[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5953726B2 - Ultrapure water production method and apparatus - Google Patents

Ultrapure water production method and apparatus Download PDF

Info

Publication number
JP5953726B2
JP5953726B2 JP2011267982A JP2011267982A JP5953726B2 JP 5953726 B2 JP5953726 B2 JP 5953726B2 JP 2011267982 A JP2011267982 A JP 2011267982A JP 2011267982 A JP2011267982 A JP 2011267982A JP 5953726 B2 JP5953726 B2 JP 5953726B2
Authority
JP
Japan
Prior art keywords
water
temperature
pure water
heat exchanger
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011267982A
Other languages
Japanese (ja)
Other versions
JP2013119060A (en
Inventor
巧 鴛海
巧 鴛海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011267982A priority Critical patent/JP5953726B2/en
Publication of JP2013119060A publication Critical patent/JP2013119060A/en
Application granted granted Critical
Publication of JP5953726B2 publication Critical patent/JP5953726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は超純水製造方法及び装置に係り、特に一次純水製造装置の熱交換器の制御方法を改良した超純水製造方法及び装置に関する。   The present invention relates to an ultrapure water production method and apparatus, and more particularly to an ultrapure water production method and apparatus improved in a control method for a heat exchanger of a primary pure water production apparatus.

半導体洗浄用水として用いられている超純水は、図2に示すように前処理システム1、一次純水製造装置10、二次純水製造装置(サブシステムと称されることも多い。)20から構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造される(特許文献1)。図2において各システムの役割は次の通りである。   As shown in FIG. 2, the ultrapure water used as semiconductor cleaning water is a pretreatment system 1, a primary pure water production apparatus 10, and a secondary pure water production apparatus (often referred to as a subsystem) 20. It is manufactured by treating raw water (industrial water, city water, well water, etc.) with an ultrapure water manufacturing apparatus composed of (Patent Document 1). In FIG. 2, the role of each system is as follows.

凝集、加圧浮上(沈殿)、濾過(膜濾過)装置など(この従来例では凝集濾過装置)よりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。   In the pretreatment system 1 comprising agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus and the like (in this conventional example, agglomeration filtration apparatus), suspended substances and colloidal substances in raw water are removed. In this process, it is also possible to remove high molecular organic substances, hydrophobic organic substances, and the like.

前処理された水のタンク11、熱交換器15、逆浸透膜処理装置(RO装置)12、イオン交換装置(混床式又は4床5塔式など)13及び脱気装置14を備える一次純水製造装置10では、原水中のイオンや有機成分の除去を行う。なお、水は温度が高い程、粘性が低下し、RO膜の透過性が向上する。このため、図2の通り、逆浸透膜処理装置12の前段に熱交換器15が設置され、逆浸透膜処理装置12への供給水の温度が所定温度以上となるように水を加熱する。熱交換器15の1次側には、熱源流体として蒸気が供給される。逆浸透膜処理装置12では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置13では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置14では無機系炭素(IC)、溶存酸素の除去を行う。   Primary pure tank comprising pretreated water tank 11, heat exchanger 15, reverse osmosis membrane treatment device (RO device) 12, ion exchange device (such as mixed bed type or 4 bed 5 tower type) 13 and deaeration device 14. The water production apparatus 10 removes ions and organic components from the raw water. In addition, as the temperature of water increases, the viscosity decreases and the permeability of the RO membrane improves. For this reason, as shown in FIG. 2, the heat exchanger 15 is installed in the front | former stage of the reverse osmosis membrane processing apparatus 12, and water is heated so that the temperature of the supply water to the reverse osmosis membrane processing apparatus 12 may become more than predetermined temperature. Steam is supplied to the primary side of the heat exchanger 15 as a heat source fluid. The reverse osmosis membrane treatment apparatus 12 removes salts and ionic and colloidal TOC. The ion exchange device 13 removes TOC components adsorbed or ion exchanged by an ion exchange resin while removing salts. In the deaeration device 14, inorganic carbon (IC) and dissolved oxygen are removed.

一次純水製造装置で製造された一次純水は、配管19を介して二次純水製造装置20へ送水される。この二次純水製造装置20は、純水タンク21、ポンプ22、熱交換器23、低圧紫外線酸化装置(UV装置)24、イオン交換装置25及び限外濾過膜(UF膜)分離装置26を備えている。低圧紫外線酸化装置24では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置25で除去される。限外濾過膜分離装置26では、微粒子が除去され、イオン交換樹脂からの流出粒子も除去される。 The primary pure water produced by the primary pure water production apparatus is sent to the secondary pure water production apparatus 20 via the pipe 19. The secondary pure water production apparatus 20 includes a pure water tank 21, a pump 22, a heat exchanger 23, a low-pressure ultraviolet oxidation apparatus (UV apparatus) 24, an ion exchange apparatus 25, and an ultrafiltration membrane (UF membrane) separation apparatus 26. I have. In the low-pressure ultraviolet oxidizer 24, TOC is decomposed into an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp. Organic substances and CO 2 produced by the decomposition are removed by the ion exchange device 25 at the subsequent stage. In the ultrafiltration membrane separation device 26, the fine particles are removed, and the outflow particles from the ion exchange resin are also removed.

この二次純水製造装置20で製造された超純水は、配管30を介してユースポイント40に送られ、未使用の超純水は配管50を介してタンク21へ戻される。なお、ポンプ22の圧力が不足する場合は、イオン交換装置25の上流側(例えばUV酸化装置24とイオン交換装置25の間)に昇圧ポンプが設置されることもある。   The ultrapure water produced by the secondary pure water production apparatus 20 is sent to the use point 40 via the pipe 30, and the unused ultrapure water is returned to the tank 21 via the pipe 50. When the pressure of the pump 22 is insufficient, a booster pump may be installed upstream of the ion exchange device 25 (for example, between the UV oxidation device 24 and the ion exchange device 25).

熱交換器23は、二次純水製造装置20からユースポイント40に送水される超純水の水温を所定温度(例えば約25℃程度)にするためのものである。   The heat exchanger 23 is for making the temperature of the ultrapure water sent from the secondary pure water production apparatus 20 to the use point 40 a predetermined temperature (for example, about 25 ° C.).

一般に、二次純水製造装置20で製造された超純水はユースポイントへ供給され、余剰の超純水(未使用)はユースポイント40から二次純水製造装置20へ返送され、再度該二次純水製造装置20で処理されて一定の超純水水質を維持しながら循環する。そして、常時循環することで水が滞留せず、微生物の繁殖が抑制されている。この循環途中において、ポンプ22や低圧紫外線酸化装置24の紫外線照射のランプの熱などにより循環超純水の水温が上昇するのを熱交換器23によって奪熱し、循環する超純水の水温を所定温度に維持する。   In general, the ultrapure water produced by the secondary pure water production apparatus 20 is supplied to the use point, and surplus ultrapure water (unused) is returned from the use point 40 to the secondary pure water production apparatus 20 and again It is processed by the secondary pure water production apparatus 20 and circulates while maintaining a certain ultrapure water quality. And since it does not stagnate by always circulating, the reproduction of microorganisms is suppressed. During the circulation, the heat of the circulating ultrapure water is increased by the heat of the pump 22 and the ultraviolet irradiation lamp of the low-pressure ultraviolet oxidizer 24, and the temperature of the circulating ultrapure water is set to a predetermined value. Maintain temperature.

なお、この二次純水製造装置からの超純水をさらに三次純水製造装置で処理して不純物濃度をさらに低下させることもある。三次純水製造装置としては、二次純水製造装置と同様の構成のものが用いられる。   The ultrapure water from the secondary pure water production apparatus may be further processed by the tertiary pure water production apparatus to further reduce the impurity concentration. As the tertiary pure water production apparatus, one having the same configuration as the secondary pure water production apparatus is used.

特開2010−214300JP2010-214300

従来、熱交換器15への蒸気供給量は、熱交換器15の出口水温が所定温度となるように制御されているが、季節によって気温が変動することにより、配管19から二次純水製造装置20(サブシステム)のタンク21(以下、サブタンク21ということがある。)へ送られる水の温度が変化する。そして、夏季などにおいて、サブタンク21への流入水温が無用に高くなることがある。   Conventionally, the amount of steam supplied to the heat exchanger 15 is controlled so that the outlet water temperature of the heat exchanger 15 becomes a predetermined temperature. However, when the temperature fluctuates depending on the season, secondary pure water is produced from the pipe 19. The temperature of the water sent to the tank 21 (hereinafter also referred to as the sub tank 21) of the device 20 (sub system) changes. In summer and the like, the temperature of the water flowing into the sub tank 21 may become unnecessarily high.

本発明は、二次純水製造装置に供給される一次純水の温度が無用に高くなることを防止し、一次純水製造装置の熱交換器の加熱コストを低減することができる超純水製造方法及び装置を提供することを目的とする。   The present invention prevents ultrapure water that prevents the temperature of primary pure water supplied to a secondary pure water production apparatus from being unnecessarily high and reduces the heating cost of a heat exchanger of the primary pure water production apparatus. An object is to provide a manufacturing method and apparatus.

また、図2に図示はされていないが、一次純水製造装置10の逆浸透膜処理装置12とイオン交換装置13との間に中継タンクを設置し、半導体製造工程からの回収水を該中継タンクに導入し、RO処理水と回収水とを混合してイオン交換装置13に供給することもある。この回収水の温度は通常25〜30℃と高いので、この回収水の流量が変動することにより、サブタンク21への流入水の温度が変動することがある。   Although not shown in FIG. 2, a relay tank is installed between the reverse osmosis membrane treatment device 12 and the ion exchange device 13 of the primary pure water production apparatus 10, and the collected water from the semiconductor production process is relayed to the relay tank. It may be introduced into a tank, and RO treated water and recovered water may be mixed and supplied to the ion exchange device 13. Since the temperature of the recovered water is usually as high as 25 to 30 ° C., the temperature of the water flowing into the sub tank 21 may fluctuate due to fluctuations in the flow rate of the recovered water.

本発明は、その一態様において、回収水の流量変動があっても、サブタンク流入水の温度変動を小さくすることができる超純水製造方法及び装置を提供することを目的とする。   In one aspect of the present invention, an object of the present invention is to provide a method and an apparatus for producing ultrapure water that can reduce the temperature fluctuation of subtank inflow water even when the flow rate of recovered water varies.

第1発明の超純水製造装置は、熱交換器及び該熱交換器の後段に設けられた逆浸透膜分離手段並びに該逆浸透膜分離手段の後段側に半導体製造工程からの回収水を供給する回収水供給手段を備えた一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造装置において、二次純水製造装置に供給される一次純水の温度の検出手段と、回収水の供給量の検出手段と、該一次純水の温度の検出手段の検出温度と該回収水の供給量の検出手段の検出流量とに基づいて前記熱交換器の流出水の目標温度を設定する手段と、この目標温度となるように熱交換器への熱源流体の供給量を制御する手段とを備えたことを特徴とするものである。 The ultrapure water production apparatus according to the first aspect of the present invention supplies a heat exchanger, reverse osmosis membrane separation means provided at the rear stage of the heat exchanger, and recovered water from the semiconductor production process to the rear stage side of the reverse osmosis membrane separation means. Ultra pure water is produced by passing raw water through a primary pure water production apparatus equipped with recovered water supply means to produce primary pure water, and passing this primary pure water through a secondary pure water production apparatus. In the pure water production apparatus, the temperature detection means of the primary pure water supplied to the secondary pure water production apparatus, the detection means of the supply amount of the recovered water, and the detection temperature of the temperature detection means of the primary pure water The means for setting the target temperature of the effluent water of the heat exchanger based on the detection flow rate of the means for detecting the supply amount of the recovered water, and the supply amount of the heat source fluid to the heat exchanger so as to be the target temperature And a means for controlling.

第2発明の超純水製造方法は、熱交換器及び該熱交換器の後段に設けられた逆浸透膜分離手段並びに該逆浸透膜分離手段の後段側に半導体製造工程からの回収水を供給する回収水供給手段を備えた一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造方法において、二次純水製造装置に供給される一次純水の温度と、回収水の供給量を検出し、この検出温度と回収水供給量とに基づいて前記熱交換器の流出水の目標温度を設定し、この目標温度となるように熱交換器への熱源流体の供給量を制御することを特徴とするものである。 The ultrapure water production method of the second invention is a heat exchanger, a reverse osmosis membrane separation means provided at the rear stage of the heat exchanger, and a supply of recovered water from the semiconductor production process to the rear stage side of the reverse osmosis membrane separation means Ultra pure water is produced by passing raw water through a primary pure water production apparatus equipped with recovered water supply means to produce primary pure water, and passing this primary pure water through a secondary pure water production apparatus. in pure water production process, and the primary pure water temperature supplied to the secondary pure water producing device, detects the supply amount of the recovered water, the heat exchanger on the basis of the recovered water supply amount and the detected temperature A target temperature of the effluent water is set, and the supply amount of the heat source fluid to the heat exchanger is controlled so as to be the target temperature.

,第発明の超純水製造装置及び方法によると、二次純水製造装置に供給される一次純水の温度と、一次純水製造装置に導入される回収水の流量に基づいて一次純水製造装置の熱交換器の流出水の目標温度を設定し、この目標温度となるように熱交換器への熱源流体の供給量を制御するので、二次純水製造装置に供給される一次純水の温度が無用に高くなったり、過度に低くなったりすることが防止される。 First, according to the ultrapure water production apparatus and method of the second invention, based on the temperature of the primary pure water supplied to the secondary pure water production system, and the flow rate of the recovered water is introduced into the primary pure water production system The target temperature of the effluent of the heat exchanger of the primary pure water production equipment is set, and the supply amount of the heat source fluid to the heat exchanger is controlled so that this target temperature is reached, so it is supplied to the secondary pure water production equipment It is prevented that the temperature of the primary pure water is unnecessarily increased or excessively decreased.

実施の形態に係る超純水製造装置の系統図である。It is a systematic diagram of the ultrapure water manufacturing apparatus concerning an embodiment. 従来例に係る超純水製造装置の系統図である。It is a systematic diagram of the ultrapure water manufacturing apparatus which concerns on a prior art example.

本発明の超純水製造装置は、一次純水製造装置及び二次純水製造装置あるいはさらに三次純水製造装置を備えたものにおいて、二次純水製造装置のサブタンクの流入水温に基づいて一次純水製造装置の熱交換器の設定温度を制御する。   The ultrapure water production apparatus of the present invention comprises a primary pure water production apparatus and a secondary pure water production apparatus or further a tertiary pure water production apparatus, and is based on the inflow water temperature of the sub tank of the secondary pure water production apparatus. Control the set temperature of the heat exchanger of the pure water production equipment.

この一次純水製造装置の前段には、通常の場合、前処理装置が設けられる。前処理装置では、原水の濾過、凝集沈殿、精密濾過膜などによる前処理が施され、主に懸濁物質が除去される。この前処理によって通常、水中の微粒子数は10個/mL以下となる。 In the normal stage of the primary pure water production apparatus, a pretreatment apparatus is usually provided. In the pretreatment device, pretreatment by raw water filtration, coagulation sedimentation, microfiltration membrane or the like is performed, and suspended substances are mainly removed. By this pretreatment, the number of fine particles in water is usually 10 3 / mL or less.

一次純水製造装置は、逆浸透(RO)膜分離装置、脱気装置、再生型イオン交換装置(混床式又は4床5塔式など)、電気脱イオン装置、紫外線(UV)照射酸化装置等の酸化装置などを備え、前処理水中の大半の電解質、微粒子、生菌等の除去を行うものである。一次純水製造装置は、例えば、熱交換器、2基以上のRO膜分離装置、混床式イオン交換装置、及び脱気装置で構成される。   Primary pure water production equipment includes reverse osmosis (RO) membrane separators, deaerators, regenerative ion exchangers (such as mixed bed or 4 bed 5 tower type), electrodeionizers, ultraviolet (UV) irradiation oxidizers Etc., and removes most of the electrolytes, fine particles, viable bacteria, etc. in the pretreated water. The primary pure water production apparatus is composed of, for example, a heat exchanger, two or more RO membrane separation apparatuses, a mixed bed ion exchange apparatus, and a deaeration apparatus.

二次純水製造装置は、給水ポンプ、熱交換器、低圧紫外線酸化装置又は殺菌装置といった紫外線照射装置、非再生型混床式イオン交換装置あるいは電気脱イオン装置、限外濾過(UF)膜分離装置又は精密濾過(MF)膜分離装置等の膜濾過装置で構成されるが、更に膜脱気装置、RO膜分離装置、電気脱イオン装置等の脱塩装置が設けられている場合もある。二次純水製造装置では、低圧紫外線酸化装置を適用し、その後段に混床式イオン交換装置を設け、これによって水中のTOCを紫外線により酸化分解し、酸化分解生成物をイオン交換によって除去する。   Secondary pure water production equipment includes feed water pumps, heat exchangers, UV irradiation equipment such as low pressure UV oxidation equipment or sterilization equipment, non-regenerative mixed bed ion exchange equipment or electrodeionization equipment, ultrafiltration (UF) membrane separation The apparatus is constituted by a membrane filtration device such as a device or a microfiltration (MF) membrane separation device, and may further be provided with a demineralization device such as a membrane deaeration device, an RO membrane separation device, or an electrodeionization device. In the secondary pure water production apparatus, a low-pressure ultraviolet oxidation apparatus is applied, and a mixed bed type ion exchange apparatus is provided at the subsequent stage, whereby TOC in water is oxidized and decomposed by ultraviolet rays, and oxidation decomposition products are removed by ion exchange. .

三次純水製造装置は、装置構成としては二次純水製造装置と同様の構成を備えるものであり、これにより二次純水を更に精製して高純度の超純水を製造するものである。   The tertiary pure water production apparatus has the same configuration as the secondary pure water production apparatus as a device configuration, and thereby purifies the secondary pure water to produce high purity ultrapure water. .

以下、図1を参照して本発明の実施の形態について説明する。図1は実施の形態に係る超純水製造方法及び装置を示すフロー図であり、図2と同一部材については同一符号が付されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing an ultrapure water production method and apparatus according to an embodiment, and the same members as those in FIG. 2 are denoted by the same reference numerals.

この実施の形態にあっては、一次純水製造装置の熱交換器15で加熱されてRO装置12に供給される水の温度を検知する温度センサ16が設けられている。熱交換器15には、熱源流体として蒸気が蒸気ライン15aを介して供給される。この蒸気ライン15aに蒸気流量制御弁15bが設けられている。また、RO装置12とイオン交換装置13との間に中継タンク17が設けられており、半導体製造工程からの回収水がライン18を介して流入する。この回収水ライン18に流量計18aが設けられている。   In this embodiment, a temperature sensor 16 that detects the temperature of water heated by the heat exchanger 15 of the primary pure water production apparatus and supplied to the RO apparatus 12 is provided. Steam is supplied to the heat exchanger 15 as a heat source fluid through a steam line 15a. A steam flow control valve 15b is provided in the steam line 15a. In addition, a relay tank 17 is provided between the RO device 12 and the ion exchange device 13, and recovered water from the semiconductor manufacturing process flows in via the line 18. The recovered water line 18 is provided with a flow meter 18a.

また、この実施の形態では、配管19を介して二次純水製造装置20のサブタンク21に流入する一次純水の温度を検知するように、温度センサ21aが設けられている。   In this embodiment, a temperature sensor 21 a is provided so as to detect the temperature of primary pure water flowing into the sub tank 21 of the secondary pure water production apparatus 20 through the pipe 19.

これらの温度センサ16,21a及び流量計18aの検出データが制御装置60に入力される。この制御装置60は、これらの入力データに基づいて蒸気流量制御弁15bに制御信号を送るように構成されている。   Detection data of the temperature sensors 16 and 21a and the flow meter 18a is input to the control device 60. The control device 60 is configured to send a control signal to the steam flow control valve 15b based on these input data.

[第1の制御例]
第1の制御例においては、制御装置60は、温度センサ21aの検出温度に基づいて、温度センサ16の検出温度の目標温度を設定し、温度センサ16の検出温度がこの目標温度となるように、蒸気流量制御弁15bを制御する。
[First control example]
In the first control example, the control device 60 sets a target temperature of the temperature detected by the temperature sensor 16 based on the temperature detected by the temperature sensor 21a, so that the temperature detected by the temperature sensor 16 becomes this target temperature. The steam flow control valve 15b is controlled.

一般に、熱交換器15に流入してからサブタンク21に到達するまでの時間は約2〜3時間、例えば約3時間程度と長いため、単にサブタンク21への流入水温の変動に追従して熱交換器15への蒸気流量を制御しても的確な制御が行われない。   In general, since the time from flowing into the heat exchanger 15 to reaching the sub tank 21 is as long as about 2 to 3 hours, for example, about 3 hours, the heat exchange simply follows the fluctuation of the inflow water temperature into the sub tank 21. Even if the steam flow rate to the vessel 15 is controlled, accurate control is not performed.

そこで、この第1の制御例では、温度センサ21aの検出温度に基づいて、温度センサ16の検出温度の目標温度を設定し、温度センサ16の検出温度がこの目標温度となるように、蒸気流量制御弁15bを制御する。   Therefore, in this first control example, the target temperature of the temperature detected by the temperature sensor 16 is set based on the temperature detected by the temperature sensor 21a, and the steam flow rate is set so that the temperature detected by the temperature sensor 16 becomes this target temperature. The control valve 15b is controlled.

具体的には、サブタンク21への流入水温の許容範囲の下限値T20と上限値T21とを定めておく。また、運転実績データに基づいて、サブタンク21の流入水温がこの下限値と上限値との間の温度となる熱交換器15の出口水の温度を目標温度Tとして設定しておく。そして、温度センサ16の検出温度がこの目標温度Tとなるように蒸気流量制御弁15bを制御する。 Specifically, previously set the lower limit value T 20 and the upper limit value T 21 tolerance of the inlet water temperature to the sub tank 21. Further, based on the operation record data, the inflow water temperature of the sub-tank 21 is set to the temperature of the outlet water of the heat exchanger 15 serving as a temperature between the lower and upper limits as the target temperature T 1. Then, the temperature detected by the temperature sensor 16 to control the steam flow rate control valve 15b so that the target temperature T 1.

このように温度センサ16の検出温度が目標温度Tとなるように蒸気流量制御弁15bを制御して超純水製造装置を運転している間に、温度センサ21aの検出温度が低下してきて下限値T20又はそれ以下になったときには、目標温度を所定値ΔTだけ高くし、T+ΔTを新たな目標温度とし、温度センサ16の検出温度がT+ΔTとなるように蒸気流量制御弁15bを制御する。温度センサ21aの検出温度が回復(上昇)してきてT20よりも高くなったならば、目標温度をTに戻す。 While thus detected temperature of the temperature sensor 16 is operating ultrapure water production apparatus by controlling the steam flow control valve 15b such that the target temperature T 1, the temperature detected by the temperature sensor 21a is been reduced When the lower limit value T 20 or less is reached, the target temperature is increased by a predetermined value ΔT 1 , T 1 + ΔT 1 is set as a new target temperature, and steam is detected so that the detected temperature of the temperature sensor 16 becomes T 1 + ΔT 1. The flow control valve 15b is controlled. If the temperature detected by the temperature sensor 21a is higher than T 20 been restored (increased) to return the target temperature T 1.

一方、温度センサ16の検出温度が目標温度Tとなるように蒸気流量制御弁15bを制御して超純水製造装置を運転している間に、温度センサ21aの検出温度が上昇してきて上限値T21又はそれ以上となったときには、目標温度をΔTだけ低くし、T−ΔTを新たな目標温度とし、温度センサ16の検出温度がT−ΔTとなるように蒸気流量制御弁15bを制御する。温度センサ21aの検出温度が低下してきてT21よりも低くなったならば、目標温度をTに戻す。 On the other hand, while the temperature detected by the temperature sensor 16 is operating ultrapure water production apparatus by controlling the steam flow control valve 15b such that the target temperature T 1, the temperature detected by the temperature sensor 21a is been raised upper when a value T 21 or more, the lower the target temperature by ΔT 2, T 1 -ΔT 2 was a new target temperature, the steam flow rate so that the detection temperature of the temperature sensor 16 is T 1 -.DELTA.T 2 The control valve 15b is controlled. If the temperature detected by the temperature sensor 21a is lower than the T 21 been lowered, returning the target temperature T 1.

このΔT,ΔTは0.1〜0.4℃の間から選定されることが好ましく、例えば、ΔT=ΔT=0.2℃とされる。T21−T20も0.1〜0.4℃の間から選定されることが好ましく、例えば、T21−T20=0.2℃とされる。T20,T21は超純水製造装置に応じて設定される。通常は20〜25℃の間から選定され、例えば、T20=23.1℃とされる。 ΔT 1 and ΔT 2 are preferably selected from 0.1 to 0.4 ° C., for example, ΔT 1 = ΔT 2 = 0.2 ° C. T 21 -T 20 is also preferably selected from 0.1 to 0.4 ° C, and for example, T 21 -T 20 = 0.2 ° C. T 20 and T 21 are set according to the ultrapure water production apparatus. Usually, the temperature is selected from 20 to 25 ° C., for example, T 20 = 23.1 ° C.

このように、サブタンク21への流入水温に応じて、熱交換器15流出水の目標温度を変更し、温度センサ16の検出温度が変更後の目標温度となるように、蒸気流量制御弁15bを制御することにより、サブタンク21への流入水温が過度に低下したり、無用に上昇したりすることが防止される。   Thus, the steam flow control valve 15b is changed so that the target temperature of the effluent of the heat exchanger 15 changes according to the temperature of the inflow water into the sub tank 21, and the detected temperature of the temperature sensor 16 becomes the target temperature after the change. By controlling, the inflow water temperature to the sub tank 21 is prevented from excessively decreasing or unnecessarily increasing.

この第1の制御例では、目標温度をT+ΔTに切り替えてから所定時間(例えば熱交換器15を出てからサブタンク21に到達するまでの時間Trの1.5〜2倍の範囲から選択された時間。)が経過しても温度センサ21aの検出温度が下限値T20にまで回復(上昇)しないときには、目標温度をT+2・ΔTに切り替えてもよい。 In this first control example, the target temperature is changed from T 1 + ΔT 1 to a predetermined time (for example, from a range of 1.5 to 2 times the time Tr from leaving the heat exchanger 15 until reaching the sub tank 21). when the detected temperature of the selected time.) temperature even after the sensor 21a is not recovered (increased) to the lower limit value T 20 may switch the target temperature T 1 +2 · ΔT 1.

さらに、目標温度をT+k・ΔT(k=2,3,………)に切り替えてから前記所定時間が経過しても温度センサ21aの検出温度が下限値T20にまで回復(上昇)しないときには、目標温度をT+(k+1)・ΔTに切り替えてもよい。 Further, the target temperature T 1 + k · ΔT 1 ( k = 2,3, .........) to recover after switching to the detected temperature is the lower limit value T 20 of the even predetermined time has elapsed temperature sensor 21a (rise If not, the target temperature may be switched to T 1 + (k + 1) · ΔT 1 .

この第1の制御例では、目標温度をT−ΔTに切り替えてから前記所定時間が経過しても温度センサ21aの検出温度が上限値T21にまで低下しないときには、目標温度をT−2・ΔTに切り替えてもよい。 In the first control example, when the target temperature the temperature detected by the temperature sensor 21a be the predetermined time has passed after switching to the T 1 -.DELTA.T 2 is not reduced to the upper limit value T 21 is the target temperatures T 1 It may be switched to -2 · ΔT 2 .

さらに、目標温度をT−n・ΔT(n=2,3,………)に切り替えてから前記所定時間が経過しても温度センサ21aの検出温度が上限値T21にまで低下しないときには、目標温度をT−(n+1)・ΔTに切り替えてもよい。 Moreover, not lower the target temperature to T 1 -n · ΔT 2 (n = 2,3, .........) detected temperature is an upper limit value T 21 of the temperature sensor 21a even after the predetermined time after switching on Sometimes, the target temperature may be switched to T 1 − (n + 1) · ΔT 2 .

なお、超純水製造能力5,000m/dayの超純水製造装置において、T=24.5℃、T20=23.1℃、T21=23.3℃、ΔT=ΔT=0.2℃として運転を行った場合、Tを常に24.5℃とした従来例に比べて熱交換器15の蒸気消費量を約30%削減することができた。 In addition, in an ultrapure water production apparatus having an ultrapure water production capacity of 5,000 m 3 / day, T 1 = 24.5 ° C., T 20 = 23.1 ° C., T 21 = 23.3 ° C., ΔT 1 = ΔT 2 When the operation was performed at = 0.2 ° C., the steam consumption of the heat exchanger 15 could be reduced by about 30% compared to the conventional example in which T 1 was always 24.5 ° C.

[第2の制御例]
次に、回収水流量を考慮した第2の制御例について説明する。
[Second Control Example]
Next, a second control example considering the recovered water flow rate will be described.

一般に、半導体製造工程排水は、オゾン酸化→活性炭塔→混床式イオン交換塔、活性炭塔→UV酸化装置→混床式イオン交換塔、UV酸化装置→脱酸素装置→活性炭塔→混床式イオン交換塔、活性炭塔→イオン交換塔等の処理が施されて回収水とされ、中継タンク17に導入される。   Generally, semiconductor manufacturing process wastewater is ozone oxidation → activated carbon tower → mixed bed ion exchange tower, activated carbon tower → UV oxidizer → mixed bed ion exchange tower, UV oxidizer → deoxygenator → activated carbon tower → mixed bed ion The exchange tower, activated carbon tower → ion exchange tower, etc. are processed to obtain recovered water, which is introduced into the relay tank 17.

この回収水の温度は、大概、25〜30℃の範囲で安定している。この回収水の温度は熱交換器15の出口水温よりも高いので、回収水の流量が変動すると、サブタンク21の流入水温が変動する。そこで、回収水流量が基準流量よりも減少したときには、それに対応して熱交換器15の出口水温の目標温度を高目に設定し直す。例えば、一次純水製造装置10からの一次純水中に占める回収水の割合が30〜50%程度の場合、回収水流量が基準流量の20〜40%又はそれ以下となったときには、目標温度TをT+ΔTとし、温度センサ16の検出温度がT+ΔTとなるように蒸気流量制御弁15bを制御する。これにより、サブタンク流入水温が過度に低下することが防止される。 The temperature of the recovered water is generally stable in the range of 25 to 30 ° C. Since the temperature of the recovered water is higher than the outlet water temperature of the heat exchanger 15, when the flow rate of the recovered water varies, the inflow water temperature of the sub tank 21 varies. Therefore, when the recovered water flow rate decreases below the reference flow rate, the target temperature of the outlet water temperature of the heat exchanger 15 is reset to a higher value correspondingly. For example, when the ratio of recovered water in the primary pure water from the primary pure water production apparatus 10 is about 30 to 50%, the target temperature is set when the recovered water flow rate is 20 to 40% or less of the reference flow rate. T 1 is set to T 1 + ΔT 3, and the steam flow control valve 15b is controlled so that the temperature detected by the temperature sensor 16 becomes T 1 + ΔT 3 . Thereby, it is prevented that the subtank inflow water temperature falls excessively.

このΔTは、1〜2℃の間から選定されることが好ましく、例えば、ΔT=1.4℃とされる。 This ΔT 3 is preferably selected from 1 to 2 ° C., for example, ΔT 3 = 1.4 ° C.

この第2の制御例では、回収水流量の減少幅に応じて目標温度を多段階に変えてもよい。例えば、
回収水流量が基準流量の20〜40%のときには目標温度をT+ΔTとし、
回収水流量が基準流量の40%以下のときには目標温度をT+2・ΔTとする
ように基準値を3段階に切り替えるようにしてもよく、4段階以上に切り替えるようにしてもよい。また、回収水流量に比例して目標温度を切り替えるようにしてもよい。
In this second control example, the target temperature may be changed in multiple stages according to the reduction width of the recovered water flow rate. For example,
When the recovered water flow rate is 20 to 40% of the reference flow rate, the target temperature is T 1 + ΔT 4 ,
When the recovered water flow rate is 40% or less of the reference flow rate, the reference value may be switched to three levels so that the target temperature is T 1 + 2 · ΔT 4 , or may be switched to four or more levels. Further, the target temperature may be switched in proportion to the recovered water flow rate.

回収水流量が基準流量よりも増加したときには、目標温度をTよりも所定値ΔTだけ減少させてもよい。 When the recovered water flow rate increases from the reference flow rate, the target temperature may be decreased by a predetermined value ΔT 5 from T 1 .

この場合も、回収水流量の増大幅に応じて、温度基準値を多段階に変えてもよい。なお、回収水流量が基準流量よりも増加しても基準値を切り替えず、Tのままとしてもよい。 Also in this case, the temperature reference value may be changed in multiple stages according to the increase width of the recovered water flow rate. Note that even if the recovered water flow rate increases above the reference flow rate, the reference value may not be switched and T 1 may be maintained.

10 一次純水製造装置
15 熱交換器
20 二次純水製造装置
21 サブタンク
40 ユースポイント
50 超純水返送用配管
60 制御装置
DESCRIPTION OF SYMBOLS 10 Primary pure water manufacturing apparatus 15 Heat exchanger 20 Secondary pure water manufacturing apparatus 21 Sub tank 40 Use point 50 Ultrapure water return piping 60 Control apparatus

Claims (2)

熱交換器及び該熱交換器の後段に設けられた逆浸透膜分離手段並びに該逆浸透膜分離手段の後段側に半導体製造工程からの回収水を供給する回収水供給手段を備えた一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造装置において、
二次純水製造装置に供給される一次純水の温度の検出手段と、
回収水の供給量の検出手段と、
該一次純水の温度の検出手段の検出温度と該回収水の供給量の検出手段の検出流量とに基づいて前記熱交換器の流出水の目標温度を設定する手段と、
この目標温度となるように熱交換器への熱源流体の供給量を制御する手段と
を備えたことを特徴とする超純水製造装置。
Primary pure water provided with a heat exchanger, a reverse osmosis membrane separation means provided at the rear stage of the heat exchanger, and a recovered water supply means for supplying the recovered water from the semiconductor manufacturing process to the rear stage side of the reverse osmosis membrane separation means In the ultrapure water production apparatus for producing primary pure water by passing raw water through the production apparatus and producing ultrapure water by passing this primary pure water through the secondary pure water production apparatus,
Means for detecting the temperature of primary pure water supplied to the secondary pure water production apparatus;
Detection means the supply amount of the recovered water,
Means for setting a target temperature of effluent water of the heat exchanger based on a detection temperature of the primary pure water temperature detection means and a detection flow rate of the recovered water supply amount detection means;
An apparatus for producing ultrapure water, comprising: means for controlling a supply amount of the heat source fluid to the heat exchanger so as to achieve the target temperature.
熱交換器及び該熱交換器の後段に設けられた逆浸透膜分離手段並びに該逆浸透膜分離手段の後段側に半導体製造工程からの回収水を供給する回収水供給手段を備えた一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造方法において、
二次純水製造装置に供給される一次純水の温度と、回収水の供給量を検出し、
この検出温度と回収水供給量とに基づいて前記熱交換器の流出水の目標温度を設定し、
この目標温度となるように熱交換器への熱源流体の供給量を制御することを特徴とする超純水製造方法。
Primary pure water provided with a heat exchanger, a reverse osmosis membrane separation means provided at the rear stage of the heat exchanger, and a recovered water supply means for supplying the recovered water from the semiconductor manufacturing process to the rear stage side of the reverse osmosis membrane separation means In an ultrapure water production method for producing primary pure water by passing raw water through a production device and producing ultrapure water by passing this primary pure water through a secondary pure water production device,
And the temperature of the primary pure water supplied to the secondary pure water producing device, detects the supply amount of the recovered water,
Based on the detected temperature and the recovered water supply amount, set a target temperature of the effluent of the heat exchanger,
A method for producing ultrapure water, comprising: controlling a supply amount of a heat source fluid to a heat exchanger so as to achieve the target temperature.
JP2011267982A 2011-12-07 2011-12-07 Ultrapure water production method and apparatus Active JP5953726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267982A JP5953726B2 (en) 2011-12-07 2011-12-07 Ultrapure water production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267982A JP5953726B2 (en) 2011-12-07 2011-12-07 Ultrapure water production method and apparatus

Publications (2)

Publication Number Publication Date
JP2013119060A JP2013119060A (en) 2013-06-17
JP5953726B2 true JP5953726B2 (en) 2016-07-20

Family

ID=48771987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267982A Active JP5953726B2 (en) 2011-12-07 2011-12-07 Ultrapure water production method and apparatus

Country Status (1)

Country Link
JP (1) JP5953726B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274562B (en) * 2013-06-24 2014-05-14 天津大沽化工股份有限公司 Thermal energy recovery and pure water preparation device for phenethylene process condensate
JP6417734B2 (en) * 2014-06-10 2018-11-07 栗田工業株式会社 Ultrapure water production method
JP6948012B2 (en) * 2018-03-06 2021-10-13 栗田工業株式会社 Ultrapure water heating method
JP7177733B2 (en) * 2019-03-14 2022-11-24 オルガノ株式会社 Purification system and purification method for mixed liquid containing organic solvent and water
JP7306074B2 (en) 2019-06-06 2023-07-11 栗田工業株式会社 Ultrapure water production device and ultrapure water production method
US20240342657A1 (en) * 2021-10-25 2024-10-17 Organo Corporation Water treatment system and water treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645024B2 (en) * 1986-08-08 1994-06-15 オルガノ株式会社 Automatic heat sterilizer for ultrapure water supply system
JP4447126B2 (en) * 2000-07-10 2010-04-07 野村マイクロ・サイエンス株式会社 Ultrapure water production equipment
JP3778158B2 (en) * 2002-11-18 2006-05-24 栗田工業株式会社 Ultrapure water production equipment
JP5257175B2 (en) * 2009-03-17 2013-08-07 栗田工業株式会社 Ultrapure water production equipment
JP5336926B2 (en) * 2009-05-20 2013-11-06 野村マイクロ・サイエンス株式会社 Purified water production method and purified water production apparatus

Also Published As

Publication number Publication date
JP2013119060A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5953726B2 (en) Ultrapure water production method and apparatus
CN101160264B (en) Apparatus for producing pure water
JP6149993B1 (en) Ultrapure water production equipment
JP6350719B2 (en) Ultrapure water production equipment
JP2012206073A (en) Deionized water production system
JP2013202581A (en) Ultrapure water production apparatus
WO2019244443A1 (en) Method for removing boron from water to be treated, boron removal system, ultrapure water production system, and method for measuring boron concentration
KR102107924B1 (en) Ultrapure water production equipment
JP5962135B2 (en) Ultrapure water production equipment
Singh Production of high-purity water by membrane processes
JP6860648B1 (en) Water treatment system and water treatment method
JP4432583B2 (en) Ultrapure water production equipment
JP2013202610A (en) Ultrapure water production apparatus
JP7306074B2 (en) Ultrapure water production device and ultrapure water production method
JP2012192364A (en) Water treatment method, and water treatment system
JP2013204956A (en) Operation method for pure water cooling device
JP7359198B2 (en) Warm ultrapure water production equipment
WO2021161569A1 (en) Ultrapure water production device and ultrapure water production method
JP6350718B2 (en) Ultrapure water production equipment
JP2006255651A (en) Pure water producing system
WO2024150621A1 (en) Ultrapure water producing device, ultrapure water producing method, and ultrapure water producing program
JP5257175B2 (en) Ultrapure water production equipment
Kim et al. High recovery design of reverse osmosis process with high permeate water quality and low wastewater discharge for ultra-pure water production
JP2006122908A (en) Pure water producing method
KR20050099878A (en) System making di water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5953726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250