[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5955137B2 - Method for producing spherical titanium dioxide - Google Patents

Method for producing spherical titanium dioxide Download PDF

Info

Publication number
JP5955137B2
JP5955137B2 JP2012152061A JP2012152061A JP5955137B2 JP 5955137 B2 JP5955137 B2 JP 5955137B2 JP 2012152061 A JP2012152061 A JP 2012152061A JP 2012152061 A JP2012152061 A JP 2012152061A JP 5955137 B2 JP5955137 B2 JP 5955137B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
spherical
spherical titanium
solution
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012152061A
Other languages
Japanese (ja)
Other versions
JP2014015340A (en
Inventor
武弘 後藤
武弘 後藤
信弘 野上
信弘 野上
田中 巧
巧 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Kasei Kogyo Co Ltd
Original Assignee
Daito Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Kasei Kogyo Co Ltd filed Critical Daito Kasei Kogyo Co Ltd
Priority to JP2012152061A priority Critical patent/JP5955137B2/en
Publication of JP2014015340A publication Critical patent/JP2014015340A/en
Application granted granted Critical
Publication of JP5955137B2 publication Critical patent/JP5955137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、球状二酸化チタンの製造方法に関するものである。 The present invention relates to a method for producing spherical titanium dioxide.

二酸化チタンは、着色力や隠蔽性に優れ、構造的にも安定であり、安全性の高い着色顔料の一つである。また、粒子径が1μmサイズ以下になると、いわゆる体積効果や表面効果の影響により、優れた紫外線遮断効果等を示すようになる。このため、スキンケア及びメークアップに配合される化粧品等に紫外線遮断効果を付与する場合には、微粒子二酸化チタンが主に紫外線遮断剤として広く配合されている。   Titanium dioxide is one of highly safe coloring pigments that have excellent coloring power and concealability, are structurally stable, and are highly safe. On the other hand, when the particle diameter is 1 μm or less, an excellent ultraviolet blocking effect and the like are exhibited due to the effects of so-called volume effect and surface effect. For this reason, when imparting an ultraviolet blocking effect to cosmetics and the like blended in skin care and makeup, fine particle titanium dioxide is widely blended mainly as an ultraviolet blocking agent.

しかし、スキンケア及びメークアップに配合される化粧品は汗や皮脂と接触することにより付着性が経時的に劣化することがあったり、二酸化チタン自体の皮膚への付着性が不十分でムラ付きを起こしたりするため、紫外線遮断効果が必ずしも十分でない場合があった。また、皮膚への適用時の感触が悪い、又は、粒子径が100nm以下の場合、人体への安全性の問題を有しているという問題点もあった。これらの課題を解決する方法として、板状二酸化チタンを作製する手法(特許文献1参照)や、シリカベースの多孔質粒子に無機顔料を含有する手法(特許文献2参照)が採られてきた。いずれの手法によっても、紫外線防御効果の向上と、防御剤の配合量を少なくすることによる使用感の向上を期待することができるが、安全性への懸念が残されていた。   However, cosmetics blended in skin care and makeup may deteriorate over time due to contact with sweat or sebum, and may cause unevenness due to insufficient adhesion of titanium dioxide itself to the skin. In some cases, the ultraviolet blocking effect is not always sufficient. Moreover, when the touch to skin was bad, or when the particle diameter was 100 nm or less, there was a problem of having a safety problem for the human body. As a method for solving these problems, a method of producing plate-like titanium dioxide (see Patent Document 1) and a method of containing an inorganic pigment in silica-based porous particles (see Patent Document 2) have been adopted. Either method can be expected to improve the UV protection effect and improve the feeling of use by reducing the blending amount of the protective agent, but there are still concerns about safety.

感触を改良するために、球状の二酸化チタンを得るための製造方法がいろいろと提案されている。例えば、炭化チタンなどの非酸化物原料を酸素含有プラズマによる加熱により溶解し、同時に酸化反応を起こして結晶性の球状二酸化チタンを得る方法(特許文献3参照)や、過酸化水素を含有するオキシ硫酸チタンなどのチタン塩をオートクレーブ中で150〜230℃の温度で水熱処理することにより球状二酸化チタンを得る方法(特許文献4参照)や、さらには硫酸チタニルを170℃以上の温度、加圧下で加水分解した後、400〜900℃の温度で焼成して球状のアナタース型二酸化チタンを得る方法(特許文献5参照)などが知られている。しかしながら、これらの製造方法では球状の二酸化チタンを合成することが出来るが、何れも多量にエネルギーを消費する製造方法であり、より安価に球状二酸化チタンを製造する方法が求められている。また、球状の二酸化チタンの粒子径をコントロールするには、上記のようなオートクレーブを利用し粒子径をコントロールする方法が活発に検討されているが、先述のように、製造時に多量にエネルギーを消費するため、環境に優しい低温での反応により球状の二酸化チタンの粒子径をコントロールできる方法の提供が求められている。   In order to improve the touch, various production methods for obtaining spherical titanium dioxide have been proposed. For example, a method for obtaining a crystalline spherical titanium dioxide by dissolving a non-oxide raw material such as titanium carbide by heating with oxygen-containing plasma and simultaneously causing an oxidation reaction (see Patent Document 3), or an oxygen containing hydrogen peroxide. A method of obtaining spherical titanium dioxide by hydrothermally treating a titanium salt such as titanium sulfate at a temperature of 150 to 230 ° C. in an autoclave (see Patent Document 4), and further titanyl sulfate at a temperature of 170 ° C. or higher under pressure. A method of obtaining spherical anatase-type titanium dioxide by hydrolysis at a temperature of 400 to 900 ° C. after hydrolysis (see Patent Document 5) is known. However, although these production methods can synthesize spherical titanium dioxide, all of them are production methods that consume a large amount of energy, and a method for producing spherical titanium dioxide at a lower cost is required. In addition, in order to control the particle size of the spherical titanium dioxide, a method of controlling the particle size using the autoclave as described above has been actively studied. However, as described above, a large amount of energy is consumed during production. Therefore, provision of a method capable of controlling the particle diameter of spherical titanium dioxide by an environment-friendly reaction at a low temperature is demanded.

また、化粧料として二酸化チタンを用いる場合、触媒活性の低いルチル型が求められている。ルチル型の二酸化チタンはアナターゼ型よりも触媒活性が低いことが知られているが、通常ルチル型の二酸化チタンを得るためには、900℃以上に加熱する必要があり、非常に高いエネルギーを必要とする。よって、出来る限り環境に優しい方法でのルチル型の二酸化チタンの製造方法が求められている。   Further, when titanium dioxide is used as a cosmetic, a rutile type having low catalytic activity is required. Rutile type titanium dioxide is known to have lower catalytic activity than anatase type, but in order to obtain rutile type titanium dioxide, it is usually necessary to heat to 900 ° C or higher, and very high energy is required. And Therefore, there is a demand for a method for producing rutile-type titanium dioxide in an environment-friendly manner as much as possible.

特開平10−212211号公報Japanese Patent Laid-Open No. 10-212211 特開2005−53846号公報JP 2005-53846 A 特開2002−274851号公報JP 2002-274851 A 特開2000−191325号公報JP 2000-191325 A 特開平05−163022号公報Japanese Patent Laid-Open No. 05-163022

本発明は、このような問題点に鑑みてなされたもので、環境に優しいソフト溶液反応による製造方法で、100nm以上の粒子径に制御でき、均一な球形をしており、その結晶構造はルチル型であり、かつ十分な紫外線遮断効果を示す球状二酸化チタンの製造方法を提供することを目的とするものである。 The present invention has been made in view of such problems, and can be controlled to a particle size of 100 nm or more by a production method based on an environmentally friendly soft solution reaction, and has a uniform spherical shape, and its crystal structure is rutile. It is an object of the present invention to provide a method for producing spherical titanium dioxide which is a mold and exhibits a sufficient ultraviolet blocking effect.

本発明者らは、鋭意研究を重ねた結果、チタン塩溶液に塩酸や硝酸などの酸性溶液を加え、60℃から95℃に昇温速度を調整しながら加熱し、ソフト溶液反応を行うことにより微細な一次粒子が集積され合成された球状粒子を得ることができ、得られた球状粒子を800℃以下の温度条件にて焼成することにより、前記目的を達成することのできるルチル型の球状二酸化チタンが得られることを見出し、本発明を完成させるに至ったものである。
また、こうして得られる球状二酸化チタンは、一次粒子がX線回折法で測定された時100Å以下であり、その集積体の球状二酸化チタン粒子の見かけ上の平均粒子径は100nm以上である。さらに、平均軸比は0.8以上である。
As a result of intensive studies, the present inventors have added an acidic solution such as hydrochloric acid or nitric acid to a titanium salt solution, and heated from 60 ° C. to 95 ° C. while adjusting the rate of temperature rise, thereby performing a soft solution reaction. A spherical particle in which fine primary particles are accumulated and synthesized can be obtained, and the obtained spherical particle is fired under a temperature condition of 800 ° C. or less to achieve the above-mentioned object. The present inventors have found that titanium can be obtained and have completed the present invention.
The spherical titanium dioxide thus obtained has a primary particle size of 100 mm or less when the primary particles are measured by an X-ray diffraction method, and the apparent average particle size of the spherical titanium dioxide particles of the aggregate is 100 nm or more. Furthermore, the average axial ratio is 0.8 or more.

要するに、本発明による球状二酸化チタンの製造方法は、
i換算で0.5〜5.0%のチタン塩溶液に酸性溶液を加えて60℃〜95℃でのソフト溶液反応により合成し、該ソフト溶液反応にて、粒子を球状に制御するとともに、粒子径を均一に制御し、その後800℃以下で焼成を行うことによりルチル型の球状二酸化チタンを得ることを特徴とするものである。
In short, the method for producing spherical titanium dioxide according to the present invention is as follows.
An acidic solution is added to a 0.5 to 5.0% titanium salt solution in terms of Ti and synthesized by a soft solution reaction at 60 ° C. to 95 ° C. , and the particles are controlled to be spherical by the soft solution reaction. The particle diameter is uniformly controlled, and then the rutile-type spherical titanium dioxide is obtained by firing at 800 ° C. or lower.

前記第発明において、ソフト溶液反応時の昇温速度は0.2℃/分〜0.6℃/分であるのが好ましい(第発明)。 In the first invention, the rate of temperature increase during the soft solution reaction is preferably 0.2 ° C./min to 0.6 ° C./min ( second invention).

発明によれば、チタン塩溶液を水にて希釈し、Ti換算で0.5〜5.0質量%に調整した後、塩酸や硝酸などの酸性溶液を加え、その後、60℃〜95℃にてソフト溶液反応により合成を行うことにより加水分解が進み、二酸化チタンが析出され、得られた粒子は粒径の揃った球状二酸化チタンであり、その粒子を焼成することにより、結晶構造はルチル型になる。こうして得られた球状二酸化チタンは、線回折法で測定される平均粒子径が100Å以下の一次粒子よりなる集積体の見かけ上の平均粒子径が100nm以上で、かつ平均軸比が0.8以上となる。すなわち、100nm以上の粒子径で、均一な球形をしていて粒子径が揃っており、かつ結晶構造がルチル型であるために触媒活性の抑えられた球状二酸化チタンを作製することができる。 According to the present invention, the titanium salt solution is diluted with water and adjusted to 0.5 to 5.0% by mass in terms of Ti, then an acidic solution such as hydrochloric acid or nitric acid is added, and then 60 ° C to 95 ° C. The synthesis proceeds by soft solution reaction, and the hydrolysis proceeds and titanium dioxide is precipitated. The resulting particles are spherical titanium dioxide having a uniform particle size. By firing the particles, the crystal structure is rutile. Become a mold. The spherical titanium dioxide thus obtained has an apparent average particle diameter of 100 nm or more and an average axial ratio of 0.8 nm as an aggregate composed of primary particles having an average particle diameter of 100 mm or less as measured by an X- ray diffraction method. That's it. That is, it is possible to produce spherical titanium dioxide having a particle diameter of 100 nm or more, a uniform spherical shape, uniform particle diameters, and a crystal structure that is a rutile type, and having reduced catalytic activity.

製造実施例1にて得られた球状二酸化チタンを透過型電子顕微鏡にて観察した写真(a)及び走査型電子顕微鏡にて観察した写真(b)Photograph (a) observed with transmission electron microscope of spherical titanium dioxide obtained in Production Example 1 and photograph (b) observed with scanning electron microscope 製造実施例1にて得られた球状二酸化チタンのX線回折結果を示すグラフThe graph which shows the X-ray-diffraction result of the spherical titanium dioxide obtained in manufacture example 1

次に、本発明による球状二酸化チタンの製造方法の具体的な実施の形態について説明する。 Next, specific embodiments of the method for producing spherical titanium dioxide according to the present invention will be described.

本発明の球状二酸化チタンの見かけの粒子径は100nm以上であり、微細な一次粒子が集積し、球状の二酸化チタンを形成している。ここで、集積した球状粒子の粒子径は反応の条件によって制御することができる。また、本発明の球状二酸化チタンの見かけの平均粒子径は、透過型電子顕微鏡(TEM)にて観察し、任意の20個の一次粒子の直径を計測し、その平均値を算出することによって測定することができる。   The apparent particle diameter of the spherical titanium dioxide of the present invention is 100 nm or more, and fine primary particles are accumulated to form spherical titanium dioxide. Here, the particle diameter of the accumulated spherical particles can be controlled by the reaction conditions. Further, the apparent average particle diameter of the spherical titanium dioxide of the present invention is measured by observing with a transmission electron microscope (TEM), measuring the diameter of any 20 primary particles, and calculating the average value. can do.

本発明の球状二酸化チタンは、次のようにして製造される。すなわち、チタン塩溶液を水にて希釈してTi換算で0.5%〜5.0%に希釈する。その溶液に塩酸などの酸性溶液を加え撹拌する。その後、昇温速度条件を0.2℃/分〜0.6℃/分にて60℃〜95℃にまで加温し、ソフト溶液反応により合成を行う。その後、水酸化ナトリウムなどのアルカリ溶液にて中和を行い、水洗、ろ過、乾燥を行うことにより球状二酸化チタンが得られる。なお、加熱反応中は、目的の粒子サイズにするために、攪拌を行っても構わない。   The spherical titanium dioxide of the present invention is produced as follows. That is, the titanium salt solution is diluted with water and diluted to 0.5% to 5.0% in terms of Ti. An acidic solution such as hydrochloric acid is added to the solution and stirred. Thereafter, the temperature is increased from 60 ° C. to 95 ° C. at 0.2 ° C./min to 0.6 ° C./min, and the synthesis is performed by a soft solution reaction. Thereafter, neutralization is performed with an alkali solution such as sodium hydroxide, followed by washing with water, filtration and drying to obtain spherical titanium dioxide. During the heating reaction, stirring may be performed to obtain the target particle size.

前記チタン塩溶液としては、三塩化チタン、四塩化チタン、硫酸チタンなどを用いることができるが、四塩化チタンを用いることが特に好ましい。
酸性溶液としては、塩酸、硝酸、硫酸などが挙げられるが、塩酸が特に好ましい。塩酸を加えた時、例えばTiが1mol/Lに対して、Clが3mol/L〜5mol/Lの範囲になるように添加することが好ましいが、より好ましくは、Tiが1mol/Lに対して、Clが3.5mol/L〜4mol/Lの範囲である。
前記反応における反応温度は60℃〜95℃で行うのが好ましいが、最も良い条件としては70℃である。
As the titanium salt solution, titanium trichloride, titanium tetrachloride, titanium sulfate and the like can be used, and it is particularly preferable to use titanium tetrachloride.
Examples of the acidic solution include hydrochloric acid, nitric acid, sulfuric acid and the like, and hydrochloric acid is particularly preferable. When hydrochloric acid is added, for example, Ti is preferably added so that Cl is in a range of 3 mol / L to 5 mol / L with respect to 1 mol / L, more preferably, Ti is 1 mol / L. , Cl is in the range of 3.5 mol / L to 4 mol / L.
The reaction temperature in the reaction is preferably 60 ° C to 95 ° C, but the best condition is 70 ° C.

この後、上記方法にて得られた球状二酸化チタンは焼成されるが、その焼成条件としては、300℃〜800℃の温度範囲で行うのが好ましい。より好ましくは、400℃〜600℃の範囲である。焼成温度が300℃未満の場合においても、X線回折にて分析を行った結果、二酸化チタンのルチル型の結晶構造が確認できるが、400℃以上で焼成することによって、結晶の配向性が向上し、結晶中での酸素欠陥などの欠陥が減少する。また、紫外線遮蔽効果についても、長波長側の波長から紫外線を遮蔽することができる。一方、焼成温度が800℃よりも高い温度になると、高温での処理となり、環境への負荷が増大し、形状も二酸化チタンが焼結し球状を維持できない。   Thereafter, the spherical titanium dioxide obtained by the above method is fired, and the firing condition is preferably in the temperature range of 300 ° C to 800 ° C. More preferably, it is the range of 400 degreeC-600 degreeC. As a result of analysis by X-ray diffraction even when the firing temperature is less than 300 ° C., the rutile-type crystal structure of titanium dioxide can be confirmed, but the orientation of the crystal is improved by firing at 400 ° C. or higher. As a result, defects such as oxygen defects in the crystal are reduced. Moreover, also about the ultraviolet-ray shielding effect, an ultraviolet-ray can be shielded from the long wavelength side wavelength. On the other hand, when the firing temperature is higher than 800 ° C., the treatment is performed at a high temperature, the load on the environment is increased, and the shape of titanium dioxide is sintered and the spherical shape cannot be maintained.

次に、本発明に係る疎水性の球状二酸化チタンについて説明する。
本発明において、球状二酸化チタンがファンデーションやサンスクリーン剤として利用される場合、皮膚に塗布したあと、耐水性が必要となるため、これら粉体に疎水性を付与する必要がある。粉体に疎水性を付与するには、ポリシロキサン、アルキルシラン化合物、アルキルチタネート化合物、フッ素化合物などの化合物で粉体の表面が被覆される。また、上記の化合物以外にも、従来公知の各種の表面処理を施すことができる。なお、これらの処理は複数組み合わせることも可能である。
Next, the hydrophobic spherical titanium dioxide according to the present invention will be described.
In the present invention, when spherical titanium dioxide is used as a foundation or sunscreen agent, it is necessary to impart hydrophobicity to these powders since water resistance is required after application to the skin. In order to impart hydrophobicity to the powder, the surface of the powder is coated with a compound such as polysiloxane, an alkylsilane compound, an alkyl titanate compound, or a fluorine compound. In addition to the above compounds, various conventionally known surface treatments can be applied. A plurality of these processes can be combined.

具体的な表面被覆有機化合物としては、シリコーン系化合物として、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン、アクリルシリコン共重合体が挙げられ、アルキルシラン系として、n−オクチルトリエトキシシランが、アルキルチタネート系として、イソプロピルトリイソステアロイルチタネートが、フッ素系として、パーフルオロアルキルリン酸エステル、パーフルオロアルキルエトキシシランなどが挙げられる。   Specific examples of the surface coating organic compound include methyl hydrogen polysiloxane, dimethyl polysiloxane, and acrylic silicone copolymer as silicone compounds, and n-octyltriethoxysilane as alkyl titanate as alkyl silane. Isopropyl triisostearoyl titanate, and fluorine-based compounds such as perfluoroalkyl phosphate ester and perfluoroalkylethoxysilane.

また、疎水性化合物を表面被覆する処理方法としては、被覆処理される顔料を適当なミキサー中で撹拌し、表面被覆する化合物を液滴下又はスプレー噴霧にて加えた後、一定時間高速強撹拌する。その後、撹拌を続けながら80〜200℃に加熱熟成させることによって、反応表面被覆処理を行う方法が一般的である。又は、表面被覆する化合物をエタノール、イソプロピルアルコール、イソブタノール等のアルコール類、トルエン、n−ヘキサン、シクロヘキサン等の炭化水素系有機溶剤、アセトン、酢酸エチル、酢酸ブチル等の極性有機溶剤などに溶解させておき、この溶液に撹拌中に化粧料用顔料を添加撹拌した後、有機溶剤を完全に蒸発除去し、その後、80〜200℃に加熱熟成させることにより、表面被覆処理を行う方法等も挙げられる。   Further, as a treatment method for coating the surface of the hydrophobic compound, the pigment to be coated is stirred in a suitable mixer, the compound to be coated with the surface is added under a droplet or by spray spraying, and then stirred at high speed for a certain time. . Then, the method of performing the reaction surface coating process by making it heat-ripen at 80-200 degreeC, continuing stirring is common. Alternatively, the surface coating compound is dissolved in alcohols such as ethanol, isopropyl alcohol and isobutanol, hydrocarbon organic solvents such as toluene, n-hexane and cyclohexane, polar organic solvents such as acetone, ethyl acetate and butyl acetate. In addition, after adding and stirring the cosmetic pigment to the solution while stirring, the organic solvent is completely removed by evaporation, and then the surface coating treatment is performed by heating and aging at 80 to 200 ° C. It is done.

また、混合分散方法としては、溶液の濃度や粘度などに応じて適当な方法を選択することができる。好適な例としては、ディスパー、ヘンシェルミキサー、レディゲミキサー、ニーダー、V型混合機、ロールミル、ビーズミル、2軸混練機等の混合機による方法や、水溶液と顔料を加熱空気中に噴霧して水分を一気に除去するスプレードライの方法などを選択することができる。また、粉砕を行う場合においては、ハンマーミル、ボールミル、サンドミル、ジェットミル等の通常の粉砕機を用いることができる。これらいずれの粉砕機によっても同等の品質のものが得られるため、特に限定されるものではない。   As the mixing and dispersing method, an appropriate method can be selected according to the concentration and viscosity of the solution. Preferable examples include a method using a mixer such as a disper, a Henschel mixer, a Redige mixer, a kneader, a V-type mixer, a roll mill, a bead mill, or a biaxial kneader, or a water solution by spraying an aqueous solution and a pigment into heated air. It is possible to select a spray drying method or the like that removes at a stroke. When pulverization is performed, a normal pulverizer such as a hammer mill, a ball mill, a sand mill, or a jet mill can be used. Since any of these pulverizers can obtain the same quality, it is not particularly limited.

この場合、顔料の表面被覆処理に用いられる化合物である成分の質量比は、被覆処理される顔料に対して0.5〜30質量%である。この質量比が0.5質量%未満であるとロングラスティング効果と肌への均一な付着性が充分でなく、また30質量%を越えると感触が非常に油っぽく湿った感じとなり、化粧料としては適さない。   In this case, the mass ratio of the component which is a compound used for the pigment surface coating treatment is 0.5 to 30% by mass with respect to the pigment to be coated. If the mass ratio is less than 0.5% by mass, the long lasting effect and the uniform adhesion to the skin are not sufficient, and if it exceeds 30% by mass, the feel becomes very oily and moisturized. Not suitable as a fee.

また、本発明の表面被覆された球状二酸化チタン(球状粉体)を配合する化粧料の形態は特に限定されないが、ファンデーション、サンスクリーン、美容液、化粧水、口紅、美容クリーム、洗顔剤、香水、口内清涼剤、口臭予防剤、うがい剤、歯磨き、入浴剤、制汗剤、石鹸、シャンプー、リンス、ボディーソープ、ボディーローション、デオドラント剤、ヘアクリーム剤、色白剤、美肌剤、育毛剤などが挙げられる。   In addition, the form of the cosmetic to which the surface-coated spherical titanium dioxide (spherical powder) of the present invention is blended is not particularly limited. , Mouth refresher, mouth odor prevention agent, gargle, toothpaste, bathing agent, antiperspirant, soap, shampoo, rinse, body soap, body lotion, deodorant agent, hair cream agent, whitening agent, skin cleanser, hair restorer, etc. Can be mentioned.

また、本発明の球状粉体が配合される化粧料においては、その球状粉体以外に、通常の化粧料に用いられる油剤、粉体(顔料、色素、樹脂)、フッ素化合物、樹脂、界面活性剤、粘剤、防腐剤、香料、保湿剤、生理活性成分、塩類、溶媒、キレート剤、中和剤、pH調整剤等の成分を同時に配合することができる。ここで、前記粉体としては、例えば、赤色104号、赤色201号、黄色4号、青色1号、黒色401号等の色素、黄色4号アルミニウムレーキ、黄色203号バリウムレーキ等のレーキ色素、ナイロンパウダー、シルクパウダー、ウレタンパウダー、テフロンパウダー(テフロン:登録商標)、シリコンパウダー、セルロースパウダー、シリコンエラストマー等の高分子、黄酸化鉄、赤色酸化鉄、黒酸化鉄、酸化クロム、カーボンブラック、群青、紺青等の有色顔料、酸化チタン、酸化セリウム等の白色顔料、タルク、マイカ、セリサイト、カオリン等の体質顔料、雲母チタン等のパール顔料、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム等の金属塩、シリカ、窒化ホウ素等の無機粉体、微粒子酸化チタン、微粒子酸化鉄、アルミナ処理微粒子酸化チタン、シリカ処理微粒子酸化チタン、ベントナイト、スメクタイト等が挙げられる。これらの粉体の形状、大きさに特に制限はない。また、これらの粉体は従来公知の各種の表面処理が施されていてもいなくても構わない。表面処理の例としては、例えばアクリルシリコン処理、メチルハイドロジェンポリシロキサン処理、シリコーンレジン処理、オクチルトリエトキシシラン処理、N−アシル化リジン処理、有機チタネート処理、シリカ処理、アルミナ処理、セルロース処理、パーフルオロポリエーテル処理、フッ素化シリコーンレジン処理など親水性、親油性、撥水性の各種の処理を用いることが可能である。前記油剤としては、例えばセチルアルコール、イソステアリルアルコール、ラウリルアルコール、ヘキサデシルアルコール、オクチルドデカノール等の高級アルコール、イソステアリン酸、ウンデシレン酸、オレイン酸等の脂肪酸、グリセリン、ソルビトール、エチレングリコール、プロピレングリコール、ポリエチレングリコール等の多価アルコール、ミリスチン酸ミリスチン、ラウリル酸ヘキシル、オレイン酸デシル、ミリスチン酸イソプロピル、ジメチルオクタン酸ヘキシルデシル、モノステアリン酸グリセリン、フタル酸ジエチル、モノステアリン酸エチレングリコール、オキシステアリン酸オクチル等のエステル類、流動パラフィン、ワセリン、スクワラン等の炭化水素、ラノリン、還元ラノリン、カルナバロウ等のロウ、ミンク油、カカオ油、ヤシ油、バーム核油、ツバキ油、ゴマ油、ヒマシ油、オリーブ油等の油脂、エチレン・α−オレフィン・コオリゴマー等が挙げられる。また、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ポリエーテル変性オルガノポリシロキサン、フルオロアルキル・ポリオキシアルキレン共変性オルガノポリシロキサン、アルキル変性オルガノポリシロキサン、フッ素変性オルガノポリシロキサン、アモジメチコン、アミノ変性オルガノポリシロキサン、シリコンゲル、アクリルシリコン、トリメチルシロキシケイ酸、シリコンRTVゴム等のシリコン化合物、パーフルオロポリエーテル、フッ化ピッチ、フルオロカーボン、フルオロアルコール、フッ素化シリコーンレジン等のフッ素化合物が挙げられる。また、前記界面活性剤としては、例えばアニオン型界面活性剤、カチオン型界面活性剤、ノニオン型界面活性剤、べタイン型界面活性剤を用いることができる。前記溶媒としては、精製水、エタノール、軽質流動イソパラフィン、低級アルコール、エーテル類、LPG、フルオロカーボン、N−メチルピロリドン、フルオロアルコール、パーフルオロポリエーテル、代替フロン、揮発性シリコン等が挙げられる。   In addition, in cosmetics formulated with the spherical powder of the present invention, in addition to the spherical powder, oils, powders (pigments, pigments, resins), fluorine compounds, resins, surfactants used in ordinary cosmetics Components such as an agent, a sticking agent, a preservative, a fragrance, a humectant, a physiologically active ingredient, a salt, a solvent, a chelating agent, a neutralizing agent, and a pH adjusting agent can be blended at the same time. Here, as the powder, for example, red 104, red 201, yellow 4, blue 1, black 401 and other dyes, yellow 4 aluminum lake, yellow 203 barium lake and other lake dyes, Nylon powder, silk powder, urethane powder, Teflon powder (Teflon: registered trademark), silicon powder, cellulose powder, polymers such as silicon elastomer, yellow iron oxide, red iron oxide, black iron oxide, chromium oxide, carbon black, ultramarine , Colored pigments such as bitumen, white pigments such as titanium oxide and cerium oxide, extender pigments such as talc, mica, sericite and kaolin, pearl pigments such as mica titanium, barium sulfate, calcium carbonate, magnesium carbonate, aluminum silicate, Metal salts such as magnesium silicate, inorganic powders such as silica and boron nitride, Particles of titanium oxide, fine particles of iron oxide, alumina-treated fine titanium oxide particles, silica treated ultrafine titanium dioxide, bentonite, smectite, and the like. There are no particular restrictions on the shape and size of these powders. These powders may or may not be subjected to various conventionally known surface treatments. Examples of surface treatments include, for example, acrylic silicon treatment, methyl hydrogen polysiloxane treatment, silicone resin treatment, octyltriethoxysilane treatment, N-acylated lysine treatment, organic titanate treatment, silica treatment, alumina treatment, cellulose treatment, par Various hydrophilic, lipophilic, and water-repellent treatments such as fluoropolyether treatment and fluorinated silicone resin treatment can be used. Examples of the oil include higher alcohols such as cetyl alcohol, isostearyl alcohol, lauryl alcohol, hexadecyl alcohol, octyldodecanol, fatty acids such as isostearic acid, undecylenic acid, oleic acid, glycerin, sorbitol, ethylene glycol, propylene glycol, Polyhydric alcohols such as polyethylene glycol, myristic myristate, hexyl laurate, decyl oleate, isopropyl myristate, hexyl decyl dimethyloctanoate, glyceryl monostearate, diethyl phthalate, ethylene glycol monostearate, octyl oxystearate, etc. Esters, hydrocarbons such as liquid paraffin, petrolatum, squalane, lanolin, reduced lanolin, wax such as carnauba wax, mink , Cacao oil, coconut oil, balm kernel oil, camellia oil, sesame oil, castor oil, oils such as olive, ethylene-alpha-olefin co-oligomer, and the like. In addition, methyl hydrogen polysiloxane, dimethyl polysiloxane, methyl phenyl polysiloxane, polyether-modified organopolysiloxane, fluoroalkyl / polyoxyalkylene co-modified organopolysiloxane, alkyl-modified organopolysiloxane, fluorine-modified organopolysiloxane, amodimethicone , Silicon compounds such as amino-modified organopolysiloxane, silicon gel, acrylic silicon, trimethylsiloxysilicic acid, silicon RTV rubber, and fluorine compounds such as perfluoropolyether, fluorinated pitch, fluorocarbon, fluoroalcohol, and fluorinated silicone resin It is done. Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a betaine surfactant. Examples of the solvent include purified water, ethanol, light liquid isoparaffin, lower alcohol, ethers, LPG, fluorocarbon, N-methylpyrrolidone, fluoroalcohol, perfluoropolyether, alternative chlorofluorocarbon, and volatile silicon.

次に、本発明による球状二酸化チタンの製造方法の具体的な実施例について、図面を参照しつつ説明する。以下、球状二酸化チタンを調製する実施例を「製造実施例」と称し、この球状二酸化チタン粉体を用いて化粧料を調製する実施例を単に「実施例」と称することとする。なお、本発明は、以下に述べる実施例に限定されるものではない。 Next, specific examples of the method for producing spherical titanium dioxide according to the present invention will be described with reference to the drawings. Hereinafter, an example in which spherical titanium dioxide is prepared is referred to as a “manufacturing example”, and an example in which a cosmetic is prepared using the spherical titanium dioxide powder is simply referred to as an “example”. In addition, this invention is not limited to the Example described below.

(製造実施例1)
Ti濃度が16.5%(Cl=31%)の四塩化チタンを用いた。Tiが16.5%の四塩化チタン40質量部に水を460質量部加えた。更にその溶液に18.2%の塩酸を40質量部加え撹拌した。その後、昇温速度0.28℃/分の条件にて70℃まで加温し、70℃に到達後3時間反応を行った。その後、中和、水洗、ろ過、乾燥を行い、平均の粒子径が200nmの球状二酸化チタンを得た。得られた球状二酸化チタンを600℃にて3時間焼成し、ルチル型の球状二酸化チタンを得た。
(Production Example 1)
Titanium tetrachloride having a Ti concentration of 16.5% (Cl = 31%) was used. 460 parts by mass of water was added to 40 parts by mass of titanium tetrachloride with 16.5% Ti. Further, 40 parts by mass of 18.2% hydrochloric acid was added to the solution and stirred. Then, it heated up to 70 degreeC on the temperature increase rate of 0.28 degree-C / min condition, and reacted for 3 hours after reaching 70 degreeC. Thereafter, neutralization, washing with water, filtration and drying were performed to obtain spherical titanium dioxide having an average particle size of 200 nm. The obtained spherical titanium dioxide was fired at 600 ° C. for 3 hours to obtain rutile-type spherical titanium dioxide.

製造実施例1で得られた、球状二酸化チタンを透過型電子顕微鏡(TEM)と走査型電子顕微鏡(SEM)にて観察した写真が図1(a)(b)にそれぞれ示されている。図1に示されるように、得られた球状二酸化チタンの平均粒子径は200nm程度であった。また、図2に示されるX線回折による結晶構造を示したグラフより、得られた球状二酸化チタン粒子の結晶構造はルチル型であった。   The photograph which observed the spherical titanium dioxide obtained by manufacture example 1 with the transmission electron microscope (TEM) and the scanning electron microscope (SEM) is each shown by Fig.1 (a) (b). As shown in FIG. 1, the average particle diameter of the obtained spherical titanium dioxide was about 200 nm. Further, from the graph showing the crystal structure by X-ray diffraction shown in FIG. 2, the crystal structure of the obtained spherical titanium dioxide particles was rutile type.

(製造実施例2)
Ti濃度が16.5%(Cl=31%)の四塩化チタンを用いた。Tiが16.5%の四塩化チタン50質量部に水を450質量部加えた。更にその溶液に18.2%の塩酸を50質量部加え撹拌した。その後、昇温速度0.28℃/分の条件にて70℃まで加温し、70℃に到達後3時間反応を行った。その後、中和、水洗、ろ過、乾燥を行い、平均の粒子径が400nmの球状二酸化チタンを得た。得られた球状二酸化チタンを600℃にて3時間焼成し、ルチル型の球状二酸化チタンを得た。
(Production Example 2)
Titanium tetrachloride having a Ti concentration of 16.5% (Cl = 31%) was used. 450 parts by mass of water was added to 50 parts by mass of titanium tetrachloride with 16.5% Ti. Further, 50 parts by mass of 18.2% hydrochloric acid was added to the solution and stirred. Then, it heated up to 70 degreeC on the temperature increase rate of 0.28 degree-C / min condition, and reacted for 3 hours after reaching 70 degreeC. Thereafter, neutralization, washing with water, filtration and drying were performed to obtain spherical titanium dioxide having an average particle size of 400 nm. The obtained spherical titanium dioxide was fired at 600 ° C. for 3 hours to obtain rutile-type spherical titanium dioxide.

(製造実施例3)
製造実施例1にて得られた球状二酸化チタンに、メチルハイドロジェンポリシロキサンにて表面被覆処理を施した。
ヘンシェルミキサーに製造実施例1で得られた球状二酸化チタン1000質量部を入れ、続いてメチルハイドロジェンポリシロキサン20.4質量部をイソプロピルアルコール125質量部に溶解させた溶液を滴下混合し、球状二酸化チタンと良く混合した。その後、ヘンシェルミキサー内を加熱及び減圧し、イソプロピルアルコールを除去した。処理された粉体をヘンシェルミキサーから取り出し、粉砕して加熱処理を行い、シリコン化合物が2質量%処理された球状二酸化チタンを得た。
(Production Example 3)
The spherical titanium dioxide obtained in Production Example 1 was subjected to a surface coating treatment with methyl hydrogen polysiloxane.
In a Henschel mixer, 1000 parts by mass of the spherical titanium dioxide obtained in Production Example 1 was added, and then a solution in which 20.4 parts by mass of methylhydrogenpolysiloxane was dissolved in 125 parts by mass of isopropyl alcohol was added dropwise and mixed. Mix well with titanium. Thereafter, the interior of the Henschel mixer was heated and depressurized to remove isopropyl alcohol. The treated powder was taken out from the Henschel mixer, pulverized and heat-treated to obtain spherical titanium dioxide treated with 2% by mass of silicon compound.

製造実施例3で得られた表面処理された球状二酸化チタンをシリコーンオイル(東レ・ダウコーニング株式会社製 SF8417)にて20質量%になるように混合し、フーバーマーラーにて100rpm、3回の条件で分散させた。5cm×8cmの石英板の上にトランスポアテープを貼り、上記方法にて分散させた分散体0.08gをテープ上に均一に塗布した。15分間放置した後、SPFアナライザー(Labsphere社製 UV−1000S)を用いて、Sun ProtecTion Factor(SPF)及びProtecTion grade of UVA(PA)の測定を行った。また、比較品として、市販されている一次粒子径が200nmで、比表面積が10m/gの二酸化チタンに上記シリコン処理の方法で同様に表面処理したものを用いた。その結果が表1に示されている。表1に示すように、本発明にて得られた表面処理された球状二酸化チタンはSPF及びPAの測定結果より、市販品のシリコン処理品(比較品)と比較したところ、高い紫外線遮蔽効果があることが分かった。 The surface-treated spherical titanium dioxide obtained in Production Example 3 was mixed with silicone oil (SF8417 manufactured by Toray Dow Corning Co., Ltd.) so as to be 20% by mass, and 100 rpm, 3 times with Hoover Marler. And dispersed. A transpore tape was applied on a 5 cm × 8 cm quartz plate, and 0.08 g of the dispersion dispersed by the above method was uniformly applied on the tape. After standing for 15 minutes, the Sun Protecion Factor (SPF) and ProtecTion grade of UVA (PA) were measured using an SPF analyzer (UV-1000S manufactured by Labsphere). As a comparative product, a commercially available titanium dioxide having a primary particle diameter of 200 nm and a specific surface area of 10 m 2 / g was similarly surface-treated by the above silicon treatment method. The results are shown in Table 1. As shown in Table 1, when the surface-treated spherical titanium dioxide obtained in the present invention was compared with a commercially available silicon-treated product (comparative product) from the measurement results of SPF and PA, a high ultraviolet shielding effect was obtained. I found out.

Figure 0005955137
Figure 0005955137

(実施例1)
〔サンスクリーン剤の製造〕
表2に示される処方と下記製造方法に従いサンスクリーン剤を調製した。なお、表中の配合量の単位は質量%である。
Example 1
[Manufacture of sunscreen agents]
A sunscreen agent was prepared according to the formulation shown in Table 2 and the following production method. In addition, the unit of the compounding quantity in a table | surface is mass%.

Figure 0005955137
Figure 0005955137

製造方法:
成分A及びBをそれぞれ80℃にて混合し、均一に分散したのを確認した後、30℃まで冷却する。冷却後成分Bを成分Aにホモミキサーにて攪拌しながら少しずつ添加し、均一になるまで良く混合し、球状二酸化チタン配合サンスクリーンを得た。
Production method:
Components A and B are mixed at 80 ° C., and after confirming that they are uniformly dispersed, they are cooled to 30 ° C. After cooling, component B was added to component A little by little with stirring with a homomixer and mixed well until uniform to obtain a spherical titanium dioxide-containing sunscreen.

(比較例1)
製造実施例3で製造されたシリコン処理球状二酸化チタンの代わりに、シリコン処理された市販されている二酸化チタンを用いた他は全て実施例1と同様にして製品を得た。
(Comparative Example 1)
A product was obtained in the same manner as in Example 1 except that commercially available titanium dioxide treated with silicon was used instead of the silicon-treated spherical titanium dioxide produced in Production Example 3.

実施例1及び比較例1で作製した化粧料について、女性パネラー10名によって、使用感に関する官能評価試験を実施した。試験はアンケート形式で実施し、各項目に0点から5点の間の点数をつけ、0点は評価が悪い、5点は評価が優れるとして数値化し、結果を全パネラーの平均点として表した。従って、点数が高い程評価が優れていることを示す。この評価結果が表3に示されている。   About the cosmetics produced in Example 1 and Comparative Example 1, the sensory evaluation test regarding a usability | use_condition was implemented by 10 female panelists. The test was conducted in a questionnaire format, and each item was scored between 0 and 5 points, 0 points were badly evaluated, 5 points were evaluated as excellent, and the result was expressed as the average score of all panelists. . Therefore, the higher the score, the better the evaluation. The evaluation results are shown in Table 3.

Figure 0005955137
表3の結果より、実施例1は比較例1よりも、使用感、化粧持ち、肌の透明感全てにおいて優れる結果となっていることが分かる。
Figure 0005955137
From the results in Table 3, it can be seen that Example 1 is superior to Comparative Example 1 in terms of usability, longevity, and skin transparency.

本発明によれば、触媒活性の低いルチル型の結晶構造を有し、平均粒子径が100nm以上の球状二酸化チタンを提供することが可能であり、また、その球状二酸化チタンに疎水性化合物を表面被覆した粉体を配合することができるので、肌へ塗布した時の使用感、透明感、化粧持ちが優れた化粧料を提供することができることから、ファンデーション、アイシャドウ、ほほ紅、口紅などのメークアップ化粧料又はサンスクリーン化粧料に用いて好適であり、産業上の利用可能性が大である。

According to the present invention, it is possible to provide spherical titanium dioxide having a rutile-type crystal structure with low catalytic activity and an average particle diameter of 100 nm or more, and a hydrophobic compound is provided on the surface of the spherical titanium dioxide. Since coated powder can be blended, it is possible to provide cosmetics with excellent use feeling, transparency, and long-lasting makeup when applied to the skin, such as foundations, eye shadows, cheeks, lipsticks, etc. It is suitable for use in makeup cosmetics or sunscreen cosmetics and has great industrial applicability.

Claims (2)

i換算で0.5〜5.0%のチタン塩溶液に酸性溶液を加えて60℃〜95℃でのソフト溶液反応により合成し、該ソフト溶液反応にて、粒子を球状に制御するとともに、粒子径を均一に制御し、その後800℃以下で焼成を行うことによりルチル型の球状二酸化チタンを得ることを特徴とする球状二酸化チタンの製造方法。 An acidic solution is added to a 0.5 to 5.0% titanium salt solution in terms of Ti and synthesized by a soft solution reaction at 60 ° C. to 95 ° C. , and the particles are controlled to be spherical by the soft solution reaction. A method for producing spherical titanium dioxide, characterized in that rutile-type spherical titanium dioxide is obtained by uniformly controlling the particle diameter and then performing firing at 800 ° C. or lower. ソフト溶液反応時の昇温速度が0.2℃/分〜0.6℃/分であることを特徴とする請求項に記載の球状二酸化チタンの製造方法。 The method for producing spherical titanium dioxide according to claim 1 , wherein the temperature rising rate during the soft solution reaction is 0.2 ° C / min to 0.6 ° C / min.
JP2012152061A 2012-07-06 2012-07-06 Method for producing spherical titanium dioxide Active JP5955137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152061A JP5955137B2 (en) 2012-07-06 2012-07-06 Method for producing spherical titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152061A JP5955137B2 (en) 2012-07-06 2012-07-06 Method for producing spherical titanium dioxide

Publications (2)

Publication Number Publication Date
JP2014015340A JP2014015340A (en) 2014-01-30
JP5955137B2 true JP5955137B2 (en) 2016-07-20

Family

ID=50110387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152061A Active JP5955137B2 (en) 2012-07-06 2012-07-06 Method for producing spherical titanium dioxide

Country Status (1)

Country Link
JP (1) JP5955137B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536415B (en) * 2014-07-02 2019-10-15 石原产业株式会社 Fine titanium oxide particle and preparation method thereof
JP6927697B2 (en) * 2016-12-22 2021-09-01 花王株式会社 Lip cosmetics
JP6988471B2 (en) 2017-12-28 2022-01-05 住友大阪セメント株式会社 Titanium oxide powder, and dispersions and cosmetics using it
JP6943178B2 (en) 2017-12-28 2021-09-29 住友大阪セメント株式会社 Titanium oxide powder, and dispersions and cosmetics using it
US11254583B2 (en) 2017-12-28 2022-02-22 Sumitomo Osaka Cement Co., Ltd. Titanium oxide powder, and dispersion and cosmetic using said powder
CN114773882B (en) * 2022-05-24 2022-12-06 天泰(福建)新材料科技有限公司 Titanium dioxide for delustering chinlon chemical fiber and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925886B2 (en) * 1998-12-25 2007-06-06 テイカ株式会社 Spherical titanium dioxide aggregate formed from small spherical particles of titanium dioxide and method for producing the same
JP4105971B2 (en) * 2003-03-27 2008-06-25 株式会社資生堂 Porous titanium oxide powder and method for producing the same
JP5241994B2 (en) * 2004-11-05 2013-07-17 戸田工業株式会社 Titanium oxide particle powder and photocatalyst
JP5743417B2 (en) * 2010-03-31 2015-07-01 大阪瓦斯株式会社 Titanium oxide nanoparticles aggregate

Also Published As

Publication number Publication date
JP2014015340A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP3187440B2 (en) Activity-suppressing zinc oxide powder and cosmetics
JP5955137B2 (en) Method for producing spherical titanium dioxide
JP2010173863A (en) Straw-bundled rutile-type titanium dioxide, cosmetics using the same and external additive for toner using the same
EP2825180A1 (en) Treated platy substrates
JP4046394B2 (en) Cosmetics and makeup method
JP5593568B2 (en) Method for producing plate boehmite and plate alumina powder
JP2007308395A (en) Cosmetic
JP2007176936A (en) Makeup cosmetic material
JP6682950B2 (en) Surface treated zinc oxide particles, dispersion, cosmetics and zinc oxide particles
WO2013138312A1 (en) Treated platy substrates
JP5872825B2 (en) Metal oxide / zinc oxide solid solution particle production method, spherical powder production method, coated spherical powder production method, and cosmetic production method
JP6012339B2 (en) Method for producing composite powder
JP6454569B2 (en) Method for producing spherical zinc oxide
JP2008050388A (en) Water-repellent and oil-repellent pigment and cosmetic containing the same
JP2012140359A (en) Powder cosmetic
JPH11199458A (en) Cosmetic
JP6143640B2 (en) Acicular zinc oxide particles, production method thereof, and cosmetics
JP2012193119A (en) Spherical powder and cosmetic including the same
JP3492937B2 (en) Cosmetics
JP2014129235A (en) Tabular powder and cosmetic containing the same
JP2021160953A (en) Surface-treated metal oxide particle, dispersion liquid, cosmetic preparation, and method for producing surface-treated metal oxide particle
JPH11209646A (en) Reduced-activity titanium oxide powder and cosmetic
JP6042165B2 (en) Method for producing composite powder
JP3500420B2 (en) Cosmetics
JP2013155070A (en) Multi-needle shape zinc oxide particle and production method thereof and cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160614

R150 Certificate of patent or registration of utility model

Ref document number: 5955137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250