JP5960402B2 - Carbon fiber bundle and method for producing carbon fiber bundle - Google Patents
Carbon fiber bundle and method for producing carbon fiber bundle Download PDFInfo
- Publication number
- JP5960402B2 JP5960402B2 JP2011196066A JP2011196066A JP5960402B2 JP 5960402 B2 JP5960402 B2 JP 5960402B2 JP 2011196066 A JP2011196066 A JP 2011196066A JP 2011196066 A JP2011196066 A JP 2011196066A JP 5960402 B2 JP5960402 B2 JP 5960402B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- carbon fiber
- sizing agent
- resin
- adhesion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 145
- 239000004917 carbon fiber Substances 0.000 title claims description 145
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 137
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000004513 sizing Methods 0.000 claims description 129
- 239000003795 chemical substances by application Substances 0.000 claims description 121
- 239000000835 fiber Substances 0.000 claims description 107
- 229920005989 resin Polymers 0.000 claims description 70
- 239000011347 resin Substances 0.000 claims description 70
- 238000001035 drying Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 36
- 239000000243 solution Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 28
- 239000000839 emulsion Substances 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000002736 nonionic surfactant Substances 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- 239000002131 composite material Substances 0.000 description 42
- 230000000052 comparative effect Effects 0.000 description 24
- 230000000704 physical effect Effects 0.000 description 19
- 239000011159 matrix material Substances 0.000 description 11
- 239000003822 epoxy resin Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000003763 carbonization Methods 0.000 description 7
- 229920002239 polyacrylonitrile Polymers 0.000 description 7
- -1 polyoxyethylene Polymers 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000000465 moulding Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000004643 cyanate ester Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- NIDNOXCRFUCAKQ-UHFFFAOYSA-N bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2C(O)=O NIDNOXCRFUCAKQ-UHFFFAOYSA-N 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- XDSGMUJLZDSCPA-UHFFFAOYSA-N diazanium;phenoxybenzene;sulfate Chemical class [NH4+].[NH4+].[O-]S([O-])(=O)=O.C=1C=CC=CC=1OC1=CC=CC=C1 XDSGMUJLZDSCPA-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 229920006241 epoxy vinyl ester resin Polymers 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Inorganic Fibers (AREA)
Description
本発明は、複合材料としての使用に適した炭素繊維束および炭素繊維束の製造方法に関する。 The present invention relates to a carbon fiber bundle suitable for use as a composite material and a method for producing the carbon fiber bundle.
炭素繊維は、優れた比強度及び比弾性率を有し、軽量性に優れるため、熱硬化性及び熱可塑性樹脂の強化繊維として、従来のスポーツ・一般産業用途だけでなく、航空・宇宙用途、自動車用途など広く利用されている。そして、このような用途の拡大とともに、炭素繊維複合材料には、さらなる高性能化が求められている。 Carbon fiber has excellent specific strength and specific elastic modulus, and is excellent in lightness. Therefore, as a reinforcing fiber for thermosetting and thermoplastic resin, not only conventional sports and general industrial applications, but also aerospace applications, Widely used for automotive applications. And with such expansion of applications, carbon fiber composite materials are required to have higher performance.
炭素繊維複合材料の性能は、使用する炭素繊維とマトリクス樹脂の力学的特性の違いはもちろんのこと、炭素繊維と樹脂との界面の特性、特に繊維と樹脂の接着性の違いにも大きく影響される。炭素繊維と樹脂の接着性を制御するために、一般的に、炭素繊維の製造工程において、炭素繊維束に表面酸化処理とサイジング剤付与処理(サイジング処理)が施される。サイジング剤は、繊維束の毛羽立ちを抑制し、収束性を与えると同時に、複合材料とした際には、繊維とマトリクス樹脂をつなぎ、接着性を高める役割を果たす。従来、サイジング処理は、炭素繊維束にサイジング剤溶液を付与した後、熱風乾燥方式または加熱ローラー方式で加熱乾燥させ、炭素繊維束にサイジング剤を付着させていた。 The performance of carbon fiber composite materials is greatly influenced not only by the difference in the mechanical properties of the carbon fiber and matrix resin used, but also by the characteristics of the interface between the carbon fiber and the resin, particularly the difference in adhesion between the fiber and the resin. The In order to control the adhesion between the carbon fiber and the resin, the carbon fiber bundle is generally subjected to a surface oxidation treatment and a sizing agent application treatment (sizing treatment) in the carbon fiber production process. The sizing agent suppresses the fluffing of the fiber bundle and provides convergence, and at the same time, when used as a composite material, it serves to connect the fibers and the matrix resin to enhance the adhesiveness. Conventionally, in the sizing treatment, after a sizing agent solution is applied to a carbon fiber bundle, the sizing agent is attached to the carbon fiber bundle by heating and drying with a hot air drying method or a heating roller method.
ところで、複合材料において繊維と樹脂の接着性は、部材全体に渡って均一であることが望ましい。繊維と樹脂の接着性にばらつきがある場合、複合材料に応力や衝撃が与えられた際に、接着が弱い部分で繊維‐樹脂間の剥離が発生し、生じた亀裂が伸張することで、部材の破断に至ってしまうためである。繊維と樹脂の接着性を均一にすることを目的に、サイジング剤は繊維表面にムラ無く均一に付着させるよう、さまざまな改善策が検討されてきた。 By the way, in the composite material, it is desirable that the adhesion between the fiber and the resin is uniform over the entire member. When there is a variation in the adhesion between the fiber and the resin, when stress or impact is applied to the composite material, the fiber-resin is peeled off at the weakly bonded part, and the cracks that are generated are stretched. It is because it will lead to the fracture | rupture of. In order to make the adhesion between the fiber and the resin uniform, various improvement measures have been studied so that the sizing agent is uniformly attached to the fiber surface without unevenness.
例えば特許文献1では、低濃度のサイジング剤溶液を用いて複数回サイジング処理をすることで、サイジング剤を均一に付着させる方法が提案されている。しかし、特許文献1では、サイジング剤溶液を付与した後、熱風循環方式で乾燥を行っているため、繊維束内外に温度ムラが生じる。そのため、繊維束外表面の乾燥が先行し、繊維束内側に残ったサイジング剤溶液が外側に拡散する。その結果、内側の付着量が低くなりやすく、繊維束内外の付着量にムラが生じるという問題がある。 For example, Patent Document 1 proposes a method of uniformly attaching a sizing agent by performing sizing treatment a plurality of times using a low concentration sizing agent solution. However, in Patent Document 1, after applying the sizing agent solution, drying is performed by a hot air circulation method, and thus temperature unevenness occurs inside and outside the fiber bundle. Therefore, drying of the outer surface of the fiber bundle precedes, and the sizing agent solution remaining inside the fiber bundle diffuses outward. As a result, there is a problem that the amount of adhesion on the inside tends to be low, and the amount of adhesion inside and outside the fiber bundle is uneven.
炭素繊維束のサイジング剤乾燥方式としては、熱風循環方式の他に加熱ローラー方式が一般的に用いられている。(例えば、特許文献2)しかし、加熱ローラー方式では、繊維束外表面の付着量が低下しやすいという問題がある。サイジング剤の乾燥に加熱ローラー方式を用いると、接触方式であるために、繊維束外表面のサイジング剤樹脂がローラー上に付着し、繊維束外表面の付着量が低下しやすい。そのため、繊維束内外の付着量にムラができやすくなってしまう。また加熱ローラー上にサイジング剤が付着し、ローラーと繊維の間の摩擦力が変化し、工程張力が一定にならないため、乾燥途中の繊維束からのサイジング剤溶液の染み出しが一定にならず、付着量にムラが生じやすい。
上記のように、炭素繊維束に均一にサイジング剤を付着させること、特に繊維束の外表面と内側で付着を均一にすることは困難であり、さらなる改善が求められている。
As a sizing agent drying method for the carbon fiber bundle, a heating roller method is generally used in addition to the hot air circulation method. (For example, patent document 2) However, in a heating roller system, there exists a problem that the adhesion amount of the fiber bundle outer surface tends to fall. When the heating roller method is used for drying the sizing agent, since it is a contact method, the sizing agent resin on the outer surface of the fiber bundle adheres on the roller, and the attached amount of the outer surface of the fiber bundle tends to decrease. For this reason, the amount of adhesion inside and outside the fiber bundle tends to be uneven. Also, the sizing agent adheres to the heating roller, the frictional force between the roller and the fiber changes, and the process tension is not constant, so that the sizing agent solution exudation from the fiber bundle during drying is not constant, Unevenness is likely to occur in the amount of adhesion.
As described above, it is difficult to uniformly attach the sizing agent to the carbon fiber bundle, and particularly to make the adhesion uniform between the outer surface and the inner side of the fiber bundle, and further improvement is required.
本発明の目的は、複合材料とした際に、界面接着性が均一であり、応力や衝撃に対する耐性が高い炭素繊維束、及び、かかる炭素繊維束を得るための炭素繊維束の製造方法を提供することにある。 An object of the present invention is to provide a carbon fiber bundle having uniform interface adhesion and high resistance to stress and impact, and a method for producing a carbon fiber bundle for obtaining such a carbon fiber bundle when a composite material is used. There is to do.
本発明の炭素繊維束は、繊維束の内外でサイジング剤が均一に付着した炭素繊維束である。具体的には、炭素繊維から構成された炭素繊維束であって、繊維束表面のサイジング剤付着量の、繊維束内部のサイジング剤付着量に対する比が0.5〜1.1である炭素繊維束である。 The carbon fiber bundle of the present invention is a carbon fiber bundle in which a sizing agent is uniformly attached inside and outside the fiber bundle. Specifically, it is a carbon fiber bundle composed of carbon fibers, and the ratio of the sizing agent adhesion amount on the surface of the fiber bundle to the sizing agent adhesion amount inside the fiber bundle is 0.5 to 1.1. It is a bunch.
また、本発明の炭素繊維束の製造方法は、炭素繊維から構成された炭素繊維束に、界面活性剤を添加してサイジング剤樹脂を乳化させたエマルジョン水溶液であるサイジング剤溶液を付与した後、3μm以上の波長を持つ電磁波を用いて、少なくとも、温度範囲80〜120℃で1〜10分加熱した後、さらに温度範囲150〜250℃で1〜10分加熱する多段処理で、加熱乾燥させる炭素繊維束の製造方法である。電磁波の中でも、サイジング剤樹脂の吸収波長である3〜30μmの波長の赤外線を用いることが好ましい。本発明で用いるサイジング剤溶液としては、サイジング剤樹脂を、サイジング剤樹脂の質量に対して5〜20質量%の非イオン系界面活性剤で乳化した、エマルジョン水溶液が好ましい。 Moreover, the method for producing a carbon fiber bundle of the present invention, after adding a sizing agent solution, which is an emulsion aqueous solution in which a sizing agent resin is emulsified by adding a surfactant to a carbon fiber bundle composed of carbon fibers, Carbon to be heat-dried in a multi-stage treatment in which an electromagnetic wave having a wavelength of 3 μm or more is heated at least in a temperature range of 80 to 120 ° C. for 1 to 10 minutes and further heated in a temperature range of 150 to 250 ° C. for 1 to 10 minutes. It is a manufacturing method of a fiber bundle. Among electromagnetic waves, it is preferable to use infrared rays having a wavelength of 3 to 30 μm, which is the absorption wavelength of the sizing agent resin. The sizing agent solution used in the present invention is preferably an aqueous emulsion solution obtained by emulsifying a sizing agent resin with 5 to 20% by mass of a nonionic surfactant based on the mass of the sizing agent resin.
本発明の炭素繊維束は、繊維束の内外で、サイジング剤が均一に付着されているため、複合材料とした場合に、繊維と樹脂の接着性が均一である。このため、本発明の炭素繊維束とマトリクス樹脂からなる複合材料は、応力集中や、繊維と樹脂の界面剥離が起こり難く、炭素繊維複合材料としての物性が向上する。
本発明の炭素繊維束の製造方法によれば、サイジング剤の付着ムラを抑制でき、繊維束の内外でサイジング剤が均一に付着した本発明の炭素繊維束を得ることができる。
In the carbon fiber bundle of the present invention, since the sizing agent is uniformly attached inside and outside the fiber bundle, the adhesive property between the fiber and the resin is uniform when a composite material is used. For this reason, the composite material composed of the carbon fiber bundle and the matrix resin of the present invention is less likely to cause stress concentration and interfacial peeling between the fiber and the resin, and the physical properties of the carbon fiber composite material are improved.
According to the method for producing a carbon fiber bundle of the present invention, uneven adhesion of the sizing agent can be suppressed, and the carbon fiber bundle of the present invention in which the sizing agent is uniformly adhered inside and outside the fiber bundle can be obtained.
本発明の炭素繊維束は、繊維束表面のサイジング剤付着量の、繊維束内部のサイジング剤付着量に対する比が0.5〜1.1である炭素繊維束である。
本発明の炭素繊維束は、繊維束の内外で、サイジング剤が均一に付着されている。そのため、複合材料とした場合に、繊維と樹脂の接着性が均一であり、炭素繊維の単繊維がマトリクス樹脂に分散しやすい。このため、本発明の炭素繊維束とマトリクス樹脂からなる複合材料に負荷が与えられても、応力集中が起こり難く、また、繊維と樹脂の界面剥離も起こり難くなる。その結果、炭素繊維複合材料としての物性が向上し、かつ、物性のばらつきも低減される。
The carbon fiber bundle of the present invention is a carbon fiber bundle in which the ratio of the sizing agent adhesion amount on the surface of the fiber bundle to the sizing agent adhesion amount inside the fiber bundle is 0.5 to 1.1 .
In the carbon fiber bundle of the present invention, the sizing agent is uniformly attached inside and outside the fiber bundle. Therefore, when a composite material is used, the adhesiveness between the fibers and the resin is uniform, and the carbon fiber single fibers are easily dispersed in the matrix resin. For this reason, even when a load is applied to the composite material composed of the carbon fiber bundle and the matrix resin of the present invention, stress concentration hardly occurs and interface separation between the fiber and the resin hardly occurs. As a result, physical properties as a carbon fiber composite material are improved, and variations in physical properties are also reduced.
炭素繊維に付着しているサイジング剤の量は、蛍光電子顕微鏡を用いて、サイジング剤に含まれる蛍光物質の発光量として測定できる。そのため、炭素繊維束の外表面に位置する炭素繊維と、繊維束を中央で分割し露出させた繊維束内部の炭素繊維の発光量を、それぞれ繊維束表面のサイジング剤付着量、繊維束内部のサイジング剤付着量として、炭素繊維束外表面の発光量の、炭素繊維束内部の発光量に対する比(炭素繊維束外表面の発光量/炭素繊維束内部の発光量)を求めることで、炭素繊維束内外のサイジング剤の付着ムラを評価することができる。 The amount of the sizing agent adhering to the carbon fiber can be measured as the light emission amount of the fluorescent substance contained in the sizing agent using a fluorescent electron microscope. Therefore, the amount of luminescence of the carbon fiber located on the outer surface of the carbon fiber bundle and the carbon fiber inside the fiber bundle which is exposed by dividing the fiber bundle at the center, the sizing agent adhesion amount on the surface of the fiber bundle, By determining the ratio of the amount of light emitted from the outer surface of the carbon fiber bundle to the amount of light emitted from the inner surface of the carbon fiber bundle (the amount of light emitted from the outer surface of the carbon fiber bundle / the amount of light emitted from the inner surface of the carbon fiber bundle). The uneven adhesion of the sizing agent inside and outside the bundle can be evaluated.
繊維束表面のサイジング剤付着量の、繊維束内部のサイジング剤付着量に対する比が1に近いほどサイズ剤の付着ムラが少ない。
付着量の比が0.5〜2.0の範囲にあれば、サイジング剤が繊維束の内外で均一に付着されているため、複合材料とした場合に、応力集中や界面剥離が起こり難くなり、炭素繊維複合材料としての物性が向上する。さらに、物性のばらつきも低減される。しかし、付着量の比が2.0を超えると、炭素繊維内部のサイジング剤の付着量が少ないため、繊維と樹脂との接着性が低くなり、複合材料物性が低くなる。一方、付着量の比が0.5未満であると、炭素繊維束表面のサイジング剤の付着量が少なすぎるため、複合材料物性が低くなり、また繊維束の耐擦過性も低くなる。
As the ratio of the sizing agent adhesion amount on the surface of the fiber bundle to the sizing agent adhesion amount inside the fiber bundle is closer to 1, the adhesion unevenness of the size agent is smaller.
If the ratio of the adhesion amount is in the range of 0.5 to 2.0, the sizing agent is uniformly adhered inside and outside the fiber bundle, so that when the composite material is used, stress concentration and interfacial peeling are less likely to occur. The physical properties as a carbon fiber composite material are improved. Furthermore, variation in physical properties is also reduced. However, if the ratio of the amount of adhesion exceeds 2.0, the amount of adhesion of the sizing agent inside the carbon fiber is small, so that the adhesion between the fiber and the resin is lowered, and the physical properties of the composite material are lowered. On the other hand, when the ratio of the adhesion amount is less than 0.5, the adhesion amount of the sizing agent on the surface of the carbon fiber bundle is too small, so that the physical properties of the composite material are lowered and the abrasion resistance of the fiber bundle is also lowered.
炭素繊維束に対するサイジング剤の付着量は適時変更可能であるが、付着量が3.0質量%を超えると、炭素繊維束の開繊性が低下し、マトリクス樹脂の繊維束内部への含浸不良を引き起こしやすい傾向がある。サイジング剤の付着量が少ないと、繊維の収束性や耐擦過性が低下しやすい傾向があるため、0.05質量%以上付着していることが好ましい。このことから、付着量は0.05〜3.0質量%が好ましく、さらに好ましくは0.1〜1.5質量%である。 The amount of sizing agent attached to the carbon fiber bundle can be changed in a timely manner. However, if the amount attached exceeds 3.0% by mass, the openability of the carbon fiber bundle is reduced, and the matrix resin is poorly impregnated inside the fiber bundle. Tend to cause. If the amount of the sizing agent attached is small, the fiber convergence and scratch resistance tend to be lowered, so 0.05% by mass or more is preferably attached. From this, the adhesion amount is preferably 0.05 to 3.0% by mass, and more preferably 0.1 to 1.5% by mass.
本発明の炭素繊維束を構成する炭素繊維は特に制限が無く、ピッチ系、レーヨン系、ポリアクリロニトリル(PAN)系等何れの炭素繊維も使用できるが、操作性、工程通過性、及び機械強度等を鑑みるとPAN系が好ましい。炭素繊維の繊度、強度等の特性も特に制限が無く、公知の何れの炭素繊維も制限無く使用できる。
本発明で用いる炭素繊維束の繊度は、特に制限されるものではないが、単繊維繊度が0.5〜1.0dtexであることが好ましく、炭素繊維束の総繊度が50〜5000texであることが好ましい。
The carbon fiber constituting the carbon fiber bundle of the present invention is not particularly limited, and any carbon fiber such as pitch, rayon, or polyacrylonitrile (PAN) can be used, but operability, process passability, mechanical strength, and the like. In view of the above, the PAN system is preferable. There are no particular restrictions on the fineness and strength of the carbon fiber, and any known carbon fiber can be used without restriction.
The fineness of the carbon fiber bundle used in the present invention is not particularly limited, but the single fiber fineness is preferably 0.5 to 1.0 dtex, and the total fineness of the carbon fiber bundle is 50 to 5000 tex. Is preferred.
本発明で用いる炭素繊維束のフィラメント数は、好ましくは1000〜100000本、さらに好ましくは3000〜50000本である。また、製造効率の面からは、12000本以上がより好ましく、24000本以上がさらに好ましい。また、単位幅当たりのフィラメント数は5000本/mm以下であることが好ましく、3000本/mm以下がさらに好ましい。5000本/mmを超えると、サイズ剤付与のバラツキが大きくなる傾向がある。 The number of filaments of the carbon fiber bundle used in the present invention is preferably 1000 to 100,000, more preferably 3000 to 50000. Moreover, 12000 or more are more preferable from the surface of manufacturing efficiency, and 24000 or more are further more preferable. The number of filaments per unit width is preferably 5000 / mm or less, more preferably 3000 / mm or less. If it exceeds 5000 / mm, the variation in sizing agent tends to increase.
本発明で用いる炭素繊維束の強度は好ましくは1000〜10000MPa、さらに好ましくは2000〜7000MPaであり、弾性率は好ましくは100〜1000GPa、さらに好ましく200〜600GPaである。
本発明で言う炭素繊維には、炭化繊維と黒鉛化繊維が含まれるが、元素分析により求められる炭素含有量が95質量%以上であることが好ましく、さらに好ましくは97質量%以上である。
PAN系の炭素繊維は、例えば、以下の方法により製造することができる。
The strength of the carbon fiber bundle used in the present invention is preferably 1000 to 10000 MPa, more preferably 2000 to 7000 MPa, and the elastic modulus is preferably 100 to 1000 GPa, more preferably 200 to 600 GPa.
The carbon fiber referred to in the present invention includes carbonized fiber and graphitized fiber, and the carbon content obtained by elemental analysis is preferably 95% by mass or more, and more preferably 97% by mass or more.
The PAN-based carbon fiber can be produced, for example, by the following method.
<前駆体繊維>
アクリロニトリルを95質量%以上含有する単量体を重合して得られる紡糸溶液を、凝固液中で紡糸した後、水洗・乾燥・延伸して得られるポリアクリルニトリル繊維が前駆体繊維として用いられる。前駆体繊維のフィラメント数は、製造効率の面では1000本以上が好ましく、12000本以上がより好ましく、24000本以上がさらに好ましい。
<Precursor fiber>
A polyacrylonitrile fiber obtained by spinning a spinning solution obtained by polymerizing a monomer containing 95% by mass or more of acrylonitrile in a coagulation liquid, followed by washing, drying and stretching is used as a precursor fiber. The number of filaments of the precursor fiber is preferably 1000 or more, more preferably 12000 or more, and further preferably 24000 or more in terms of production efficiency.
<耐炎化処理>
得られた前駆体繊維を、加熱空気中200〜300℃で10〜100分間不融化処理する。不融化処理では、前駆体繊維を延伸倍率0.90〜1.20の範囲で繊維を延伸処理することが好ましい。
<Flame resistance treatment>
The obtained precursor fiber is infusibilized in heated air at 200 to 300 ° C. for 10 to 100 minutes. In the infusibilization treatment, it is preferable to subject the precursor fiber to a drawing treatment within a range of a draw ratio of 0.90 to 1.20.
<炭素化処理>
不融化処理した前駆体繊維を、300〜2000℃で炭素化することで炭素繊維が得られる。より引張強度の高い緻密な内部構造をもつ炭素繊維束を得るためには、300℃〜1000℃で低温炭素化した後、1000〜2000℃で高温炭素化する二段階の炭素化工程を経て、炭素化処理を行うことが好ましい。より高い弾性率が求められる場合は、さらに2000〜3000℃の高温で黒鉛化処理を行ってもよい。
<Carbonization treatment>
Carbon fiber is obtained by carbonizing the infusible precursor fiber at 300 to 2000 ° C. In order to obtain a carbon fiber bundle having a dense internal structure with higher tensile strength, after low-temperature carbonization at 300 ° C. to 1000 ° C., through a two-stage carbonization step of high-temperature carbonization at 1000 to 2000 ° C., It is preferable to perform carbonization treatment. When a higher elastic modulus is required, the graphitization treatment may be further performed at a high temperature of 2000 to 3000 ° C.
<表面処理>
上記の炭素繊維束について、サイジング剤及びマトリクスとなる樹脂との濡れ性を改善するために、表面処理を行う。表面処理は、従来公知のいずれの方法でも行うことができるが、装置が簡便であり、工程での管理が容易であることから、工業的には電解酸化を用いることが一般的である。
本発明の炭素繊維束は、例えばこのようにして得られた炭素繊維束に、以下に述べる炭素繊維束の製造方法を用いて、サイジング処理を行うことで、製造することが出来る。
<Surface treatment>
The carbon fiber bundle is subjected to a surface treatment in order to improve wettability with a sizing agent and a resin as a matrix. The surface treatment can be performed by any conventionally known method, but since the apparatus is simple and management in the process is easy, it is common to use electrolytic oxidation industrially.
The carbon fiber bundle of the present invention can be produced, for example, by subjecting the carbon fiber bundle thus obtained to sizing treatment using the method for producing a carbon fiber bundle described below.
もう一つの本発明である炭素繊維束の製造方法は、炭素繊維から構成された炭素繊維束にサイジング剤溶液を付与した後、サイズジング剤溶液から溶媒を加熱乾燥させ、繊維表面にサイジング剤樹脂を定着させる際に、3μm以上の波長を持つ電磁波を用いて加熱処理を行う炭素繊維束の製造方法である。 Another method of producing a carbon fiber bundle according to the present invention is to apply a sizing agent solution to a carbon fiber bundle composed of carbon fibers, and then heat-dry the solvent from the sizing agent solution, thereby sizing agent resin on the fiber surface. Is a method for producing a carbon fiber bundle, in which heat treatment is performed using an electromagnetic wave having a wavelength of 3 μm or more when fixing is carried out.
本発明者は、鋭意検討の結果、サイジング剤溶液の乾燥を、電磁波、特に赤外線を用いて行うことで、繊維束内外の付着ムラを低減でき、特に繊維束の内外でサイジング剤の付着ムラが大きくなりやすい炭素繊維束のフィラメント数が多い場合でさえ、サイジング剤を均一に付着させることが出来ることを見出した。 As a result of intensive studies, the present inventor can reduce the adhesion unevenness inside and outside the fiber bundle by drying the sizing agent solution using electromagnetic waves, particularly infrared rays, and in particular, the adhesion unevenness of the sizing agent inside and outside the fiber bundle. It has been found that the sizing agent can be uniformly attached even when the number of filaments of the carbon fiber bundle that tends to be large is large.
電磁波を用いた加熱方式は、加熱媒体を使用する熱風循環方式とは異なり、直接加熱であるため、被処理繊維のフィラメント数や、走行ストランドの充填密度、工程張力等の条件によらず、均一に繊維を加熱することができる。このため、繊維束の外表面と内部の間でも、均一な温度で乾燥を行うことができ、繊維束内外での乾燥速度の差が生じにくい。その結果、乾燥途中でエマルジョン溶液が拡散することに起因するサイジング剤の付着ムラを抑制でき、繊維束内外での付着量の差を抑制できる。 The heating method using electromagnetic waves is different from the hot air circulation method using a heating medium because it is direct heating, so it is uniform regardless of conditions such as the number of filaments of the fiber to be treated, the packing density of the running strand, and the process tension. The fiber can be heated. For this reason, drying can be performed at a uniform temperature between the outer surface and the inside of the fiber bundle, and a difference in drying speed between the inside and outside of the fiber bundle is unlikely to occur. As a result, uneven adhesion of the sizing agent due to diffusion of the emulsion solution during drying can be suppressed, and a difference in the amount of adhesion between inside and outside the fiber bundle can be suppressed.
また、電磁波による乾燥は、被加熱物であるサイジング剤樹脂を直接高温に加熱するだけでなく、被処理繊維自体を発熱させ、繊維内部を加熱することができるため、繊維束の内外での温度ムラが発生しにくい。特に、炭素含有量が95質量%以上の炭素繊維は電磁波による発熱効率が高いため、多大な効果を得ることが出来る。 Also, drying by electromagnetic waves not only directly heats the sizing agent resin to be heated to a high temperature, but also heats the treated fiber itself and heats the inside of the fiber, so the temperature inside and outside the fiber bundle Unevenness is unlikely to occur. In particular, carbon fibers having a carbon content of 95% by mass or more have a high heat generation efficiency due to electromagnetic waves, and thus can provide a great effect.
さらに、接触式である加熱ローラー方式と異なり、非接触式の乾燥方法であるため、ローラー上に付着した樹脂のべたつきや工程張力等に起因する乾燥条件の変動を抑えることができる。また、電磁波は物質に吸収されると直ちに熱エネルギーに変換されるため、電磁波照射と同時に加熱がスタートし、加熱効率が高い。このため、乾燥途中でのエマルジョンの繊維束からの染み出しを原因とする付着ムラも出来難く、サイジング剤を均一に付着させることができる。 Furthermore, since it is a non-contact type drying method, unlike the contact type heating roller method, fluctuations in drying conditions due to stickiness of the resin adhering to the roller, process tension, and the like can be suppressed. Moreover, since the electromagnetic wave is immediately converted into thermal energy when absorbed by the substance, heating starts simultaneously with the irradiation of the electromagnetic wave, and the heating efficiency is high. For this reason, it is difficult to cause uneven adhesion due to bleeding of the emulsion from the fiber bundle during drying, and the sizing agent can be uniformly attached.
一方、従来の方法である熱風循環方式及び加熱ローラー方式で加熱した場合、繊維束表面から内部への熱の伝播は伝熱に拠るため、繊維内部まで加熱しようとすると、繊維束表面が過度に加熱されてしまう。この結果、繊維束表面では急速な乾燥が起こり、サイジング剤樹脂が十分に繊維表面を被膜することができない。 On the other hand, when heated by the hot air circulation method and the heating roller method, which are conventional methods, the propagation of heat from the fiber bundle surface to the inside depends on the heat transfer. It will be heated. As a result, rapid drying occurs on the fiber bundle surface, and the sizing agent resin cannot sufficiently coat the fiber surface.
本発明で使用する電磁波は、サイジング剤樹脂を加熱することができる、3μm以上の波長を持つ電磁波であり、なかでも3〜30μmの波長の赤外線がサイジング剤樹脂を加熱する効果が高いため好ましい。 The electromagnetic wave used in the present invention is an electromagnetic wave having a wavelength of 3 μm or more that can heat the sizing agent resin, and among them, infrared rays having a wavelength of 3 to 30 μm are preferable because the effect of heating the sizing agent resin is high.
本発明で用いるサイジング剤溶液に使用するサイジング剤樹脂は、特に限定されず、例えば、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、ビニルエステル樹脂、ポリアミド樹脂、ポリエーテル樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリイミド樹脂やその変性物が挙げられ、複合材料のマトリックス樹脂に応じ、適したサイズ剤を適宜選択することができる。また、このサイジング剤樹脂は二種類以上を組み合わせて使用することも可能である。また、炭素繊維の取扱性や、耐擦過性、耐毛羽性、含浸性を向上させるため、分散剤、界面活性剤等の補助成分をサイジング剤に添加しても良い。 The sizing agent resin used in the sizing agent solution used in the present invention is not particularly limited. For example, epoxy resin, urethane resin, polyester resin, vinyl ester resin, polyamide resin, polyether resin, acrylic resin, polyolefin resin, polyimide resin And a modified product thereof, and a suitable sizing agent can be appropriately selected according to the matrix resin of the composite material. Moreover, this sizing agent resin can also be used in combination of 2 or more types. In addition, auxiliary components such as a dispersant and a surfactant may be added to the sizing agent in order to improve the handleability, scratch resistance, fluff resistance, and impregnation of the carbon fiber.
本発明で使用されるサイズ剤の溶媒としては、サイジング剤樹脂が可溶な通常の溶媒、例えば、水、エタノール、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、トルエンおよびスチレンなどが挙げられる。これらの溶媒は、1種単独でも、2種類以上併用することもできる。とりわけ、取り扱い性および安全性の面から水溶媒が好適であり、水溶媒に難溶解のサイズ剤は、適宜、界面活性剤などを添加してエマルジョン水溶液として付与することが好適である。サイジング剤溶液のサイジング剤樹脂濃度は、目的とするサイジング剤の付着量にあわせ適時変更すればよく、1.0〜10質量%が好ましい。 As a solvent for the sizing agent used in the present invention, an ordinary solvent in which the sizing agent resin is soluble, for example, water, ethanol, acetone, methyl ethyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N- Examples include methyl pyrrolidone, toluene and styrene. These solvents can be used alone or in combination of two or more. In particular, an aqueous solvent is preferable from the viewpoints of handleability and safety, and a sizing agent that is hardly soluble in the aqueous solvent is preferably added as an emulsion aqueous solution by appropriately adding a surfactant or the like. What is necessary is just to change suitably the sizing agent resin density | concentration of a sizing agent solution according to the adhesion amount of the target sizing agent, and 1.0-10 mass% is preferable.
本発明の製造方法において、より付着の均一性を高めるために、サイジング剤溶液は、サイジング剤樹脂の質量に対して5〜20質量%の非イオン性界面活性剤を用いてサイジング剤樹脂を乳化させたエマルジョン水溶液として調整し、繊維束に付与させることが好ましい。非イオン界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリエチレングリコール脂肪族エステルなどが、陰イオン界面活性剤としてはアルキルベンゼンスルホン酸アンモニウム塩、ポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩などが挙げられる。 In the production method of the present invention, in order to further improve the adhesion uniformity, the sizing agent solution emulsifies the sizing agent resin by using 5 to 20% by mass of a nonionic surfactant based on the mass of the sizing agent resin. It is preferable to prepare an aqueous emulsion solution and impart it to the fiber bundle. Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene styrenated phenyl ethers, polyethylene glycol aliphatic esters and the like, and anionic surfactants include alkylbenzenesulfonic acid ammonium salts, Examples thereof include polyoxyethylene styrenated phenyl ether sulfate ammonium salt.
本発明の製造方法において、炭素繊維へのサイジング剤溶液の付与方法は、特に限定されないが、ローラーサイジング法、ローラー浸漬法、スプレー法およびその他公知の方法を用いることができる。中でも、一束あたりの単繊維数が多い炭素繊維束についても、サイジング剤溶液を均一に付与しやすい、ローラー浸漬法が好ましく用いられる。サイズジング剤溶液の液温は、溶媒蒸発によるサイジング剤濃度変動を抑えるため10〜50℃の範囲が好ましい。また、サイジング剤溶液を付与した後に、余剰のサイジング剤を絞り取る絞り量の調整することでも、サイジング剤の付着量を調整できる。 In the production method of the present invention, the method for applying the sizing agent solution to the carbon fiber is not particularly limited, and a roller sizing method, a roller dipping method, a spray method, and other known methods can be used. Among these, a roller dipping method that easily imparts a sizing agent solution uniformly is also preferably used for carbon fiber bundles having a large number of single fibers per bundle. The liquid temperature of the sizing agent solution is preferably in the range of 10 to 50 ° C. in order to suppress fluctuations in the sizing agent concentration due to solvent evaporation. Moreover, the adhesion amount of a sizing agent can also be adjusted by adjusting the amount of squeezing out the excess sizing agent after applying the sizing agent solution.
サイジング剤溶液の乾燥は、溶媒の蒸発に十分な任意の温度で行うことができるが、特にサイジング剤をエマルジョン水溶液として用いる場合には、2段階以上の温度範囲で加熱乾燥を行う多段処理であることが好ましい。 The drying of the sizing agent solution can be performed at any temperature sufficient for the evaporation of the solvent. However, particularly when the sizing agent is used as an emulsion aqueous solution, it is a multi-stage treatment in which heat drying is performed in a temperature range of two or more stages. It is preferable.
温度範囲を多段階に設定して加熱乾燥を行う場合には、80〜120℃で1〜10分加熱した後、150〜250℃で1〜10分加熱することが好ましい。80〜120℃の温度範囲は一般的な界面活性剤の曇点の温度である。サイジング剤をエマルジョン水溶液として用いている場合、80〜120℃の温度範囲で水と樹脂の相分離が起こる。この際、界面活性剤がネットワークを形成しようとして、繊維表面に樹脂を拡散させるため、サイジング剤樹脂を繊維表面に均一付着させることが出来る。一方、150〜250℃の温度範囲は、サイジング剤樹脂が軟化する温度である。サイジング剤樹脂の軟化点で加熱することで、サイジング剤樹脂が繊維上にさらに拡散し、均一な樹脂膜を形成する。そのため、80〜120℃で一定時間加熱した後、150〜250℃でさらに加熱を行うことで、サイジング剤樹脂をより均一に繊維表面に付着させることが出来る。より均一に繊維表面に付着させるために、加熱乾燥を行う際の工程張力は、被処理繊維1texあたり1〜10gであることが好ましい。 When heat drying is performed with the temperature range set in multiple stages, it is preferably heated at 80 to 120 ° C. for 1 to 10 minutes and then heated at 150 to 250 ° C. for 1 to 10 minutes. The temperature range of 80 to 120 ° C. is a cloud point temperature of a general surfactant. When the sizing agent is used as an aqueous emulsion, phase separation of water and resin occurs in the temperature range of 80 to 120 ° C. At this time, since the surfactant tries to form a network and diffuses the resin on the fiber surface, the sizing agent resin can be uniformly adhered to the fiber surface. On the other hand, the temperature range of 150 to 250 ° C. is a temperature at which the sizing agent resin is softened. By heating at the softening point of the sizing agent resin, the sizing agent resin is further diffused on the fiber to form a uniform resin film. Therefore, after heating at 80 to 120 ° C. for a certain period of time, further heating at 150 to 250 ° C. allows the sizing agent resin to adhere more uniformly to the fiber surface. In order to adhere more uniformly to the fiber surface, the process tension when performing heat drying is preferably 1 to 10 g per 1 tex of the fiber to be treated.
本発明の製造方法に好ましく用いられる炭素繊維束のフィラメント数は、製造効率の面からは、12000本以上がより好ましく、24000本以上がさらに好ましい。また、単位幅当たりのフィラメント数は5000本/mm以下であることが好ましく、3000本/mm以下がさらに好ましい。5000本/mmを超えると、サイズ剤付与のバラツキが大きくなる傾向がある。 From the viewpoint of production efficiency, the number of filaments of the carbon fiber bundle preferably used in the production method of the present invention is more preferably 12,000 or more, and further preferably 24,000 or more. The number of filaments per unit width is preferably 5000 / mm or less, more preferably 3000 / mm or less. If it exceeds 5000 / mm, the variation in sizing agent tends to increase.
このようにして本発明の炭素繊維束は製造することが出来る。そしてこの本発明の炭素繊維束を用い、マトリックス樹脂と組み合わせ、例えば、オートクレーブ成形、プレス成形、樹脂トランスファー成形、フィラメントワインディング成形など、公知の手段・方法により複合材料を得ることが出来る。
炭素繊維は、通常、シート状の強化繊維材料として用いられる。シート状の材料とは、繊維材料を一方向にシート状に引き揃えたもの、繊維材料を織編物や不織布等の布帛に成形したもの、多軸織物等が挙げられる。
In this way, the carbon fiber bundle of the present invention can be produced. Using the carbon fiber bundle of the present invention, a composite material can be obtained by a known means / method such as autoclave molding, press molding, resin transfer molding, filament winding molding, etc., in combination with a matrix resin.
Carbon fiber is usually used as a sheet-like reinforcing fiber material. Examples of the sheet-like material include those obtained by arranging fiber materials in a sheet shape in one direction, those obtained by forming a fiber material into a fabric such as a woven or knitted fabric and a nonwoven fabric, and multiaxial woven fabrics.
マトリックス樹脂としては、熱硬化性樹脂又は熱可塑性樹脂が用いられる。熱硬化性マトリックス樹脂の具体例として、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。 As the matrix resin, a thermosetting resin or a thermoplastic resin is used. Specific examples of thermosetting matrix resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having acetylene terminal, and polyimide resin having nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable. These thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.
熱可塑性樹脂としては、例えば、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミド、ポリアミドイミド、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリアクリロニトリル、ポリアラミド、ポリベンズイミダゾール等が挙げられる。 Examples of the thermoplastic resin include polypropylene, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamide , Polyamideimide, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyacrylonitrile, polyaramid, polybenzimidazole and the like.
複合材料中に占める樹脂組成物の含有率は、10〜90質量%、好ましくは20〜60質量%、更に好ましくは25〜45質量%である。
このような炭素繊維複合材料は、機械物性に優れ、そのばらつきも小さいため、スポーツ用途、レジャー用途、一般産業用途、航空・宇宙用途、自動車用途などに広く利用できる。
The content of the resin composition in the composite material is 10 to 90% by mass, preferably 20 to 60% by mass, and more preferably 25 to 45% by mass.
Such a carbon fiber composite material has excellent mechanical properties and small variations, and thus can be widely used for sports applications, leisure applications, general industrial applications, aerospace applications, automobile applications, and the like.
以下、本発明を実施例及び比較例により具体的に説明する。また、各実施例及び比較例における繊維および複合材料の物性の評価は、以下の方法により実施した。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The physical properties of the fibers and composite materials in each of the examples and comparative examples were evaluated by the following methods.
<ストランド引張強度、弾性率>
JIS R−7608に準じてエポキシ樹脂含浸ストランドの引張強度および引張弾性率を測定した。
<Strand tensile strength, elastic modulus>
The tensile strength and tensile modulus of the epoxy resin impregnated strand were measured according to JIS R-7608.
<サイジング剤付着量>
炭素繊維束10gを取り出し、溶剤としてアセトンを用い、JIS R7604 A法(溶剤抽出法)に基づいてサイジング剤の付着量を求めた。
<Sizing agent adhesion amount>
The carbon fiber bundle 10g was taken out, acetone was used as a solvent, and the adhesion amount of the sizing agent was determined based on JIS R7604 A method (solvent extraction method).
<繊維束内外のサイジング剤付着量均一性評価>
炭素繊維をカーボンテープ上に固定し、分析カラー蛍光電子顕微鏡CLEM(トプコン社製)を用いて、サイジング剤に由来する蛍光物質の発光量を測定した。測定は、12μm×9μmの視野で、1試料あたり5箇所行い、画像計測した発光面積の平均値をサイジング剤の付着量とした。繊維束表面のサイジング剤付着量は、炭素繊維束の外表面に位置する炭素繊維を、繊維束内部のサイジング剤付着量は、繊維束を中央で分割し露出させた繊維束内部の炭素繊維をそれぞれ試料として用いた。繊維束表面のサイジング剤付着量を、繊維束内部のサイジング剤付着量で除した値を、サイジング剤の付着均一性を示す指標として用いた。
<Evaluation of uniformity of sizing agent adhesion inside and outside the fiber bundle>
The carbon fiber was fixed on a carbon tape, and the light emission amount of the fluorescent material derived from the sizing agent was measured using an analytical color fluorescent electron microscope CLEM (manufactured by Topcon). The measurement was performed at 5 locations per sample in a 12 μm × 9 μm visual field, and the average value of the luminescent area measured by the image was used as the amount of sizing agent attached. The amount of sizing agent attached to the surface of the fiber bundle is the carbon fiber located on the outer surface of the carbon fiber bundle, and the amount of sizing agent attached to the inside of the fiber bundle is the carbon fiber inside the fiber bundle that is exposed by dividing the fiber bundle at the center. Each was used as a sample. A value obtained by dividing the adhesion amount of the sizing agent on the surface of the fiber bundle by the adhesion amount of the sizing agent inside the fiber bundle was used as an index indicating the adhesion uniformity of the sizing agent.
<炭素含有量>
FISONS Instruments社製元素分析装置を用い、燃焼管1000℃、還元管650℃で元素分析し、炭素含有量を算出した。
<Carbon content>
Using an elemental analyzer manufactured by FISONS Instruments, elemental analysis was performed at a combustion tube of 1000 ° C. and a reduction tube of 650 ° C., and the carbon content was calculated.
<プリプレグの作製方法>
得られた炭素繊維束を一方向に引き揃えて並べ、炭素繊維シート(目付け190g/m2)をとした。液状ビスフェノール型エポキシ樹脂“jER 828”(三菱化学社製)、多官能エポキシ樹脂“jER 604”(三菱化学社製)と、芳香族アミン系硬化剤である4,4’−ジアミノジフェニルスルホン(和歌山精化社製)を混練し、プリプレグ用エポキシ樹脂組成物を作成した。得られたエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布し、樹脂フィルムを作成した。次に前記炭素繊維シートに樹脂フィルム2枚を炭素繊維の両面から重ね、90度で加熱加圧して樹脂組成物を含浸させ、一方向プリプレグ(硬化温度180℃、樹脂含有率33%)を作製した。
<Preparation method of prepreg>
The obtained carbon fiber bundles were aligned and aligned in one direction to obtain a carbon fiber sheet (weight per unit area 190 g / m 2 ). Liquid bisphenol-type epoxy resin “jER 828” (manufactured by Mitsubishi Chemical Corporation), multifunctional epoxy resin “jER 604” (manufactured by Mitsubishi Chemical Corporation), and 4,4′-diaminodiphenyl sulfone which is an aromatic amine curing agent (Wakayama) Seiko Co., Ltd.) was kneaded to prepare an epoxy resin composition for prepreg. The obtained epoxy resin composition was apply | coated on the release paper using the knife coater, and the resin film was created. Next, two resin films are stacked on the carbon fiber sheet from both sides of the carbon fiber, and the resin composition is impregnated by heating and pressing at 90 degrees to prepare a unidirectional prepreg (curing temperature 180 ° C., resin content 33%). did.
<0°引張試験>
作製した一方向プリプレグを、成型後の厚みが1mmになるように積層した後、180℃で硬化させ、炭素繊維の体積含有率が60%であるコンポジットを得た。これをASTM D 303に準拠し、室温で繊維に対して0°の方向に引張試験を行い、0°引張強度(0TS)および0°引張弾性率(0TM)を測定した。
<0 ° tensile test>
The produced unidirectional prepreg was laminated so that the thickness after molding was 1 mm, and then cured at 180 ° C. to obtain a composite having a carbon fiber volume content of 60%. This was subjected to a tensile test in the direction of 0 ° with respect to the fiber at room temperature in accordance with ASTM D 303, and 0 ° tensile strength (0TS) and 0 ° tensile elastic modulus (0TM) were measured.
<面内せん断応力(IPSS)>
作製した一方向プリプレグ8枚を、繊維の方向が、[+45°/−45°/−45°/+45°/+45°/−45°/−45°/+45°]となるように積層した後、180℃で硬化させ、炭素繊維の体積含有率が60%であるコンポジットを得た。これを、JIS K 7079に記載の±45°方向引張法に従って、面内せん断応力(IPSS)を測定した。
<In-plane shear stress (IPSS)>
After laminating eight produced unidirectional prepregs so that the fiber direction is [+ 45 ° / −45 ° / −45 ° / + 45 ° / + 45 ° / −45 ° / −45 ° / + 45 °] The composite was cured at 180 ° C. to obtain a carbon fiber volume content of 60%. This was measured for in-plane shear stress (IPSS) according to a ± 45 ° direction tensile method described in JIS K 7079.
[実施例1]
前駆体繊維であるPAN繊維(単繊維繊度0.7dtex、フィラメント数24000)を、空気中250℃で、繊維比重1.35になるまで耐炎化処理を行い、次いで窒素ガス雰囲気下、最高温度650℃で低温炭素化させた。その後、窒素雰囲気下1500℃で高温炭素化させて製造した炭素繊維を、10.0質量%の硫酸アンモニウム水溶液を用い、電解溶液温度40℃、20C/gの電気量で電解酸化により表面処理を行い、未サイジング処理炭素繊維束(引張強度5880MPa、引張弾性率310MPa、炭素含有量98質量%、フィラメント数24000、総繊度800tex、繊維束の幅8mm)を得た。
得られた未サイジング処理炭素繊維束を、サイジング剤樹脂濃度4質量%のサイジング剤溶液に浸漬した後、電磁波による加熱装置として、波長4μmに最大エネルギー強度を有する反射板付遠赤外線ヒーターを備えた乾燥機を2台用いて、被処理繊維に対して2.5g/texの張力を付与しながら、第1乾燥として乾燥温度100℃で5分間加熱し、続いて第2乾燥として乾燥温度200℃で5分間加熱乾燥させ、サイジング処理を行った。サイジング剤溶液として、サイジング剤樹脂の質量に対して10質量%の非イオン性界面活性剤を用いて、サイジング剤樹脂を乳化させたエマルジョン水溶液を使用した。サイジング剤樹脂としてはビスフェノールA系エポキシ樹脂を、非イオン性界面活性剤としてはポリオキシエチレンアルキルエーテルを用いた。
このようにして得られた炭素繊維束は、サイジング剤付着量1.0質量%、炭素繊維束外表面のサイジング剤付着量の、炭素繊維束内部の付着量に対する比(表面の付着量/内部の付着量)が1.0であるサイジング剤の付着均一性が高い炭素繊維束であった。この炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表1に示した。
本発明の炭素繊維束の製造方法により、繊維束内外の付着均一性が高い本発明の炭素繊維を得ることが出来きた。本発明の炭素繊維束は優れた複合材料物性を示した。
[Example 1]
PAN fiber (single fiber fineness 0.7 dtex, filament number 24000), which is a precursor fiber, is flame-resistant at 250 ° C. in air until the fiber has a specific gravity of 1.35, and then a maximum temperature of 650 in a nitrogen gas atmosphere. Low temperature carbonization was performed at ° C. Thereafter, carbon fibers produced by high-temperature carbonization at 1500 ° C. in a nitrogen atmosphere are subjected to surface treatment by electrolytic oxidation at an electrolytic solution temperature of 40 ° C. and an electric quantity of 20 C / g using an aqueous solution of 10.0% by mass ammonium sulfate. An unsized carbon fiber bundle (tensile strength 5880 MPa, tensile elastic modulus 310 MPa, carbon content 98 mass%, filament number 24000, total fineness 800 tex, fiber bundle width 8 mm) was obtained.
The obtained unsized carbon fiber bundle is dipped in a sizing agent solution having a sizing agent resin concentration of 4% by mass, and then dried with a far-infrared heater with a reflector having a maximum energy intensity at a wavelength of 4 μm as a heating device using electromagnetic waves. Using two machines, while applying a tension of 2.5 g / tex to the fiber to be treated, heating was performed at a drying temperature of 100 ° C. for 5 minutes as the first drying, followed by a drying temperature of 200 ° C. as the second drying. Heat drying for 5 minutes and sizing treatment was performed. As the sizing agent solution, an aqueous emulsion solution in which the sizing agent resin was emulsified using 10% by mass of a nonionic surfactant based on the mass of the sizing agent resin was used. A bisphenol A epoxy resin was used as the sizing agent resin, and polyoxyethylene alkyl ether was used as the nonionic surfactant.
The carbon fiber bundle thus obtained has a sizing agent adhesion amount of 1.0% by mass, a ratio of the sizing agent adhesion amount on the outer surface of the carbon fiber bundle to the adhesion amount inside the carbon fiber bundle (surface adhesion amount / internal The carbon fiber bundle had a high adhesion uniformity of the sizing agent having an adhesion amount of 1.0. Table 1 shows the physical properties of this carbon fiber bundle and the composite material produced using this carbon fiber bundle.
By the method for producing a carbon fiber bundle of the present invention, the carbon fiber of the present invention having high adhesion uniformity inside and outside the fiber bundle has been obtained. The carbon fiber bundle of the present invention exhibited excellent composite material properties.
[実施例2、3]
サイジング剤溶液の濃度を変更し、サイジング剤の付着量を変更した以外は実施例1と同様にしてサイジング溶液として、炭素繊維束得た。この炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表1に示した。
本発明の方法を用いれば、サイジング剤の付着量にかかわらず、繊維束内外の付着均一性が高い本発明の炭素繊維を得ることが出来きた。また、この炭素繊維束を用いて作製した複合材料の物性は、何れも優れたものであった。
[Examples 2 and 3]
A carbon fiber bundle was obtained as a sizing solution in the same manner as in Example 1 except that the concentration of the sizing agent solution was changed and the adhesion amount of the sizing agent was changed. Table 1 shows the physical properties of this carbon fiber bundle and the composite material produced using this carbon fiber bundle.
By using the method of the present invention, the carbon fiber of the present invention having high adhesion uniformity inside and outside the fiber bundle can be obtained regardless of the amount of sizing agent deposited. Further, the physical properties of the composite material produced using this carbon fiber bundle were all excellent.
[比較例1]
サイジング剤の乾燥方法を、電磁波を用いた加熱から、150℃の熱風循環炉に変更した以外は、実施例1と同様にして炭素繊維束を得た。この炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表1に示した。
サイジングの付着量は実施例1と同程度であるが、通常の乾燥方法である熱風循環方式で乾燥さており、サイジング剤の付着均一性は2.2と繊維束外表面の付着量が高かった。また、十分な複合材料物性が得られなかった。
[Comparative Example 1]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the drying method of the sizing agent was changed from heating using electromagnetic waves to a hot air circulating furnace at 150 ° C. Table 1 shows the physical properties of this carbon fiber bundle and the composite material produced using this carbon fiber bundle.
The amount of sizing applied was the same as in Example 1, but it was dried by the hot air circulation method, which is a normal drying method. The adhesion uniformity of the sizing agent was 2.2, which was high on the outer surface of the fiber bundle. . Also, sufficient composite material properties could not be obtained.
[比較例2]
サイジング剤の乾燥方法を、電磁波を用いた加熱から、150℃の加熱ローラーに変更した以外は、実施例1と同様にして炭素繊維束を得た。この炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表1に示した。
比較例2では通常の乾燥方法である加熱ローラーで乾燥させており、サイジング剤の付着均一性は0.4と繊維束外表面の付着量が繊維内部に比べ低かった。また、十分な複合材料物性が得られなかった。
[Comparative Example 2]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the drying method of the sizing agent was changed from heating using electromagnetic waves to a heating roller of 150 ° C. Table 1 shows the physical properties of this carbon fiber bundle and the composite material produced using this carbon fiber bundle.
In the comparative example 2, it dried with the heating roller which is a normal drying method, the adhesion uniformity of the sizing agent was 0.4, and the adhesion amount of the fiber bundle outer surface was low compared with the inside of a fiber. Also, sufficient composite material properties could not be obtained.
[比較例3〜5]
サイジング剤の乾燥温度を表1に記載の温度に変更した以外は、実施例1と同様にして炭素繊維束を得た。この炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表1に示した。
比較例3は第1乾燥温度を70℃と実施例1と比較して低い温度で行った。実施例1と比較して付着均一性はやや低下したものの、複合材料物性としては十分なものが得られた。
比較例4は第2乾燥温度を100℃と実施例1と比較して低い温度で行った。実施例1と比較して付着均一性はやや低下したものの、複合材料物性としては十分なものが得られた。
比較例5は、第1乾燥温度、第2乾燥温度乾燥温度ともに150℃と比較例1と同様にした。遠赤外線方式で乾燥を行ったため、比較例1と比較して、付着均一性は1.2と良いものであり、十分な複合材料物性が得られた。
[ Comparative Examples 3 to 5 ]
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the drying temperature of the sizing agent was changed to the temperature shown in Table 1. Table 1 shows the physical properties of this carbon fiber bundle and the composite material produced using this carbon fiber bundle.
In Comparative Example 3 , the first drying temperature was 70 ° C., which was lower than that in Example 1. Although the adhesion uniformity was slightly reduced as compared with Example 1, sufficient composite material properties were obtained.
In Comparative Example 4 , the second drying temperature was 100 ° C., which was lower than that in Example 1. Although the adhesion uniformity was slightly reduced as compared with Example 1, sufficient composite material properties were obtained.
In Comparative Example 5 , both the first drying temperature and the second drying temperature were 150 ° C., which was the same as Comparative Example 1. Since drying was performed by the far-infrared method, compared with Comparative Example 1, the adhesion uniformity was as good as 1.2, and sufficient composite material properties were obtained.
[実施例4、5]
繊維束のフィラメント数を、実施例1の24000本から表2記載の本数に変更した以外は、実施例1と同様にしてサイジング処理を施し炭素繊維束を得た。これらの炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表2に示した。
実施例4は実施例1と比べ、被処理繊維のフィラメント数を減らして炭素繊維束を製造した。実施例1と同程度の付着均一性が得られ、複合材料物性は十分なものであった。
実施例5は実施例1と比べ、被処理繊維のフィラメント数を増やして炭素繊維束を製造した。本発明の炭素繊維束の製造方法を用いると、フィラメント数が増加しても、付着均一性に優れた炭素繊維が得られた。得られた炭素繊維の複合材料物性は十分なものであった。
[Examples 4 and 5 ]
A sizing treatment was performed in the same manner as in Example 1 except that the number of filaments in the fiber bundle was changed from 24,000 in Example 1 to the number shown in Table 2 to obtain a carbon fiber bundle. Table 2 shows the physical properties of these carbon fiber bundles and composite materials produced using the carbon fiber bundles.
Example 4 produced a carbon fiber bundle by reducing the number of filaments of the fiber to be treated as compared with Example 1. Adhesion uniformity comparable to that of Example 1 was obtained, and the physical properties of the composite material were sufficient.
Example 5 produced a carbon fiber bundle by increasing the number of filaments of the fiber to be treated as compared with Example 1. When the method for producing a carbon fiber bundle of the present invention was used, carbon fibers excellent in adhesion uniformity were obtained even when the number of filaments was increased. The properties of the composite material of the obtained carbon fiber were sufficient.
[比較例6、7]
繊維束のフィラメント数を、24000本から表2記載の本数に変更した以外は、比較例1と同様にしてサイジング処理を施し炭素繊維束を得た。これらの炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表2に示した。
比較例6は比較例1と比べ、被処理繊維のフィラメント数を減らして炭素繊維束を製造した。比較例1と比較して付着均一性はやや改善されたものの、実施例と比較すると不十分であり、十分な複合材料物性は得られなかった。
比較例7は比較例1と比べ、被処理繊維のフィラメント数を増やして炭素繊維束を製造した。フィラメント数が増加したため、比較例1と比較して付着均一性はさらに低下した。
[Comparative Examples 6 and 7 ]
A sizing treatment was performed in the same manner as in Comparative Example 1 except that the number of filaments in the fiber bundle was changed from 24000 to the number shown in Table 2 to obtain a carbon fiber bundle. Table 2 shows the physical properties of these carbon fiber bundles and composite materials produced using the carbon fiber bundles.
Comparative Example 6 produced a carbon fiber bundle by reducing the number of filaments of the fiber to be treated as compared with Comparative Example 1. Although the adhesion uniformity was slightly improved as compared with Comparative Example 1, it was insufficient as compared with Examples, and sufficient physical properties of composite materials could not be obtained.
Comparative Example 7 produced a carbon fiber bundle by increasing the number of filaments of the fiber to be treated as compared with Comparative Example 1. Since the number of filaments increased, the adhesion uniformity further decreased as compared with Comparative Example 1.
[比較例8]
繊維束のフィラメント数を、24000本から48000本に変更した以外は、比較例2と同様にしてサイジング処理を施し炭素繊維束を得た。これらの炭素繊維束及び、この炭素繊維束を用いて作製した複合材料の物性を表2に示した。
比較例8は比較例2と比べ、被処理繊維のフィラメント数を増やして炭素繊維束を製造した。フィラメント数が増加したため、比較例2と比較して付着均一性はさらに低下した。
[Comparative Example 8 ]
A sizing treatment was performed in the same manner as in Comparative Example 2 except that the number of filaments in the fiber bundle was changed from 24000 to 48000 to obtain a carbon fiber bundle. Table 2 shows the physical properties of these carbon fiber bundles and composite materials produced using the carbon fiber bundles.
Comparative Example 8 produced a carbon fiber bundle by increasing the number of filaments of the fiber to be treated as compared with Comparative Example 2. Since the number of filaments increased, the adhesion uniformity was further reduced as compared with Comparative Example 2.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011196066A JP5960402B2 (en) | 2011-09-08 | 2011-09-08 | Carbon fiber bundle and method for producing carbon fiber bundle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011196066A JP5960402B2 (en) | 2011-09-08 | 2011-09-08 | Carbon fiber bundle and method for producing carbon fiber bundle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013057140A JP2013057140A (en) | 2013-03-28 |
JP5960402B2 true JP5960402B2 (en) | 2016-08-02 |
Family
ID=48133234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011196066A Active JP5960402B2 (en) | 2011-09-08 | 2011-09-08 | Carbon fiber bundle and method for producing carbon fiber bundle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5960402B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101770661B1 (en) | 2015-01-21 | 2017-08-23 | 도레이 카부시키가이샤 | Sizing agent-coated carbon fiber bundle, method for manufacturing same, prepreg, and carbon fiber-reinforced composite material |
TWI767811B (en) | 2021-07-30 | 2022-06-11 | 臺灣塑膠工業股份有限公司 | Method for processing carbon fiber bundles |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0247364A (en) * | 1988-08-08 | 1990-02-16 | Kanebo Ltd | Treatment of fiber substrate |
JP3752353B2 (en) * | 1997-03-24 | 2006-03-08 | 東邦テナックス株式会社 | Size-treated carbon fiber strand, prepreg using the carbon fiber strand as a reinforcing fiber, and molded product thereof |
JP2004149981A (en) * | 2002-10-31 | 2004-05-27 | Toho Tenax Co Ltd | Carbon fiber strand and method for producing the same |
JP4616617B2 (en) * | 2004-10-26 | 2011-01-19 | 帝人テクノプロダクツ株式会社 | Method for producing carbon fiber strand for thermoplastic resin reinforcement |
EP1862281A1 (en) * | 2005-03-25 | 2007-12-05 | Teijin Techno Products Limited | Carbon fiber strand for reinforcing thermoplastic resins and method of producing the same |
JP2006336126A (en) * | 2005-05-31 | 2006-12-14 | Toray Ind Inc | Carbon fiber bundle for pullwinding process and carbon fiber-reinforced resin molded article |
JP2011001644A (en) * | 2009-06-17 | 2011-01-06 | Mitsubishi Rayon Co Ltd | Sizing agent for carbon fiber and water dispersion of the same, sized carbon fiber and sheet-like material using the carbon fibers, and carbon fiber-reinforced composite material |
-
2011
- 2011-09-08 JP JP2011196066A patent/JP5960402B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013057140A (en) | 2013-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10370507B2 (en) | Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method | |
US10889070B2 (en) | Composite material including unidirectional continuous fibers and thermoplastic resin | |
JP2018145540A (en) | Method for production of carbon fiber bundle | |
CA2859007A1 (en) | Carbon fiber base, prepreg and carbon-fiber-reinforced composite material | |
WO2022009796A1 (en) | Carbon fiber bundle with adhered sizing agent | |
JP6211881B2 (en) | Carbon fiber and method for producing the same | |
WO1996021695A1 (en) | Prepregs and carbon fiber-reinforced composite material | |
US20100266827A1 (en) | Carbon fiber and composite material using the same | |
JP5960402B2 (en) | Carbon fiber bundle and method for producing carbon fiber bundle | |
JP4305081B2 (en) | Oil for carbon fiber production and method for producing carbon fiber | |
JP6510299B2 (en) | Flame-resistant fiber bundle, carbon fiber precursor fiber bundle, and method for producing carbon fiber comprising the same | |
JP5662113B2 (en) | Carbon fiber surface treatment method | |
JP6846868B2 (en) | Method for manufacturing carbon fiber and carbon fiber with sizing agent attached | |
JP6119321B2 (en) | Fiber reinforced composite material | |
JP2006169541A (en) | Prepreg | |
JP2013202803A (en) | Carbon fiber reinforced composite material | |
JP5226238B2 (en) | Carbon fiber and composite material using the same | |
JP2020070517A (en) | Sizing agent composition, method for producing carbon fiber, and carbon fiber with sizing agent adhered thereto | |
JP2010111957A (en) | Carbon fiber, composite material, and method for producing carbon fiber | |
JP2007016364A (en) | Carbon fiber bundle | |
JP6139318B2 (en) | Carbon fiber manufacturing method | |
JP2020023770A (en) | Sizing agent adhered carbon fiber bundle and manufacturing method therefor | |
JP7267792B2 (en) | Carbon fiber bundle with sizing agent | |
JP2004149981A (en) | Carbon fiber strand and method for producing the same | |
JP2006188782A (en) | Carbon fiber strand and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160623 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5960402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |