JP5943467B2 - Diphenylsulfone derivative, host material comprising the same, and organic electroluminescence device using the same - Google Patents
Diphenylsulfone derivative, host material comprising the same, and organic electroluminescence device using the same Download PDFInfo
- Publication number
- JP5943467B2 JP5943467B2 JP2012089999A JP2012089999A JP5943467B2 JP 5943467 B2 JP5943467 B2 JP 5943467B2 JP 2012089999 A JP2012089999 A JP 2012089999A JP 2012089999 A JP2012089999 A JP 2012089999A JP 5943467 B2 JP5943467 B2 JP 5943467B2
- Authority
- JP
- Japan
- Prior art keywords
- mmol
- organic
- added
- layer
- host material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 CCCI(C1(CC)*2=CC(C(C)CC)=C*2c2ccccc2C1)=C Chemical compound CCCI(C1(CC)*2=CC(C(C)CC)=C*2c2ccccc2C1)=C 0.000 description 2
- OBGYOWGQHRKGKW-UHFFFAOYSA-N CC(C1CCc2cc(-[n]3c4ccccc4c4c3cccc4)ccc2)(C=CC=C1[n]1c(cccc2)c2c2c1cccc2)[n]1c2ccccc2c2c1cccc2 Chemical compound CC(C1CCc2cc(-[n]3c4ccccc4c4c3cccc4)ccc2)(C=CC=C1[n]1c(cccc2)c2c2c1cccc2)[n]1c2ccccc2c2c1cccc2 OBGYOWGQHRKGKW-UHFFFAOYSA-N 0.000 description 1
- GZHNHAQTSZQVOX-UHFFFAOYSA-N CC1(C2C=CCC1)C(CCC=C1)=C1N2c1cc(-[n]2c(cccc3)c3c3c2cccc3)cc(S(c2cc(-[n]3c4ccccc4c4c3cccc4)cc(-[n]3c(cccc4)c4c4c3CCC=C4)c2)(=O)=O)c1 Chemical compound CC1(C2C=CCC1)C(CCC=C1)=C1N2c1cc(-[n]2c(cccc3)c3c3c2cccc3)cc(S(c2cc(-[n]3c4ccccc4c4c3cccc4)cc(-[n]3c(cccc4)c4c4c3CCC=C4)c2)(=O)=O)c1 GZHNHAQTSZQVOX-UHFFFAOYSA-N 0.000 description 1
- IBDFSEIATHLRHD-UHFFFAOYSA-N Cc(cccc1)c1-c1ccccc1NC(C1S(c2cc(-c3ccccc3)cc(-c3ccccc3)c2)(=O)=O)C=CC=C1N1c2ccccc2C2C=CC=CC12 Chemical compound Cc(cccc1)c1-c1ccccc1NC(C1S(c2cc(-c3ccccc3)cc(-c3ccccc3)c2)(=O)=O)C=CC=C1N1c2ccccc2C2C=CC=CC12 IBDFSEIATHLRHD-UHFFFAOYSA-N 0.000 description 1
- OFKBTKGTPQSPEL-UHFFFAOYSA-N O=CC(C(c1cc(-c2ccccc2)cc(-c2ccccc2)c1)=O)c1cc(-[n]2c(cccc3)c3c3c2CCC=C3)cc(-[n]2c(cccc3)c3c3c2cccc3)c1 Chemical compound O=CC(C(c1cc(-c2ccccc2)cc(-c2ccccc2)c1)=O)c1cc(-[n]2c(cccc3)c3c3c2CCC=C3)cc(-[n]2c(cccc3)c3c3c2cccc3)c1 OFKBTKGTPQSPEL-UHFFFAOYSA-N 0.000 description 1
- SDSXCKVDFKFFHL-UHFFFAOYSA-N O=S(c(c(-[n]1c2ccccc2c2c1cccc2)ccc1)c1-[n]1c2ccccc2c2c1cccc2)(c(c(-[n]1c2ccccc2c2ccccc12)ccc1)c1-[n]1c2ccccc2c2ccccc12)=O Chemical compound O=S(c(c(-[n]1c2ccccc2c2c1cccc2)ccc1)c1-[n]1c2ccccc2c2c1cccc2)(c(c(-[n]1c2ccccc2c2ccccc12)ccc1)c1-[n]1c2ccccc2c2ccccc12)=O SDSXCKVDFKFFHL-UHFFFAOYSA-N 0.000 description 1
- HBTYMBVFXAIMQJ-UHFFFAOYSA-N O=S(c1cc(-[n]2c3ccccc3c3c2CCC=C3)cc(-[n]2c3ccccc3c3c2cccc3)c1)(c(c(-[n]1c2ccccc2c2c1cccc2)ccc1)c1-[n]1c2ccccc2c2c1cccc2)=O Chemical compound O=S(c1cc(-[n]2c3ccccc3c3c2CCC=C3)cc(-[n]2c3ccccc3c3c2cccc3)c1)(c(c(-[n]1c2ccccc2c2c1cccc2)ccc1)c1-[n]1c2ccccc2c2c1cccc2)=O HBTYMBVFXAIMQJ-UHFFFAOYSA-N 0.000 description 1
- MURBUNWGWWNXFF-UHFFFAOYSA-N O=S(c1cc(-c2ccccc2)cc(-c2ccccc2)c1)(c(cccc1)c1-[n]1c2ccccc2c2c1cccc2)=O Chemical compound O=S(c1cc(-c2ccccc2)cc(-c2ccccc2)c1)(c(cccc1)c1-[n]1c2ccccc2c2c1cccc2)=O MURBUNWGWWNXFF-UHFFFAOYSA-N 0.000 description 1
- AQQVKTDGHIEEGZ-UHFFFAOYSA-N O=S(c1cccc(-[n]2c(C=CCC3)c3c3c2cccc3)c1)(c1cc(C2=CCCC#C2)cc(-c2ccccc2)c1)=O Chemical compound O=S(c1cccc(-[n]2c(C=CCC3)c3c3c2cccc3)c1)(c1cc(C2=CCCC#C2)cc(-c2ccccc2)c1)=O AQQVKTDGHIEEGZ-UHFFFAOYSA-N 0.000 description 1
- TUIGIEVQTCWQQF-UHFFFAOYSA-N O=S(c1ccccc1)(c(c(-[n]1c2ccccc2c2ccccc12)ccc1)c1-[n]1c(cccc2)c2c2ccccc12)=O Chemical compound O=S(c1ccccc1)(c(c(-[n]1c2ccccc2c2ccccc12)ccc1)c1-[n]1c(cccc2)c2c2ccccc12)=O TUIGIEVQTCWQQF-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
- Indole Compounds (AREA)
Description
本発明は、新規なジフェニルスルホン誘導体、それよりなるホスト材料及びそれを用いた有機エレクトロルミネッセンス素子(以下、有機EL素子という)に関する。 The present invention relates to a novel diphenylsulfone derivative, a host material comprising the same, and an organic electroluminescence device (hereinafter referred to as an organic EL device) using the same.
有機EL素子は、電流注入型の自己発光素子であり、高視野角、高コントラスト、極薄構造、低電圧駆動及び高速な応答速度等の特長を有することから、次世代のフラットパネルディスプレイとして注目されており、近年、盛んに研究開発が行われている。
有機EL素子は、一部の製品で実用化が始まっているが、大型ディスプレイや照明分野への応用のためには、素子のさらなる高効率化が最重要課題の一つである。特に、高色純度かつ高効率で白色発光を実現するためには、青色有機EL素子の高効率化及び長寿命化が重要な課題となっている。
The organic EL element is a current injection type self-luminous element, and has features such as a high viewing angle, high contrast, ultra-thin structure, low voltage drive, and high response speed. In recent years, research and development has been actively conducted.
Organic EL elements have been put into practical use in some products, but for application to the large display and lighting fields, further increasing the efficiency of the elements is one of the most important issues. In particular, in order to realize white light emission with high color purity and high efficiency, high efficiency and long life of blue organic EL elements are important issues.
この課題を解決するために、従来の蛍光素子と比較して4倍の高効率化が可能なリン光有機EL素子が注目されている。一般に、リン光素子の発光材料であるイリジウム錯体は、対称性が高く、凝集性が高い。このため、リン光素子の高効率化を図るためには、適切なホスト材料の開発が非常に重要である。このホスト材料には、エネルギー閉じ込めの観点から、高い三重項エネルギーを有すること、また、発光量子効率向上の観点から、ゲスト材料の凝集抑制等の特性が求められる。さらに、有機EL素子の特徴の一つである低電圧駆動のために、バイポーラ性を有すること、すなわち、優れたキャリア注入輸送性を有することが望まれる。 In order to solve this problem, attention has been focused on phosphorescent organic EL elements capable of increasing efficiency four times as compared with conventional fluorescent elements. In general, an iridium complex that is a light-emitting material of a phosphorescent element has high symmetry and high cohesion. For this reason, in order to improve the efficiency of the phosphorescent element, it is very important to develop an appropriate host material. This host material is required to have high triplet energy from the viewpoint of energy confinement and characteristics such as aggregation suppression of the guest material from the viewpoint of improving the light emission quantum efficiency. Furthermore, for low voltage driving which is one of the characteristics of the organic EL element, it is desired to have bipolar properties, that is, excellent carrier injection / transport properties.
しかしながら、これらの特性を同時に発現させることは非常に困難である。
最近、スルホン部位を有するバイポーラ性ホスト材料が開発された(非特許文献1参照)。
However, it is very difficult to express these characteristics simultaneously.
Recently, a bipolar host material having a sulfone moiety has been developed (see Non-Patent Document 1).
しかしながら、非特許文献1に記載されたホスト材料は、スルホン部位の導入により高い電子注入性が発現されたものの、分子内電荷移動によるエネルギーギャップの縮小に伴う三重項エネルギー縮小のため、色純度の高い青色リン光有機EL素子に応用するのに十分な三重項エネルギーは持ち合わせていない。
However, although the host material described in Non-Patent
本発明は、上記技術的課題を解決するためになされたものであり、バイポーラ性を発現させつつ、高い三重項エネルギーを維持した、リン光材料に適したホスト材料によって、低電圧駆動で高効率な有機EL素子を得るのに有用な新規なジフェニルスルホン誘導体、それよりなるホスト材料及びそれを用いた有機EL素子を提供することを目的とするものである。 The present invention has been made to solve the above technical problem, and is capable of being driven at a low voltage and highly efficient by a host material suitable for a phosphorescent material that maintains a high triplet energy while exhibiting a bipolar property. It is an object of the present invention to provide a novel diphenylsulfone derivative useful for obtaining a simple organic EL device, a host material comprising the same, and an organic EL device using the same.
本発明に係るジフェニルスルホン誘導体は、下記式のいずれかで表される。
Diphenyl sulfone derivatives according to the present invention is represented by any one of the below following formula.
上記のような構造からなるジフェニルスルホン誘導体によれば、バイポーラ性を備えているため、正孔注入輸送性及び電子注入輸送性を高め、かつ、π共役系拡大の抑制による高い三重項エネルギーを維持することができる。
According to the diphenylsulfone derivative having the structure as described above, since it has a bipolar property, the hole injection / transport property and the electron injection / transport property are enhanced, and high triplet energy is maintained by suppressing the expansion of the π-conjugated system. can do.
また、本発明によれば、前記ジフェニルスルホン誘導体よりなるホスト材料が提供される。
前記ジフェニルスルホン誘導体は、リン光材料のホスト材料として好適である。
Moreover, according to this invention, the host material which consists of the said diphenyl sulfone derivative is provided.
The diphenylsulfone derivative is suitable as a host material for a phosphorescent material.
また、本発明に係る有機EL素子は、一対の電極間に少なくとも1層の有機層が積層されてなる有機EL素子であって、前記ジフェニルスルホン誘導体を含む層を備えていることを特徴とする。 The organic EL device according to the present invention is an organic EL device in which at least one organic layer is laminated between a pair of electrodes, and includes a layer containing the diphenylsulfone derivative. .
あるいはまた、本発明に係る有機EL素子は、一対の電極間に1層又は複数層の有機層が積層されてなる有機EL素子であって、前記ホスト材料にリン光材料がドープされた発光層を備えていることを特徴とする。
このように、本発明に係るジフェニルスルホン誘導体を用いることにより、低電圧駆動で高効率な有機EL素子を得ることができる。
Alternatively, the organic EL device according to the present invention is an organic EL device in which one or more organic layers are laminated between a pair of electrodes, and the light emitting layer in which the host material is doped with a phosphorescent material It is characterized by having.
Thus, by using the diphenylsulfone derivative according to the present invention, it is possible to obtain a highly efficient organic EL element driven at a low voltage.
本発明に係る新規なジフェニルスルホン誘導体は、バイポーラ性及び高い三重項エネルギーを有しているため、青色リン光材料を効率よく発光させるホスト材料として好適である。
したがって、本発明に係るジフェニルスルホン誘導体を用いることにより、高効率な有機EL素子を提供することができる。
Since the novel diphenylsulfone derivative according to the present invention has bipolar properties and high triplet energy, it is suitable as a host material for efficiently emitting blue phosphorescent material.
Therefore, a highly efficient organic EL device can be provided by using the diphenylsulfone derivative according to the present invention.
以下、本発明について、より詳細に説明する。
本発明に係るジフェニルスルホン誘導体は、前記一般式(1)で表される化合物である。
前記式(1)中、置換基R1〜R10のうちの少なくとも1つがカルバゾール基であり、それ以外の置換基R1〜R10は、それぞれ独立に、水素、炭素数1〜6の直鎖又は分岐のアルキル基、炭素数1〜6の直鎖又は分岐のアルキル基を含有するアルコキシ基、炭素数1〜6の直鎖又は分岐のアルキルアミノ基、シアノ基及びフェニル基のうちのいずれかから選ばれた基である。
このようなジフェニルスルホン誘導体は、新規化合物であり、正孔輸送性かつ高い三重項エネルギーを有するカルバゾール基と、電子受容性の高いスルホン部位を有していることを特徴としている。
Hereinafter, the present invention will be described in more detail.
The diphenylsulfone derivative according to the present invention is a compound represented by the general formula (1).
In the formula (1), at least one of a carbazole group of the substituents R 1 to R 10, the substituents R 1 to R 10 other than it are each independently, hydrogen, straight-1 to 6 carbon atoms Any of a chain or branched alkyl group, an alkoxy group containing a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkylamino group having 1 to 6 carbon atoms, a cyano group, and a phenyl group It is a group selected from these.
Such a diphenylsulfone derivative is a novel compound and is characterized by having a carbazole group having a hole transporting property and a high triplet energy and a sulfone site having a high electron accepting property.
前記一般式(1)で表される化合物のうち、具体例としては、下記に示すようなものが挙げられる。 Among the compounds represented by the general formula (1), specific examples include those shown below.
上記に例示したジフェニルスルホン誘導体のうちでも、前記一般式(1)の置換基R2〜R4及びR7〜R9のうちの少なくとも1つがカルバゾール基であることが好ましい。特に、下記に示す化合物(順に1CzSO、2CzSO、3CzSO、4CzSOと略称する)が代表例として挙げられる。 Among the diphenylsulfone derivatives exemplified above, it is preferable that at least one of the substituents R 2 to R 4 and R 7 to R 9 in the general formula (1) is a carbazole group. In particular, the compounds shown below (in order, abbreviated as 1CzSO, 2CzSO, 3CzSO, 4CzSO) are given as typical examples.
上記のような本発明に係るジフェニルスルホン誘導体の合成方法は、特に限定されるものではないが、例えば、下記実施例に示すような方法により合成することするができる。 The method for synthesizing the diphenylsulfone derivative according to the present invention as described above is not particularly limited, and for example, it can be synthesized by a method as shown in the following Examples.
本発明に係るジフェニルスルホン誘導体は、カルバゾール基による正孔注入輸送性の向上及びスルホン部位による電子注入性の向上が図られ、かつ、π共役系拡大の抑制による高い三重項エネルギーを維持することができる。
したがって、リン光材料のドーパントのホスト材料として好適に用いることができる。
The diphenylsulfone derivative according to the present invention can improve the hole injection / transport property by the carbazole group and the electron injection property by the sulfone moiety, and can maintain high triplet energy by suppressing the π-conjugated system expansion. it can.
Therefore, it can be suitably used as a host material for a dopant of a phosphorescent material.
上記のようなジフェニルスルホン誘導体を含む層を備えた本発明に係る有機EL素子は、一対の電極間に少なくとも1層の有機層が積層された構造からなる。具体的な層構造としては、陽極/発光層/陰極、陽極/正孔輸送層/発光層/電子輸送層/陰極、陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極等の構造が挙げられる。
さらに、正孔注入層、正孔輸送発光層、電子輸送発光層等をも含む公知の積層構造であってもよい。
また、本発明に係る有機EL素子は、1つの発光層を含む発光ユニットが電荷発生層を介して直列式に複数段積層されてなるマルチフォトンエミッション構造の素子であってもよい。
The organic EL device according to the present invention having a layer containing a diphenylsulfone derivative as described above has a structure in which at least one organic layer is laminated between a pair of electrodes. Specific layer structures include anode / light emitting layer / cathode, anode / hole transport layer / light emitting layer / electron transport layer / cathode, anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode. And the like.
Furthermore, a known laminated structure including a hole injection layer, a hole transporting light emitting layer, an electron transporting light emitting layer, and the like may be used.
The organic EL element according to the present invention may be an element having a multi-photon emission structure in which a plurality of light emitting units including one light emitting layer are stacked in series via a charge generation layer.
前記有機EL素子において、本発明に係るジフェニルスルホン誘導体は、前記有機層のいずれに用いられてもよく、正孔輸送材料、発光材料、電子輸送材料とともに分散して用いることや、この分散させた層中へ発光色素をドープすることも可能である。さらに、前記ジフェニルスルホン誘導体に、酸化性ドーパントを作用させることにより正孔注入輸送層として、また、還元性ドーパントを作用させることにより電子注入輸送層として用いることもできる。 In the organic EL device, the diphenylsulfone derivative according to the present invention may be used in any of the organic layers, and may be used by being dispersed together with a hole transport material, a light emitting material, or an electron transport material. It is also possible to dope a luminescent dye into the layer. Furthermore, it can also be used as an electron injecting and transporting layer by allowing an oxidizing dopant to act on the diphenylsulfone derivative, and as an electron injecting and transporting layer by acting a reducing dopant.
特に、前記ジフェニルスルホン誘導体をホスト材料として用い、これにリン光材料をドープした発光層を構成することにより、リン光材料を効率よく発光させることができる。 In particular, by using the diphenylsulfone derivative as a host material and forming a light emitting layer doped with the phosphorescent material, the phosphorescent material can emit light efficiently.
なお、前記有機EL素子においては、本発明に係るジフェニルスルホン誘導体以外の各層の構成材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができ、低分子系又は高分子系のいずれであってもよい。
前記各層の膜厚は、各層同士の適応性や求められる全体の層厚さ等を考慮して、適宜状況に応じて定められるが、通常、5nm〜5μmの範囲内であることが好ましい。
In the organic EL element, the constituent material of each layer other than the diphenylsulfone derivative according to the present invention is not particularly limited, and can be appropriately selected from known ones. Any of molecular systems may be used.
The film thickness of each of the layers is appropriately determined depending on the situation in consideration of adaptability between the layers and the required total layer thickness, but is usually preferably in the range of 5 nm to 5 μm.
上記各層の形成方法は、蒸着法、スパッタリング法等などのドライブプロセスでも、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法等のウェットプロセスであってもよい。 The formation method of each of the above-mentioned layers is an ink jet method, a casting method, a dip coating method, a bar coating method, a blade coating method, a roll coating method, a gravure coating method, a flexographic printing method, a spraying method even in a drive process such as a vapor deposition method and a sputtering method. A wet process such as a coating method may be used.
また、電極も、公知の材料及び構成でよく、特に限定されるものではない。例えば、ガラスやポリマーからなる透明基板上に透明導電性薄膜が形成されたものが用いられ、ガラス基板に陽極として酸化インジウム錫(ITO)電極が形成された、いわゆるITO基板が一般的である。一方、陰極は、Al等の仕事関数の小さい(4eV以下)金属や合金、導電性化合物により構成される。 Also, the electrode may be a known material and configuration, and is not particularly limited. For example, a so-called ITO substrate is generally used in which a transparent conductive thin film is formed on a transparent substrate made of glass or polymer, and an indium tin oxide (ITO) electrode is formed as an anode on the glass substrate. On the other hand, the cathode is composed of a metal, alloy, or conductive compound having a small work function (4 eV or less) such as Al.
以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
下記合成例1〜4に示す各工程により、本発明に係るジフェニルスルホン誘導体の代表例を合成した。
(合成例1)1CzSOの合成
以下のような工程により、前駆体を合成後、対応するフェニルボロン酸との反応により、1CzSOを合成した。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
A representative example of the diphenylsulfone derivative according to the present invention was synthesized by the steps shown in Synthesis Examples 1 to 4 below.
(Synthesis Example 1) Synthesis of 1CzSO 1CzSO was synthesized by a reaction with phenylboronic acid after synthesizing a precursor by the following steps.
まず、温度計、窒素導入管及び還流管を備えた200ml四つ口フラスコに、3−ブロモヨードベンゼン8.49g(30.0mmol)、ヨウ化銅(I)571mg(3.00mmol)、炭酸カリウム8.29g(60.0mmol)、N,N−ジメチルホルムアミド(DMF)150mlを加え、窒素雰囲気下、100℃まで加熱撹拌した。3,5−ジクロロベンゼンチオール5.37g(30.0mmol)を加え、4時間反応させた。薄層クロマトグラフィ(TLC)にて原料の消失を確認した。
水100mlを反応液に加え、分液漏斗に移し、ヘキサン:酢酸エチル=1:1の混合溶媒で抽出し(100ml×2回)、有機層を飽和食塩水100mlで洗浄した。この有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、透明黄色液体を得た(収量9.51g、収率95.1%)。目的物(mBrDClS)の同定は、1H−NMRスペクトルにて行った。
First, in a 200 ml four-necked flask equipped with a thermometer, a nitrogen inlet tube and a reflux tube, 8.49 g (30.0 mmol) of 3-bromoiodobenzene, 571 mg (3.00 mmol) of copper (I) iodide, potassium carbonate 8.29 g (60.0 mmol) and N, N-dimethylformamide (DMF) 150 ml were added, and the mixture was heated and stirred to 100 ° C. under a nitrogen atmosphere. 5.37 g (30.0 mmol) of 3,5-dichlorobenzenethiol was added and reacted for 4 hours. The disappearance of the raw material was confirmed by thin layer chromatography (TLC).
100 ml of water was added to the reaction solution, transferred to a separatory funnel, extracted with a mixed solvent of hexane: ethyl acetate = 1: 1 (100 ml × 2 times), and the organic layer was washed with 100 ml of saturated brine. The organic layer was dried over sodium sulfate, and then the solvent was distilled off to obtain a transparent yellow liquid (yield 9.51 g, yield 95.1%). The target product (mBrDClS) was identified by 1 H-NMR spectrum.
次に、温度計、還流冷却器、塩化カルシウム管及び滴下漏斗を備えた500ml四つ口フラスコに、ジクロロメタン(DCM)250mlを加え、0〜5℃に冷却した後、30%m−クロロ過安息香酸32.7g(56.8mmol)を加えた。撹拌しながら、mBrDClS9.50g(28.4mmol)をジクロロメタン100mlに溶解させた溶液を0〜10℃で30分間かけて滴下した。滴下終了後、室温下で2時間反応させた。TLCにて原料の消失を確認した。
反応容器に、撹拌しながら飽和重曹水175mlを少量ずつ加え、加え終わった後30分間撹拌し、分液漏斗に移して有機層を回収した。得られた有機層を無水硫酸ナトリウムで乾燥し、ろ別後、溶媒を留去した。エタノールを用いた分散洗浄にて精製し、減圧下乾燥後、白色固体を得た(収量8.76g、収率84.2%)。目的物(mBrDClSO)の同定は、1H−NMRスペクトルにて行った。
Next, 250 ml of dichloromethane (DCM) was added to a 500 ml four-necked flask equipped with a thermometer, a reflux condenser, a calcium chloride tube and a dropping funnel, cooled to 0 to 5 ° C., and then 30% m-chloroperbenzoic acid. 32.7 g (56.8 mmol) of acid was added. While stirring, a solution prepared by dissolving 9.50 g (28.4 mmol) of mBrDC1S in 100 ml of dichloromethane was added dropwise at 0 to 10 ° C. over 30 minutes. After completion of dropping, the reaction was allowed to proceed at room temperature for 2 hours. The disappearance of the raw material was confirmed by TLC.
To the reaction vessel, 175 ml of saturated sodium bicarbonate solution was added little by little with stirring. After the addition was completed, the mixture was stirred for 30 minutes, transferred to a separatory funnel, and the organic layer was recovered. The obtained organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off. The product was purified by dispersion washing using ethanol and dried under reduced pressure to obtain a white solid (yield 8.76 g, yield 84.2%). The target product (mBrDClSO) was identified by 1 H-NMR spectrum.
そして、温度計、窒素導入管及び還流管を付えた200ml四つ口フラスコに、mBrDClSO3.66g(10.0mmol)、カルバゾール1.67g(10.0mmol)、炭酸カリウム4.15g(30.0mmol)を加え、窒素フローした。これに、乾燥キシレン150mlを加え、1時間窒素バブリングした。酢酸パラジウム(II)89.8mg(0.40mmol)、トリ−tert−ブチルホスフィン0.376ml(1.60mmol)を加え、20時間還流した。TLCにて原料の消失を確認した。
水100mlを反応液に加え、分液漏斗に移し、ヘキサン:酢酸エチル=1:1の混合溶媒で抽出し(100ml×2回)、有機層を飽和食塩水100mlで洗浄した。この有機層を硫酸ナトリウムで乾燥後、溶媒を留去した。得られた茶色固体を、トルエンを用いた再結晶法により精製した(収量1.80g、収率39.8%)。目的物(CzDClSO)の同定は、1H−NMR及びマススペクトルにて行った。
Then, in a 200 ml four-necked flask equipped with a thermometer, a nitrogen introduction tube and a reflux tube, mBrDClSO 3.66 g (10.0 mmol), carbazole 1.67 g (10.0 mmol), potassium carbonate 4.15 g (30.0 mmol) Was added and nitrogen flowed. To this, 150 ml of dry xylene was added, and nitrogen was bubbled for 1 hour. 89.8 mg (0.40 mmol) of palladium (II) acetate and 0.376 ml (1.60 mmol) of tri-tert-butylphosphine were added and refluxed for 20 hours. The disappearance of the raw material was confirmed by TLC.
100 ml of water was added to the reaction solution, transferred to a separatory funnel, extracted with a mixed solvent of hexane: ethyl acetate = 1: 1 (100 ml × 2 times), and the organic layer was washed with 100 ml of saturated brine. The organic layer was dried over sodium sulfate and the solvent was distilled off. The obtained brown solid was purified by a recrystallization method using toluene (yield 1.80 g, yield 39.8%). The target product (CzDClSO) was identified by 1 H-NMR and mass spectrum.
さらに、温度計、窒素導入管及び還流管を備えた100ml四つ口フラスコにCzDClSO1.58g(3.50mmol)、2‐フェニル‐4,4,5,5‐テトラメチル‐1,3,2‐ジオキサボロラン(PhDOB)1.43g(7.00mmol)、1.35Mリン酸三カリウム水溶液15.6ml(21.0mmol)を加え、1時間窒素バブリングした。これに、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.160g(0.175mmol)、トリシクロヘキシルホスフィン0.147g(0.525mmol)を加え、1時間還流した。TLCにて原料の消失を確認した。
反応液に水100mlを加え、分液漏斗に移し、ヘキサン:酢酸エチル=1:1の混合溶媒で抽出した。有機層を硫酸ナトリウムで乾燥後、減圧下、溶媒を15ml程度まで濃縮した。シリカゲルカラムクロマトグラフィにて、ヘキサン:酢酸エチル=5:1の混合溶媒を用いて精製し、茶色固体を得た。再度、シリカゲルカラムクロマトグラフィにて、トルエンを用いて精製し、無色透明粘体を得た。これをメタノールを用いた分散洗浄にて精製し、白色固体を得た(収量0.53g、収率28.3%)。目的物(1CzSO)の同定は、1H−NMR及びマススペクトルにて行った。
さらに、得られた白色固体(1CzSO)を昇華精製した後、元素分析による同定も行った。
Further, 1.58 g (3.50 mmol) of CzDClSO (3.50 mmol), 2-phenyl-4,4,5,5-tetramethyl-1,3,2- was added to a 100 ml four-necked flask equipped with a thermometer, a nitrogen inlet tube and a reflux tube. Dioxaborolane (PhDOB) 1.43 g (7.00 mmol) and 1.35 M tripotassium phosphate aqueous solution 15.6 ml (21.0 mmol) were added, and nitrogen bubbling was performed for 1 hour. To this, 0.160 g (0.175 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 0.147 g (0.525 mmol) of tricyclohexylphosphine were added and refluxed for 1 hour. The disappearance of the raw material was confirmed by TLC.
100 ml of water was added to the reaction solution, transferred to a separatory funnel, and extracted with a mixed solvent of hexane: ethyl acetate = 1: 1. The organic layer was dried over sodium sulfate, and the solvent was concentrated to about 15 ml under reduced pressure. Purification by silica gel column chromatography using a mixed solvent of hexane: ethyl acetate = 5: 1 gave a brown solid. It was purified again with silica gel column chromatography using toluene to obtain a colorless transparent viscous body. This was purified by dispersion washing with methanol to obtain a white solid (yield 0.53 g, yield 28.3%). The target product (1CzSO) was identified by 1 H-NMR and mass spectrum.
Further, the obtained white solid (1CzSO) was purified by sublimation and then identified by elemental analysis.
(合成例2)2CzSOの合成
以下のような工程により、前駆体を合成後、対応するカルバゾールとの反応により、2CzSOを合成した。
(Synthesis Example 2) Synthesis of 2CzSO 2CzSO was synthesized by a reaction with a corresponding carbazole after the precursor was synthesized by the following steps.
まず、温度計、窒素導入管及び還流管を備えた200ml四つ口フラスコにヨードベンゼン15.0g(73.5mmol)、3,5−ジクロロベンゼンチオール15.8g(88.2mmol)、銅粉4.67g(73.5mmol)、炭酸セシウム28.7g(88.2mmol)、ジメチルスルホキシド(DMSO)100mlを加え、170℃で窒素雰囲気下、20時間反応させた。TLCにて原料の消失を確認した。
反応液をセライトろ過し、ろ液を水200mlで2回洗浄した。有機層を硫酸ナトリウムで乾燥後、溶媒を留去した。シリカゲルカラムクロマトグラフィにて、ヘキサンを用いて精製し、無色透明溶液4.50g(収率23.9%)を得た。目的物(2ClS)の同定は、1H−NMRにて行った。
First, in a 200 ml four-necked flask equipped with a thermometer, a nitrogen introduction tube and a reflux tube, 15.0 g (73.5 mmol) of iodobenzene, 15.8 g (88.2 mmol) of 3,5-dichlorobenzenethiol, copper powder 4 .67 g (73.5 mmol), cesium carbonate 28.7 g (88.2 mmol), and dimethyl sulfoxide (DMSO) 100 ml were added and reacted at 170 ° C. in a nitrogen atmosphere for 20 hours. The disappearance of the raw material was confirmed by TLC.
The reaction solution was filtered through Celite, and the filtrate was washed twice with 200 ml of water. The organic layer was dried over sodium sulfate and the solvent was distilled off. Purification by silica gel column chromatography using hexane gave 4.50 g of a colorless transparent solution (yield 23.9%). The target product (2ClS) was identified by 1 H-NMR.
次に、温度計、還流冷却器、塩化カルシウム管及び滴下漏斗を備えた300ml四つ口フラスコに、ジクロロメタン(DCM)100mlを加え、0〜5℃に冷却した後、30%m−クロロ過安息香酸21.3g(37.0mmol)を加えた。撹拌しながら、2ClS4.50g(17.6mmol)をジクロロメタン50mlに溶解させた溶液を0〜10℃で20分間かけて滴下した。滴下終了後、室温下で1時間反応させた。TLCにて原料の消失を確認した。
反応容器に、撹拌しながら飽和重曹水80mlを少量ずつ加え、加え終わった後30分間撹拌し、分液漏斗に移して水で洗浄した(100ml×4回)。有機層を無水硫酸ナトリウムで乾燥し、ろ別後、溶媒を留去した。得られた白色固体をエタノールで分散洗浄し、不溶物を吸引ろ過にて単離した。単離した固体を、トルエンを用いた再結晶法にて精製し、黄白色固体を得た(収量3.13g、収量62.0%)。目的物(2ClSO)の同定は、1H−NMR及びマススペクトルにて行った。
Next, 100 ml of dichloromethane (DCM) was added to a 300 ml four-necked flask equipped with a thermometer, reflux condenser, calcium chloride tube and dropping funnel, cooled to 0 to 5 ° C., and then 30% m-chloroperbenzoic acid. 21.3 g (37.0 mmol) of acid was added. While stirring, a solution prepared by dissolving 4.50 g (17.6 mmol) of 2ClS in 50 ml of dichloromethane was added dropwise at 0 to 10 ° C. over 20 minutes. After completion of dropping, the reaction was allowed to proceed at room temperature for 1 hour. The disappearance of the raw material was confirmed by TLC.
To the reaction vessel, 80 ml of saturated sodium bicarbonate solution was added little by little with stirring. After the addition was completed, the mixture was stirred for 30 minutes, transferred to a separatory funnel and washed with water (100 ml × 4 times). The organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off. The obtained white solid was dispersed and washed with ethanol, and the insoluble matter was isolated by suction filtration. The isolated solid was purified by a recrystallization method using toluene to obtain a yellowish white solid (yield 3.13 g, yield 62.0%). The target product (2ClSO) was identified by 1 H-NMR and mass spectrum.
そして、温度計、窒素導入管及び還流管を備えた100ml四つ口フラスコに、2ClSO1.15g(4.00mmol)、カルバゾール1.34g(8.40mmol)、炭酸カリウム3.32g(24.0mmol)を加え、窒素フローした。これに、乾燥キシレン70mlを加え、1時間窒素バブリングした。次に、酢酸パラジウム(II)35.9mg(0.16mmol)、トリ−tert−ブチルホスフィン0.15ml(0.64mmol)を加え、14時間還流した。TLCにて原料の消失を確認した。
反応液を、シリカゲルを用いて吸引ろ過した。ろ液を水で洗浄し(100ml×2回)、有機層を硫酸ナトリウムで乾燥後、溶媒を留去した。得られた黄色固体をシリカゲルカラムクロマトグラフィにて、トルエンを用いて精製し、飴状固体を得た。これをメタノール30mlで分散洗浄し、白色固体を得た。得られた白色固体を減圧下乾燥した(収量1.46g、収率66.7%)。目的物(2CzSO)の同定は、1H−NMR及びマススペクトルにて行った。
さらに、得られた白色固体(2CzSO)を昇華精製した後、元素分析による同定も行った。
Then, in a 100 ml four-necked flask equipped with a thermometer, a nitrogen introduction tube and a reflux tube, 1.15 g (4.00 mmol) of 2ClSO, 1.34 g (8.40 mmol) of carbazole, 3.32 g (24.0 mmol) of potassium carbonate. Was added and nitrogen flowed. To this, 70 ml of dry xylene was added and nitrogen bubbling was performed for 1 hour. Next, 35.9 mg (0.16 mmol) of palladium (II) acetate and 0.15 ml (0.64 mmol) of tri-tert-butylphosphine were added and refluxed for 14 hours. The disappearance of the raw material was confirmed by TLC.
The reaction solution was suction filtered using silica gel. The filtrate was washed with water (100 ml × 2 times), the organic layer was dried over sodium sulfate, and the solvent was distilled off. The obtained yellow solid was purified by silica gel column chromatography using toluene to obtain a bowl-like solid. This was dispersed and washed with 30 ml of methanol to obtain a white solid. The obtained white solid was dried under reduced pressure (yield 1.46 g, yield 66.7%). The target product (2CzSO) was identified by 1 H-NMR and mass spectrum.
Furthermore, the obtained white solid (2CzSO) was purified by sublimation and then identified by elemental analysis.
(合成例3)3CzSOの合成
以下のような工程により、前駆体を合成後、対応するカルバゾールとの反応により、3CzSOを合成した。
(Synthesis Example 3) Synthesis of 3CzSO After the precursor was synthesized by the following steps, 3CzSO was synthesized by reaction with the corresponding carbazole.
まず、温度計、窒素導入管及び還流管を備えた100ml四つ口フラスコに、1−クロロ−4−ヨードベンゼン5.00g(21.0mmol)、3,5−ジクロロベンゼンチオール3.75g(21.0mmol)、炭酸カリウム8.71g(63.0mmol)、DMF70mlを加え、30分窒素バブリングした。これに、ヨウ化銅(I)0.40g(2.10mmol)を加え、100℃で窒素雰囲気下、22時間反応させた。TLCにて原料の消失を確認した。
反応液を吸引ろ過し、DMF50mlで洗浄した。ろ液を濃縮し、クロロホルム60mlを加え、不溶物を単離した。さらに、ろ液を30ml程度まで濃縮し、シリカゲルカラムクロマトグラフィにて精製し、橙色液体を得た(収量6.48g、収率96.0%)。目的物(3ClS)の同定は、1H−NMR及びマススペクトルにて行った。
First, in a 100 ml four-necked flask equipped with a thermometer, a nitrogen introduction tube and a reflux tube, 5.00 g (21.0 mmol) of 1-chloro-4-iodobenzene, 3.75 g of 3,5-dichlorobenzenethiol (21 0.0 mmol), 8.71 g (63.0 mmol) of potassium carbonate and 70 ml of DMF were added, and nitrogen was bubbled for 30 minutes. To this, 0.40 g (2.10 mmol) of copper (I) iodide was added and reacted at 100 ° C. under a nitrogen atmosphere for 22 hours. The disappearance of the raw material was confirmed by TLC.
The reaction solution was suction filtered and washed with 50 ml of DMF. The filtrate was concentrated, 60 ml of chloroform was added, and insoluble matters were isolated. Further, the filtrate was concentrated to about 30 ml and purified by silica gel column chromatography to obtain an orange liquid (yield 6.48 g, yield 96.0%). The target product (3ClS) was identified by 1 H-NMR and mass spectrum.
次に、温度計、還流冷却器、塩化カルシウム管及び滴下漏斗を備えた200ml四つ口フラスコに、ジクロロメタン(DCM)100mlを加え、0〜5℃に冷却した後、30%m−クロロ過安息香酸23.8g(41.4mmol)を加えた。撹拌しながら、3ClS6.00g(20.7mmol)をジクロロメタン50mlに溶解させた溶液を0〜10℃で15分間かけて滴下した。滴下終了後、室温下で1時間反応させた。TLCにて原料の消失を確認した。
反応容器に、撹拌しながら飽和重曹水115mlを少量ずつ加え、加え終わった後30分間撹拌し、分液漏斗に移して有機層を回収した。得られた有機層を無水硫酸ナトリウムで乾燥し、ろ別後、溶媒を留去した。得られた白色固体をエタノールで分散洗浄し、不溶物を吸引ろ過にて単離した。得られた桃色固体を減圧下乾燥した(収量5.08g、収量76.3%)。目的物(3ClSO)の同定は、1H−NMR及びマススペクトルにて行った。
Next, 100 ml of dichloromethane (DCM) was added to a 200 ml four-necked flask equipped with a thermometer, a reflux condenser, a calcium chloride tube and a dropping funnel, cooled to 0 to 5 ° C., and then 30% m-chloroperbenzoic acid. 23.8 g (41.4 mmol) of acid was added. While stirring, a solution prepared by dissolving 6.00 g (20.7 mmol) of 3ClS in 50 ml of dichloromethane was added dropwise at 0 to 10 ° C. over 15 minutes. After completion of dropping, the reaction was allowed to proceed at room temperature for 1 hour. The disappearance of the raw material was confirmed by TLC.
To the reaction vessel, 115 ml of saturated sodium bicarbonate solution was added little by little with stirring. After the addition was completed, the mixture was stirred for 30 minutes, transferred to a separatory funnel, and the organic layer was recovered. The obtained organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off. The obtained white solid was dispersed and washed with ethanol, and the insoluble matter was isolated by suction filtration. The obtained pink solid was dried under reduced pressure (yield 5.08 g, yield 76.3%). The target product (3ClSO) was identified by 1 H-NMR and mass spectrum.
そして、温度計、窒素導入管及び還流管を備えた200ml四つ口フラスコに、3ClSO2.57g(8.00mmol)、カルバゾール4.01g(24.0mmol)、炭酸カリウム9.95g(73.0mmol)を加え、窒素フローした。これに、乾燥キシレン160mlを加え、1時間窒素バブリングした。次に、酢酸パラジウム(II)71.8mg(0.32mmol)、トリ−tert−ブチルホスフィン0.301ml(1.28mmol)を加え、9時間還流した。TLCにて原料の消失を確認した。
反応液を、シリカゲルを用いて吸引ろ過した。ろ液を水で洗浄し(100ml×2回)、有機層を硫酸ナトリウムで乾燥後、溶媒を留去した。得られた黒緑色飴状固体をヘキサン:トルエン=2:1の混合溶媒15mlで分散洗浄し、不溶物を単離した。さらに、得られた白色固体をトルエン160mlに加熱溶解させ、不溶物を単離した。ろ液を濃縮し、シリカゲルカラムクロマトグラフィにてトルエンを用いて精製し、飴状固体を得た。これをメタノール30mlで分散洗浄し、白色固体を得た。得られた白色固体を減圧下乾燥した(収量2.28g、収率39.9%)。目的物(3CzSO)の同定は、1H−NMR及びマススペクトルにて行った。
さらに、得られた白色固体(3CzSO)を昇華精製した後、元素分析による同定も行った。
Then, in a 200 ml four-necked flask equipped with a thermometer, a nitrogen introduction tube and a reflux tube, 3ClSO 2.57 g (8.00 mmol), carbazole 4.01 g (24.0 mmol), potassium carbonate 9.95 g (73.0 mmol) Was added and nitrogen flowed. To this, 160 ml of dry xylene was added, and nitrogen was bubbled for 1 hour. Next, 71.8 mg (0.32 mmol) of palladium (II) acetate and 0.301 ml (1.28 mmol) of tri-tert-butylphosphine were added and refluxed for 9 hours. The disappearance of the raw material was confirmed by TLC.
The reaction solution was suction filtered using silica gel. The filtrate was washed with water (100 ml × 2 times), the organic layer was dried over sodium sulfate, and the solvent was distilled off. The obtained black-green soot-like solid was dispersed and washed with 15 ml of a mixed solvent of hexane: toluene = 2: 1 to isolate insoluble matter. Furthermore, the obtained white solid was dissolved by heating in 160 ml of toluene, and the insoluble matter was isolated. The filtrate was concentrated and purified with silica gel column chromatography using toluene to obtain a bowl-like solid. This was dispersed and washed with 30 ml of methanol to obtain a white solid. The obtained white solid was dried under reduced pressure (yield 2.28 g, yield 39.9%). The target product (3CzSO) was identified by 1 H-NMR and mass spectrum.
Furthermore, the obtained white solid (3CzSO) was purified by sublimation and then identified by elemental analysis.
(合成例4)4CzSOの合成
合成例3における出発原料の1−クロロ−4−ヨードベンゼンを3,5−ジクロロヨードベンゼンに変えて、合成例3と同様の工程により、前駆体としてビス(3,5−ジクロロフェニル)スルフィド、次いで、ビス(3,5−ジクロロフェニル)スルホンを合成した(国際公開WO2010/018858 A1参照)。合成したビス(3,5−ジクロロフェニル)スルフィドと、対応するカルバゾールとの反応により、4CzSOを合成した。
(Synthesis Example 4) Synthesis of 4CzSO The starting material 1-chloro-4-iodobenzene in Synthesis Example 3 was changed to 3,5-dichloroiodobenzene, and bis (3 , 5-dichlorophenyl) sulfide and then bis (3,5-dichlorophenyl) sulfone (see International Publication WO2010 / 018858 A1). 4CzSO was synthesized by reacting the synthesized bis (3,5-dichlorophenyl) sulfide with the corresponding carbazole.
温度計、窒素導入管及び還流管を備えた100ml四つ口フラスコに、ビス(3,5−ジクロロフェニル)スルホン1.42g(4.00mmol)、カルバゾール2.74g(16.4mmol)、炭酸カリウム6.63g(48.0mmol)を加え、窒素フローした。これに、乾燥キシレン80mlを加え、1時間窒素バブリングした。次に、酢酸パラジウム(II)35.9mg(0.16mmol)、トリ−tert−ブチルホスフィン0.15ml(0.64mmol)を加え、3.5時間還流した。TLCにて原料の消失を確認した。
反応液を、シリカゲルを用いて吸引ろ過した。ろ液を水で洗浄し(50ml×2回)、有機層を硫酸ナトリウムで乾燥後、溶媒を留去した。得られた茶色固体をクロロホルム15mlで分散洗浄し、不溶物を吸引ろ過にて単離した。単離した白色固体を、トルエンを用いた再結晶法にて精製した(収量1.63g、収量46.3%)。目的物(4CzSO)の同定は、1H−NMRにて行った。
さらに、得られた白色固体(4CzSO)を昇華精製した後、元素分析による同定も行った。
In a 100 ml four-necked flask equipped with a thermometer, a nitrogen inlet tube and a reflux tube, 1.42 g (4.00 mmol) of bis (3,5-dichlorophenyl) sulfone, 2.74 g (16.4 mmol) of carbazole,
The reaction solution was suction filtered using silica gel. The filtrate was washed with water (50 ml × 2 times), the organic layer was dried over sodium sulfate, and the solvent was distilled off. The obtained brown solid was dispersed and washed with 15 ml of chloroform, and the insoluble matter was isolated by suction filtration. The isolated white solid was purified by recrystallization using toluene (yield 1.63 g, yield 46.3%). The target product (4CzSO) was identified by 1 H-NMR.
Further, the obtained white solid (4CzSO) was purified by sublimation and then identified by elemental analysis.
(実施例1)リン光スペクトル測定
上記において合成した各ジフェニルスルホン誘導体について、ジフェニルスルホン誘導体:5wt%Ir(ppz)3の共蒸着膜のリン光スペクトル測定を行い、スペクトルの立ち上がりから三重項エネルギーを見積もった。
その結果、いずれの誘導体も2.8eV以上の三重項エネルギーを示し、青色リン光発光材料での十分な三重項励起子閉じ込めが可能であることが認められた。
なお、Ir(ppz)3の構造を下記に示す。
(Example 1) Phosphorescence spectrum measurement About each diphenylsulfone derivative synthesize | combined above, the phosphorescence spectrum measurement of the co-deposition film | membrane of diphenylsulfone derivative: 5 wt% Ir (ppz) 3 is performed, and triplet energy is measured from the rise of a spectrum. Estimated.
As a result, each derivative showed a triplet energy of 2.8 eV or more, and it was confirmed that sufficient triplet exciton confinement in the blue phosphorescent material was possible.
The structure of Ir (ppz) 3 is shown below.
(実施例2)素子評価
上記において合成した各ジフェニルスルホン誘導体をホスト材料として用い、青色リン光材料であるFIrpicをドープした発光層を有する有機EL素子を作製した。素子構成は、その概要を図1に示すように、基板1/陽極2/正孔輸送層3/発光層4/電子輸送層5/電子注入層6/陰極7とした。具体的には、ITO/TAPC(20nm)/ホスト:11wt%FIrpic(10nm)/B3PyPB(50nm)/Liq(1.5nm)/Alとした。
なお、FIrpic、TAPC及びB3PyPBの各化合物の構造を下記に示す。
(Example 2) Device evaluation Using each diphenylsulfone derivative synthesized above as a host material, an organic EL device having a light emitting layer doped with FIrpic which is a blue phosphorescent material was produced. As shown in FIG. 1, the device configuration is
In addition, the structure of each compound of FIrpic, TAPC, and B3PyPB is shown below.
各素子について、発光輝度100cd/m2、1000cd/m2のときの駆動電圧、電力効率、電流効率、外部量子効率の測定を行った。
これらの測定結果を表1にまとめて示す。
また、図2に各素子の電流密度−外部量子効率曲線を示す。
For each element, measurement of drive voltage, power efficiency, current efficiency, and external quantum efficiency at emission luminance of 100 cd / m 2 and 1000 cd / m 2 was performed.
These measurement results are summarized in Table 1.
FIG. 2 shows a current density-external quantum efficiency curve of each element.
上記評価結果から、本実施例において合成したジフェニルスルホン誘導体は、高い三重項エネルギーを持つため、ホスト材料として用いることにより、青色リン光材料を効率よく発光させることができ、高効率な有機EL素子を提供可能であることが認められた。 From the above evaluation results, the diphenylsulfone derivative synthesized in this example has high triplet energy, and therefore, when used as a host material, a blue phosphorescent material can be made to emit light efficiently, and a highly efficient organic EL device. It was recognized that it could be provided.
1 基板
2 陽極
3 正孔輸送層
4 発光層
5 電子輸送層
6 電子注入層
7 陰極
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012089999A JP5943467B2 (en) | 2012-04-11 | 2012-04-11 | Diphenylsulfone derivative, host material comprising the same, and organic electroluminescence device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012089999A JP5943467B2 (en) | 2012-04-11 | 2012-04-11 | Diphenylsulfone derivative, host material comprising the same, and organic electroluminescence device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013216630A JP2013216630A (en) | 2013-10-24 |
JP5943467B2 true JP5943467B2 (en) | 2016-07-05 |
Family
ID=49589202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012089999A Expired - Fee Related JP5943467B2 (en) | 2012-04-11 | 2012-04-11 | Diphenylsulfone derivative, host material comprising the same, and organic electroluminescence device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5943467B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103694992B (en) * | 2013-12-26 | 2016-03-16 | 深圳市华星光电技术有限公司 | Hot activation delayed fluorescence material, its synthetic method and use the OLED of this hot activation delayed fluorescence material |
CN103694995B (en) * | 2014-01-14 | 2016-02-24 | 东南大学 | Based on the bipolar blue phosphorescent material of main part of sulfobenzide and preparation method and device |
US12187934B2 (en) * | 2018-10-31 | 2025-01-07 | Wright State University | Thermally activated delayed fluorescence chromophores and organic layers including the same |
CN112851565B (en) * | 2019-11-27 | 2023-02-10 | 杭州师范大学 | A kind of room temperature phosphorescent organic luminescent material and its preparation method and application |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05224439A (en) * | 1992-02-12 | 1993-09-03 | Fuji Electric Co Ltd | Electrophotographic photoconductor |
JP4003299B2 (en) * | 1998-07-06 | 2007-11-07 | 三菱化学株式会社 | Organic electroluminescence device |
JP4325197B2 (en) * | 2003-01-15 | 2009-09-02 | 三菱化学株式会社 | Organic electroluminescence device |
JP2005044791A (en) * | 2003-07-08 | 2005-02-17 | Konica Minolta Holdings Inc | Organic electroluminescent element, illuminator, and display device |
JP2010140976A (en) * | 2008-12-10 | 2010-06-24 | Toyo Ink Mfg Co Ltd | Material for organic electroluminescent device, and organic electroluminescent device using the same |
JP5481856B2 (en) * | 2008-12-26 | 2014-04-23 | 東洋インキScホールディングス株式会社 | Photopolymerization initiator, polymerizable composition, and method for producing polymer |
JP5359354B2 (en) * | 2009-02-20 | 2013-12-04 | 東洋インキScホールディングス株式会社 | Photopolymerization initiator, polymerizable composition, and method for producing polymer |
KR101678028B1 (en) * | 2009-06-17 | 2016-11-21 | 토요잉크Sc홀딩스주식회사 | Oxime ester compound, radical polymerization initiator, polymerizable composition, negative resist and image pattern |
TWI427136B (en) * | 2011-11-16 | 2014-02-21 | Au Optronics Corp | Organic luminescent material and organic electroluminescent apparatus |
-
2012
- 2012-04-11 JP JP2012089999A patent/JP5943467B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013216630A (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104487432B (en) | Heterocyclic compound and the organic electronic device for including it | |
TWI503300B (en) | Materials for organic electroluminescent devices | |
JP5432147B2 (en) | Organometallic complex derivative and organic light emitting device using the same | |
Zhao et al. | Thermally activated delayed fluorescence material with aggregation-induced emission properties for highly efficient organic light-emitting diodes | |
Zheng et al. | Novel hole transport materials based on N, N′-disubstituted-dihydrophenazine derivatives for electroluminescent diodes | |
TWI454469B (en) | Compound for organic electroluminescent device and organic electroluminescent devices using the same | |
WO2018117369A1 (en) | Organic light emitting element | |
KR20100129101A (en) | Materials for Organic Electroluminescent Devices | |
KR20110123106A (en) | Penanthrocarbazole Compound and Organic Electroluminescent Device Using the Same | |
KR20140119731A (en) | Aromatic amine derivative, organic electroluminescent element and electronic device | |
CN108285452B (en) | Pyrimidine derivative and application thereof | |
Zhang et al. | Solution-processed efficient deep-blue fluorescent organic light-emitting diodes based on novel 9, 10-diphenyl-anthracene derivatives | |
JP7500914B2 (en) | Novel compound and organic light-emitting device using the same | |
CN110536887B (en) | Novel compound and organic light emitting device comprising the same | |
CN108440424A (en) | Acenaphthene and pyrazines derivatives and its application | |
Huang et al. | Nondoped deep blue OLEDs based on Bis-(4-benzenesulfonyl-phenyl)-9-phenyl-9H-carbazoles | |
CN103570628B (en) | A kind of benzo indeno fluorene derivatives and application containing pyrimidine or pyrazine or triazine group | |
JP7402979B2 (en) | Platinum metal complexes and their applications in organic electroluminescent devices | |
US20170040546A1 (en) | Novel compound and organic electronic device using the same | |
JP5943467B2 (en) | Diphenylsulfone derivative, host material comprising the same, and organic electroluminescence device using the same | |
CN106033801B (en) | Organic electroluminescence device | |
JP5609234B2 (en) | Biscarbazole compounds and uses thereof | |
JP2015151352A (en) | Benzofuropyrimidine derivative, host material comprising the same and organic electroluminescent element using the same | |
WO2016102414A1 (en) | Novel spirobenzosuberane compounds for use in organic electronic devices | |
CN112010761A (en) | Compound, application thereof and organic electroluminescent device comprising compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20141201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160502 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5943467 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |