JP5839176B2 - Catalyst production method - Google Patents
Catalyst production method Download PDFInfo
- Publication number
- JP5839176B2 JP5839176B2 JP2011211901A JP2011211901A JP5839176B2 JP 5839176 B2 JP5839176 B2 JP 5839176B2 JP 2011211901 A JP2011211901 A JP 2011211901A JP 2011211901 A JP2011211901 A JP 2011211901A JP 5839176 B2 JP5839176 B2 JP 5839176B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- water
- electrolyte
- paste
- functional group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 199
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000002923 metal particle Substances 0.000 claims description 43
- 230000002378 acidificating effect Effects 0.000 claims description 39
- 125000000524 functional group Chemical group 0.000 claims description 38
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 239000000446 fuel Substances 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 21
- 239000007864 aqueous solution Substances 0.000 claims description 14
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 229910017604 nitric acid Inorganic materials 0.000 claims description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 83
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 51
- 239000003792 electrolyte Substances 0.000 description 49
- 239000008151 electrolyte solution Substances 0.000 description 47
- 238000003756 stirring Methods 0.000 description 34
- 238000000034 method Methods 0.000 description 30
- 239000000203 mixture Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 19
- 229910052697 platinum Inorganic materials 0.000 description 17
- 230000007423 decrease Effects 0.000 description 14
- 238000002156 mixing Methods 0.000 description 14
- 230000003197 catalytic effect Effects 0.000 description 13
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 230000036647 reaction Effects 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 239000005518 polymer electrolyte Substances 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910000510 noble metal Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 7
- 125000000542 sulfonic acid group Chemical group 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 150000004696 coordination complex Chemical class 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000011973 solid acid Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910001260 Pt alloy Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- -1 nitrate ions Chemical class 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002940 repellent Effects 0.000 description 3
- 239000005871 repellent Substances 0.000 description 3
- 150000003333 secondary alcohols Chemical class 0.000 description 3
- 150000003509 tertiary alcohols Chemical class 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- FVMNIZVEFVZGKW-UHFFFAOYSA-N [O-][N+]([O-])=O.[Pt+2] Chemical compound [O-][N+]([O-])=O.[Pt+2] FVMNIZVEFVZGKW-UHFFFAOYSA-N 0.000 description 2
- NOWPEMKUZKNSGG-UHFFFAOYSA-N azane;platinum(2+) Chemical compound N.N.N.N.[Pt+2] NOWPEMKUZKNSGG-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000012993 chemical processing Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- NDBYXKQCPYUOMI-UHFFFAOYSA-N platinum(4+) Chemical compound [Pt+4] NDBYXKQCPYUOMI-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- HLMXWUYOTWZKHB-UHFFFAOYSA-N 2-aminoethanol;platinum Chemical compound [Pt].NCCO HLMXWUYOTWZKHB-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- PDJBCBKQQFANPW-UHFFFAOYSA-L azanide;platinum(2+);dichloride Chemical compound [NH2-].[NH2-].[NH2-].[NH2-].Cl[Pt]Cl PDJBCBKQQFANPW-UHFFFAOYSA-L 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000366 colloid method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- DLBNRDWREIUHLD-UHFFFAOYSA-L dichloroplatinum(2+) Chemical compound [Cl-].[Cl-].[Pt+4] DLBNRDWREIUHLD-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000011899 heat drying method Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical compound [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 description 1
- PQTLYDQECILMMB-UHFFFAOYSA-L platinum(2+);sulfate Chemical compound [Pt+2].[O-]S([O-])(=O)=O PQTLYDQECILMMB-UHFFFAOYSA-L 0.000 description 1
- JTAFSELAEYLDJR-UHFFFAOYSA-J platinum(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Pt+4] JTAFSELAEYLDJR-UHFFFAOYSA-J 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- FBEIPJNQGITEBL-UHFFFAOYSA-J tetrachloroplatinum Chemical compound Cl[Pt](Cl)(Cl)Cl FBEIPJNQGITEBL-UHFFFAOYSA-J 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical class O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
この発明はPFF構造を有する燃料電池の反応層用の触媒の製造方法及びこの製造方法により得られる触媒に関する。 The present invention relates to a method for producing a catalyst for a reaction layer of a fuel cell having a PFF structure, and a catalyst obtained by this production method.
燃料電池に用いられる膜電極接合体は固体高分子電解質膜を水素極と空気極とで挟んだ構成であり、水素極及び空気極はそれぞれ固体高分子電解質膜側から反応層と拡散層とを順次積層してなる。
反応層は触媒と電解質との混合物からなり、電子及びプロトンの導電性と通気性が求められる。ここにプロトンは水を伴ってH3O+のかたちで移動するので、反応層を湿潤状態に維持する必要がある。勿論、反応層に水分が過剰に存在すると通気性を阻害するので(いわゆるフラッディング現象)、反応層の水分は常に適当量に維持されなければならない。ここに触媒はカーボン等の導電性担体表面に白金等の触媒金属粒子を分散させたものである。
なお、本件発明に関連する技術を開示する文献として特許文献3及び非特許文献1〜3を参照されたい。
A membrane electrode assembly used in a fuel cell has a structure in which a solid polymer electrolyte membrane is sandwiched between a hydrogen electrode and an air electrode. The hydrogen electrode and the air electrode are each provided with a reaction layer and a diffusion layer from the solid polymer electrolyte membrane side. It is laminated sequentially.
The reaction layer is made of a mixture of a catalyst and an electrolyte, and is required to have electrical and proton conductivity and air permeability. Here, since protons move in the form of H 3 O + with water, it is necessary to maintain the reaction layer in a wet state. Of course, excessive moisture in the reaction layer inhibits air permeability (so-called flooding phenomenon), so the moisture in the reaction layer must always be maintained at an appropriate amount. Here, the catalyst is obtained by dispersing catalyst metal particles such as platinum on the surface of a conductive carrier such as carbon .
In addition, please refer to patent document 3 and nonpatent literatures 1-3 as literature which discloses the technique relevant to this invention.
燃料電池反応を起こさせるためには、触媒の触媒金属粒子に電子、プロトン及び酸素が供給される必要があるが、多孔質カーボン等からなる触媒の担体では一般的に数nm以下の微細孔内まで電解質が回り込めないので、当該微細孔内にはプロトンが供給されない。従って、微細孔の内周面に担持された触媒金属粒子は燃料電池反応に寄与できない。
同様に、触媒が多次粒子を構成する場合、触媒粒子同士の間に形成される微小な隙間にも電解質は回り込めないので、当該隙間に表出する触媒金属粒子は燃料電池反応に寄与し得ない。
そこでこの発明は、触媒の触媒金属粒子を燃料電池反応により効率的に活用できるようにすることを目的とする。
In order to cause the fuel cell reaction, it is necessary to supply electrons, protons and oxygen to the catalyst metal particles of the catalyst. However, in the catalyst carrier made of porous carbon, etc. Since the electrolyte cannot go around, protons are not supplied into the micropores. Therefore, the catalytic metal particles supported on the inner peripheral surface of the micropore cannot contribute to the fuel cell reaction.
Similarly, when the catalyst constitutes multi-particulate particles, the electrolyte cannot wrap around the minute gaps formed between the catalyst particles, so the catalyst metal particles appearing in the gaps contribute to the fuel cell reaction. I don't get it.
Accordingly, an object of the present invention is to make it possible to efficiently utilize catalytic metal particles of a catalyst by a fuel cell reaction.
上記目的を達成すべく鋭意検討を重ねてきたところ、触媒の表面と電解質との間に親水性の領域を形成するPFF構造では、電解質の層の内側に水が閉じ込められるので、担体の表面へ酸性官能基を付与しておけば、この酸性官能基は常に水に接触しているのでこれからプロトンが触媒金属粒子へ付与され、当該触媒金属粒子が燃料電池反応に寄与することになるのではないかと考え、この発明に想到した。
即ち、この発明の第1の局面は次のように規定される。
PFF構造を有する燃料電池の反応層用の触媒の製造方法であって、
触媒の担体へ酸性官能基を付与する酸性官能基付与ステップを含む、
触媒の製造方法。
As a result of extensive studies to achieve the above object, in the PFF structure in which a hydrophilic region is formed between the surface of the catalyst and the electrolyte, water is confined inside the electrolyte layer. If an acidic functional group is added, since this acidic functional group is always in contact with water, protons are added to the catalytic metal particles, and the catalytic metal particles do not contribute to the fuel cell reaction. I came up with this invention.
That is, the first aspect of the present invention is defined as follows.
A method for producing a catalyst for a reaction layer of a fuel cell having a PFF structure,
Including an acidic functional group imparting step of imparting an acidic functional group to the support of the catalyst,
A method for producing a catalyst.
このように規定される第1の局面の燃料電池用の触媒の製造方法によれば、触媒の担体へ酸性官能基が付与される。これにより、担体の微細孔内周面や触媒粒子間の隙間に表出する面も酸性官能基で修飾される。PFF構造では触媒を被覆する電解質膜の内側は生成水で満たされるので、担体の微細孔や触媒粒子間の隙間も水で満たされる。したがって、当該微細孔内や隙間へ電解質が回り込めなくても、酸性官能基のプロトンが水に放出されるため、微細孔内周面や隙間に表出する触媒金属粒子が燃料電池反応に寄与できるようになる。 According to the method for producing a catalyst for a fuel cell of the first aspect thus defined, an acidic functional group is imparted to the catalyst support. Thereby, the surface exposed to the inner peripheral surface of the micropores of the carrier and the gap between the catalyst particles is also modified with the acidic functional group. In the PFF structure, the inside of the electrolyte membrane covering the catalyst is filled with generated water, so that the micropores of the carrier and the gaps between the catalyst particles are also filled with water. Therefore, even if the electrolyte does not flow into the micropores or gaps, acidic functional group protons are released into water, so the catalytic metal particles that appear on the micropore inner peripheral surfaces and gaps contribute to the fuel cell reaction. become able to.
この発明の第2の局面は次のように規定される。即ち、
第1の局面に規定の触媒の製造方法において、前記酸性官能基付与ステップは、前記担体へ弱酸性の酸性官能基を付与する第1の付与ステップと、該第1の付与ステップに続き強酸性の酸性官能基を付与する第2の付与ステップとを含む。
このように二段階にわけて酸性官能基を付与することにより、触媒の担体へ大きなストレスを与えることなく、換言すれば担体の特性を維持しつつ、十分なプロトンを供給できる酸性官能基を付与可能となる。
なお、過酸化水素水に触媒を接触させることにより、担体の表面(微細孔内周面も含む)が弱酸性の酸性官能基としてのヒドロキシル基、カルボキシル基、カルボニル基で修飾されることとなる。
他方、硫酸、硝酸、リン酸またはこれらを混合した酸の各水溶液へ触媒を接触させることにより、触媒の表面(微細孔内周面も含む)が強酸性の酸性官能基としてのスルホン酸基、ニトロ基、リン酸基で被覆されることとなる。
The second aspect of the present invention is defined as follows. That is,
In the method for producing a catalyst defined in the first aspect, the acidic functional group imparting step includes a first imparting step for imparting a weakly acidic acidic functional group to the carrier, and a strong acidity following the first imparting step. A second imparting step of imparting an acidic functional group of
By adding an acidic functional group in two steps in this way, an acidic functional group that can supply sufficient protons without giving large stress to the catalyst support, in other words, while maintaining the characteristics of the support is provided. It becomes possible.
In addition, by bringing the catalyst into contact with hydrogen peroxide, the surface of the carrier (including the inner peripheral surface of the micropore) is modified with a hydroxyl group, a carboxyl group, or a carbonyl group as a weakly acidic acidic functional group. .
On the other hand, by bringing the catalyst into contact with an aqueous solution of sulfuric acid, nitric acid, phosphoric acid, or a mixed acid thereof, the surface of the catalyst (including the inner peripheral surface of the micropores) is a sulfonic acid group as a strongly acidic acidic functional group, It will be coated with nitro groups and phosphate groups.
最初に、PFF構造について説明する(ver. 110915)。
ここに、PFF(出願人の登録商標)構造とは高分子電解質の側鎖の親水性官能基が、触媒上に親水層を形成すべく、触媒側に配向している構造をいう。
例えば高分子電解質として汎用されるパーフルオロスルホン酸(ナフィオン等;デュポン社登録商標)においては、疎水性の主鎖E1に対して親水性官能基としてのスルホン酸基(−SO3 −)が側鎖E2として結合されており、図1に示す通り、この親水性官能基が触媒C側に配向することで、触媒Cと電解質層Eとの間に連続した親水領域Wが形成される。凝集した触媒Cにおいて、各触媒粒子表面の当該親水領域Wは相互に連通している。PFF構造の親水領域Wにおいてプロトン(H+)及び水(H2O)は円滑に移動可能であり、その結果、燃料電池の電気化学反応が促進される。
また、PFF構造によれば、水が触媒Cの周囲に集合しているので、少ない水であってもその大部分が効率的に電気化学反応に寄与し、低加湿状態においても燃料電池の発電能力の低下を防止できる。他方、連続した親水領域Wは過剰な水の排水パスとして機能し、もって高加湿状態においてもフラッディング現象を予防できる。
First, the PFF structure will be described (ver. 110915).
Here, the PFF (Applicant's registered trademark) structure refers to a structure in which the hydrophilic functional group of the side chain of the polymer electrolyte is oriented to the catalyst side so as to form a hydrophilic layer on the catalyst.
For example, in perfluorosulfonic acid (Nafion, etc .; registered trademark of DuPont) widely used as a polymer electrolyte, a sulfonic acid group (—SO 3 − ) as a hydrophilic functional group is on the side of the hydrophobic main chain E1. As shown in FIG. 1, this hydrophilic functional group is oriented toward the catalyst C, so that a continuous hydrophilic region W is formed between the catalyst C and the electrolyte layer E. In the agglomerated catalyst C, the hydrophilic regions W on the surfaces of the catalyst particles communicate with each other. Proton (H + ) and water (H 2 O) can move smoothly in the hydrophilic region W of the PFF structure, and as a result, the electrochemical reaction of the fuel cell is promoted.
In addition, according to the PFF structure, since water is gathered around the catalyst C, most of the water efficiently contributes to the electrochemical reaction even in a small amount of water. Capability can be prevented from decreasing. On the other hand, the continuous hydrophilic region W functions as a drainage path for excess water, and can prevent flooding even in a highly humidified state.
上記において触媒Cは導電性を備えた担体C1に触媒金属粒子C2を担持させたものをいう。担体C1には導電性と通気性が求められ、多孔質のカーボンブラック粒子を採用することができるが、酸化スズ、チタン酸化合物等を使用することもできる。触媒金属粒子C2は燃料電池反応の活性点を提供できる金属微粒子からなり、白金、コバルト、ルテニウム等の貴金属及び当該貴金属の合金を用いることができる。
担体C1へ触媒金属粒子C2を担持させる方法は両者の材質や触媒の用途に応じて含浸法、コロイド法及び析出沈殿法等の周知の方法のなかから適宜選択できる。
In the above description, the catalyst C is a catalyst in which the catalyst metal particles C2 are supported on the carrier C1 having conductivity. The carrier C1 is required to have electrical conductivity and air permeability, and porous carbon black particles can be used, but tin oxide, titanic acid compounds, and the like can also be used. The catalytic metal particles C2 are made of fine metal particles that can provide an active site for the fuel cell reaction, and a noble metal such as platinum, cobalt, ruthenium, and an alloy of the noble metal can be used.
The method of supporting the catalyst metal particles C2 on the support C1 can be appropriately selected from known methods such as an impregnation method, a colloid method, and a precipitation-precipitation method depending on the material of both and the use of the catalyst.
(触媒の処理)
通常触媒は触媒メーカから提供される。燃料電池に求められる特性等に応じてこの触媒を物理的に及び/又は化学的に処理することが好ましい。
(触媒の物理的処理)
触媒の物理的処理として粉砕処理と脱泡処理とがある。
−粉砕処理−
一般的に触媒はその担体どうしが凝集して、2次粒子、3次粒子を形成している。そこで、触媒の表面積を向上させるために、凝集体を粉砕して微粉末化することが好ましい。そのためには、触媒の凝集体を媒体へ分散させて湿式粉砕することが好ましい。
湿式粉砕を採用することにより、乾式粉砕に比べて、触媒の凝集体へより高いエネルギーを加えてこれをより細かく粉砕可能となる。また、乾式粉砕に比べて、触媒の再結合を効果的に防止できる。湿式粉砕の方法として、ホモジナイザ−、湿式ジェットミル、ボールミル又はビーズミルを採用することができる。
湿式粉砕を採用することにより触媒の担体に付着した不純物を取り除く効果も得られる。媒体には通常水が採用されるが、不純物の特性に応じて、他の媒体(有機溶剤等)を採用してもよい。最初に水を媒体として湿式粉砕を実行し、その後有機溶剤等で触媒から不純物を除去することもできる。
湿式粉砕した触媒を乾燥させるには、昇華により媒体を除去することが好ましい。これにより、触媒の再凝集を防止できる。媒体を昇華させる方法として真空乾燥法が挙げられる。これに対し、加熱乾燥法を採用すると加熱による媒体の移動の際、あるいは、媒体が蒸発する際に、毛管収縮現象が生じて触媒どうしが再結合し、湿式乾燥で得られた高分散状態を維持できなくなる。
湿式粉砕及び必要に応じて不純物除去を、触媒の担体に対して実行し、担体が媒体(例えば水等)に分散した状態でその担体へ触媒金属粒子を担持させることもできる。この場合においても、乾燥工程としては触媒を分散させている媒体を昇華により除去することが好ましい。
(Catalyst treatment)
Usually the catalyst is provided by the catalyst manufacturer. It is preferable to physically and / or chemically treat the catalyst according to the characteristics required for the fuel cell.
(Physical treatment of catalyst)
The physical treatment of the catalyst includes a pulverization treatment and a defoaming treatment.
-Grinding treatment-
In general, in a catalyst, carriers are aggregated to form secondary particles and tertiary particles. Therefore, in order to improve the surface area of the catalyst, it is preferable to pulverize the agglomerates into a fine powder. For this purpose, it is preferable to disperse the agglomerates of the catalyst in a medium and perform wet pulverization.
By adopting wet pulverization, it becomes possible to pulverize the catalyst aggregate more finely by applying higher energy to the agglomerates of the catalyst as compared with dry pulverization. In addition, recombination of the catalyst can be effectively prevented as compared with dry pulverization. As a wet pulverization method, a homogenizer, a wet jet mill, a ball mill or a bead mill can be employed.
By adopting wet pulverization, an effect of removing impurities adhering to the catalyst carrier can be obtained. Usually, water is used as the medium, but other medium (organic solvent or the like) may be used depending on the characteristics of the impurities. It is also possible to first perform wet pulverization using water as a medium, and then remove impurities from the catalyst with an organic solvent or the like.
In order to dry the wet pulverized catalyst, it is preferable to remove the medium by sublimation. Thereby, reaggregation of the catalyst can be prevented. An example of a method for sublimating the medium is a vacuum drying method. On the other hand, when the heat drying method is adopted, when the medium is moved by heating or when the medium evaporates, a capillary contraction phenomenon occurs and the catalysts recombine, and the high dispersion state obtained by wet drying is obtained. It cannot be maintained.
The wet pulverization and, if necessary, impurity removal may be performed on the catalyst support, and the catalyst metal particles may be supported on the support in a state where the support is dispersed in a medium (for example, water). Even in this case, as a drying step, it is preferable to remove the medium in which the catalyst is dispersed by sublimation.
−脱泡処理−
触媒を水に混合分散させた状態で触媒周囲から気泡を除去(脱泡処理)することが好ましい。触媒と電解質層との間に親水領域を形成する際に当該気泡が妨げとなるからである。
この脱泡処理はハイブリッドミキサー(自転/公転式遠心撹拌機)により遠心撹拌法を用いることにより行なうことができる。
勿論、当該遠心撹拌法に限定されるものではなく、その他の撹拌法(ボールミル法、スターラ法、ビーズミル法、ロールミル法等)を用いることもできる。
また、湿式粉砕時に、触媒周囲から気泡を除去できる場合もあり、その場合は独立した脱泡処理は不要である。
-Defoaming treatment-
It is preferable to remove bubbles (defoaming treatment) from around the catalyst in a state where the catalyst is mixed and dispersed in water. This is because the bubbles obstruct the formation of the hydrophilic region between the catalyst and the electrolyte layer.
This defoaming treatment can be performed by using a centrifugal stirring method with a hybrid mixer (rotating / revolving centrifugal stirrer).
Of course, the present invention is not limited to the centrifugal stirring method, and other stirring methods (ball mill method, stirrer method, bead mill method, roll mill method, etc.) can also be used.
In some cases, bubbles may be removed from around the catalyst during wet pulverization, in which case independent defoaming treatment is unnecessary.
(触媒の化学的処理)
触媒を化学的処理して、その触媒金属粒子の表面を特定の親水基で修飾する。
金属触媒粒子の表面を親水基で修飾することにより、触媒金属粒子の周囲の親水性が向上し、触媒Cと電解質層Eとの間の親水領域Wの親水性が高まる。
ここに修飾とは触媒金属粒子表面に当該修飾基が存在し、通常の製造工程を経ても当該修飾基が触媒金属粒子から分離しないことを意味する。
親水基としてニトロ基、アミノ基、スルホン酸基、リン酸基、水酸基及びハロゲン基から選ばれる少なくとも1種を挙げることができる。更に好ましくは親水基としてニトロ基、及びスルホン酸基から選ばれる少なくとも1種を挙げることができる。
これらの親水基が触媒金属粒子の周囲に存在することにより、触媒金属粒子の周囲に親水領域が形成されやすくなる。触媒金属粒子は担体に均等に分散されているので、結果として触媒の表面の親水領域が形成されやすくなり、また形成後はそれが安定する。
触媒金属粒子へ上記の親水基を修飾する方法としてこの発明では触媒金属粒子と同一若しくは同種の金属(貴金属)の錯体であって前記修飾基を含むものを前記触媒金属粒子へ結合する。錯体の利用により触媒の構造へ何らストレスを与えることなく触媒金属粒子へ親水基を修飾できる。
(Chemical treatment of catalyst)
The catalyst is chemically treated to modify the surface of the catalyst metal particles with specific hydrophilic groups.
By modifying the surface of the metal catalyst particles with a hydrophilic group, the hydrophilicity around the catalyst metal particles is improved, and the hydrophilicity of the hydrophilic region W between the catalyst C and the electrolyte layer E is increased.
Here, the modification means that the modifying group is present on the surface of the catalytic metal particle, and the modifying group is not separated from the catalytic metal particle even through a normal production process.
Examples of the hydrophilic group include at least one selected from a nitro group, an amino group, a sulfonic acid group, a phosphoric acid group, a hydroxyl group, and a halogen group. More preferred examples include at least one selected from a nitro group and a sulfonic acid group as the hydrophilic group.
The presence of these hydrophilic groups around the catalyst metal particles makes it easy to form a hydrophilic region around the catalyst metal particles. Since the catalyst metal particles are evenly dispersed in the support, as a result, a hydrophilic region on the surface of the catalyst is likely to be formed, and it is stabilized after the formation.
As a method of modifying the above-mentioned hydrophilic group on the catalyst metal particles, in the present invention, a complex of a metal (noble metal) that is the same as or the same type as the catalyst metal particles and includes the modification group is bonded to the catalyst metal particles. By using the complex, the hydrophilic group can be modified to the catalytic metal particles without any stress on the structure of the catalyst.
触媒金属粒子として白金若しくは白金合金を採用したときは、下記の白金錯体溶液で修飾を行なうことが好ましい。かかる白金錯体溶液として、塩化白金(IV)酸水和物水溶液(H2PtCl6・nH2O/H2O sol.)、塩化白金(IV)酸塩酸溶液(H2PtCl6/HCl sol.)、塩化白金(IV)酸アンモニウム水溶液((NH4)2PtCl6/H2O sol.)、ジニトロジアミン白金(II)水溶液(cis−[Pt(NH3)2(NO2)2]/H2O sol.)、ジニトロジアミン白金(II)硝酸溶液(cis−[Pt(NH3)2(NO2)2]/HNO3 sol.)、ジニトロジアミン白金(II)硫酸溶液(cis−[Pt(NH3)2(NO2)2]/H2SO4 sol.)、テトラクロロ白金(II)酸カリウム水溶液(K2PtCl4)/H2O sol.)、塩化第1白金(II)水溶液(PtCl2/H2O sol.)、塩化第2白金(IV)水溶液(PtCl4/H2O sol.)、テトラアンミン白金(II)ジクロライド水和物水溶液([Pt(NH3)4]Cl2・H2O/H2O sol.)、テトラアンミン白金(II)水酸化物水溶液([Pt(NH3)4](OH)2/H2O sol.)、ヘキサアンミン白金(IV)ジクロライド水溶液([Pt(NH3)6]Cl2/H2O sol.)、ヘキサアンミン白金(IV)水酸化物水溶液([Pt(NH3)6](OH)2/H2O sol.)、ヘキサヒドロキソ白金(IV)酸水溶液(H2[Pt(OH)6]/H2O sol.)、ヘキサヒドロキソ白金(IV)酸硝酸溶液(H2[Pt(OH)6]/HNO3 sol.)、ヘキサヒドロキソ白金(IV)酸硫酸溶液(H2[Pt(OH)6]/H2SO4 sol.)、エタノールアミン白金溶液(H2[Pt(OH)6]/H2NCH2CH2OH sol.)等を採用することができると考える。 When platinum or a platinum alloy is employed as the catalyst metal particles, the modification is preferably performed with the following platinum complex solution. As such a platinum complex solution, a platinum chloride (IV) acid hydrate aqueous solution (H 2 PtCl 6 .nH 2 O / H 2 O sol.), A platinum chloride (IV) hydrochloride acid solution (H 2 PtCl 6 / HCl sol. ), Platinum chloride (IV) ammonium aqueous solution ((NH 4 ) 2 PtCl 6 / H 2 O sol.), Dinitrodiamine platinum (II) aqueous solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / H 2 O sol.), Dinitrodiamine platinum (II) nitric acid solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 sol.), Dinitrodiamine platinum (II) sulfuric acid solution (cis- [ Pt (NH 3 ) 2 (NO 2 ) 2 ] / H 2 SO 4 sol.), Aqueous potassium tetrachloroplatinate (II) (K 2 PtCl 4 ) / H 2 O sol. ), Platinum (II) chloride aqueous solution (PtCl 2 / H 2 O sol.), Aqueous platinum (IV) chloride (PtCl 4 / H 2 O sol.), Tetraammineplatinum (II) dichloride hydrate aqueous solution ([Pt (NH 3 ) 4 ] Cl 2 .H 2 O / H 2 O sol.), Tetraammineplatinum (II) hydroxide aqueous solution ([Pt (NH 3 ) 4 ] (OH) 2 / H 2 O sol. .), Hexaammine platinum (IV) dichloride aqueous solution ([Pt (NH 3 ) 6 ] Cl 2 / H 2 O sol.), Hexaammine platinum (IV) hydroxide aqueous solution ([Pt (NH 3 ) 6 ] ( OH) 2 / H 2 O sol.), Hexahydroxoplatinum (IV) acid aqueous solution (H 2 [Pt (OH) 6 ] / H 2 O sol.), Hexahydroxoplatinum (IV) acid nitric acid solution (H 2 [ Pt (OH) 6] / HNO 3 sol.), hexahydro Seo platinum (IV) acid sulfuric acid solution (H 2 [Pt (OH) 6] / H 2 SO 4 sol.), Ethanolamine platinum solution (H 2 [Pt (OH) 6] / H 2 NCH 2 CH 2 OH sol .) Etc. can be adopted.
発明者の知見によれば、白金若しくは白金合金からなる触媒金属粒子を修飾する親水基としてニトロ基を選択することが好ましい。そのための白金錯体溶液としては、NO3 -を親水性イオンとするジニトロジアミン白金(II)硝酸溶液(cis−[Pt(NH3)2(NO2)2]/HNO3 sol.)、ヘキサヒドロキソ白金(IV)酸硝酸溶液((H2Pt(OH)6)/HNO3 sol.)、SO4 2-を親水性イオンとするヘキサヒドロキソ白金(IV)酸硫酸溶液((H2Pt(OH)6)/H2SO4 sol.)、NH4 +を親水性イオンとするテトラアンミン白金(II)水酸化物水溶液([Pt(NH3)4(OH)2]/H2O sln.)等を採用することができる。 According to the inventor's knowledge, it is preferable to select a nitro group as a hydrophilic group for modifying catalytic metal particles made of platinum or a platinum alloy. As the platinum complex solution for that purpose, dinitrodiamine platinum (II) nitric acid solution (cis- [Pt (NH 3 ) 2 (NO 2 ) 2 ] / HNO 3 sol.) Having NO 3 - as a hydrophilic ion, hexahydroxo platinum (IV) acid nitric acid solution ((H 2 Pt (OH) 6) / HNO 3 sol.), hexahydroxoplatinum to SO 4 2-hydrophilic ion (IV) acid sulfate solution ((H 2 Pt (OH 6 ) / H 2 SO 4 sol.), Tetraammineplatinum (II) hydroxide aqueous solution ([Pt (NH 3 ) 4 (OH) 2 ] / H 2 O sln.) Having NH 4 + as hydrophilic ions Etc. can be adopted.
触媒金属粒子へ親水基を修飾する方法は、触媒金属粒子や親水基の特性に応じて適宜選択可能であるが、例えば触媒金属粒子が白金製若しくは白金合金製の場合は、触媒を白金錯体溶液に混合し、必要に応じ撹拌すればよい。ニトロ基を選択したときは、ジニトロジアミン白金(錯体)の硝酸水溶液へ原料触媒を投入し、撹拌することで原料触媒の触媒白金粒子へ白金錯体(ジニトロジアミン白金)が吸着する。また、原料触媒を水に分散させた状態でジニトロジアミン白金(錯体)の硝酸水溶液を添加撹拌してもよい。ここで撹拌は羽根やスターラを用いた機械的な撹拌に限定されず、1つの管路へ2つの溶液を流通させることで実行することも可能である。
なお、親水基と触媒金属粒子との結合を安定するために、加熱処理することが好ましい。
触媒金属粒子として白金粒子を用いる場合は、これに吸着した硝酸イオン(NO3 −)を還元してニトロ基(−NO2)とすることが好ましい。還元の方法は特に限定するものではないが、硝酸イオンを吸着させた触媒白金粒子を有する触媒を不活性雰囲気下で加熱すればよい。かかる安定化処理を施した触媒は、後にホモジナイザ−等の物理的処理により強い力が掛けられても、親水基が触媒金属から離脱しない。
The method of modifying the hydrophilic group on the catalyst metal particles can be appropriately selected according to the characteristics of the catalyst metal particles and the hydrophilic group. For example, when the catalyst metal particles are made of platinum or a platinum alloy, the catalyst is treated with a platinum complex solution. And may be stirred if necessary. When a nitro group is selected, the raw material catalyst is put into a nitric acid aqueous solution of dinitrodiamine platinum (complex) and stirred to adsorb the platinum complex (dinitrodiamine platinum) to the catalyst platinum particles of the raw material catalyst. Further, a nitric acid aqueous solution of dinitrodiamine platinum (complex) may be added and stirred in a state where the raw material catalyst is dispersed in water. Here, the stirring is not limited to mechanical stirring using a blade or a stirrer, and can be performed by circulating two solutions through one pipe line.
In addition, in order to stabilize the coupling | bonding of a hydrophilic group and catalyst metal particle, it is preferable to heat-process.
When platinum particles are used as the catalyst metal particles, nitrate ions (NO 3 − ) adsorbed thereon are preferably reduced to nitro groups (—NO 2 ). Although the reduction method is not particularly limited, a catalyst having catalytic platinum particles adsorbed with nitrate ions may be heated in an inert atmosphere. The catalyst subjected to such stabilization treatment does not release the hydrophilic group from the catalyst metal even if a strong force is applied later by a physical treatment such as a homogenizer.
(触媒に対する物理的処理及び化学的処理の順序)
触媒における触媒金属粒子を効率良く親水基で修飾するには、化学的処理に先立ち物理的処理を実行しておくことが好ましい。触媒を物理的処理しておくことにより、触媒粒子の凝集がほぐされて、より多くの触媒金属粒子が親水基を含む処理液へ接触できるようになるからである。更には、物理的処理により空気が脱泡されて、即ち、触媒表面を覆っていた空気層が除去されて、この点からもより多くの触媒金属粒子が親水基を含む処理液へ接触できるようになる。
なお、化学的処理により、触媒が再凝集するおそれがあるときは、化学的処理を行なった後に再度物理的処理を行なうことが好ましい。
勿論、触媒に対する化学的処理を最初に実行し、その後に物理的処理を実行してもよい。
(Physical and chemical treatment order for catalyst)
In order to efficiently modify the catalytic metal particles in the catalyst with a hydrophilic group, it is preferable to perform physical treatment prior to chemical treatment. This is because by physically treating the catalyst, the aggregation of the catalyst particles is loosened, and more catalyst metal particles can come into contact with the treatment liquid containing a hydrophilic group. Furthermore, air is defoamed by physical treatment, that is, the air layer covering the catalyst surface is removed, so that more catalyst metal particles can come into contact with the treatment liquid containing hydrophilic groups. become.
In addition, when there exists a possibility that a catalyst may re-aggregate by a chemical process, it is preferable to perform a physical process again after performing a chemical process.
Of course, the chemical treatment for the catalyst may be performed first, followed by the physical treatment.
(プレペーストの調製)
触媒を水に分散してなるプレペーストにおいて水分量を調整する。
触媒の表面へ電解質の親水基を対向させて電解質と触媒との間に親水性領域を得るため、触媒と水とを混合し触媒の表面へ水の層を予め形成しておく(触媒の親水化工程)。
本発明者の検討によれば、触媒と水との混合比は触媒の種類(特に触媒の担体の種類、粒度)に応じて適宜選択されるべきものであるが、触媒と水との混合物(プレペースト)がキャピラリ状態(触媒粒子の全周囲に水が存在するも流動性なし)からスラリー状態(触媒粒子の全周囲に水が存在して流動性あり)に変化する水分状態(流動性限界)及びその近傍の水分状態とすることが好ましい。かかる水分量は、触媒の表面を親水化しつつ、触媒と電解質との間に連続する親水性領域を形成できる最適な量となる。
ここに、流動限界とは、混合物がキャピラリ状態からスラリー状態へと変化し、流動し始める水分含量の限界をいう。
(Pre-paste preparation)
The water content is adjusted in a pre-paste obtained by dispersing the catalyst in water.
In order to obtain a hydrophilic region between the electrolyte and the catalyst by causing the hydrophilic group of the electrolyte to face the surface of the catalyst, the catalyst and water are mixed to form a water layer in advance on the surface of the catalyst (catalyst hydrophilicity). Process).
According to the study of the present inventor, the mixing ratio of the catalyst and water should be appropriately selected according to the type of catalyst (especially the type of catalyst carrier and the particle size), but the mixture of catalyst and water ( Moisture state (flowability limit) where the pre-paste changes from a capillary state (water is present around the catalyst particles but no fluidity) to a slurry state (water is present around the catalyst particles and fluidity) ) And the moisture state in the vicinity thereof. Such an amount of water is an optimum amount capable of forming a continuous hydrophilic region between the catalyst and the electrolyte while making the surface of the catalyst hydrophilic.
Here, the flow limit refers to the limit of the moisture content at which the mixture changes from the capillary state to the slurry state and begins to flow.
プレペーストのせん断速度と粘度との関係において、粘度をせん断速度に対して両対数でプロットしたときの近似直線を求めたとき、流動限界は近似直線の傾きが−1となるペースト状態であり、スラリー状態は近似直線の傾きが−0.8となるペースト状態である。
せん断速度に対する粘度の関係における近似直線の傾きが−1以上、すなわち、傾きが緩やかになるとともに流動性の高いスラリー状態になる。過剰な水分を含んだ状態はMEAの性能の低下を招くため、ペーストが流動限界からスラリー状態になる、すなわち、傾き−1〜−0.8の範囲となる水添加量が最適量となる。これにより理想的なプレペーストを得ることができる。プレペーストではこの近似直線の傾きにより必要最小限の水分添加量を規定することが重要である。一方、傾きが−1未満(傾きがきつくなる)のキャピラリ状態では混合物の流動性がなくなるため、混合時におけるエネルギーがより必要となり、水と触媒との攪拌が不十分となり易く、好適なプレペーストが得られる条件として適さない。
In the relationship between the shear rate and the viscosity of the pre-paste, the flow limit is a paste state in which the slope of the approximate line is −1 when the approximate straight line is obtained by plotting the viscosity with logarithm against the shear rate. The slurry state is a paste state in which the slope of the approximate straight line is −0.8.
The slope of the approximate straight line in the relationship of the viscosity to the shear rate is −1 or more, that is, the slope becomes gentle and the slurry state becomes highly fluid. Since the state containing excessive moisture leads to a decrease in MEA performance, the amount of water added in a range from the flow limit to the slurry state, that is, in the range of slope −1 to −0.8, is the optimum amount. Thereby, an ideal pre-paste can be obtained. In the pre-paste, it is important to define the minimum amount of water added based on the slope of this approximate line. On the other hand, in the capillary state where the inclination is less than -1 (the inclination becomes tight), the fluidity of the mixture is lost, so that more energy is required at the time of mixing, and the stirring of water and the catalyst tends to be insufficient, and a suitable pre-paste Is not suitable as a condition for obtaining.
上記最適量より多い水分量においても触媒の周囲には水が存在するので、触媒表面を親水化できる。しかしながら、かかる過剰な水分は、プレペーストを電解質溶液(プレ溶液)と混合する際に、PFF構造構築の妨げとなるおそれがある。過剰な水は触媒を離れ、触媒から離れた領域において電解質の親水基を引き寄せる。従って、触媒に対向する電解質の親水基が減少し、その結果、触媒と電解質との間に形成すべき親水性の領域が狭くなったり、分断されたり、また、当該領域における親水機能の低下(水分の保持力の低下)が生じたりする。
なお、触媒を水中で湿式粉砕する際には、多量の水に触媒を分散させる。ここに水の量は、触媒に対する重量比で5〜100培とすることが好ましい。その後、水分を除去し、プレペーストとして好適な水分量とする。水分除去には湯煎等の方法を採用できる。
Even when the amount of water is greater than the optimum amount, water exists around the catalyst, so that the surface of the catalyst can be hydrophilized. However, such excessive moisture may interfere with the construction of the PFF structure when the pre-paste is mixed with the electrolyte solution (pre-solution). Excess water leaves the catalyst and attracts the electrolyte's hydrophilic groups in a region away from the catalyst. Therefore, the hydrophilic group of the electrolyte facing the catalyst is reduced, and as a result, the hydrophilic region to be formed between the catalyst and the electrolyte is narrowed or divided, and the hydrophilic function in the region is reduced ( Decrease in water retention).
When the catalyst is wet pulverized in water, the catalyst is dispersed in a large amount of water. Here, the amount of water is preferably 5 to 100 in weight ratio to the catalyst. Thereafter, the water is removed to obtain a water content suitable for the pre-paste. For removing water, a method such as hot water bathing can be employed.
(電解質溶液の調製)
電解質には既述のパーフルオロスルホン酸が一般的に用いられる。この電解質は水と有機溶媒との混合溶媒に溶解され、既述のプレペーストと混合される。
有機溶剤は電解質の特性に応じて適宜選択するものであるが、本発明者の検討によれば、有機溶媒は、第2級アルコール及び第3級アルコールの少なくとも1種であることが好ましい。メタノールやエタノールのような第1級アルコールでは、水分濃度を減らしても電解質溶液の粘度が高くならない。イソプロピルアルコール(IPA)のような第2級アルコールやターシャリーブチルアルコール(TBA)のような第3級アルコールが混合されれば、電解質溶液中における電解質の固形分はより解れた状態になる。また、発明者の検討によれば、第2級アルコール及び第3級アルコールが混合されれば、電解質溶液中における電解質の固形分はさらに解れた状態になる。
本発明者は、既述のPFF構造に用いる電解質溶液の最適化を検討した結果、電解質溶液に含まれるべき最適な水分量が、電解質溶液の10重量%以下、更に好ましくは5重量%以下であることに気がついた。
(Preparation of electrolyte solution)
As the electrolyte, the above-mentioned perfluorosulfonic acid is generally used. This electrolyte is dissolved in a mixed solvent of water and an organic solvent and mixed with the above-described pre-paste.
The organic solvent is appropriately selected according to the characteristics of the electrolyte, but according to the study of the present inventor, the organic solvent is preferably at least one of a secondary alcohol and a tertiary alcohol. With primary alcohols such as methanol and ethanol, the viscosity of the electrolyte solution does not increase even when the water concentration is reduced. If a secondary alcohol such as isopropyl alcohol (IPA) or a tertiary alcohol such as tertiary butyl alcohol (TBA) is mixed, the solid content of the electrolyte in the electrolyte solution is more undissolved. Further, according to the inventor's study, when the secondary alcohol and the tertiary alcohol are mixed, the solid content of the electrolyte in the electrolyte solution is further unraveled.
As a result of studying optimization of the electrolyte solution used in the above-described PFF structure, the present inventor has found that the optimal amount of water to be contained in the electrolyte solution is 10% by weight or less, more preferably 5% by weight or less of the electrolyte solution. I realized that there was.
電解質と水分量との間には次の関係がある。
電解質溶液中の水分の濃度を低減させると、電解質溶液における電解質の濃度が同じ場合においても電解質溶液の粘度が高くなり、逆に水分の濃度を高くすると電解質溶液の粘度が低くなることを見出した。その理由は次のように推定される。
即ち、電解質溶液の水分の濃度が高い場合、図2の(A)に示す通り、電解質の側鎖E2に水が吸着し電解質溶液中で電解質の主鎖E1が縮んで、電解質が分離した状態となり、電解質溶液の粘度が低下すると推察した。また、電解質溶液の水分濃度がやや低くなれば、電解質溶液に含有されている有機溶媒の作用によって、図2の(B)に示すように、電解質溶液中で電解質の主鎖E1が開き、相互に絡み易くなるため電解質溶液の粘度が上昇する。
There is the following relationship between the electrolyte and the amount of water.
It has been found that when the concentration of water in the electrolyte solution is reduced, the viscosity of the electrolyte solution increases even when the concentration of the electrolyte in the electrolyte solution is the same. Conversely, when the concentration of water is increased, the viscosity of the electrolyte solution decreases. . The reason is estimated as follows.
That is, when the concentration of water in the electrolyte solution is high, as shown in FIG. 2A, water is adsorbed on the side chain E2 of the electrolyte, and the electrolyte main chain E1 contracts in the electrolyte solution and the electrolyte is separated. It was assumed that the viscosity of the electrolyte solution was lowered. Further, when the water concentration of the electrolyte solution is slightly lowered, the main chain E1 of the electrolyte is opened in the electrolyte solution by the action of the organic solvent contained in the electrolyte solution, as shown in FIG. As a result, the viscosity of the electrolyte solution increases.
電解質(図2のA)の状態で電解質溶液を混合して反応層を形成した場合、この反応層では、図3に示すような状態となっていると考えられる。すなわち、電解質の主鎖が縮んで電解質どうしが分離していることから、これとプレペーストとを混合すると、親水領域Wが分散して形成される可能性が高くなる。
換言すれば、電解質の親水性の側鎖E2を触媒へ対向させて両者の間に親水性の領域を確実に形成するためには、電解質溶液中において電解質は図2の(B)の状態にすることが好ましい。そのためには、既述のとおり、電解質溶液に含まれる水分量を電解質溶液の10重量%以下とする。
When a reaction layer is formed by mixing an electrolyte solution in the state of the electrolyte (A in FIG. 2), it is considered that this reaction layer is in a state as shown in FIG. That is, since the main chain of the electrolyte is shrunk and the electrolytes are separated from each other, when this is mixed with the pre-paste, there is a high possibility that the hydrophilic region W is formed in a dispersed manner.
In other words, in order to make the hydrophilic side chain E2 of the electrolyte face the catalyst and to reliably form a hydrophilic region between the two, the electrolyte is in the state of FIG. 2B in the electrolyte solution. It is preferable to do. For this purpose, as described above, the amount of water contained in the electrolyte solution is set to 10% by weight or less of the electrolyte solution.
図2の(B)の状態の電解質を用いたときのカソード触媒層は図1の状態になると考えられる。
電解質の側鎖E2は一方向に延びた状態にあり、このため、触媒ペースト、すなわち燃料電池用反応層では、親水性のイオン交換基(スルホン酸基、(スルホ基ともいう))がプレペースト中の水を吸着することとなる。このため、図1に示すように、この反応層では、触媒Cの表面に電解質の親水基E2が対向した状態となり、電解質層Eと触媒Cとの間に親水領域Wが形成される。そして、上記のようにスルホン酸基がプレペースト中の水と吸着することで、触媒C周りに親水領域Wが連続して形成され、かつ互いに連通した状態で形成されると考えられる。このため、この触媒ペーストを用いた反応層では、図1に示すように、プロトン及び水が移動し易く、電気化学的反応が円滑に進行される。かかる反応層を有する燃料電池は低加湿状態及び過加湿状態のいずれであっても、発電能力を高くすること可能となる。
The cathode catalyst layer when the electrolyte in the state of (B) in FIG. 2 is used is considered to be in the state of FIG.
The side chain E2 of the electrolyte is in a state extending in one direction. Therefore, in the catalyst paste, that is, in the fuel cell reaction layer, hydrophilic ion exchange groups (sulfonic acid groups, also referred to as sulfo groups) are pre-paste. The water inside will be adsorbed. For this reason, as shown in FIG. 1, in this reaction layer, the hydrophilic group E2 of the electrolyte faces the surface of the catalyst C, and a hydrophilic region W is formed between the electrolyte layer E and the catalyst C. And it is thought that the hydrophilic area | region W is continuously formed around the catalyst C, and it is formed in the mutually connected state because a sulfonic acid group adsorb | sucks with the water in a pre paste as mentioned above. For this reason, in the reaction layer using this catalyst paste, as shown in FIG. 1, protons and water easily move, and the electrochemical reaction proceeds smoothly. A fuel cell having such a reaction layer can have a high power generation capacity regardless of whether it is in a low humidified state or an excessively humidified state.
電解質溶液における水分量は、例えば湯煎により電解質溶液から水を蒸発させ、その後、水を適宜添加することにより行なう。
電解質溶液から水を蒸発させる際、電解質溶液に含まれる有機溶剤も揮発する。従って、有機溶剤も必要に応じて添加する。
The amount of water in the electrolyte solution is determined by evaporating water from the electrolyte solution using, for example, a hot water bath, and then adding water appropriately.
When water is evaporated from the electrolyte solution, the organic solvent contained in the electrolyte solution is also volatilized. Accordingly, an organic solvent is also added as necessary.
(プレペーストと電解質溶液との混合)
プレペーストと電解質溶液とを混合して触媒ペーストを得る。
上記のようにして準備されるプレペーストは流動性限界の近傍にあるので高い粘度を有する。また、上記電解質溶液もそこに含まれる水の量が少ないほど粘度が高くなる。
いずれも粘度を高くする条件下で得られたプレペーストと電解質溶液とを混合し撹拌すると、図4(A)に示すように、混合物の粘度が時間とともに低下し、その後一定の値で安定する。
(Mixing of pre-paste and electrolyte solution)
A catalyst paste is obtained by mixing the pre-paste and the electrolyte solution.
The pre-paste prepared as described above has a high viscosity because it is in the vicinity of the fluidity limit. The viscosity of the electrolyte solution increases as the amount of water contained therein decreases.
In any case, when the pre-paste obtained under the condition of increasing the viscosity and the electrolyte solution are mixed and stirred, as shown in FIG. 4A, the viscosity of the mixture decreases with time, and then stabilizes at a constant value. .
本発明者はプレペーストと電解質溶液との混合物を撹拌したときの混合物の粘度のかかる挙動に着目した。
図4(B)は撹拌時間(=粘度)と反応層抵抗との関係を示す。
撹拌時間(=粘度)を変化させて得た触媒ペーストを用いて燃料電池を構成し、その反応層のインピーダンスを測定した。
図4(A)及び(B)より、撹拌にともない粘度が低下すると、それに反比例するように、反応層のインピーダンスが高くなることがわかる。インピーダンスが高くなることは反応層中におけるプロトンの移動低下を意味する。
The inventor paid attention to the behavior of the viscosity of the mixture when the mixture of the pre-paste and the electrolyte solution was stirred.
FIG. 4B shows the relationship between stirring time (= viscosity) and reaction layer resistance.
A fuel cell was constructed using the catalyst paste obtained by changing the stirring time (= viscosity), and the impedance of the reaction layer was measured.
4 (A) and 4 (B), it can be seen that when the viscosity decreases with stirring, the impedance of the reaction layer increases so as to be inversely proportional thereto. An increase in impedance means a decrease in proton movement in the reaction layer.
以上より、プレペーストと電解質溶液とを混合して触媒ペーストを作成する際には、撹拌を手早く行なって、混合物の粘度が低下安定する前までに両者の均一混合を完了することが好ましいことがわかる。換言すれば、プレペーストと電解質溶液とを撹拌する際に両者の混合物の粘度をモニタし、その粘度が低位安定する前までに撹拌を止める。
プレペーストと電解質溶液の混合物を撹拌すると、プレペーストの触媒の周囲が電解質で覆われる。このとき、図2(B)のように開いた状態の電解質はその親水基を触媒に対向させて配向しPFF構造を構築する。しかしながら、PFF構造が構築された後にも撹拌を行なうと(以下、「過撹拌」ということがある)、触媒に対向した電解質が触媒から分離され、そのとき触媒表面の水を奪い、触媒表面から離脱する。触媒表面から離脱した電解質には触媒表面の水が付随するので、電解質は図2(A)の形を取りやすくなる。そのため、触媒ペーストにおける電解質溶液成分の粘度が低下し、これが触媒ペースト自体の粘度の低下を引き起こすと考えられる。また、触媒表面から電解質が離脱することによりPFF構造が脆弱となり、触媒と電解質との間に形成される親水性領域の機能が低下する。これが、反応層抵抗を上昇させる原因と予想される。
そこで、プレペーストと電解質溶液との混合物の粘度を所定の粘度に調製する。これにより、両者の過撹拌を防止することができる。即ち、過撹拌された混合物は既述のようにその粘度を低下させるので、混合物の粘度が所定の挙動を示したときに撹拌を停止することにより、混合物の過撹拌を防止できる。過撹拌を防止することにより常に安定したPFF構造を構築可能となる。
From the above, when preparing the catalyst paste by mixing the pre-paste and the electrolyte solution, it is preferable to quickly stir and complete the uniform mixing of both before the viscosity of the mixture decreases and stabilizes. Recognize. In other words, when the pre-paste and the electrolyte solution are agitated, the viscosity of the mixture of both is monitored, and the agitation is stopped before the viscosity stabilizes to a low level.
When the mixture of the pre-paste and the electrolyte solution is stirred, the periphery of the catalyst of the pre-paste is covered with the electrolyte. At this time, the electrolyte in an open state as shown in FIG. 2B is oriented with its hydrophilic group facing the catalyst to construct a PFF structure. However, if stirring is performed after the PFF structure is constructed (hereinafter sometimes referred to as “over-stirring”), the electrolyte facing the catalyst is separated from the catalyst, and then water on the catalyst surface is taken away from the catalyst surface. break away. Since the electrolyte separated from the catalyst surface is accompanied by water on the catalyst surface, the electrolyte easily takes the form of FIG. Therefore, it is considered that the viscosity of the electrolyte solution component in the catalyst paste decreases, which causes a decrease in the viscosity of the catalyst paste itself. Also, the PFF structure becomes brittle when the electrolyte is detached from the catalyst surface, and the function of the hydrophilic region formed between the catalyst and the electrolyte is lowered. This is expected to increase the reaction layer resistance.
Therefore, the viscosity of the mixture of the pre-paste and the electrolyte solution is adjusted to a predetermined viscosity. Thereby, both over-stirring can be prevented. That is, the over-stirred mixture lowers its viscosity as described above, so that it is possible to prevent over-stirring of the mixture by stopping stirring when the viscosity of the mixture exhibits a predetermined behavior. By preventing over-stirring, a stable PFF structure can always be constructed.
プレペーストと電解質溶液との混合撹拌には自転/公転式遠心撹拌機を用いることが好ましいが、混合撹拌機能を有する一般的なボールミル、ビーズミル、スターラー、ホモジナイザ−等を採用することもできる。
プレペーストと電解質溶液との混合物の粘度は、それぞれの材料や配合比、更には環境温度等によって変化する。従って、混合物の粘度をモニタしてその挙動(粘度の絶対値にあらず)を検出して評価することとなる。
混合物の粘度の挙動とは、混合物の粘度が低位安定する前までの粘度の時間変化を指す。例えば、単位時間あたりの粘度の低下率や初期粘度に対する粘度の低下率などを採用することができる。
図4(A)から明らかなように、混合物の撹拌が一定時間(図4(A)の例では4分)を超えると時間当たりの粘度の低下割合が大きくなる。そこで、撹拌にともなう混合物の粘度の低下割合が所定値を超えた時点で撹拌を停止することができる。
触媒ペーストを製造する工程において粘度管理をしていくうえでは、ハイブリッドミキサーの回転速度を一定に保つことが好ましい。更には、撹拌を一定温度下で行うことが好ましい。
より正確に粘度管理を行うために、攪拌時にリアルタイムで混合物の粘度計測を行うこともできる。例えば、ローター回転制御式粘度計を用いて、プレペーストと電解質溶液の混合と粘度計測を同時に行うこともできる。また、プレペーストと電解質溶液の混合にビーズミルやホモジナイザー等を用い、ペースト循環ラインに音叉型振動式粘度計などリアルタイム計測可能な粘度計を組み込む方法も適用可能である。
いずれの方法も、一定温度下で攪拌及び粘度計測を行うことが好ましい。
A rotating / revolving centrifugal stirrer is preferably used for mixing and stirring the pre-paste and the electrolyte solution, but a general ball mill, bead mill, stirrer, homogenizer or the like having a mixing and stirring function can also be employed.
The viscosity of the mixture of the pre-paste and the electrolyte solution varies depending on each material, the blending ratio, the environmental temperature, and the like. Therefore, the viscosity of the mixture is monitored and its behavior (not the absolute value of the viscosity) is detected and evaluated.
The behavior of the viscosity of the mixture refers to the change in viscosity over time before the viscosity of the mixture is stabilized to a low level. For example, the rate of decrease in viscosity per unit time or the rate of decrease in viscosity with respect to the initial viscosity can be employed.
As is clear from FIG. 4A, when the stirring of the mixture exceeds a certain time (4 minutes in the example of FIG. 4A), the rate of decrease in viscosity per time increases. Therefore, stirring can be stopped when the rate of decrease in the viscosity of the mixture accompanying stirring exceeds a predetermined value.
In order to manage the viscosity in the process of producing the catalyst paste, it is preferable to keep the rotation speed of the hybrid mixer constant. Furthermore, it is preferable to perform stirring at a constant temperature.
In order to more accurately manage the viscosity, the viscosity of the mixture can be measured in real time during stirring. For example, the mixing of the pre-paste and the electrolyte solution and the viscosity measurement can be simultaneously performed using a rotor rotation control viscometer. In addition, a method of using a bead mill, a homogenizer, or the like for mixing the pre-paste and the electrolyte solution and incorporating a viscometer capable of real-time measurement such as a tuning fork type vibration viscometer into the paste circulation line is also applicable.
In any method, it is preferable to perform stirring and viscosity measurement at a constant temperature.
(反応層の形成)
上記のようにして得られた触媒ペーストをガス拡散基材に塗布し、反応層とする。ガス拡散基材としてカーボンクロス、カーボンペーパー、カーボンフェルト等を採用できる。ガス拡散基材の表面(反応層側の面)に撥水層を形成することが好ましい。この撥水層は例えばPTFEで撥水処理したカーボンブラックから形成することができる。触媒ペーストの塗布方法には、スクリーン印刷、スプレー、インクジェット等の任意の方法を採用できる。
上記において、粘度の低い触媒ペーストを用いた反応層を、電極のフラッディングし易い部分、例えば、空気出口近傍、水素出口近傍、電極外周部、冷却板近傍等に設けることができる。これにより、高湿度雰囲気でも安定して高性能を示す。
また、粘度の高い触媒ペーストを用いた反応層を、電極の乾燥し易い部分、例えば、空気入口近傍、水素入口近傍、電極中央部分、冷却板から離れた部位等に設けてもよい。これにより、低加湿雰囲気でも安定して高性能を示す。
ガス拡散基材への触媒ペーストの塗布及び乾燥を所定の回数繰返すことで、空気極(ガス拡散基材+反応層)及び水素極(ガス拡散基材+反応層)が形成される。これら空気極と水素極とで固体高分子電解質膜を挟み、ホットプレス等によりこれらを接合して膜電極接合体(MEA)を得る。この膜電極積層体をセパレータで挟んで最小発電単位である燃料電池が構成される。
(Formation of reaction layer)
The catalyst paste obtained as described above is applied to a gas diffusion substrate to form a reaction layer. Carbon cloth, carbon paper, carbon felt, etc. can be adopted as the gas diffusion base material. It is preferable to form a water repellent layer on the surface (reaction layer side surface) of the gas diffusion substrate. This water repellent layer can be formed from carbon black treated with water repellent with PTFE, for example. As a method for applying the catalyst paste, any method such as screen printing, spraying or ink jetting can be adopted.
In the above, the reaction layer using the catalyst paste having a low viscosity can be provided in a portion where the electrode is easily flooded, for example, in the vicinity of the air outlet, in the vicinity of the hydrogen outlet, in the outer periphery of the electrode, in the vicinity of the cooling plate. As a result, high performance is stably exhibited even in a high humidity atmosphere.
Further, a reaction layer using a high-viscosity catalyst paste may be provided in a portion where the electrode is easily dried, for example, in the vicinity of the air inlet, in the vicinity of the hydrogen inlet, in the center of the electrode, or in a portion away from the cooling plate. As a result, high performance is stably exhibited even in a low humidified atmosphere.
By applying and drying the catalyst paste on the gas diffusion base material a predetermined number of times, an air electrode (gas diffusion base material + reaction layer) and a hydrogen electrode (gas diffusion base material + reaction layer) are formed. A membrane electrode assembly (MEA) is obtained by sandwiching a polymer electrolyte membrane between the air electrode and the hydrogen electrode and joining them by hot pressing or the like. The membrane electrode stack is sandwiched between separators to constitute a fuel cell that is a minimum power generation unit.
以上、専ら触媒ペーストの製造方法及び製造に用いる材料について説明してきた。
図5は触媒ペーストを製造するための装置を示すブロック図である。
触媒ペーストの原料となる触媒、水、貴金属錯体及び電解質はそれぞれ、触媒収容部1001、水収容部1021、貴金属錯体溶液収容部1025及び電解質溶液収容部1041に準備される。なお、触媒から有機物を洗浄するための有機溶剤が有機溶剤収容部1023に準備される。各収容部として収容対象に応じた容量及び材質で形成されたタンクを利用できる。
触媒処理部1003は物理的処理部1005及び化学的処理部1007を備える。物理的処理部1005は湿式粉砕部1009及び脱泡部1011を備える。湿式粉砕部1009としてホモジナイザ−や湿式ジェットミル等を用いることができる。脱泡部1011にはハイブリットミキサ等を用いることができる。化学的処理部1007は撹拌羽根を備えた汎用的な撹拌装置を適用できる。金属触媒粒子に対する反応性が高い貴金属錯体を採用したときは、触媒スラリーを流通させる管路へ当該貴金属錯体溶液を注入すること化学的反応を完成させることも可能である。
In the above, the manufacturing method and the material used for manufacture of a catalyst paste have been demonstrated exclusively.
FIG. 5 is a block diagram showing an apparatus for producing a catalyst paste.
The catalyst, water, noble metal complex, and electrolyte that are the raw materials of the catalyst paste are prepared in the
The catalyst processing unit 1003 includes a physical processing unit 1005 and a chemical processing unit 1007. The physical processing unit 1005 includes a
触媒処理部において触媒は多量の水に分散されスラリー状のプレペーストとなっているので、水分量調整部1031においてプレペーストの水分量を調整する。
この場合、スラリー状のプレペーストから水分を除去することとなるので、周知の濃縮方法(例えば、加熱蒸発装置、濾過装置、遠心分離装置)等を用いることができる。また、水分量はプレペーストの比重から特定可能であるので、水分量調整部は比重測定装置を備えることが好ましい。また、プレペーストの水分量が過少となった場合を想定して、水分補給装置を備えることが好ましい。
In the catalyst processing unit, the catalyst is dispersed in a large amount of water to form a slurry-like pre-paste. Therefore, the water
In this case, since moisture is removed from the slurry-like pre-paste, a well-known concentration method (for example, a heating evaporation device, a filtration device, or a centrifuge device) can be used. Moreover, since the water content can be specified from the specific gravity of the pre-paste, the water content adjusting unit preferably includes a specific gravity measuring device. In addition, assuming that the moisture content of the pre-paste becomes too small, it is preferable to provide a moisture supply device.
電解質溶液の水分調整部1043は加熱蒸発装置及び水分補給装置を備えることが好ましい。水分量は比重から特定可能であるので更に比重測定装置を備えることが好ましい。
混合撹拌部1051はそれぞれ水分量の調節されたプレペーストと電解質溶液を混合撹拌し、例えばハイブリッドミキサーを用いることができるが、これに限定されるものではない。なお、過撹拌を避けるために、混合撹拌部1051には粘度計1061を付設することが好ましい。
The electrolyte solution
The mixing and stirring
この発明では、上記PFFの製造工程において触媒処理、特に化学的処理を改良したものである。
即ち、触媒の担体の表面へ酸性官能基を付与する。
ここに、酸性官能基にはヒドキシル基、カルボキシル基、カルボニル基、スルホン酸基、ニトロ基、リン酸基の1種又は2種以上を用いることができる。
これら酸性官能基は触媒の担体の表面全体に付与される。その結果、微細孔集面にも酸性官能基が付与されることとなる。
酸性官能基を触媒へ付与する方法は、溶媒に溶解された酸性官能基及び担体の特性に応じて任意に選択可能であるが、基本的には両者を接触させることにより行う。
酸性官能基を付与する際に、担体には触媒金属粒子が担持されていないものを採用することが好ましいが、もちろん触媒金属粒子を担持した担体(即ち触媒)へ酸性官能基を接触させてもよい。
PFF構造では触媒を被覆する電解質膜の内側は生成水で満たされるので、担体の微細孔や触媒粒子間の隙間も水で満たされる。したがって、微細孔や触媒粒子間の隙間において、これを構成する触媒の担体の表面に酸性官能基が存在すれば、この酸性官能基からプロトンが水へ供給される。よって、微細孔や触媒粒子間の隙間へ電解質が十分に回りこめなくても、このプロトンが触媒金属粒子上での燃料電池反応に寄与できるようになる。
これにより、白金等の高価な貴金属からなる触媒金属粒子の利用効率が向上し、ひいては燃料電池反応の効率向上を実現できる。
In the present invention, the catalyst treatment, particularly chemical treatment, is improved in the production process of the PFF.
That is, an acidic functional group is imparted to the surface of the catalyst support.
Here, as the acidic functional group, one or more of a hydroxyl group, a carboxyl group, a carbonyl group, a sulfonic acid group, a nitro group, and a phosphoric acid group can be used.
These acidic functional groups are imparted to the entire surface of the catalyst support. As a result, acidic functional groups are also imparted to the micropore collection surface.
The method for imparting the acidic functional group to the catalyst can be arbitrarily selected according to the characteristics of the acidic functional group dissolved in the solvent and the carrier, but is basically performed by bringing both into contact.
When the acidic functional group is imparted, it is preferable to employ a carrier on which the catalyst metal particles are not supported. Of course, even if the acidic functional group is brought into contact with the carrier carrying the catalyst metal particles (that is, the catalyst). Good.
In the PFF structure, the inside of the electrolyte membrane covering the catalyst is filled with generated water, so that the micropores of the carrier and the gaps between the catalyst particles are also filled with water. Therefore, if there is an acidic functional group on the surface of the catalyst carrier constituting the micropores or gaps between the catalyst particles, protons are supplied from the acidic functional group to water. Therefore, even if the electrolyte does not sufficiently penetrate into the micropores and the gaps between the catalyst particles, this proton can contribute to the fuel cell reaction on the catalyst metal particles.
Thereby, the utilization efficiency of catalytic metal particles made of an expensive noble metal such as platinum is improved, and as a result, the efficiency of the fuel cell reaction can be improved.
以下、この発明の実施例の説明をする。
(固体酸担体の作成)
担体カーボン1gに30%過酸化水素水200mLを加え、48h室温で撹拌する。
これにより担体カーボン表面上にヒドロキシル基、カルボキシル基、カルボニル基が形成され、親水性となる。
過酸化水素等の酸化剤を用いた親水化処理以外に、120〜180℃においてO21%N2ガス中で2時間熱処理しても良い。
その後、ろ過して60℃3h真空乾燥する
以上を前処理として、より酸性の強い官能基を付加することが好ましい。
Examples of the present invention will be described below.
(Creation of solid acid carrier)
Add 200mL of 30% hydrogen peroxide to 1g of carrier carbon and stir at room temperature for 48h.
As a result, a hydroxyl group, a carboxyl group, and a carbonyl group are formed on the surface of the carrier carbon and become hydrophilic.
In addition to the hydrophilization treatment using an oxidizing agent such as hydrogen peroxide, heat treatment may be performed in O 2 1% N 2 gas at 120 to 180 ° C. for 2 hours.
Then, it is filtered and vacuum-dried at 60 ° C. for 3 hours. It is preferable to add a more acidic functional group as a pretreatment.
即ち、上記の前処理によりより得られたカーボン担体を1.0mol/L硝酸200mL中で24h室温撹拌する。
前処理で官能基を付けて置く事により、よりマイルドな条件で、即ち担体にダメージを与えることなく、より酸性の強い酸性官能基を付けることが可能となる。
硝酸だけでなく、硫酸0.5mol/L、リン酸0.3mol/L、あるいは、硝酸またはリン酸と硫酸の混合液を用いることができる。
その後、ろ過して60℃3h真空乾燥する。更に、150℃2h、N2フロー中で熱処理し、カーボン上に官能基を固定する。更に、200℃2h水熱処理により、余分な酸を除去する。
That is, the carbon support obtained by the above pretreatment is stirred in 200 mL of 1.0 mol / L nitric acid for 24 hours at room temperature.
By attaching a functional group in the pretreatment, it is possible to attach a more acidic acidic functional group under milder conditions, that is, without damaging the support.
Not only nitric acid but also 0.5 mol / L sulfuric acid, 0.3 mol / L phosphoric acid, or nitric acid or a mixture of phosphoric acid and sulfuric acid can be used.
Then, it is filtered and vacuum dried at 60 ° C. for 3 hours. Furthermore, heat treatment is performed in N2 flow at 150 ° C. for 2 hours to fix the functional group on the carbon. Furthermore, excess acid is removed by hydrothermal treatment at 200 ° C for 2 hours.
このようにして得られた固体酸担体へ触媒金属粒子を担持させる方法を以下に説明する。
(触媒金属粒子の担持)
(1) ヘキサヒドロキソPt酸1gに、硝酸8mLを水1Lに加え、60℃に加温する。
(2) (1)にNaHSO4 12g、水2Lをに加え、60℃に加温する。
(3) (2)に0.6M Na2CO3でpH5に調整する。
(4) (3)に過酸化水素35% 75mLを加え、5%NaOHでpH5に調整、40℃を保つ。
(5) 固体酸担体0.5gを水200mLに分散し、(4)に加え、超音波ホモジナイザで 30min撹拌する。
(6) (5)を50℃に保ち24hスターラで撹拌する。
(7) (6)を濾過、水洗し、60℃15h乾燥する。
(8) (7)を200℃3h水素雰囲気で熱処理し触媒を還元する。
A method for supporting the catalyst metal particles on the solid acid support thus obtained will be described below.
(Supporting catalyst metal particles)
(1) To 1 g of hexahydroxo Pt acid, add 8 mL of nitric acid to 1 L of water and warm to 60 ° C.
(2) Add 12 g of NaHSO 4 and 2 L of water to (1) and warm to 60 ° C.
(3) Adjust pH to 5 with 0.6M Na 2 CO 3 in (2).
(4) Add 75 mL of hydrogen peroxide 35% to (3), adjust to pH 5 with 5% NaOH, and maintain 40 ° C.
(5) Disperse 0.5 g of solid acid carrier in 200 mL of water, add to (4), and stir with an ultrasonic homogenizer for 30 min.
(6) Keep (5) at 50 ° C. and stir with a 24-hour stirrer.
(7) Filter (6), wash with water, and dry at 60 ° C. for 15 h.
(8) The catalyst is reduced by heat-treating (7) in a hydrogen atmosphere at 200 ° C. for 3 hours.
このようにして得られた触媒を用いて以下の方法で触媒ペーストを製造する。
(A) 触媒(Pt:50wt%)0.5gに対し水6gを加え、ハイブリッドミキサーで4min遠心攪拌する。
(B) 水を90g追加し、超音波ホモジナイザーで10min処理する。
(C) 1時間以上静置して触媒を沈殿させ、上澄みを除去する。
(D) 上記プレペーストの触媒:水比率が1:12になるように上澄みを除去する。
(E) 高分子電解質溶液(DE2020)の溶媒を加温して除去し、IPA:TBA=1:1溶液に高分子を再度溶解、5%溶液とする。
(F) (D)の触媒+水ペーストに対し、5gの(E)高分子電解質溶液を加え、ハイブリッドミキサーで4min混合攪拌する。
A catalyst paste is produced by the following method using the catalyst thus obtained.
(A) Add 6g of water to 0.5g of catalyst (Pt: 50wt%), and centrifuge for 4min with a hybrid mixer.
(B) Add 90g of water and treat with an ultrasonic homogenizer for 10 min.
(C) Let stand for 1 hour or more to precipitate the catalyst, and remove the supernatant.
(D) The supernatant is removed so that the catalyst: water ratio of the pre-paste is 1:12.
(E) The solvent of the polymer electrolyte solution (DE2020) is removed by heating, and the polymer is dissolved again in the IPA: TBA = 1: 1 solution to form a 5% solution.
(F) To the catalyst + water paste of (D), 5 g of (E) polymer electrolyte solution is added and mixed and stirred with a hybrid mixer for 4 minutes.
このようにして得られた触媒ペーストを拡散層としてのカーボンペーパーにスクリーン印刷で塗布し、さらに熱風乾燥して電極とする。この電極を高分子電解質膜へ140℃、40kg/cm2の条件で熱圧着し、実施例の燃料電池とした。
アノード及びカソードとも80℃、40%RHの低加湿条件としたときの燃料電池のI−V特性を図6に示す。図6において、比較例は担体へ酸性官能基を何ら付与しなかったとき(固体酸担体の作成を省略したとき)の結果である。
図6の結果より、低加湿条件において実施例のI−V特性が高いことがわかる。
The catalyst paste thus obtained is applied to carbon paper as a diffusion layer by screen printing, and further dried with hot air to obtain an electrode. This electrode was thermocompression bonded to the polymer electrolyte membrane at 140 ° C. and 40 kg / cm 2 to obtain a fuel cell of the example.
FIG. 6 shows the IV characteristics of the fuel cell when both the anode and the cathode are under humidified conditions of 80 ° C. and 40% RH. In FIG. 6, the comparative example is the result when no acidic functional group is imparted to the carrier (when the production of the solid acid carrier is omitted).
From the results of FIG. 6, it can be seen that the IV characteristics of the examples are high under low humidification conditions.
アノード、カソードとも80℃40%RHの低加湿及び80℃100%RHの高加湿でサイクリックボルタンメトリーにより電気化学表面積(ECSA)を測定した。
低加湿時のECSAと高加湿時のECSAの比(低加湿ECSA/高加湿ECSA)の値はそれぞれ
実施例:0.64
比較例:0.54 であった。
このように、低加湿ECSA/高加湿ECSAの値は実施例の方が高く、低湿度においても触媒近傍の湿潤が保たれていることがわかる。
Electrochemical surface area (ECSA) was measured by cyclic voltammetry at 80 ° C 40% RH low humidity and 80 ° C 100% RH high humidity for both anode and cathode.
The ratio of ECSA at the time of low humidification and ECSA at the time of high humidification (low humidification ECSA / high humidification ECSA) is respectively Example: 0.64
Comparative example: 0.54.
Thus, the values of the low humidified ECSA / highly humidified ECSA are higher in the Examples, and it is understood that the wetness in the vicinity of the catalyst is maintained even at the low humidity.
本発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。 The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.
C 触媒
C1 担体
C2 触媒金属粒子
E 電解質層
W 新水領域
C catalyst C1 carrier C2 catalyst metal particle E electrolyte layer W fresh water region
Claims (3)
触媒の担体へ酸性官能基を付与する酸性官能基付与ステップを含み、前記酸性官能基付与ステップは、前記担体へ弱酸性の酸性官能基を付与する第1の付与ステップと、該第1の付与ステップに続き強酸性の酸性官能基を付与する第2の付与ステップとを含む、ことを特徴とする触媒の製造方法。 A method for producing a catalyst for a reaction layer of a fuel cell having a PFF structure,
An acidic functional group imparting step for imparting an acidic functional group to the support of the catalyst, wherein the acidic functional group imparting step includes a first imparting step for imparting a weakly acidic acidic functional group to the support; and the first imparting step And a second imparting step of imparting a strongly acidic acidic functional group following the step.
前記第2のステップは前記担体と硝酸水溶液、硫酸水溶液若しくはそれらの混合水溶液とを接触させることにより行なう、ことを特徴とする請求項1に記載の触媒の製造方法。 The first step is performed by contacting the carrier with hydrogen peroxide solution,
The method for producing a catalyst according to claim 1, wherein the second step is performed by bringing the carrier into contact with an aqueous nitric acid solution, an aqueous sulfuric acid solution, or a mixed aqueous solution thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011211901A JP5839176B2 (en) | 2011-09-28 | 2011-09-28 | Catalyst production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011211901A JP5839176B2 (en) | 2011-09-28 | 2011-09-28 | Catalyst production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013071053A JP2013071053A (en) | 2013-04-22 |
JP5839176B2 true JP5839176B2 (en) | 2016-01-06 |
Family
ID=48475988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011211901A Expired - Fee Related JP5839176B2 (en) | 2011-09-28 | 2011-09-28 | Catalyst production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5839176B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102113122B1 (en) * | 2017-01-20 | 2020-05-21 | 효성화학 주식회사 | Method of preparing dehydrogenation catalysts |
CN114892215B (en) * | 2022-05-17 | 2023-07-07 | 重庆工商大学 | Organic ligand modified Cu (OH) 2 Cu core-shell structure catalyst and preparation method and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002324557A (en) * | 2001-04-27 | 2002-11-08 | Mitsubishi Electric Corp | Solid polymer fuel cell |
JP4896393B2 (en) * | 2004-11-12 | 2012-03-14 | 株式会社エクォス・リサーチ | Method for producing fuel cell electrode paste, method for producing fuel cell electrode, method for producing membrane electrode assembly of fuel cell, and method for producing fuel cell system |
JP5157041B2 (en) * | 2005-03-31 | 2013-03-06 | 株式会社エクォス・リサーチ | Micro / nanocapsule, catalyst layer for fuel cell, fuel cell, and method for producing micro / nanocapsule |
JP2006286330A (en) * | 2005-03-31 | 2006-10-19 | Equos Research Co Ltd | Fuel cell and catalyst layer therefor |
-
2011
- 2011-09-28 JP JP2011211901A patent/JP5839176B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013071053A (en) | 2013-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5535339B2 (en) | Fuel cell, regenerative fuel cell and membrane electrode assembly (MEA) | |
JP5481820B2 (en) | Microporous layer and gas diffusion layer having the same | |
JP5561200B2 (en) | Method for producing catalyst and method for controlling characteristics of reaction layer for fuel cell using catalyst | |
JP6007389B2 (en) | Catalyst production method and catalyst | |
WO2011083842A1 (en) | Apparatus for production of catalyst layer for fuel cell, method for production of catalyst layer for fuel cell, polyelectrolyte solution, and process for production of polyelectrolyte solution | |
JP6964219B2 (en) | A catalyst layer, a fuel cell using the catalyst layer, and a method for manufacturing the catalyst layer. | |
JP5839176B2 (en) | Catalyst production method | |
JP5483002B2 (en) | Polymer fuel cell electrode manufacturing method and polymer fuel cell electrode manufactured by the polymer fuel cell electrode manufacturing method | |
JP6857806B2 (en) | A metal particle-supporting catalyst for a fuel cell, a method for producing the same, and a fuel cell using the catalyst. | |
JP2011238485A (en) | Electrode for fuel cell, manufacturing method thereof, and fuel cell | |
Gharibi et al. | Fabrication of MEA based on sulfonic acid functionalized carbon supported platinum nanoparticles for oxygen reduction reaction in PEMFCs | |
JP5821330B2 (en) | Fuel cell catalyst manufacturing equipment | |
JP2013073852A (en) | Catalyst layer for fuel cell and production method therefor | |
JP2012074347A (en) | Method for producing catalyst paste and apparatus thereof | |
JP2005183263A (en) | Porous structure | |
WO2011125716A1 (en) | Fuel cell reaction layer production method and catalyst paste production method | |
JP2013114901A (en) | Manufacturing method for catalyst layer for fuel cell and catalyst layer for fuel cell | |
JP2011014406A (en) | Ink for catalyst and catalyst layer formed using ink for catalyst | |
JP2013016281A (en) | Production method of catalyst paste for fuel cell | |
JP2012074346A (en) | Method for producing catalyst paste and apparatus thereof | |
JP5761014B2 (en) | Method for producing fuel cell catalyst | |
CN103084167B (en) | Preparation method of proton exchange membrane fuel cell catalyst | |
JP2013073802A (en) | Production method of catalyst for fuel cell | |
JP2011159624A (en) | Device for manufacturing catalyst layer of fuel cell, method for manufacturing catalyst layer of fuel cell, polymer electrolytic solution, and method for manufacturing polymer electrolytic solution | |
WO2022172948A1 (en) | Method for producing electrode catalyst, method for producing gas diffusion electrode, and method for producing film-electrode joint body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151014 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151027 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5839176 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |