped with a cooling tube, 13.3 g (30 mmol) of the intermediate compound (RM1-A) obtained above, 11.6 g (70 mmol) of 2- (bromomethyl) acrylic acid, 10% hydrochloric acid (aq ) 50 ml, tetrahydrofuran (THF) 160 ml, tin (II) chloride 13.2 g (70 mmol) was added to form a mixture, and the mixture was stirred at 70 ° C. for 20 hours for reaction. After completion of the reaction, the reaction solution was filtered under reduced pressure, mixed with 200 ml of pure water, and extracted with 100 ml of dichlorochloro. Extraction was performed three times.
分液した有機層に、無水硫酸マグネシウムを加えて乾燥し、減圧濾過した後の溶液から溶媒を留去し白色固体を得た。この固体を再結晶(ヘキサン/クロロホルム=2/1)で精製することにより、白色固体9.4gを得た。得られた白色固体を上記と同様にしてNMRで測定した結果、この白色の固体が目的の下記式で表される重合性化合物(RM1)であることが確認された。収率は64%であった。 To the separated organic layer, anhydrous magnesium sulfate was added and dried, and the solvent was distilled off from the solution after filtration under reduced pressure to obtain a white solid. This solid was purified by recrystallization (hexane / chloroform = 2/1) to obtain 9.4 g of a white solid. As a result of measuring the obtained white solid by NMR in the same manner as described above, it was confirmed that the white solid was the target polymerizable compound (RM1) represented by the following formula. The yield was 64%.
1H-NMR(CDCl3) δ:1.69(m, 12H), 2.61(m, 2H), 3.09(m, 2H), 4.00(t, 4 H),4.57(m, 2H), 5.64(m, 2H), 6.24(m, 2H), 6.92(d, 4H), 7.45(m, 4 H ). 1 H-NMR (CDCl 3 ) δ: 1.69 (m, 12H), 2.61 (m, 2H), 3.09 (m, 2H), 4.00 (t, 4 H), 4.57 (m, 2H), 5.64 (m, 2H), 6.24 (m, 2H), 6.92 (d, 4H), 7.45 (m, 4H).
[化29]
[Chemical 29]
(実施例2)重合性化合物(RM2)の合成
冷却管付き300mlナスフラスコに、4,4’−ビフェニルジカルボキシアルデヒド5.0g(23.8mmol)、2−(ブロモメチル)アクリル酸7.9g(47.6mmol)、10%塩酸(aq)33ml、テトラヒドロフラン(THF)100ml、塩化スズ(II)9.5g(50mmol)を加えて混合物とし、70℃で20時間攪拌して反応させた。反応終了後、反応液を純水300mlに注ぎ、白色固体を得た。得られた固体を分離し、再結晶(ヘキサン/クロロホルム=2/1)で精製した後、白色固体3.5gを得た。この固体をNMRで測定した結果、この白色の固体が目的の下記式で表される重合性化合物(RM2)であることが確認された。収率は72%であった。
(Example 2) Synthesis of polymerizable compound (RM2) In a 300 ml eggplant flask equipped with a cooling tube, 5.0 g (23.8 mmol) of 4,4′-biphenyldicarboxaldehyde, 7.9 g of 2- (bromomethyl) acrylic acid ( (47.6 mmol), 33 ml of 10% hydrochloric acid (aq), 100 ml of tetrahydrofuran (THF), and 9.5 g (50 mmol) of tin (II) chloride were added to form a mixture, and the reaction was stirred at 70 ° C. for 20 hours. After completion of the reaction, the reaction solution was poured into 300 ml of pure water to obtain a white solid. The obtained solid was separated and purified by recrystallization (hexane / chloroform = 2/1) to obtain 3.5 g of a white solid. As a result of measuring this solid by NMR, it was confirmed that this white solid was the target polymerizable compound (RM2) represented by the following formula. The yield was 72%.
1H-NMR(CDCl3) δ:2.99(m, 2H), 3.42(m, 2H), 5.60(m, 2H), 5.74(m, 2 H),6.36(m, 2H), 7.42(m, 4H), 7.60(m, 4 H ). 1 H-NMR (CDCl 3 ) δ: 2.99 (m, 2H), 3.42 (m, 2H), 5.60 (m, 2H), 5.74 (m, 2 H), 6.36 (m, 2H), 7.42 (m, 4H), 7.60 (m, 4 H).
[化30]
[Chemical 30]
(比較例1)重合性化合物(RM3)
公知の下記式で表される重合性化合物をRM3とした。
(Comparative Example 1) Polymerizable compound (RM3)
A known polymerizable compound represented by the following formula was designated as RM3.
[化31]
[Chemical 31]
(実施例3)重合性化合物(RM4)の合成
冷却管付き500mlナスフラスコに、4、4’−ビフェノール 11.2g(60mmol)、2−(2−ブロモエチル)−1,3−ジオキソラン25.0g(138mmol)、炭酸カリウム35.9g(260mmol)、およびアセトン200mlを加えて混合物とし、60℃で48時間攪拌しながら反応させた。反応終了後、減圧下で溶媒を留去し、黄色の湿潤固体を得た。その後、この固体と水200mlを混合し、クロロホルム100mlを加えて抽出した。抽出は3回行った。
Example 3 Synthesis of Polymerizable Compound (RM4) In a 500 ml eggplant flask equipped with a cooling tube, 11.2 g (60 mmol) of 4,4′-biphenol, 25.0 g of 2- (2-bromoethyl) -1,3-dioxolane (138 mmol), 35.9 g (260 mmol) of potassium carbonate, and 200 ml of acetone were added to form a mixture, which was reacted at 60 ° C. with stirring for 48 hours. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain a yellow wet solid. Thereafter, this solid was mixed with 200 ml of water, and extracted with 100 ml of chloroform. Extraction was performed three times.
分液した有機層は、無水硫酸マグネシウムを加えて乾燥し、濾過した後に減圧下で溶媒を留去し、黄色の固体を得た。この固体をクロロホルムに溶解させ、ヘキサンを用い(ヘキサン/クロロホルム=2/1)沈殿した後、白色固体17.6gを得た。この固体をNMRで測定した結果を以下に示す。この結果から、この白色固体が、下記反応式に示される化合物(RM4−A)であることが確認された。収率は76%であった。
1H-NMR(CDCl3) δ:2.19(m, 4H), 3.89(m, 4H), 4.01(m, 4H), 4.16(m, 4 H),5.11(m, 2H), 6.95(m, 4H), 7.45(m, 4 H ).
The separated organic layer was dried by adding anhydrous magnesium sulfate, filtered, and then the solvent was distilled off under reduced pressure to obtain a yellow solid. This solid was dissolved in chloroform and precipitated with hexane (hexane / chloroform = 2/1) to obtain 17.6 g of a white solid. The result of having measured this solid by NMR is shown below. From this result, it was confirmed that this white solid was a compound (RM4-A) shown by the following reaction formula. The yield was 76%.
1 H-NMR (CDCl 3 ) δ: 2.19 (m, 4H), 3.89 (m, 4H), 4.01 (m, 4H), 4.16 (m, 4 H), 5.11 (m, 2H), 6.95 (m, 4H), 7.45 (m, 4H).
[化32]
[Chemical 32]
次に、冷却管付き500mlナスフラスコに、上記で得られた化合物(RM4−A)10.0g(26mmol)、2−(ブロモメチル)アクリル酸10.0g(60.6mmol)、10%HCl(aq)32ml、テトラヒドロフラン(THF)140ml、塩化スズ(II)11.4g(60.6mmol)を加えて混合物とし、70℃で20時間攪拌して反応させた。反応終了後、反応液を減圧濾過して純水200mlと混合し、そこにクロロホルム100mlを加えて抽出した。抽出は3回行った。 Next, in a 500 ml eggplant flask equipped with a condenser tube, 10.0 g (26 mmol) of the compound (RM4-A) obtained above, 10.0 g (60.6 mmol) of 2- (bromomethyl) acrylic acid, 10% HCl (aq ) 32 ml, tetrahydrofuran (THF) 140 ml, and tin (II) chloride 11.4 g (60.6 mmol) were added to form a mixture, which was stirred at 70 ° C. for 20 hours for reaction. After completion of the reaction, the reaction solution was filtered under reduced pressure, mixed with 200 ml of pure water, and extracted with 100 ml of chloroform. Extraction was performed three times.
抽出後の有機層に、無水硫酸マグネシウムを加えて乾燥し、減圧濾過した後の溶液から溶媒を留去し白色固体を得た。この固体をクロロホルムに溶解させ、ヘキサンを用い(ヘキサン/クロロホルム=2/1)沈殿し白色固体を得た。この固体をメタノールで洗浄した後、白色固体4.7gを得た。この固体をNMRで測定した結果を以下に示す。この結果から、この白色の固体が目的の下記反応式に示される重合性化合物(RM4)であることが確認された。収率42%であった。
1H-NMR(CDCl3) δ: 2.18(m, 4H), 2.76(m, 2H), 3.16(m, 2H), 4.18(m, 4 H ), 4.84(m, 2H), 5.67(m, 2H), 6.27(m, 2H), 6.95(d, 4H), 7.46(m, 4 H ).
The organic layer after extraction was dried by adding anhydrous magnesium sulfate, and the solvent was distilled off from the solution after filtration under reduced pressure to obtain a white solid. This solid was dissolved in chloroform and precipitated with hexane (hexane / chloroform = 2/1) to obtain a white solid. After this solid was washed with methanol, 4.7 g of a white solid was obtained. The result of having measured this solid by NMR is shown below. From this result, it was confirmed that this white solid was the target polymerizable compound (RM4) represented by the following reaction formula. The yield was 42%.
1 H-NMR (CDCl 3 ) δ: 2.18 (m, 4H), 2.76 (m, 2H), 3.16 (m, 2H), 4.18 (m, 4 H), 4.84 (m, 2H), 5.67 (m, 2H), 6.27 (m, 2H), 6.95 (d, 4H), 7.46 (m, 4H).
[化33]
[Chemical 33]
<液晶配向剤の調製>
下記液晶配向剤の調製で用いた略号は以下のとおりである。BODA:ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物TCA:下記式で表される2,3,5−トリカルボキシシクロペンチル酢酸―1,4:2,3−二無水物
<Preparation of liquid crystal aligning agent>
The abbreviations used in the preparation of the following liquid crystal aligning agents are as follows. BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride TCA: represented by the following formula 2,3,5-tricarboxycyclopentylacetic acid-1,4: 2,3-dianhydride
[化34]
[Chemical 34]
m−PDA:m−フェニレンジアミン
p−PDA:p−フェニレンジアミン
PCH:1,3−ジアミノ−4−[4−(4−ヘプチルシクロヘキシル)フェノキシ]ベンゼン
DBA:3,5−ジアミノ安息香酸
DA−1:下記式で表される2−(メタクリロイロキシ)エチル 3,5−ジアミノベンゾエート
m-PDA: m-phenylenediamine p-PDA: p-phenylenediamine PCH: 1,3-diamino-4- [4- (4-heptylcyclohexyl) phenoxy] benzene DBA: 3,5-diaminobenzoic acid DA-1 : 2- (methacryloyloxy) ethyl 3,5-diaminobenzoate represented by the following formula
[化35]
[Chemical 35]
DA−2:下記式で表されるN1,N1−ジアリルベンゼン−1,2,4−トリアミン DA-2: N 1, N 1 of the following formula - diallyl benzene-1,2,4-triamine
[化36]
[Chemical 36]
DA−3:下記式で表わされる3,5−ジアミノ安息香酸コレスタニル DA-3: Cholestanyl 3,5-diaminobenzoate represented by the following formula
[化37]
[Chemical 37]
3−AMP:3−アミノメチルピリジン
NMP:N−メチル−2−ピロリドン
BCS:ブチルセロソルブ
3-AMP: 3-aminomethylpyridine NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
また、ポリイミドの分子量測定条件は、以下の通りである。装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC−7200)、カラム:Shodex社製カラム(KD−803、KD−805)カラム温度:50℃ 溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)流速:1.0ml/分検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。 Moreover, the molecular weight measurement conditions of polyimide are as follows. Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd. Column: Columns manufactured by Shodex (KD-803, KD-805) Column temperature: 50 ° C. Eluent: N, N′-dimethyl Formamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L) Flow rate: 1.0 ml / min. Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (manufactured by Polymer Laboratories) Molecular weight about 12,000, 4,000, 1,000).
また、ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO−d6、0.05%TMS混合品)1.0mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW−ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5〜10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお下記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
イミド化率(%)=(1−α・x/y)×100
Moreover, the imidation ratio of polyimide was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.), add 1.0 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture), and apply ultrasonic waves. To dissolve completely. 500 MHz proton NMR was measured for this solution with the NMR measuring device by the JEOL datum company (JNW-ECA500). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing near 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value. In the following formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is the proton of the NH group of the amic acid in the case of polyamic acid (imidation rate is 0%). This is the ratio of the number of reference protons to one.
Imidation ratio (%) = (1−α · x / y) × 100
(実施例4)
BODA(28.15g、112.5mmol)、m−PDA(4.86g、45mmol)、PCH(11.42g、30mmol)、DBA(11.41g、75mmol)をNMP(187.8g)中で混合し、80℃ で5時間反応させたのち、CBDA(6.77g、36mmol)とNMP(62.6g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(313g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(79.1g)、およびピリジン(30.7g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(4000ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A)を得た。このポリイミドのイミド化率は70%であり、数平均分子量は18000、重量平均分子量は59000であった。
Example 4
BODA (28.15 g, 112.5 mmol), m-PDA (4.86 g, 45 mmol), PCH (11.42 g, 30 mmol), DBA (11.41 g, 75 mmol) were mixed in NMP (187.8 g). After reacting at 80 ° C. for 5 hours, CBDA (6.77 g, 36 mmol) and NMP (62.6 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. After adding NMP to this polyamic acid solution (313 g) and diluting to 6% by mass, acetic anhydride (79.1 g) and pyridine (30.7 g) were added as an imidization catalyst, and the mixture was reacted at 100 ° C. for 3 hours. This reaction solution was poured into methanol (4000 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (A). The imidation ratio of this polyimide was 70%, the number average molecular weight was 18000, and the weight average molecular weight was 59000.
得られたポリイミド粉末(A)(6.0g)にNMP(40.2g)を加え、50℃にて12時間攪拌して溶解させた。この溶液に3−AMPの5.0重量%NMP溶液(6.0g)(3−AMPとして0.3g)、NMP(27.9g)、およびBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(A1)を得た。 NMP (40.2 g) was added to the obtained polyimide powder (A) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. To this solution was added a 5.0 wt% NMP solution (6.0 g) of 3-AMP (0.3 g as 3-AMP), NMP (27.9 g), and BCS (20.0 g) at 50 ° C. The liquid crystal aligning agent (A1) was obtained by stirring for 5 hours.
また、上記の液晶配向剤(A1)10.0gに対して実施例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(A2)を調製した。同様に、液晶配向剤(A1)10.0gに対して実施例1で得られた重合性化合物RM1を0.18g(固形分に対して30質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(A3)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (A1), and the mixture was stirred at room temperature for 3 hours. The liquid crystal aligning agent (A2) was prepared. Similarly, 0.18 g (30% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (A1), and the mixture was stirred at room temperature for 3 hours. By dissolving, a liquid crystal aligning agent (A3) was prepared.
(実施例5)
BODA(8.76g、35.0mmol)、p−PDA(3.78g、35.0mmol)、PCH(5.33g、14.0mmol)、DA−1(5.55g、21.0mmol)をNMP(90.0g)中で混合し、80℃で5時間反応させたのち、CBDA(6.59g、33.6mmol)とNMP(30.0g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(140.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(20.0g)、およびピリジン(25.8g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(1800ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は22000、重量平均分子量は77000であった。
(Example 5)
BODA (8.76 g, 35.0 mmol), p-PDA (3.78 g, 35.0 mmol), PCH (5.33 g, 14.0 mmol), DA-1 (5.55 g, 21.0 mmol) were added to NMP ( 90.0 g), and after reacting at 80 ° C. for 5 hours, CBDA (6.59 g, 33.6 mmol) and NMP (30.0 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. Obtained. After adding NMP to this polyamic acid solution (140.0 g) and diluting to 6% by mass, acetic anhydride (20.0 g) and pyridine (25.8 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1800 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide was 50%, the number average molecular weight was 22000, and the weight average molecular weight was 77000.
得られたポリイミド粉末(B)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(B1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (B) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0g) was added to this solution, and the liquid crystal aligning agent (B1) was obtained by stirring at 50 degreeC for 5 hours.
また、上記の液晶配向剤(B1)10.0gに対して実施例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(B2)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (B1), and the mixture was stirred and dissolved at room temperature for 3 hours. Liquid crystal aligning agent (B2).
(実施例6)
BODA(3.13g、12.5mmol)、p−PDA(1.08g、10mmol)、PCH(1.90g、5mmol)、DA−1(2.64g、10mmol)をNMP(33.3g)中で混合し、80℃で5時間反応させたのち、CBDA(2.35g、12mmol)とNMP(11.1g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(55.5g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(7.7g)、およびピリジン(9.9g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(710ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(C)を得た。このポリイミドのイミド化率は48%であり、数平均分子量は26000、重量平均分子量は102000であった。
(Example 6)
BODA (3.13 g, 12.5 mmol), p-PDA (1.08 g, 10 mmol), PCH (1.90 g, 5 mmol), DA-1 (2.64 g, 10 mmol) in NMP (33.3 g). After mixing and reacting at 80 ° C. for 5 hours, CBDA (2.35 g, 12 mmol) and NMP (11.1 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. After adding NMP to this polyamic acid solution (55.5 g) and diluting to 6% by mass, acetic anhydride (7.7 g) and pyridine (9.9 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (710 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (C). The imidation ratio of this polyimide was 48%, the number average molecular weight was 26000, and the weight average molecular weight was 102000.
得られたポリイミド粉末(C)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(C1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (C) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0g) was added to this solution, and the liquid crystal aligning agent (C1) was obtained by stirring at 50 degreeC for 5 hours.
また、上記の液晶配向剤(C1)10.0gに対して実施例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(C2)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (C1), and the mixture was stirred and dissolved at room temperature for 3 hours. Liquid crystal aligning agent (C2).
(実施例7)
BODA(3.13g、12.5mmol)、p−PDA(0.81g、7.5mmol)、PCH(1.90g、5mmol)、DA−1(3.30g、12.5mmol)をNMP(34.5g)中で混合し、80℃で5時間反応させたのち、CBDA(2.35g、12mmol)とNMP(11.5g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(57.5g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(7.7g)、およびピリジン(9.9g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(730ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(D)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は23000、重量平均分子量は63000であった。
(Example 7)
BODA (3.13 g, 12.5 mmol), p-PDA (0.81 g, 7.5 mmol), PCH (1.90 g, 5 mmol), DA-1 (3.30 g, 12.5 mmol) and NMP (34. 5 g), the mixture was reacted at 80 ° C. for 5 hours, CBDA (2.35 g, 12 mmol) and NMP (11.5 g) were added, and the mixture was reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. After adding NMP to this polyamic acid solution (57.5 g) and diluting to 6% by mass, acetic anhydride (7.7 g) and pyridine (9.9 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (730 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (D). The imidation ratio of this polyimide was 50%, the number average molecular weight was 23000, and the weight average molecular weight was 63000.
得られたポリイミド粉末(D)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(D1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (D) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0 g) was added to this solution, and the liquid crystal aligning agent (D1) was obtained by stirring at 50 degreeC for 5 hours.
また、上記の液晶配向剤(D1)10.0gに対して実施例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(D2)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (D1), and the mixture was stirred and dissolved at room temperature for 3 hours. Liquid crystal aligning agent (D2).
(実施例8)
BODA(5.00g、20mmol)、p−PDA(0.87g、8mmol)、PCH(3.05g、8mmol)、DA−1(6.34g、24mmol)をNMP(57.1g)中で混合し、80℃で5時間反応させたのち、CBDA(3.77g、19.2mmol)とNMP(19.0g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(95.5g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(12.3g)、およびピリジン(15.9g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(1200ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(E)を得た。このポリイミドのイミド化率は51%であり、数平均分子量は31000、重量平均分子量は111000であった。
(Example 8)
BODA (5.00 g, 20 mmol), p-PDA (0.87 g, 8 mmol), PCH (3.05 g, 8 mmol), DA-1 (6.34 g, 24 mmol) were mixed in NMP (57.1 g). After reacting at 80 ° C. for 5 hours, CBDA (3.77 g, 19.2 mmol) and NMP (19.0 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. After adding NMP to this polyamic acid solution (95.5 g) and diluting to 6% by mass, acetic anhydride (12.3 g) and pyridine (15.9 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1200 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (E). The imidation ratio of this polyimide was 51%, the number average molecular weight was 31000, and the weight average molecular weight was 111000.
得られたポリイミド粉末(E)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(E1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (E) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0g) was added to this solution, and the liquid crystal aligning agent (E1) was obtained by stirring at 50 degreeC for 5 hours.
また、上記の液晶配向剤(E1)10.0gに対して実施例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(E2)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (E1), and the mixture was stirred and dissolved at room temperature for 3 hours. Liquid crystal aligning agent (E2).
(実施例9)
BODA(5.00g、20.0mmol)、p−PDA(2.16g、20.0mmol)、PCH(3.04g、8.0mmol)、DA−2(2.44g、12.0mmol)をNMP(49.2g)中で混合し、80℃で5時間反応させたのち、CBDA(3.77g、19.2mmol)とNMP(16.4g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(75.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(9.33g)、およびピリジン(14.6g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(950ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(F)を得た。このポリイミドのイミド化率は47%であり、数平均分子量は20100、重量平均分子量は106000であった。
Example 9
BODA (5.00 g, 20.0 mmol), p-PDA (2.16 g, 20.0 mmol), PCH (3.04 g, 8.0 mmol), DA-2 (2.44 g, 12.0 mmol) were added to NMP ( 49.2 g), and after reacting at 80 ° C. for 5 hours, CBDA (3.77 g, 19.2 mmol) and NMP (16.4 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. Obtained. After adding NMP to this polyamic acid solution (75.0 g) and diluting to 6% by mass, acetic anhydride (9.33 g) and pyridine (14.6 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (950 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (F). The imidation ratio of this polyimide was 47%, the number average molecular weight was 20100, and the weight average molecular weight was 106000.
得られたポリイミド粉末(F)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(F1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (F) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0g) was added to this solution, and the liquid crystal aligning agent (F1) was obtained by stirring at 50 degreeC for 5 hours.
また、上記の液晶配向剤(F1)10.0gに対して実施例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(F2)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (F1), and the mixture was stirred and dissolved at room temperature for 3 hours. Liquid crystal aligning agent (F2).
(実施例10)
BODA(5.00g、20.0mmol)、p−PDA(0.87g、8.0mmol)、PCH(3.04g、8.0mmol)、DA−2(4.88g、24.0mmol)をNMP(52.7g)中で混合し、80℃ で5時間反応させたのち、CBDA(3.77g、19.2mmol)とNMP(17.56g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(75g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(8.7g)、およびピリジン(13.5g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(950ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(G)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は20000、重量平均分子量は86000であった。
(Example 10)
BODA (5.00 g, 20.0 mmol), p-PDA (0.87 g, 8.0 mmol), PCH (3.04 g, 8.0 mmol), DA-2 (4.88 g, 24.0 mmol) were added to NMP ( 52.7 g), and after reacting at 80 ° C. for 5 hours, CBDA (3.77 g, 19.2 mmol) and NMP (17.56 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. Obtained. After adding NMP to this polyamic acid solution (75g) and diluting to 6 mass%, acetic anhydride (8.7g) and pyridine (13.5g) were added as an imidation catalyst, and it was made to react at 50 degreeC for 3 hours. This reaction solution was poured into methanol (950 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (G). The imidation ratio of this polyimide was 50%, the number average molecular weight was 20000, and the weight average molecular weight was 86000.
得られたポリイミド粉末(G)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(G1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (G) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0g) was added to this solution, and the liquid crystal aligning agent (G1) was obtained by stirring at 50 degreeC for 5 hours.
また、上記の液晶配向剤(G1)10.0gに対して実施例1で得られた重合性化合物RM1を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(G2)を調製した。 Further, 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM1 obtained in Example 1 was added to 10.0 g of the liquid crystal aligning agent (G1), and the mixture was stirred and dissolved at room temperature for 3 hours. Liquid crystal aligning agent (G2).
(実施例11)
TCA(3.36g、15.0mmol)、p−PDA(1.30g、12.0mmol)、DA−3(3.14g、6.0mmol)、DA−1(3.17g、12.0mmol)をNMP(41.6g)中で混合し、60℃で5時間反応させたのち、CBDA(2.88g、14.7mmol)とNMP(13.9g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(68g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(6.0g)、およびピリジン(11.7g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(850ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(H)を得た。このポリイミドのイミド化率は50%であり、数平均分子量は18000、重量平均分子量は58000であった。
(Example 11)
TCA (3.36 g, 15.0 mmol), p-PDA (1.30 g, 12.0 mmol), DA-3 (3.14 g, 6.0 mmol), DA-1 (3.17 g, 12.0 mmol). After mixing in NMP (41.6 g) and reacting at 60 ° C. for 5 hours, CBDA (2.88 g, 14.7 mmol) and NMP (13.9 g) were added and reacted at 40 ° C. for 10 hours to polyamic acid. A solution was obtained. After adding NMP to this polyamic acid solution (68g) and diluting to 6 mass%, acetic anhydride (6.0g) and pyridine (11.7g) were added as an imidation catalyst, and it was made to react at 50 degreeC for 3 hours. This reaction solution was poured into methanol (850 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (H). The imidation ratio of this polyimide was 50%, the number average molecular weight was 18000, and the weight average molecular weight was 58,000.
得られたポリイミド粉末(H)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(H1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (H) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0g) was added to this solution, and the liquid crystal aligning agent (H1) was obtained by stirring at 50 degreeC for 5 hours.
また、上記の液晶配向剤(H1)10.0gに対してRM1を0.06g(固形分に対して10wt%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(H2)を調製した。 Further, 0.06 g of RM1 (10 wt% with respect to the solid content) was added to 10.0 g of the liquid crystal aligning agent (H1), and the mixture was stirred and dissolved at room temperature for 3 hours to prepare a liquid crystal aligning agent (H2). .
(実施例12)
BODA(6.01g、24.0mmol)、p−PDA(2.60g、24.0mmol)、PCH(6.85g、18.0mmol)、DA−1(4.76g、18.0mmol)をNMP(81.5g)中で溶解し、80℃で5時間反応させたのち、CBDA(6.94g、35.4mmol)とNMP(27.2g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(135g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(18.3g)、およびピリジン(23.6g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(1700ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(I)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は12000、重量平均分子量は39000であった。
(Example 12)
BODA (6.01 g, 24.0 mmol), p-PDA (2.60 g, 24.0 mmol), PCH (6.85 g, 18.0 mmol), DA-1 (4.76 g, 18.0 mmol) and NMP ( 81.5 g), and after reacting at 80 ° C. for 5 hours, CBDA (6.94 g, 35.4 mmol) and NMP (27.2 g) were added and reacted at 40 ° C. for 10 hours to obtain a polyamic acid solution. Obtained. After adding NMP to this polyamic acid solution (135 g) and diluting to 6% by mass, acetic anhydride (18.3 g) and pyridine (23.6 g) were added as imidization catalysts, and the mixture was reacted at 50 ° C. for 3 hours. This reaction solution was poured into methanol (1700 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (I). The imidation ratio of this polyimide was 60%, the number average molecular weight was 12000, and the weight average molecular weight was 39000.
得られたポリイミド粉末(I)(6.0g)にNMP(74.0g)を加え、50℃にて12時間攪拌して溶解させた。この溶液にBCS(20.0g)を加え、50℃にて5時間攪拌することにより液晶配向剤(I1)を得た。 NMP (74.0 g) was added to the obtained polyimide powder (I) (6.0 g), and the mixture was dissolved by stirring at 50 ° C. for 12 hours. BCS (20.0g) was added to this solution, and the liquid crystal aligning agent (I1) was obtained by stirring at 50 degreeC for 5 hours.
液晶配向剤(I1)10.0gに対して上記で得られた重合性化合物(RM4)を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌して溶解させ、液晶配向剤(I2)を調製した。 0.06 g (10% by mass with respect to the solid content) of the polymerizable compound (RM4) obtained above was added to 10.0 g of the liquid crystal aligning agent (I1) and dissolved by stirring at room temperature for 3 hours. A liquid crystal aligning agent (I2) was prepared.
<重合性化合物を含む液晶の調製>
重合性化合物を含む液晶を次のようにして調整した。MLC−6608(メルク社製商品名)20gに対して、実施例1で得られた重合性化合物RM1を0.0147g(3×10−5mol)添加し、80℃で3時間攪拌溶解させ、液晶1を調製した。
<Preparation of liquid crystal containing polymerizable compound>
A liquid crystal containing a polymerizable compound was prepared as follows. 0.0147 g (3 × 10 −5 mol) of the polymerizable compound RM1 obtained in Example 1 was added to 20 g of MLC-6608 (trade name, manufactured by Merck), and the mixture was stirred and dissolved at 80 ° C. for 3 hours. Liquid crystal 1 was prepared.
同様に、20gのMLC−6608に対して、実施例2で得られた重合性化合物RM2を0.0097g(3×10−5mol)添加し、80℃で3時間攪拌溶解させ、液晶2を調製した。 Similarly, 0.0097 g (3 × 10 −5 mol) of the polymerizable compound RM2 obtained in Example 2 was added to 20 g of MLC-6608, and the mixture was stirred and dissolved at 80 ° C. for 3 hours. Prepared.
また、20gのMLC−6608に対して、比較例1で得られた重合性化合物RM3を0.0097g(3×10−5mol)添加し、80℃で3時間攪拌溶解させ、液晶3を調製した。 Further, 0.0097 g (3 × 10 −5 mol) of the polymerizable compound RM3 obtained in Comparative Example 1 was added to 20 g of MLC-6608, and the mixture was stirred and dissolved at 80 ° C. for 3 hours to prepare liquid crystal 3. did.
なお、液晶1、液晶2及び液晶3は、それぞれ重合性化合物が液晶材料MLC−6608中に溶解しており、冷蔵保存1ヵ月後においても重合性化合物が析出しない事を確認した。 In addition, as for the liquid crystal 1, the liquid crystal 2, and the liquid crystal 3, it confirmed that the polymeric compound was melt | dissolving in the liquid crystal material MLC-6608, respectively, and a polymeric compound did not precipitate even after 1 month of refrigeration storage.
<液晶セルの作製>
(実施例13)
実施例4で得られた液晶配向剤(A1)を用いて下記に示すような手順で液晶セルの作製を行った。実施例4で得られた液晶配向剤(A1)を、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
<Production of liquid crystal cell>
(Example 13)
Using the liquid crystal aligning agent (A1) obtained in Example 4, a liquid crystal cell was prepared according to the procedure shown below. The liquid crystal aligning agent (A1) obtained in Example 4 was spin-coated on the ITO surface of the ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 μm × 300 μm and a line / space of 5 μm was formed, and the temperature was 80 ° C. After drying for 90 seconds on this hot plate, baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
また、液晶配向剤(A1)を電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで90秒乾燥させた後、200℃ の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。 Moreover, after spin-coating the liquid crystal aligning agent (A1) on the ITO surface in which the electrode pattern is not formed, and drying for 90 seconds on a hot plate at 80 ° C., baking is performed in a hot air circulation oven at 200 ° C. for 30 minutes, A liquid crystal alignment film having a thickness of 100 nm was formed.
上記の2枚の基板について一方の基板の液晶配向膜上に6μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに上記の液晶1を減圧注入法によって注入し、120℃のオーブン中でIsotropic処理(加熱による液晶の再配向処理)を行い、液晶セルを作製した。 After spraying a 6 μm bead spacer on the liquid crystal alignment film of one of the two substrates, a sealant (solvent type thermosetting epoxy resin) was printed thereon. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell. The liquid crystal 1 was injected into this empty cell by a reduced pressure injection method, and was subjected to Isotropic treatment (realignment treatment of liquid crystal by heating) in an oven at 120 ° C., thereby producing a liquid crystal cell.
得られた液晶セルの作製直後の応答速度を、下記方法により測定した。その後、この液晶セルに20Vp−pの電圧を印加した状態で、この液晶セルの外側から313nmのバンドパスフィルターを通したUVを5J照射した。その後、再び応答速度を測定し、UV照射前後での応答速度を比較した。液晶セルの作製直後(初期)、及び、UVを照射した後(UV照射後)の応答速度の結果を表2に示す。 The response speed immediately after production of the obtained liquid crystal cell was measured by the following method. After that, in a state where a voltage of 20 Vp-p was applied to the liquid crystal cell, UV irradiation through a band-pass filter of 313 nm was irradiated from the outside of the liquid crystal cell at 5 J. Thereafter, the response speed was measured again, and the response speed before and after UV irradiation was compared. Table 2 shows the results of the response speed immediately after the production of the liquid crystal cell (initial stage) and after UV irradiation (after UV irradiation).
「応答速度の測定方法」
まず、バックライト、クロスニコルの状態にした一組の偏光版、光量検出器の順で構成される測定装置において、一組の偏光版の間に液晶セルを配置した。このときライン/スペースが形成されているITO電極のパターンがクロスニコルに対して45°の角度になるようにした。そして、上記の液晶セルに電圧±4V、周波数1kHzの矩形波を印加し、光量検出器によって観測される輝度が飽和するまでの変化をオシロスコープにて取り込み、電圧を印加していない時の輝度を0%、±4Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化するのにかかる時間を応答速度とした。
"Response speed measurement method"
First, a liquid crystal cell was arranged between a pair of polarizing plates in a measuring device configured in the order of a backlight, a set of polarizing plates in a crossed Nicol state, and a light amount detector. At this time, the ITO electrode pattern in which the line / space was formed was at an angle of 45 ° with respect to the crossed Nicols. Then, a rectangular wave with a voltage of ± 4 V and a frequency of 1 kHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained. A voltage of 0% and ± 4 V was applied, the saturated luminance value was set to 100%, and the time taken for the luminance to change from 10% to 90% was defined as the response speed.
(実施例14)
液晶1のかわりに液晶2を用いた以外は実施例13と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 14)
The same operation as in Example 13 was performed except that the liquid crystal 2 was used in place of the liquid crystal 1, and the response speeds before and after UV irradiation were compared.
(比較例2)
液晶1のかわりに液晶3を用いた以外は実施例13と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 2)
Except that the liquid crystal 3 was used instead of the liquid crystal 1, the same operation as in Example 13 was performed to compare the response speed before and after UV irradiation.
(実施例15)
液晶配向剤(A1)のかわりに液晶配向剤(A2)を用い、液晶1のかわりにMLC−6608を用い、また、UVを5J照射するかわりに20J照射した以外は実施例13と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 15)
The same operation as in Example 13 except that the liquid crystal aligning agent (A2) was used instead of the liquid crystal aligning agent (A1), MLC-6608 was used instead of the liquid crystal 1, and 20 J irradiation was performed instead of UV irradiation at 5 J. The response speed before and after UV irradiation was compared.
(実施例16)
液晶配向剤(A2)のかわりに液晶配向剤(A3)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 16)
Except for using the liquid crystal aligning agent (A3) instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed to compare the response speed before and after UV irradiation.
(比較例3)
液晶配向剤(A2)のかわりに液晶配向剤(A1)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 3)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (A1) was used instead of the liquid crystal aligning agent (A2).
(実施例17)
液晶配向剤(A2)のかわりに液晶配向剤(B2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 17)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (B2) was used instead of the liquid crystal aligning agent (A2).
(比較例4)
液晶配向剤(A2)のかわりに液晶配向剤(B1)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 4)
Except for using the liquid crystal aligning agent (B1) instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed, and the response speeds before and after UV irradiation were compared.
(実施例18)
液晶配向剤(A2)のかわりに液晶配向剤(C2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 18)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (C2) was used instead of the liquid crystal aligning agent (A2).
(比較例5)
液晶配向剤(A2)のかわりに液晶配向剤(C1)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 5)
Except that the liquid crystal aligning agent (C1) was used instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed, and the response speed before and after UV irradiation was compared.
(実施例19)
液晶配向剤(A2)のかわりに液晶配向剤(D2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 19)
Except that the liquid crystal aligning agent (D2) was used instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed, and the response speed before and after UV irradiation was compared.
(比較例6)
液晶配向剤(A2)のかわりに液晶配向剤(D1)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 6)
Except for using the liquid crystal aligning agent (D1) instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed, and the response speeds before and after UV irradiation were compared.
(実施例20)
液晶配向剤(A2)のかわりに液晶配向剤(E2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 20)
Except that the liquid crystal aligning agent (E2) was used instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed, and the response speed before and after UV irradiation was compared.
(比較例7)
液晶配向剤(A2)のかわりに液晶配向剤(E1)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 7)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (E1) was used instead of the liquid crystal aligning agent (A2).
(実施例21)
液晶配向剤(A2)のかわりに液晶配向剤(F2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 21)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (F2) was used instead of the liquid crystal aligning agent (A2).
(比較例8)
液晶配向剤(A2)のかわりに液晶配向剤(F1)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 8)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (F1) was used instead of the liquid crystal aligning agent (A2).
(実施例22)
液晶配向剤(A2)のかわりに液晶配向剤(G2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 22)
Except for using the liquid crystal aligning agent (G2) instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed, and the response speeds before and after UV irradiation were compared.
(比較例9)
液晶配向剤(A2)のかわりに液晶配向剤(G1)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 9)
Except for using the liquid crystal aligning agent (G1) instead of the liquid crystal aligning agent (A2), the same operation as in Example 15 was performed, and the response speeds before and after UV irradiation were compared.
(実施例23)
液晶配向剤(A2)のかわりに液晶配向剤(H2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 23)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (H2) was used instead of the liquid crystal aligning agent (A2).
この結果、表2に示すように、液晶に上記式(1)で表される重合性化合物を含有させた実施例13及び実施例14は、紫外線照射前の応答速度に対する紫外線照射後の応答速度の向上率が、従来の重合性化合物を含有させた比較例2と比較して顕著に高かった。したがって、液晶に上記式(1)で表される重合性化合物を含有させることにより、液晶に添加する重合性化合物の量が少なくても応答速度を大幅に向上させることができることが確認された。 As a result, as shown in Table 2, Example 13 and Example 14 in which the polymerizable compound represented by the above formula (1) was contained in the liquid crystal showed a response speed after ultraviolet irradiation with respect to a response speed before ultraviolet irradiation. The improvement rate of was significantly higher than that of Comparative Example 2 containing a conventional polymerizable compound. Therefore, it was confirmed that the response speed can be greatly improved by containing the polymerizable compound represented by the above formula (1) in the liquid crystal even if the amount of the polymerizable compound added to the liquid crystal is small.
そして、上記式(1)においてV及びWがオキシアルキレン基である重合性化合物を用いた実施例13は、上記式(1)においてV及びWが単結合である重合性化合物を用いた実施例14よりも、応答速度の向上率が顕著に高かった。 And Example 13 using the polymerizable compound in which V and W are oxyalkylene groups in the above formula (1) is an example using the polymerizable compound in which V and W are single bonds in the above formula (1). The response rate improvement rate was significantly higher than 14.
また、液晶配向剤に上記式(1)で表される重合性化合物を含有させた実施例15〜23は、紫外線照射前後の応答速度の向上率が、液晶配向剤に上記式(1)で表される重合性化合物を含有させなかった比較例3〜9と比較して、顕著に高かった。したがって、液晶配向剤に上記式(1)で表される重合性化合物を含有させることにより、応答速度を大幅に向上できることが確認された。そして、ポリイミドの種類を変えた実施例15〜23のいずれにおいても対応する比較例と比較して応答速度の向上率が高くなることが確認された。 Further, in Examples 15 to 23 in which the polymerizable compound represented by the above formula (1) was contained in the liquid crystal aligning agent, the improvement rate of the response speed before and after the ultraviolet irradiation was expressed by the above formula (1). Compared with Comparative Examples 3 to 9 which did not contain the represented polymerizable compound, it was significantly higher. Therefore, it was confirmed that the response speed can be significantly improved by incorporating the polymerizable compound represented by the above formula (1) into the liquid crystal aligning agent. And in any of Examples 15-23 which changed the kind of polyimide, it was confirmed that the improvement rate of a response speed becomes high compared with the corresponding comparative example.
また、上記式(1)で表される重合性化合物の添加量が30質量%である実施例16は、添加量が10質量%である実施例15よりも、応答速度の向上率が高かった。したがって、上記式(1)で表される重合性化合物の添加量が多いほど、応答速度は向上することが確認された。 Further, Example 16 in which the addition amount of the polymerizable compound represented by the above formula (1) was 30% by mass had a higher response speed improvement rate than Example 15 in which the addition amount was 10% by mass. . Therefore, it was confirmed that the response speed was improved as the amount of the polymerizable compound represented by the formula (1) was increased.
そして、光反応性基を有するポリイミドを用いた実施例17〜23は、光反応性基を有さないポリイミドを用いた実施例15よりも顕著に応答速度が向上しており、光反応性基を有するポリイミドを用いると、応答速度がさらに向上することが確認された。 In Examples 17 to 23 using a polyimide having a photoreactive group, the response speed is remarkably improved as compared with Example 15 using a polyimide having no photoreactive group. It was confirmed that the response speed was further improved by using a polyimide having.
[表 2]
[Table 2]
(実施例24)
上記の液晶配向剤(D1)10.0gに対して実施例2で得られた重合性化合物RM2を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(D3)を調製した。
(Example 24)
0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM2 obtained in Example 2 was added to 10.0 g of the liquid crystal aligning agent (D1), and stirred and dissolved at room temperature for 3 hours. A liquid crystal aligning agent (D3) was prepared.
(比較例10)
上記の液晶配向剤(D1)10.0gに対して比較例1の重合性化合物RM3を0.06g(固形分に対して10質量%)添加し、室温で3時間攪拌溶解させ、液晶配向剤(D4)を調製した。
(Comparative Example 10)
0.06 g (10% by mass with respect to the solid content) of the polymerizable compound RM3 of Comparative Example 1 is added to 10.0 g of the liquid crystal aligning agent (D1), and the mixture is stirred and dissolved at room temperature for 3 hours. (D4) was prepared.
(実施例25)
液晶配向剤(D2)のかわりに液晶配向剤(D3)を用いた以外は実施例19と同様の操作を行って、UV照射前後での応答速度を比較した。結果を表3に示す。
(Example 25)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 19 except that the liquid crystal aligning agent (D3) was used instead of the liquid crystal aligning agent (D2). The results are shown in Table 3.
(実施例26)
熱循環式オーブンでの焼成を200℃30分間とするかわりに、160℃ での30分間とした以外は実施例25と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 26)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 25 except that the baking in the heat circulation oven was performed at 200 ° C. for 30 minutes instead of 30 minutes at 160 ° C.
(比較例11)
液晶配向剤(D3)のかわりに液晶配向剤(D4)を用いた以外は実施例25と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 11)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 25 except that the liquid crystal aligning agent (D4) was used instead of the liquid crystal aligning agent (D3).
(比較例12)
熱循環式オーブンでの焼成を200℃30分間とするかわりに、160℃ での30分間とした以外は比較例11と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 12)
The response speed before and after UV irradiation was compared by performing the same operation as in Comparative Example 11 except that the baking in the heat circulating oven was performed at 200 ° C. for 30 minutes instead of 30 minutes at 160 ° C.
(実施例27)
液晶配向剤(A2)のかわりに液晶配向剤(I2)を用いた以外は実施例15と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 27)
The response speed before and after UV irradiation was compared by performing the same operation as in Example 15 except that the liquid crystal aligning agent (I2) was used instead of the liquid crystal aligning agent (A2).
(実施例28)
焼成温度を200℃から140℃へ変更した以外は実施例27と同様の操作を行って、UV照射前後での応答速度を比較した。
(Example 28)
Except for changing the baking temperature from 200 ° C. to 140 ° C., the same operation as in Example 27 was performed, and the response speed before and after UV irradiation was compared.
(比較例13)
液晶配向剤(I2)のかわりに液晶配向剤(I1)を用いた以外は実施例27と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 13)
Except for using the liquid crystal aligning agent (I1) instead of the liquid crystal aligning agent (I2), the same operation as in Example 27 was performed to compare the response speed before and after UV irradiation.
(比較例14)
焼成温度を200℃から140℃へ変更した以外は比較例13と同様の操作を行って、UV照射前後での応答速度を比較した。
(Comparative Example 14)
Except for changing the firing temperature from 200 ° C. to 140 ° C., the same operation as in Comparative Example 13 was performed to compare the response speed before and after UV irradiation.
この結果、上記式(1)で表される重合性化合物を含有させた液晶配向剤を用いた実施例25〜28では、焼成温度によらず、UV照射によって十分な応答速度の向上が確認された。一方、従来の重合性化合物であるRM3を含有させた液晶配向剤を用いた比較例では、焼成温度が160℃の比較例11ではUV照射によって十分な応答速度の向上が見られるが、焼成温度を200℃とした比較例12では応答速度の向上率が著しく低下した。また、重合性化合物を添加していない液晶配向剤を用いた比較例13及び比較例14では、紫外線照射前後の応答速度が、いずれの焼成温度においても、ほとんど変わらなかった。 As a result, in Examples 25 to 28 using the liquid crystal aligning agent containing the polymerizable compound represented by the above formula (1), it was confirmed that sufficient response speed was improved by UV irradiation regardless of the firing temperature. It was. On the other hand, in the comparative example using the liquid crystal aligning agent containing RM3 which is a conventional polymerizable compound, in the comparative example 11 having a baking temperature of 160 ° C., a sufficient response speed is improved by UV irradiation. In Comparative Example 12 in which the temperature was 200 ° C., the improvement rate of the response speed was significantly reduced. Moreover, in Comparative Example 13 and Comparative Example 14 using a liquid crystal aligning agent to which no polymerizable compound was added, the response speed before and after the ultraviolet irradiation was almost the same at any firing temperature.
[表 3]
[Table 3]
下記で用いた略号は以下の通りである。
TEOS:テトラエトキシシラン
C18:オクタデシルトリエトキシシラン
ACPS:3−アクリロキシプロピルトリメトキシシラン
UPS:3−ウレイドプロピルトリエトキシシラン
MPMS:3−メタクリロキシプロピルトリメトキシシラン
VTES:トリエトキシビニルシラン
NMP:N−メチル−2−ピロリドン
HG:2−メチル−2,4−ペンタンジオール(別名:ヘキシレングリコール)
BCS:2−ブトキシエタノール
Abbreviations used below are as follows.
TEOS: tetraethoxysilane C18: octadecyltriethoxysilane ACPS: 3-acryloxypropyltrimethoxysilane UPS: 3-ureidopropyltriethoxysilane MPMS: 3-methacryloxypropyltrimethoxysilane VTES: triethoxyvinylsilane NMP: N-methyl -2-pyrrolidone HG: 2-methyl-2,4-pentanediol (also known as hexylene glycol)
BCS: 2-butoxyethanol
<ポリシロキサン系の液晶配向剤の作製>
(比較例15)
温度計、還流管を備え付けた100mLの四つ口反応フラスコ中でBCS24.5g、TEOS32.4g、C18を1.34g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS12.3g、水8.65g及び触媒として蓚酸0.14gを混合した溶液を、室温下で30分かけて滴下した。この溶液を30分間撹拌してから30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.46g、BCS0.34gの混合液を加えた。更に30分間還流させてから放冷してSiO2換算濃度が12質量%のポリシロキサン溶液を得た。
<Production of polysiloxane-based liquid crystal aligning agent>
(Comparative Example 15)
A solution of alkoxysilane monomer was prepared by mixing 24.5 g of BCS, 32.4 g of TEOS, and 1.34 g of C18 in a 100 mL four-neck reaction flask equipped with a thermometer and a reflux tube. To this solution, a solution prepared by previously mixing 12.3 g of BCS, 8.65 g of water and 0.14 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature. The solution was stirred for 30 minutes and then refluxed for 30 minutes, and a mixed solution of methanol solution having a UPS content of 92% by mass and 0.44 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by mass.
得られたポリシロキサン溶液38.0g、BCS3.63g、NMP49.6gを混合し、SiO2換算濃度が5質量%の液晶配向剤(a)を得た。 38.0 g of the obtained polysiloxane solution, 3.63 g of BCS, and 49.6 g of NMP were mixed to obtain a liquid crystal aligning agent (a) having a SiO 2 equivalent concentration of 5 mass%.
(実施例29)
比較例15で得られた液晶配向剤(a)に重合性化合物RM1を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 29)
The polymerizable compound RM1 was added to the liquid crystal aligning agent (a) obtained in Comparative Example 15 so as to be 10% by mass and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(実施例30)
比較例15で得られた液晶配向剤(a)に重合性化合物RM1を20質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 30)
The polymerizable compound RM1 was added to the liquid crystal aligning agent (a) obtained in Comparative Example 15 so as to be 20% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(実施例31)
比較例15で得られた液晶配向剤(a)に重合性化合物RM2を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 31)
The polymerizable compound RM2 was added to the liquid crystal aligning agent (a) obtained in Comparative Example 15 so as to be 10% by mass and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(比較例16)
温度計、還流管を備え付けた100mLの四つ口反応フラスコ中でBCS24.5g、TEOS25.7g、C18を1.33g、及びVTESを6.09g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS12.3g、水8.64g及び触媒として蓚酸0.72gを混合した溶液を、室温下で30分かけて滴下した。この溶液を30分間撹拌してから30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.46g、BCS0.34gの混合液を加えた。更に30分間還流させてから放冷してSiO2換算濃度が12質量%のポリシロキサン溶液を得た。
(Comparative Example 16)
In a 100 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 24.5 g of BCS, 25.7 g of TEOS, 1.33 g of C18, and 6.09 g of VTES were mixed to prepare a solution of an alkoxysilane monomer. A solution prepared by previously mixing 12.3 g of BCS, 8.64 g of water and 0.72 g of oxalic acid as a catalyst was added dropwise to this solution at room temperature over 30 minutes. The solution was stirred for 30 minutes and then refluxed for 30 minutes, and a mixed solution of methanol solution having a UPS content of 92% by mass and 0.44 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by mass.
得られたポリシロキサン溶液38.0g、BCS3.63g、NMP49.6gを混合し、SiO2換算濃度が5質量%の液晶配向剤(b)を得た。 38.0 g of the obtained polysiloxane solution, 3.63 g of BCS, and 49.6 g of NMP were mixed to obtain a liquid crystal aligning agent (b) having a SiO 2 equivalent concentration of 5 mass%.
(実施例32)
比較例16で得られた液晶配向剤(b)に重合性化合物RM1を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 32)
The polymerizable compound RM1 was added to the liquid crystal aligning agent (b) obtained in Comparative Example 16 so as to be 10% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(実施例33)
比較例16で得られた液晶配向剤(b)に重合性化合物RM2を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 33)
The polymerizable compound RM2 was added to the liquid crystal aligning agent (b) obtained in Comparative Example 16 so as to be 10% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(比較例17)
温度計、還流管を備え付けた100mLの四つ口反応フラスコ中でBCS23.3g、TEOS22.3g、C18を1.33g、及びACPSを11.3g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS11.6g、水8.64g及び触媒として蓚酸0.72gを混合した溶液を、室温下で30分かけて滴下した。この溶液を30分間撹拌してから30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.46g、BCS0.34gの混合液を加えた。更に30分間還流させてから放冷してSiO2換算濃度が12質量%のポリシロキサン溶液を得た。
(Comparative Example 17)
A solution of alkoxysilane monomer was prepared by mixing 23.3 g of BCS, 22.3 g of TEOS, 1.33 g of C18, and 11.3 g of ACPS in a 100 mL four-necked reaction flask equipped with a thermometer and a reflux tube. To this solution, a solution prepared by previously mixing 11.6 g of BCS, 8.64 g of water and 0.72 g of oxalic acid as a catalyst was added dropwise at room temperature over 30 minutes. The solution was stirred for 30 minutes and then refluxed for 30 minutes, and a mixed solution of methanol solution having a UPS content of 92% by mass and 0.44 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by mass.
得られたポリシロキサン溶液38.0g、BCS4.24g、NMP49.0gを混合し、SiO2換算濃度が5質量%の液晶配向剤(c)を得た。 38.0 g of the obtained polysiloxane solution, 4.24 g of BCS, and 49.0 g of NMP were mixed to obtain a liquid crystal aligning agent (c) having a SiO 2 equivalent concentration of 5 mass%.
(実施例34)
比較例17で得られた液晶配向剤(c)に重合性化合物RM1を5質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 34)
The polymerizable compound RM1 was added to the liquid crystal aligning agent (c) obtained in Comparative Example 17 so as to be 5% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(実施例35)
比較例17で得られた液晶配向剤(c)に重合性化合物RM1を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 35)
The polymerizable compound RM1 was added to the liquid crystal aligning agent (c) obtained in Comparative Example 17 so as to be 10% by mass, and the mixture was stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(比較例18)
比較例17で得られた液晶配向剤(c)に重合性化合物RM3を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Comparative Example 18)
Polymerizable compound RM3 was added to the liquid crystal aligning agent (c) obtained in Comparative Example 17 so as to be 10% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(比較例19)
温度計、還流管を備え付けた100mLの四つ口反応フラスコ中でBCS23.4g、TEOS25.7g、C18を1.33g、及びMPMSを7.95g混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS11.7g、水8.64g及び触媒として蓚酸0.58gを混合した溶液を、室温下で30分かけて滴下した。この溶液を30分間撹拌してから30分間還流させた後、予めUPS含有量92質量%のメタノール溶液0.46g、BCS0.34gの混合液を加えた。更に30分間還流させてから放冷してSiO2換算濃度が12質量%のポリシロキサン溶液を得た。
(Comparative Example 19)
A solution of an alkoxysilane monomer was prepared by mixing 23.4 g of BCS, 25.7 g of TEOS, 1.33 g of C18, and 7.95 g of MPMS in a 100 mL four-necked reaction flask equipped with a thermometer and a reflux tube. To this solution, a solution in which 11.7 g of BCS, 8.64 g of water and 0.58 g of oxalic acid as a catalyst were mixed in advance was added dropwise at room temperature over 30 minutes. The solution was stirred for 30 minutes and then refluxed for 30 minutes, and a mixed solution of methanol solution having a UPS content of 92% by mass and 0.44 g of BCS was added in advance. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by mass.
得られたポリシロキサン溶液38.0g、BCS4.20g、NMP49.0gを混合し、SiO2換算濃度が5質量%の液晶配向剤(d)を得た。 38.0 g of the obtained polysiloxane solution, 4.20 g of BCS, and 49.0 g of NMP were mixed to obtain a liquid crystal aligning agent (d) having a SiO 2 equivalent concentration of 5 mass%.
(実施例36)
比較例19で得られた液晶配向剤(d)に重合性化合物RM1を5質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 36)
The polymerizable compound RM1 was added to the liquid crystal aligning agent (d) obtained in Comparative Example 19 so as to be 5% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(実施例37)
比較例19で得られた液晶配向剤(d)に重合性化合物RM1を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Example 37)
Polymerizable compound RM1 was added to the liquid crystal aligning agent (d) obtained in Comparative Example 19 so as to be 10% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
(比較例20)
比較例19で得られた液晶配向剤(d)に重合性化合物RM3を10質量%となるように加え、室温で5時間攪拌しワニス(液晶配向剤)を調製した。
(Comparative Example 20)
Polymerizable compound RM3 was added to the liquid crystal aligning agent (d) obtained in Comparative Example 19 so as to be 10% by mass, and stirred at room temperature for 5 hours to prepare a varnish (liquid crystal aligning agent).
<液晶セルの作製>
(実施例38)
実施例29で得られたワニス(液晶配向剤)を用いて下記に示すような手順で液晶セルの作製を行った。まず、実施例29で得られたワニスを、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、80℃のホットプレートで5分間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
<Production of liquid crystal cell>
(Example 38)
Using the varnish (liquid crystal aligning agent) obtained in Example 29, a liquid crystal cell was prepared according to the procedure shown below. First, the varnish obtained in Example 29 was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 μm × 300 μm and a line / space of 5 μm was formed, and a hot plate at 80 ° C. After drying for 5 minutes, baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
また、比較例15で得られた液晶配向剤(a)を電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで5分間乾燥させた後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。 The liquid crystal aligning agent (a) obtained in Comparative Example 15 was spin-coated on the ITO surface on which no electrode pattern was formed, dried on an 80 ° C. hot plate for 5 minutes, and then heated at 200 ° C. in a hot air circulation oven. Was baked for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
上記の2枚の基板について一方の基板の液晶配向膜上に6μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルに液晶MLC−6608(メルク社製商品名)を減圧注入法によって注入し、120℃のオーブン中でIsotropic処理(加熱による液晶の再配向処理)を行い、液晶セルを作製した。 After spraying a 6 μm bead spacer on the liquid crystal alignment film of one of the two substrates, a sealant (solvent type thermosetting epoxy resin) was printed thereon. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell. Liquid crystal MLC-6608 (trade name, manufactured by Merck & Co., Inc.) was injected into the empty cell by a reduced pressure injection method, and was subjected to Isotropic treatment (liquid crystal realignment treatment by heating) in an oven at 120 ° C., thereby producing a liquid crystal cell.
得られた液晶セルの作製直後の応答速度を、下記方法により測定した。その後、この液晶セルに20Vp−pの電圧を印加した状態で、この液晶セルの外側から313nmのバンドパスフィルターを通したUVを10J照射した。その後、再び応答速度を測定し、UV照射前後での応答速度を比較した。液晶セルの作製直後(初期)、UVを5J照射した後(UV5J後)及びUVを10J照射した後(UV10J後)の応答速度の結果を表4に示す。 The response speed immediately after production of the obtained liquid crystal cell was measured by the following method. After that, with a voltage of 20 Vp-p applied to the liquid crystal cell, 10 J UV irradiation through a 313 nm band pass filter was applied from the outside of the liquid crystal cell. Thereafter, the response speed was measured again, and the response speed before and after UV irradiation was compared. Table 4 shows the results of response speed immediately after the production of the liquid crystal cell (initial stage), after UV irradiation for 5J (after UV5J) and after UV irradiation for 10J (after UV10J).
「応答速度の測定方法」
まず、バックライト、クロスニコルの状態にした一組の偏光版、光量検出器の順で構成される測定装置において、一組の偏光版の間に液晶セルを配置した。このときライン/スペースが形成されているITO電極のパターンがクロスニコルに対して45°の角度になるようにした。そして、上記の液晶セルに電圧±4V、周波数1kHzの矩形波を印加し、光量検出器によって観測される輝度が飽和するまでの変化をオシロスコープにて取り込み、電圧を印加していない時の輝度を0%、±4Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化するのにかかる時間を応答速度とした。
"Response speed measurement method"
First, a liquid crystal cell was arranged between a pair of polarizing plates in a measuring device configured in the order of a backlight, a set of polarizing plates in a crossed Nicol state, and a light amount detector. At this time, the ITO electrode pattern in which the line / space was formed was at an angle of 45 ° with respect to the crossed Nicols. Then, a rectangular wave with a voltage of ± 4 V and a frequency of 1 kHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained. A voltage of 0% and ± 4 V was applied, the saturated luminance value was set to 100%, and the time taken for the luminance to change from 10% to 90% was defined as the response speed.
(実施例39)
実施例29で得られたワニスのかわりに実施例30で得られたワニスを用いた以外は実施例38と同様の操作を行った。
(Example 39)
The same operation as in Example 38 was performed except that the varnish obtained in Example 30 was used instead of the varnish obtained in Example 29.
(実施例40)
実施例29で得られたワニスのかわりに実施例31で得られたワニスを用いた以外は実施例38と同様の操作を行った。
(Example 40)
The same operation as in Example 38 was performed except that the varnish obtained in Example 31 was used instead of the varnish obtained in Example 29.
(実施例41)
実施例29で得られたワニスのかわりに実施例32で得られたワニスを用いた以外は実施例38と同様の操作を行った。
(Example 41)
The same operation as in Example 38 was performed except that the varnish obtained in Example 32 was used instead of the varnish obtained in Example 29.
(実施例42)
実施例29で得られたワニスのかわりに実施例33で得られたワニスを用いた以外は実施例38と同様の操作を行った。
(Example 42)
The same operation as in Example 38 was performed except that the varnish obtained in Example 33 was used instead of the varnish obtained in Example 29.
(実施例43)
実施例29で得られたワニスのかわりに実施例34で得られたワニスを用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Example 43)
The same operation as in Example 38 was performed except that the varnish obtained in Example 34 was used in place of the varnish obtained in Example 29 and that 5J was irradiated instead of 10J with UV irradiation.
(実施例44)
実施例29で得られたワニスのかわりに実施例35で得られたワニスを用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Example 44)
The same operation as in Example 38 was performed except that the varnish obtained in Example 35 was used in place of the varnish obtained in Example 29 and that 5J was irradiated instead of 10J with UV irradiation.
(実施例45)
実施例29で得られたワニスのかわりに実施例36で得られたワニスを用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Example 45)
The same operation as in Example 38 was performed except that the varnish obtained in Example 36 was used in place of the varnish obtained in Example 29 and that 5J was irradiated instead of 10J with UV irradiation.
(実施例46)
実施例29で得られたワニスのかわりに実施例37で得られたワニスを用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Example 46)
The same operation as in Example 38 was performed except that the varnish obtained in Example 37 was used in place of the varnish obtained in Example 29 and that 5J was irradiated instead of 10J with UV irradiation.
(比較例21)
実施例29で得られたワニスのかわりに比較例15で得られた液晶配向剤(a)を用いた以外は実施例38と同様の操作を行った。
(Comparative Example 21)
The same operation as in Example 38 was performed except that the liquid crystal aligning agent (a) obtained in Comparative Example 15 was used instead of the varnish obtained in Example 29.
(比較例22)
実施例29で得られたワニスのかわりに比較例16で得られた液晶配向剤(b)を用いた以外は実施例38と同様の操作を行った。
(Comparative Example 22)
The same operation as in Example 38 was performed except that the liquid crystal aligning agent (b) obtained in Comparative Example 16 was used instead of the varnish obtained in Example 29.
(比較例23)
実施例29で得られたワニスのかわりに比較例17で得られた液晶配向剤(c)を用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Comparative Example 23)
The same procedure as in Example 38 was performed, except that the liquid crystal aligning agent (c) obtained in Comparative Example 17 was used instead of the varnish obtained in Example 29, and 5 J was irradiated instead of 10 J with UV irradiation. It was.
(比較例24)
実施例29で得られたワニスのかわりに比較例18で得られたワニスを用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Comparative Example 24)
The same operation as in Example 38 was performed except that the varnish obtained in Comparative Example 18 was used instead of the varnish obtained in Example 29, and 5 J was irradiated instead of 10 J with UV irradiation.
(比較例25)
実施例29で得られたワニスのかわりに比較例19で得られた液晶配向剤(d)を用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Comparative Example 25)
The same procedure as in Example 38 was performed, except that the liquid crystal aligning agent (d) obtained in Comparative Example 19 was used instead of the varnish obtained in Example 29, and 5 J was irradiated instead of 10 J with UV irradiation. It was.
(比較例26)
実施例29で得られたワニスのかわりに比較例20で得られたワニスを用い、また、UVを10J照射するかわりに5J照射した以外は実施例38と同様の操作を行った。
(Comparative Example 26)
The same operation as in Example 38 was performed except that the varnish obtained in Comparative Example 20 was used in place of the varnish obtained in Example 29 and that 5J was irradiated instead of 10J with UV irradiation.
この結果、表4に示すように、上記式(1)で表される重合性化合物を含有させた液晶配向剤を用いた実施例38〜46は、紫外線照射前後の応答速度の向上率が、重合性化合物を含有させなかった液晶配向剤を用いた比較例21〜23及び25や上記式(1)で表される重合性化合物ではない重合性化合物を含有させた液晶配向剤を用いた比較例24及び26と比較して、顕著に高かった。したがって、液晶配向剤に上記式(1)で表される重合性化合物を含有させることにより、応答速度を大幅に向上できることが確認された。そして、ポリシロキサンの種類を変えた実施例38〜46のいずれにおいても対応する比較例と比較して応答速度の向上率が高くなることが確認された。 As a result, as shown in Table 4, in Examples 38 to 46 using the liquid crystal aligning agent containing the polymerizable compound represented by the above formula (1), the response rate improvement rate before and after the ultraviolet irradiation was Comparative Examples 21 to 23 and 25 using a liquid crystal aligning agent not containing a polymerizable compound and comparison using a liquid crystal aligning agent containing a polymerizable compound which is not a polymerizable compound represented by the above formula (1) Compared to Examples 24 and 26, it was significantly higher. Therefore, it was confirmed that the response speed can be significantly improved by incorporating the polymerizable compound represented by the above formula (1) into the liquid crystal aligning agent. And in any of Examples 38-46 which changed the kind of polysiloxane, it was confirmed that the improvement rate of a response speed becomes high compared with the corresponding comparative example.
また、上記式(1)で表される重合性化合物の添加量が多いほど、応答速度は向上することが確認された。 It was also confirmed that the response speed was improved as the amount of the polymerizable compound represented by the formula (1) was increased.
そして、光反応性基を有するポリシロキサンを用いた実施例41〜46は、光反応性基を有さないポリシロキサンを用いた実施例38〜40よりも顕著に応答速度が向上しており、光反応性基を有するポリシロキサンを用いると、応答速度がさらに向上することが確認された。 And Examples 41-46 using the polysiloxane which has a photoreactive group have improved the response speed notably compared with Examples 38-40 using the polysiloxane which does not have a photoreactive group, It was confirmed that the response speed was further improved by using a polysiloxane having a photoreactive group.
このように、上記式(1)で表される重合性化合物を含有した本発明の液晶配向剤を用いることにより、液晶中に重合性化合物を含有させなくても、応答速度を速くできることが確認された。そして、この本発明の液晶配向剤においては、重合性化合物を多量に添加しなくても、また、紫外線の照射量を多量にしなくても、応答速度を十分早くすることができることも確認された。 Thus, by using the liquid crystal aligning agent of the present invention containing the polymerizable compound represented by the above formula (1), it is confirmed that the response speed can be increased without including the polymerizable compound in the liquid crystal. It was. And in this liquid crystal aligning agent of this invention, even if it did not add a polymeric compound in large quantities, and it was also confirmed that a response speed can be made quick enough, without increasing the irradiation amount of an ultraviolet-ray. .
[表 4]
[Table 4]
本発明によれば、垂直配向方式の液晶表示素子の応答速度を向上させることができる新規な重合性化合物を提供することができる。そして、この重合性化合物を用いることにより、応答速度が速い垂直配向方式の液晶表示素子を提供することができる。そして、この液晶配向剤においては、重合性化合物の添加量が少ない場合や、紫外線の照射量が少ない場合であっても、応答速度を十分に向上させることができる。
本発明の液晶配向剤を用いて作製した液晶表示素子は、PSA方式の配向方式において、重合性化合物を添加しない液晶を使用した場合においても、PSA方式と同等な特性を得ることが可能な液晶表示素子を提供することができる。この結果、PSA方式のTFT(Thin Film Transistor)液晶表示素子、TN(Twisted Nematic)液晶表示素子、VA液晶表示素子などに有用である。
ADVANTAGE OF THE INVENTION According to this invention, the novel polymeric compound which can improve the response speed of the liquid crystal display element of a vertical alignment system can be provided. By using this polymerizable compound, it is possible to provide a vertical alignment type liquid crystal display element having a high response speed. And in this liquid crystal aligning agent, even when the addition amount of a polymeric compound is small, or even when the irradiation amount of an ultraviolet-ray is small, a response speed can fully be improved.
The liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention is a liquid crystal capable of obtaining characteristics equivalent to those of the PSA method even when a liquid crystal to which no polymerizable compound is added is used in the PSA method. A display element can be provided. As a result, it is useful for PSA TFT (Thin Film Transistor) liquid crystal display elements, TN (Twisted Nematic) liquid crystal display elements, VA liquid crystal display elements, and the like.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015100420A JP5967391B2 (en) | 2010-06-30 | 2015-05-15 | Polymerizable compound, liquid crystal display element, and method for producing liquid crystal display element |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010150126 | 2010-06-30 | ||
JP2010150126 | 2010-06-30 | ||
JP2010195172 | 2010-08-31 | ||
JP2010195172 | 2010-08-31 | ||
JP2011080763 | 2011-03-31 | ||
JP2011080763 | 2011-03-31 | ||
JP2015100420A JP5967391B2 (en) | 2010-06-30 | 2015-05-15 | Polymerizable compound, liquid crystal display element, and method for producing liquid crystal display element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012522706A Division JP5776908B2 (en) | 2010-06-30 | 2011-06-30 | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015148827A JP2015148827A (en) | 2015-08-20 |
JP5967391B2 true JP5967391B2 (en) | 2016-08-10 |
Family
ID=45402216
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012522706A Active JP5776908B2 (en) | 2010-06-30 | 2011-06-30 | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element |
JP2015100420A Active JP5967391B2 (en) | 2010-06-30 | 2015-05-15 | Polymerizable compound, liquid crystal display element, and method for producing liquid crystal display element |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012522706A Active JP5776908B2 (en) | 2010-06-30 | 2011-06-30 | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP5776908B2 (en) |
KR (1) | KR101912955B1 (en) |
CN (1) | CN103080153B (en) |
TW (1) | TWI564339B (en) |
WO (1) | WO2012002513A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5874904B2 (en) * | 2010-12-15 | 2016-03-02 | Jsr株式会社 | Manufacturing method of liquid crystal display element |
JP6048398B2 (en) * | 2011-02-25 | 2016-12-21 | 日産化学工業株式会社 | Polymerizable liquid crystal compound, polymerizable liquid crystal composition, and alignment film |
WO2013115387A1 (en) * | 2012-02-03 | 2013-08-08 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
JP6375774B2 (en) * | 2013-11-15 | 2018-08-22 | Jsr株式会社 | Method for manufacturing liquid crystal alignment film, substrate for liquid crystal display element and method for manufacturing the same, and liquid crystal display element |
TWI657297B (en) * | 2014-01-30 | 2019-04-21 | 日商日產化學工業股份有限公司 | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
EP3159737B1 (en) * | 2014-06-17 | 2021-05-26 | Nissan Chemical Corporation | Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent |
CN107108540B (en) * | 2014-11-04 | 2019-08-02 | 日产化学工业株式会社 | Butyrolactone compound and manufacturing method |
WO2016072365A1 (en) * | 2014-11-04 | 2016-05-12 | 日産化学工業株式会社 | Butyrolactone-compound production method |
TWI560241B (en) * | 2014-11-05 | 2016-12-01 | Chi Mei Corp | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
TWI560242B (en) * | 2014-11-05 | 2016-12-01 | Chi Mei Corp | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element |
TW201632609A (en) * | 2014-12-12 | 2016-09-16 | Dainippon Ink & Chemicals | Liquid crystal display element and method of manufacturing the same |
EP3246309B1 (en) * | 2015-01-13 | 2020-01-01 | Nissan Chemical Corporation | Method for treating tin compound in reaction mixture |
KR102352286B1 (en) | 2015-02-05 | 2022-01-18 | 삼성디스플레이 주식회사 | Alignment layer, liquid crystal display comprising the same and method for manufacturing liquid crystal display |
KR102529347B1 (en) * | 2015-02-06 | 2023-05-04 | 닛산 가가쿠 가부시키가이샤 | Liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element |
CN105647548B (en) | 2016-02-23 | 2018-10-16 | 京东方科技集团股份有限公司 | Orientation agent, the production method of alignment film, display panel and display device |
CN109791333A (en) * | 2016-10-07 | 2019-05-21 | 夏普株式会社 | The manufacturing method of TFT substrate aligning agent for liquid crystal and liquid crystal display panel |
CN113474724A (en) * | 2019-03-08 | 2021-10-01 | 日产化学株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4175826B2 (en) * | 2002-04-16 | 2008-11-05 | シャープ株式会社 | Liquid crystal display |
JP4522662B2 (en) * | 2003-03-31 | 2010-08-11 | 香港科技大学 | Composition for liquid crystal alignment film, liquid crystal alignment film, method for producing liquid crystal alignment film, and maleimide compound |
JP5201352B2 (en) * | 2006-10-05 | 2013-06-05 | 日産化学工業株式会社 | Bifunctional polymerizable compound, polymerizable liquid crystal composition and alignment film |
JP5716674B2 (en) * | 2009-12-02 | 2015-05-13 | 日産化学工業株式会社 | Liquid crystal alignment treatment agent and liquid crystal display element using the same |
WO2011074546A1 (en) * | 2009-12-14 | 2011-06-23 | 日産化学工業株式会社 | Liquid crystal aligning agent and liquid crystal display element using same |
CN103080823B (en) * | 2010-06-30 | 2015-09-30 | 日产化学工业株式会社 | The manufacture method of aligning agent for liquid crystal, liquid crystal orientation film, liquid crystal display cells and liquid crystal display cells and polymerizable compound |
KR101831006B1 (en) * | 2010-06-30 | 2018-02-21 | 닛산 가가쿠 고교 가부시키 가이샤 | Liquid crystal-aligning agent, liquid crysat-aligning film, liquid crystal display element and method for producing liquid crystal display elements |
JP6172463B2 (en) * | 2011-12-28 | 2017-08-02 | 日産化学工業株式会社 | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element |
-
2011
- 2011-06-30 JP JP2012522706A patent/JP5776908B2/en active Active
- 2011-06-30 WO PCT/JP2011/065103 patent/WO2012002513A1/en active Application Filing
- 2011-06-30 CN CN201180041624.2A patent/CN103080153B/en active Active
- 2011-06-30 KR KR1020137002057A patent/KR101912955B1/en active IP Right Grant
- 2011-06-30 TW TW100123257A patent/TWI564339B/en active
-
2015
- 2015-05-15 JP JP2015100420A patent/JP5967391B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2012002513A1 (en) | 2012-01-05 |
KR101912955B1 (en) | 2018-10-29 |
TWI564339B (en) | 2017-01-01 |
TW201215640A (en) | 2012-04-16 |
JP5776908B2 (en) | 2015-09-09 |
CN103080153A (en) | 2013-05-01 |
JPWO2012002513A1 (en) | 2013-08-29 |
CN103080153B (en) | 2016-02-10 |
KR20130135822A (en) | 2013-12-11 |
JP2015148827A (en) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967391B2 (en) | Polymerizable compound, liquid crystal display element, and method for producing liquid crystal display element | |
JP6172463B2 (en) | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element | |
JP5761532B2 (en) | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element | |
JP5257548B2 (en) | Liquid crystal display element and liquid crystal aligning agent | |
JP6108126B2 (en) | Polymerizable compound | |
JP6361898B6 (en) | Polymerizable compound | |
KR102115015B1 (en) | Liquid crystal aligning agent and liquid crystal display element using same | |
JP6387957B2 (en) | Liquid crystal aligning agent containing crosslinkable compound having photoreactive group | |
JP5975227B2 (en) | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element | |
WO2014061778A1 (en) | Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element | |
JP5716674B2 (en) | Liquid crystal alignment treatment agent and liquid crystal display element using the same | |
JP7472799B2 (en) | Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150515 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160621 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5967391 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |