JP5956379B2 - Components for semiconductor manufacturing equipment - Google Patents
Components for semiconductor manufacturing equipment Download PDFInfo
- Publication number
- JP5956379B2 JP5956379B2 JP2013088395A JP2013088395A JP5956379B2 JP 5956379 B2 JP5956379 B2 JP 5956379B2 JP 2013088395 A JP2013088395 A JP 2013088395A JP 2013088395 A JP2013088395 A JP 2013088395A JP 5956379 B2 JP5956379 B2 JP 5956379B2
- Authority
- JP
- Japan
- Prior art keywords
- recess
- diameter portion
- depth
- semiconductor manufacturing
- large diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Description
本発明は、半導体製造装置用部材に関する。 The present invention relates to a member for a semiconductor manufacturing apparatus.
従来より、ウエハ載置面を有する静電チャックが冷却装置上に設けられた半導体製造装置用部材が知られている。こうした半導体製造装置用部材としては、静電チャックに載置したウエハから熱を奪う目的で、ウェハの裏面にヘリウム(He)等のバックサイドガスを流すものも知られている(例えば特許文献1)。 2. Description of the Related Art Conventionally, there are known semiconductor manufacturing apparatus members in which an electrostatic chuck having a wafer mounting surface is provided on a cooling device. As such a member for a semiconductor manufacturing apparatus, there is known a member for flowing a backside gas such as helium (He) to the back surface of a wafer for the purpose of removing heat from the wafer placed on the electrostatic chuck (for example, Patent Document 1). ).
こうした半導体製造装置用部材において、冷却装置のうち静電チャックと接合された接合面と該接合面とは反対側の面とを連通するガス供給孔と、静電チャックのうちガス供給孔に対向する面からウエハ載置面に向かって形成された凹部と、この凹部の底面からウエハ載置面まで貫通する細孔と、凹部に充填された通気性プラグとを備えたものが考えられる。 In such a semiconductor manufacturing apparatus member, a gas supply hole that communicates a bonding surface bonded to the electrostatic chuck in the cooling device and a surface opposite to the bonding surface, and a gas supply hole in the electrostatic chuck that faces the gas supply hole. It is conceivable to include a recess formed from the surface to be mounted toward the wafer mounting surface, a pore penetrating from the bottom surface of the recess to the wafer mounting surface, and a breathable plug filled in the recess.
しかし、この半導体製造装置用部材では、プラズマパワーが高くなると、冷却装置とウエハ載置面に載置されたウエハとの間の電位差が大きくなり、冷却装置とウエハとの間で絶縁破壊が発生することがあった。このような絶縁破壊を防ぐために凹部の径を大きくすると、凹部の内側は冷却装置に接触していないため、十分に冷却されなくなる。そのため、プラズマパワーが高くなったときにウエハのうち凹部の内側に対向する部分が局所的に高温になり、均熱性が低下することがあった。 However, in this member for semiconductor manufacturing equipment, when the plasma power increases, the potential difference between the cooling device and the wafer placed on the wafer placement surface increases, and dielectric breakdown occurs between the cooling device and the wafer. There was something to do. If the diameter of the recess is increased in order to prevent such dielectric breakdown, the inside of the recess is not in contact with the cooling device, so that it is not sufficiently cooled. For this reason, when the plasma power is increased, the portion of the wafer that faces the inside of the concave portion becomes locally high in temperature, and the thermal uniformity may be lowered.
本発明は、こうした問題を解決することを課題とするものであり、半導体製造装置用部材において、大きな絶縁耐圧を確保しながらウエハの均熱性を向上することを主目的とする。 An object of the present invention is to solve these problems, and a main object of the present invention is to improve the thermal uniformity of a wafer while securing a large dielectric strength in a member for a semiconductor manufacturing apparatus.
本発明の半導体製造装置用部材は、
ウエハ載置面を有する静電チャックが冷却装置上に設けられた半導体製造装置用部材であって、
前記冷却装置のうち前記静電チャックと接合された接合面と該接合面とは反対側の面とを連通するガス供給孔と、
前記静電チャックのうち前記ガス供給孔に対向する面から前記ウエハ載置面に向かって形成され、前記ガス供給孔と連通する凹部と、
前記凹部の底面から前記ウエハ載置面まで貫通し、前記凹部よりも径が小さい細孔と、
前記凹部に充填され且つ接着された通気性プラグと、
を備え、
前記凹部は、内面にステップが設けられ、前記ウエハ載置面に近い方が小径部、前記接合面に近い方が大径部となっており、前記大径部の深さが前記凹部の深さの25%より大きく75%以下であり、前記大径部の直径が前記凹部の深さの2倍以上2.5倍以下である、
ものである。
The semiconductor manufacturing apparatus member of the present invention is
An electrostatic chuck having a wafer mounting surface is a member for a semiconductor manufacturing apparatus provided on a cooling device,
A gas supply hole that communicates a bonding surface bonded to the electrostatic chuck in the cooling device and a surface opposite to the bonding surface;
A recess formed in the electrostatic chuck from a surface facing the gas supply hole toward the wafer mounting surface, and communicating with the gas supply hole;
Penetrating from the bottom surface of the recess to the wafer mounting surface, a pore having a smaller diameter than the recess,
A breathable plug filled and bonded to the recess;
With
The recess has a step on the inner surface, the smaller diameter portion is closer to the wafer mounting surface, and the larger diameter portion is closer to the bonding surface, and the depth of the larger diameter portion is the depth of the recess. Greater than 25% and 75% or less, and the diameter of the large diameter portion is not less than 2 times and not more than 2.5 times the depth of the recess,
Is.
この半導体製造装置用部材によれば、凹部に設けられた大径部の深さが凹部の深さの25%より大きく75%以下であり、大径部の直径が凹部の深さの2倍以上2.5倍以下であるため、大きな絶縁耐圧を確保しながらウエハの均熱性を向上することができる。ここで、大径部の深さが凹部の深さの25%以下の場合には、大きな絶縁耐圧を確保できないため好ましくなく、大径部の深さが75%を超える場合には、均熱性が低下するため好ましくない。また、大径部の直径が凹部の深さの2倍未満の場合には、大きな絶縁耐圧を確保できないため好ましくなく、大径部の直径が凹部の深さの2.5倍を超える場合には、均熱性が低下するため好ましくない。 According to this member for a semiconductor manufacturing apparatus, the depth of the large diameter portion provided in the recess is greater than 25% and not more than 75% of the depth of the recess, and the diameter of the large diameter portion is twice the depth of the recess. Since it is 2.5 times or less, it is possible to improve the thermal uniformity of the wafer while ensuring a large withstand voltage. Here, when the depth of the large-diameter portion is 25% or less of the depth of the recess, it is not preferable because a large withstand voltage cannot be secured. Is unfavorable because of lowering. Further, when the diameter of the large diameter portion is less than twice the depth of the recess, it is not preferable because a large withstand voltage cannot be secured, and when the diameter of the large diameter portion exceeds 2.5 times the depth of the recess. Is not preferable because the soaking property is lowered.
本発明の半導体製造装置用部材において、前記通気性プラグは、前記凹部のステップ面に接着されていることが好ましい。通気性プラグは凹部の内周面に接着されていてもよいが、その場合には接着剤が塗られていない部分が生じやすく、沿面の絶縁耐圧が低下するおそれがある。これに対して、凹部のステップ面には接着剤が塗られていない部分が生じにくく、沿面の絶縁耐圧が向上するため好ましい。 In the member for a semiconductor manufacturing apparatus according to the present invention, it is preferable that the breathable plug is bonded to a step surface of the recess. The breathable plug may be bonded to the inner peripheral surface of the recess, but in that case, a portion not coated with an adhesive is likely to be formed, and the creeping breakdown voltage may be reduced. On the other hand, it is preferable because the step surface of the recess is less likely to have a portion not coated with an adhesive, and the dielectric strength of the creeping surface is improved.
本発明の半導体製造装置用部材において、前記大径部の深さは、前記凹部の深さの37.5%以上75%以下であることが好ましい。こうすれば、本発明の効果をより確実に得ることができる。 In the member for a semiconductor manufacturing apparatus according to the present invention, it is preferable that the depth of the large diameter portion is 37.5% or more and 75% or less of the depth of the recess. In this way, the effect of the present invention can be obtained more reliably.
本発明の半導体製造装置用部材において、前記凹部は、前記小径部と前記大径部との間に、前記小径部の直径より大きく前記大径部の直径より小さな直径を持つ中径部を有していてもよい。このような構造であっても、特に問題なく本発明の効果を得ることができる。 In the member for a semiconductor manufacturing apparatus according to the present invention, the concave portion has an intermediate diameter portion having a diameter larger than the diameter of the small diameter portion and smaller than the diameter of the large diameter portion between the small diameter portion and the large diameter portion. You may do it. Even with such a structure, the effects of the present invention can be obtained without any particular problem.
次に、本発明の好適な一実施形態について、図面を用いて説明する。図1は半導体製造装置用部材10の縦断面図、図2は図1のA部拡大図、図3は半導体製造装置用部材10の平面図(部分)である。
Next, a preferred embodiment of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of a
半導体製造装置用部材10は、ウエハ載置面22を有する静電チャック20が冷却装置40の上に設けられた部材である。ウエハ載置面22には、複数のエンボス(小突起)23が設けられ、このエンボス23にプラズマ処理が施されるウエハWが載置される。
The semiconductor
冷却装置40は、アルミニウムなどの金属製の円盤状の部材であり、ガス供給孔42を有している。このガス供給孔42は、冷却装置40のうち静電チャック20と接合された接合面44と該接合面44とは反対側の面46とを連通している。
The
静電チャック20は、アルミナなどのセラミックス製の円盤状の部材であり、凹部26と、この凹部26に連通する複数の細孔34とを有している。凹部26は、ウエハ載置面22と反対側の面24のうちガス供給孔42に対向する位置からウエハ載置面22に向かって形成されている。このため、凹部26は、ガス供給孔42と連通している。また、凹部26は、内面にステップが設けられ、ウエハ載置面22と反対側の面24に近い方が大径部30、ウエハ載置面22に近い方が小径部32となっている。大径部30の深さは凹部26の深さの25%より大きく75%以下、好ましくは37.5%以上75%以下である。また、大径部30の直径は凹部26の深さの3倍以下であり、好ましくは2倍以上2.5倍以下である。細孔34は、凹部26よりも小径であり、凹部26の底面27からウエハ載置面22まで貫通している。この細孔34は、ウエハ載置面22のうちエンボス23の形成されていない箇所に開口している。凹部26には、通気性プラグ36が充填されている。この通気性プラグ36は、凹部26のステップ面28に塗布された接着剤38を介して接着されている。通気性プラグ36としては、例えば、絶縁性のセラミックスを細かく砕いたものを通気性を有するように無機接着剤で固めたものとか、セラミックスの多孔質体などが挙げられる。さらには、グラスファイバーや、耐熱性テフロン樹脂スポンジなどであってもよい。このうち、セラミックスの多孔質体が、非常に細かい通気孔を形成しやすいことから好ましい。接着剤38としては、例えばシリコーンシートやポリイミド接着剤などが用いられる。
The
冷却装置40と静電チャック20とは、絶縁性のボンディングシート50を介して接合されている。ボンディングシート50のうち、ガス供給孔42に対向する部分には貫通穴52が開けられている。
The
こうした半導体製造装置用部材10は、図示しないチャンバ内に設置される。そして、ウエハ載置面22にウエハWを載置し、チャンバー内に原料ガスを導入すると共に冷却装置40にプラズマを立てるためのRF電圧を印加することにより、プラズマを発生させてウエハWの処理を行う。このとき、ガス供給孔42には、ガスボンベ(図示せず)からヘリウム等のバックサイドガスが導入される。バックサイドガスは、ガス供給孔42、凹部26内の通気性プラグ36、細孔34を通ってウエハWの裏面側の空間54に供給される。
The semiconductor
以上説明した半導体製造装置用部材10によれば、大きな絶縁耐圧を確保しながらウエハWの均熱性を向上することができる。
According to the semiconductor
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
例えば、上述した実施形態では、通気性プラグ36は、凹部26のステップ面28に接着剤38を介して接着されているものとしたが、大径部30の内周面に接着剤を介して接着されているものとしてもよい。その場合には、凹部26へ通気性プラグ36を嵌め込む前に、通気性プラグ36の外周面及び大径部30の内周面の一方又は両方に接着剤を塗布し、その後、凹部26へ通気性プラグ36を嵌め込むことになる。そのため、通気性プラグ36の外周面と大径部30の内周面との間の接着剤は、部分的にそぎ落とされることがある。そぎ落とされた部分は、接着剤が塗られていない部分になるため、沿面の絶縁耐圧が低下するおそれがある。これに対して、上述した実施形態では、凹部26のステップ面28や通気性プラグ36のうちステップ面28に対向する面に塗布された接着剤はそぎ落とされることがないため、接着剤が塗られていない部分が生じにくく、沿面の絶縁耐圧が向上する。
For example, in the above-described embodiment, the
上述した実施形態では、凹部26は大径部30と小径部32とを備えた構造としたが、図4に示すように、大径部30と小径部32との間に、小径部32の直径より大きく大径部30の直径より小さな直径を持つ中径部31を備えた構造としてもよい。その場合、通気性プラグ36は、上述した実施形態と同様、凹部26の内部空間に合致する形状のものを用いる。また、凹部26は、2段のステップ面128,228を有するが、通気性プラグ36は各ステップ面128,228に接着剤138,238を介して接着されている。なお、大径部30の深さや直径は上述した実施形態と同様にして決定すればよい。こうしても、上述した実施形態と同様の効果が得られる。
In the embodiment described above, the
上述した実施形態では、半導体製造装置用部材10として、静電チャック20が冷却装置40の上に設けられた部材を例示したが、静電チャック20の代わりに、サセプター、ヒーター、プレートなどを用いてもよい。
In the above-described embodiment, the member in which the
上述した半導体製造装置用部材10を、表1及び表2に示す実施例1〜6及び比較例1〜4の寸法になるように作製した。静電チャックは緻密質アルミナ製、冷却装置はアルミニウム製、通気性プラグは多孔性アルミナ製(気孔率35%)のものを用いた。また、細孔はφ0.1mm、静電チャックの厚さは5mm、凹部の深さは4mmとした。接着剤はステップ面に塗布した。
The
実施例1〜6及び比較例1〜4につき、絶縁耐圧(kV)及び均熱性を評価した。その結果を表1及び表2に示す。なお、絶縁耐圧は、ウエハと冷却装置間に直流電圧をかけウエハと冷却装置との間でアーク放電が起きたときの電圧、均熱性は、熱電対が付いたウエハにより複数箇所の温度を測定したときの最高温度と最低温度との差である。絶縁耐圧が5kV以上かつ均熱性が1℃以下のものを良品と判断した。 With respect to Examples 1 to 6 and Comparative Examples 1 to 4, the dielectric strength voltage (kV) and the thermal uniformity were evaluated. The results are shown in Tables 1 and 2. The dielectric strength is a voltage when a DC voltage is applied between the wafer and the cooling device and an arc discharge occurs between the wafer and the cooling device, and the thermal uniformity is measured at multiple locations using a wafer with a thermocouple. This is the difference between the highest temperature and the lowest temperature. A product having an insulation withstand voltage of 5 kV or more and a soaking property of 1 ° C. or less was judged as a good product.
比較例1では、沿面距離が比較的長いため、絶縁耐圧は良好であった。しかし、凹部の直径が8mmと大きく、凹部の内側が他の部分に比べて冷却能力が劣ったことから、均熱性が悪化した。 In Comparative Example 1, since the creepage distance was relatively long, the withstand voltage was good. However, since the diameter of the recess was as large as 8 mm, and the cooling capacity was inferior to the other part inside the recess, the thermal uniformity deteriorated.
比較例2では、沿面距離を比較例1と同じにしたが、大径部の深さが1mmと短かすぎたため、この間で通気性プラグ(多孔性アルミナ)を介して放電が起こり、絶縁耐圧が悪化した。また、凹部にステップを設けたため、均熱性は比較例1と比べて向上したものの、1℃を超えており、良好とはいえなかった。 In Comparative Example 2, the creepage distance was the same as in Comparative Example 1, but since the depth of the large diameter portion was too short at 1 mm, a discharge occurred through the air-permeable plug (porous alumina) during this period, and the dielectric strength voltage Worsened. Moreover, since the step was provided in the concave portion, the thermal uniformity was improved as compared with Comparative Example 1, but it exceeded 1 ° C. and was not good.
比較例3では、沿面距離を比較例1よりも長くしたが、大径部の深さが1mmと短かすぎたため、この間で通気性プラグ(多孔性アルミナ)を介して放電が起こり、絶縁耐圧が悪化した。また、凹部にステップを設けたものの、大径部の直径が14mmであり、凹部の深さ(4mm)の3倍以上であったため、均熱性は大きく悪化した。 In Comparative Example 3, the creepage distance was made longer than that of Comparative Example 1, but the depth of the large diameter portion was too short at 1 mm, so that discharge occurred through the air-permeable plug (porous alumina) during this period, and the dielectric strength voltage Worsened. Moreover, although the step was provided in the concave portion, the diameter of the large diameter portion was 14 mm, which was more than three times the depth of the concave portion (4 mm), so the heat uniformity was greatly deteriorated.
実施例1,2では、沿面距離は比較例1と同じか比較例1より長く、大径部の深さが3mmと十分高かったため、絶縁耐圧は良好な値が得られた。また、凹部にステップを設け、大径部を大きくしすぎなかったため(凹部の深さの2倍〜2.5倍)、均熱性を1℃未満に抑えることができた。 In Examples 1 and 2, the creepage distance was the same as that of Comparative Example 1 or longer than that of Comparative Example 1, and the depth of the large diameter portion was sufficiently high at 3 mm. Moreover, since the step was provided in the concave portion and the large diameter portion was not excessively large (2 to 2.5 times the depth of the concave portion), the heat uniformity could be suppressed to less than 1 ° C.
実施例3〜5及び比較例4では、大径部の深さ以外は実施例1と同じ寸法とした。上述した比較例2も、大径部の深さ以外は実施例1と同じ寸法である。これらの大径部の深さをまとめると、比較例2では1mm、実施例3では1.5mm,実施例4では2mm,実施例5では2.5mm、実施例1では3mm、比較例4では3.5mmである。表1及び表2から、大径部の深さが1mmを超えて3mm以下(特に1.5mm以上3mm以下)であれば、絶縁耐圧が5kV以上かつ均熱性が1℃以下の良品が得られた。凹部の深さが4mmのため、大径部の深さが凹部の深さの25%より大きく75%以下(特に37.5%以上75%以下)であれば、良品が得られることがわかった。 In Examples 3 to 5 and Comparative Example 4, the dimensions were the same as in Example 1 except for the depth of the large diameter portion. Comparative Example 2 described above also has the same dimensions as Example 1 except for the depth of the large diameter portion. Summarizing the depths of these large-diameter portions, Comparative Example 2 is 1 mm, Example 3 is 1.5 mm, Example 4 is 2 mm, Example 5 is 2.5 mm, Example 1 is 3 mm, and Comparative Example 4 is 3.5 mm. From Table 1 and Table 2, if the depth of the large diameter part exceeds 1 mm and is 3 mm or less (especially 1.5 mm or more and 3 mm or less), a non-defective product having a withstand voltage of 5 kV or more and a soaking property of 1 ° C. or less is obtained. It was. Since the depth of the concave portion is 4 mm, it can be seen that a non-defective product can be obtained if the depth of the large diameter portion is greater than 25% of the depth of the concave portion and not more than 75% (particularly not less than 37.5% and not more than 75%). It was.
実施例6では、大径部(直径8mm)と小径部(直径4mm)との間に中径部(直径6mm)を設けた以外は、実施例1と同じ寸法とした。大径部の深さ(ウエハ載置面と反対側の面から大径部側のステップ面までの距離)を1.5mm、中径部の深さ(大径部側のステップ面から小径部側のステップ面までの距離)を1.5mm、小径部の深さ(小径部側のステップ面から凹部底面までの距離)を1mmとした。この場合も、実施例1と同様、絶縁耐圧が5kV以上かつ均熱性が1℃以下の良品が得られた。 In Example 6, it was set as the same dimension as Example 1 except having provided the medium diameter part (diameter 6mm) between the large diameter part (diameter 8mm) and the small diameter part (diameter 4mm). The depth of the large diameter portion (distance from the surface opposite to the wafer mounting surface to the step surface on the large diameter portion side) is 1.5 mm, and the depth of the medium diameter portion (from the step surface on the large diameter portion side to the small diameter portion). The distance to the step surface on the side) was 1.5 mm, and the depth of the small diameter portion (distance from the step surface on the small diameter portion side to the bottom surface of the recess) was 1 mm. Also in this case, as in Example 1, a non-defective product having a dielectric breakdown voltage of 5 kV or more and a soaking property of 1 ° C. or less was obtained.
10 半導体製造装置用部材、20 静電チャック、22 ウエハ載置面、23 エンボス、24 面、26 凹部、27 底面、28 ステップ面、30 大径部、31 中径部、32 小径部、34 細孔、36 通気性プラグ、38 接着剤、40 冷却装置、42 ガス供給孔、44 接合面、46 面、50 ボンディングシート、52 貫通穴、54 空間、128,228 ステップ面、138,238 接着剤。
DESCRIPTION OF
Claims (4)
前記冷却装置のうち前記静電チャックと接合された接合面と該接合面とは反対側の面とを連通するガス供給孔と、
前記静電チャックのうち前記ガス供給孔に対向する面から前記ウエハ載置面に向かって形成され、前記ガス供給孔と連通する凹部と、
前記凹部の底面から前記ウエハ載置面まで貫通し、前記凹部よりも径が小さい細孔と、
前記凹部に充填され且つ接着された通気性プラグと、
を備え、
前記凹部は、内面にステップが設けられ、前記ウエハ載置面に近い方が小径部、前記接合面に近い方が大径部となっており、前記大径部の深さが前記凹部の深さの25%より大きく75%以下であり、前記大径部の直径が前記凹部の深さの2倍以上2.5倍以下である、
半導体製造装置用部材。 On a cooling device RF voltage is applied, a member for a semiconductor manufacturing device in which the electrostatic chuck is eclipsed set having a wafer mounting surface,
A gas supply hole that communicates a bonding surface bonded to the electrostatic chuck in the cooling device and a surface opposite to the bonding surface;
A recess formed in the electrostatic chuck from a surface facing the gas supply hole toward the wafer mounting surface, and communicating with the gas supply hole;
Penetrating from the bottom surface of the recess to the wafer mounting surface, a pore having a smaller diameter than the recess,
A breathable plug filled and bonded to the recess;
With
The recess has a step on the inner surface, the smaller diameter portion is closer to the wafer mounting surface, and the larger diameter portion is closer to the bonding surface, and the depth of the larger diameter portion is the depth of the recess. Greater than 25% and 75% or less, and the diameter of the large diameter portion is not less than 2 times and not more than 2.5 times the depth of the recess,
A member for semiconductor manufacturing equipment.
請求項1に記載の半導体製造装置用部材。 The breathable plug is bonded to the step surface of the recess,
The member for a semiconductor manufacturing apparatus according to claim 1.
請求項1又は2に記載の半導体製造装置用部材。 The depth of the large diameter portion is 37.5% or more and 75% or less of the depth of the recess,
The member for a semiconductor manufacturing apparatus according to claim 1 or 2.
請求項1〜3のいずれか1項に記載の半導体製造装置用部材。 The concave portion has a medium diameter portion having a diameter larger than the diameter of the small diameter portion and smaller than the diameter of the large diameter portion between the small diameter portion and the large diameter portion.
The member for semiconductor manufacturing apparatuses of any one of Claims 1-3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261639204P | 2012-04-27 | 2012-04-27 | |
US61/639,204 | 2012-04-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013232641A JP2013232641A (en) | 2013-11-14 |
JP5956379B2 true JP5956379B2 (en) | 2016-07-27 |
Family
ID=49678783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013088395A Active JP5956379B2 (en) | 2012-04-27 | 2013-04-19 | Components for semiconductor manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5956379B2 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6634315B2 (en) * | 2016-03-03 | 2020-01-22 | 日本特殊陶業株式会社 | Holding device and method of manufacturing holding device |
US10770270B2 (en) * | 2016-06-07 | 2020-09-08 | Applied Materials, Inc. | High power electrostatic chuck with aperture-reducing plug in a gas hole |
JP6865145B2 (en) * | 2016-12-16 | 2021-04-28 | 日本特殊陶業株式会社 | Holding device |
US10975469B2 (en) * | 2017-03-17 | 2021-04-13 | Applied Materials, Inc. | Plasma resistant coating of porous body by atomic layer deposition |
JP6621548B2 (en) | 2017-07-06 | 2019-12-18 | 日本碍子株式会社 | Semiconductor manufacturing equipment member and manufacturing method thereof |
US11515192B2 (en) | 2017-10-26 | 2022-11-29 | Kyocera Corporation | Sample holder |
JP7025236B2 (en) * | 2018-02-19 | 2022-02-24 | 日本特殊陶業株式会社 | Holding device |
JP6489277B1 (en) * | 2018-03-14 | 2019-03-27 | Toto株式会社 | Electrostatic chuck |
JP6504532B1 (en) * | 2018-03-14 | 2019-04-24 | Toto株式会社 | Electrostatic chuck |
US11715652B2 (en) | 2018-09-28 | 2023-08-01 | Ngk Insulators, Ltd. | Member for semiconductor manufacturing apparatus |
US10896837B2 (en) * | 2018-10-01 | 2021-01-19 | Lam Research Corporation | Ceramic foam for helium light-up suppression |
JP7240145B2 (en) * | 2018-11-20 | 2023-03-15 | 日本特殊陶業株式会社 | electrostatic chuck |
JP2020145281A (en) * | 2019-03-05 | 2020-09-10 | Toto株式会社 | Electrostatic chuck |
JP7291046B2 (en) * | 2019-09-18 | 2023-06-14 | 新光電気工業株式会社 | Substrate fixing device |
KR102286522B1 (en) * | 2019-11-22 | 2021-08-06 | 주식회사 보부하이테크 | Electrostatic chuck |
CN112908919B (en) * | 2019-12-04 | 2024-07-09 | 中微半导体设备(上海)股份有限公司 | Electrostatic chuck device and plasma processing apparatus including the same |
JP7372271B2 (en) * | 2021-01-06 | 2023-10-31 | 日本碍子株式会社 | Components for semiconductor manufacturing equipment and their manufacturing method |
JP7382978B2 (en) | 2021-02-04 | 2023-11-17 | 日本碍子株式会社 | Parts and plugs for semiconductor manufacturing equipment |
JP2022167481A (en) | 2021-04-23 | 2022-11-04 | 新光電気工業株式会社 | Electrostatic adsorption member and substrate fixing device |
CN113808928A (en) * | 2021-08-04 | 2021-12-17 | 北京华卓精科科技股份有限公司 | Laser annealing method and porous sucker with automatic cooling function |
JP7569343B2 (en) | 2022-01-21 | 2024-10-17 | 日本碍子株式会社 | Semiconductor manufacturing equipment parts |
JP7569342B2 (en) | 2022-01-21 | 2024-10-17 | 日本碍子株式会社 | Semiconductor manufacturing equipment parts |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6606234B1 (en) * | 2000-09-05 | 2003-08-12 | Saint-Gobain Ceramics & Plastics, Inc. | Electrostatic chuck and method for forming an electrostatic chuck having porous regions for fluid flow |
US6490145B1 (en) * | 2001-07-18 | 2002-12-03 | Applied Materials, Inc. | Substrate support pedestal |
JP5087561B2 (en) * | 2007-02-15 | 2012-12-05 | 株式会社クリエイティブ テクノロジー | Electrostatic chuck |
US20090086401A1 (en) * | 2007-09-28 | 2009-04-02 | Intevac, Inc. | Electrostatic chuck apparatus |
JP5331519B2 (en) * | 2008-03-11 | 2013-10-30 | 日本碍子株式会社 | Electrostatic chuck |
JP5449750B2 (en) * | 2008-11-19 | 2014-03-19 | 株式会社日本セラテック | Electrostatic chuck and manufacturing method thereof |
-
2013
- 2013-04-19 JP JP2013088395A patent/JP5956379B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013232641A (en) | 2013-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5956379B2 (en) | Components for semiconductor manufacturing equipment | |
JP6005579B2 (en) | Components for semiconductor manufacturing equipment | |
JP5633766B2 (en) | Electrostatic chuck | |
TWI528492B (en) | Electrostatic chuck with reduced arcing | |
JP4364667B2 (en) | Thermal spray member, electrode, and plasma processing apparatus | |
JP6621548B2 (en) | Semiconductor manufacturing equipment member and manufacturing method thereof | |
TW201923965A (en) | Electrostatic chuck, and production method therefor | |
KR101889806B1 (en) | Ceiling electrode plate and substrate processing apparatus | |
EP2551894A1 (en) | Region temperature-controlled structure | |
US10622239B2 (en) | Electrostatic chuck device | |
JP2009087932A (en) | Heating apparatus | |
JP2008171899A (en) | Method of improving heat transfer of focus ring in placement device for processing substrate | |
JP2016184645A (en) | Electrostatic chuck device | |
SG177584A1 (en) | Light-up prevention in electrostatic chucks | |
JPWO2015133577A1 (en) | Manufacturing method of joined body | |
TW201923952A (en) | Wafer mounting platform and method for manufacturing same | |
JP2007201068A (en) | Electrostatic chuck | |
TWI540639B (en) | Plasma processing chamber and its abutment | |
JP5479180B2 (en) | Mounting table | |
JP6296770B2 (en) | Substrate mounting device | |
JP2008244015A (en) | Susceptor for semiconductor manufacturing apparatus | |
JP7569343B2 (en) | Semiconductor manufacturing equipment parts | |
JP2006344999A (en) | Susceptor and its manufacturing method | |
JP2010050396A (en) | Plasma processing device | |
JP7569342B2 (en) | Semiconductor manufacturing equipment parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160616 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5956379 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |