[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5834309B2 - Method and apparatus for compressing and bending metal tube - Google Patents

Method and apparatus for compressing and bending metal tube Download PDF

Info

Publication number
JP5834309B2
JP5834309B2 JP2011272726A JP2011272726A JP5834309B2 JP 5834309 B2 JP5834309 B2 JP 5834309B2 JP 2011272726 A JP2011272726 A JP 2011272726A JP 2011272726 A JP2011272726 A JP 2011272726A JP 5834309 B2 JP5834309 B2 JP 5834309B2
Authority
JP
Japan
Prior art keywords
bending
metal tube
conductive member
center
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011272726A
Other languages
Japanese (ja)
Other versions
JP2013111651A (en
JP2013111651A5 (en
Inventor
渡辺 康男
康男 渡辺
Original Assignee
渡辺 康男
康男 渡辺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 渡辺 康男, 康男 渡辺 filed Critical 渡辺 康男
Priority to JP2011272726A priority Critical patent/JP5834309B2/en
Publication of JP2013111651A publication Critical patent/JP2013111651A/en
Publication of JP2013111651A5 publication Critical patent/JP2013111651A5/ja
Application granted granted Critical
Publication of JP5834309B2 publication Critical patent/JP5834309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

本発明は、金属管の圧縮曲げ方法とその装置に関するもので、特に、金属管の減肉を抑制することができる圧縮曲げ方法とその装置に関するものである。  The present invention relates to a method and an apparatus for compressing and bending a metal tube, and more particularly, to a method and an apparatus for compressing and bending which can suppress metal thinning of the metal tube.

金属管を曲げ加工すると、曲げ外側の肉厚が減少するので、それを防止するために種々の方法、装置が開発されている。
特許文献1(特開昭54−8154号公報)に記載された発明には、圧縮力を与えながら曲げ加工して減肉をゼロに出来ることが記載されている。
When a metal tube is bent, the thickness on the outer side of the bend decreases, and various methods and apparatuses have been developed to prevent this.
The invention described in Patent Document 1 (Japanese Patent Laid-Open No. 54-8154) describes that the thickness can be reduced to zero by bending while applying a compressive force.

また特許文献1には、駆動装置が1箇所の場合と2箇所の場合があることが示され、その各々の場合について、圧縮曲げの原理を示すダイヤグラム的な図が当該文献の第5図、第6図、第7図に示されている。
第5図は、駆動装置が1箇所の場合、第6、第7図は、駆動装置が2箇所の場合のダイヤグラム的な図である。
Patent Document 1 shows that there are cases where there are one drive device and two drive devices. For each case, a diagram showing the principle of compression bending is shown in FIG. It is shown in FIG. 6 and FIG.
FIG. 5 is a diagrammatic view when there is one drive device, and FIGS. 6 and 7 are diagrammatic views when there are two drive devices.

特許文献1の発明は、駆動部が1箇所、2箇所、何れも優れた金属管の圧縮曲げ方法として用いられており、特に、駆動部が二箇所の圧縮ベンダーは適応範囲が広く、操作性が良いため最もよく用いられている。一方、駆動部が一箇所の圧縮ベンダーは、主に単機能の圧縮ベンダーとして用いられている。  The invention of Patent Document 1 is used as a compression bending method for a metal tube, which has an excellent drive part at one place and two places, and in particular, a compression bender with two drive parts has a wide range of applications and operability. Because it is good, it is most often used. On the other hand, a compression vendor having a single drive unit is mainly used as a single-function compression vendor.

因みに特許文献1に記載された駆動装置が一箇所の圧縮ベンダーの基本原理を、図3を参照しながら説明する。  Incidentally, the basic principle of the compression bender in which the drive device described in Patent Document 1 is provided will be described with reference to FIG.

図3は、駆動部が一箇所の圧縮ベンダーの従来技術の説明図で、特許文献1の第5図を説明用に書き換えたものである。
図3において、D点に油圧シリンダー9’(曲げシリンダー)が搭載されている。
駆動部が一箇所の圧縮ベンダーの基本的な原理は下記のようになる。
すなわち、曲げモーメントMは
M=(R−r)P (1)
一方、Mは加熱部Aに於いて管(1)を曲げるためのモーメントであって
M=SZ (2)
ここで、
Sは加熱温度における塑性変形抵抗、
Zは管(1)の塑性変形の断面係数となる。
式(1)、(2)より
P=SZ/(R−r) (3)
となる。
いま r=0即ちD点がF点の位置に移った時(通常曲げ)の、Pの値をPとすると、
=SZ/R=M/R (4)
となり、
式(3)を式(4)で割れば、
P/P=R/(R−r)=n (5)
となる。
従って、nの値を大きく、即ち、rをRに近づけるとPの値は大きくなる。
nの値は必要に応じて大きくできるが、曲げ半径が1.5Dr(曲げ半径Rが管径の1.5倍)の曲げで減肉率を0%に抑制するには、実用的には5〜6程度にすれば良いことが判っている。
FIG. 3 is an explanatory diagram of the prior art of a compression bender with a single drive unit, which is a rewrite of FIG. 5 of Patent Document 1 for explanation.
In FIG. 3, a hydraulic cylinder 9 ′ (bending cylinder) is mounted at point D.
The basic principle of a compression bender with one drive is as follows.
That is, the bending moment M is
M = (R−r) P (1)
On the other hand, M is a moment for bending the pipe (1) in the heating section A.
M = SZ (2)
here,
S is the plastic deformation resistance at the heating temperature,
Z is a section modulus of plastic deformation of the tube (1).
From equations (1) and (2)
P = SZ / (R−r) (3)
It becomes.
When r = 0, that is, when the point D moves to the position of the point F (normal bending), the value of P is P 0 .
P 0 = SZ / R = M / R (4)
And
Dividing equation (3) by equation (4) gives
P / P 0 = R / (R−r) = n (5)
It becomes.
Therefore, the value of P increases as the value of n increases, that is, as r approaches R.
The value of n can be increased as necessary, but in order to suppress the thinning rate to 0% by bending with a bending radius of 1.5 Dr (bending radius R is 1.5 times the tube diameter), it is practically It has been found that it should be about 5-6.

本方式の利点は駆動部が油圧シリンダー9’一箇所で済むため、構造が簡単になることである。
ここで、減肉率を0に設定するための圧縮車輪の半径rを、nの値を仮に6として求めてみる。
式(5)を変換してrを求めると、
r=(n−1)R/n=5R/6
となる。
圧縮車輪の半径rを、曲げ半径Rの5/6にすると、n=6となることが判る。
従って、図3に示す油圧シリンダー9’の引張力Pは、圧縮車輪の半径rを曲げ半径Rの5/6にすれば
=nP=6P
となる。
当然、このPは金属管に付与される圧縮力Pに等しい。
このように本方法は、圧縮車輪の半径rを曲げ半径Rに近づけることで大きな圧縮力を発生させることができるので減肉防止には極めて効果的な方法である。
しかし、図に示すように駆動装置が一箇所の油圧シリンダー9’を用いているので、油圧シリンダー9’、伝導部材11および圧縮車輪14は圧縮力に耐えるものにしなければならず極めて大型となると言った欠点もある。尚、駆動装置が一箇所の場合の圧縮曲げ方法は、オーステナイト系ステンレス鋼管の曲げに用いられており、装置の構成は、特許文献2(特公昭58−927号公報)の第1図に示されている。
The advantage of this system is that the structure is simple because the drive section is only required in one place.
Here, the radius r of the compression wheel for setting the thinning rate to 0 is obtained by assuming that the value of n is 6.
When r is obtained by converting equation (5),
r = (n-1) R / n = 5R / 6
It becomes.
It can be seen that when the radius r of the compression wheel is 5/6 of the bending radius R, n = 6.
Accordingly, the tensile force P 1 of the hydraulic cylinder 9 'shown in FIG. 3, if the 5/6 of the radius R bending radius r of the compression wheel
P 1 = nP 0 = 6P 0
It becomes.
Of course, this P 1 is equal to the compressive force P applied to the metal tube.
As described above, this method is a very effective method for preventing the thinning because a large compressive force can be generated by bringing the radius r of the compression wheel close to the bending radius R.
However, as shown in the figure, since the drive device uses one hydraulic cylinder 9 ', the hydraulic cylinder 9', the conductive member 11 and the compression wheel 14 must withstand the compressive force and become extremely large. There are also some drawbacks. The compression bending method in the case of a single drive device is used for bending austenitic stainless steel pipes, and the structure of the device is shown in FIG. 1 of Patent Document 2 (Japanese Patent Publication No. 58-927). Has been.

駆動部が二箇所の圧縮ベンダーの基本原理を、図2を参照しながら説明する。
図2は、駆動部が二箇所の圧縮ベンダーの従来技術の説明図で、特許文献1の第6図、第7図を説明用に書き換えたものである。
The basic principle of a compression bender with two drive units will be described with reference to FIG.
FIG. 2 is an explanatory diagram of the prior art of a compression bender with two driving parts, and is rewritten from FIG. 6 and FIG. 7 of Patent Document 1 for explanation.

図2において、D点に油圧シリンダー9’(ブレーキシリンダー),F点に油圧シリンダー9(曲げシリンダー)が搭載されている。
減肉率αと加熱部A点に付与する圧縮力P=P+Pの関係は公知であり、すでに理論的に整理され日常的に利用されているが、所望の減肉率αを設定するための圧縮力Pの計算は、複雑な数値演算と多少の補正係数等を用いて行うので、高度な演算機能が必要で、又、曲げ精度を確保する為にはミクロンオーダー(0.001mm単位)の位置決め精度を有するサーボ弁を備えた油圧シリンダー等を用いる必要があり、その為に従来装置では、制御装置及び駆動部が極めて高価となる欠点を有している。
In FIG. 2, a hydraulic cylinder 9 '(brake cylinder) is mounted at point D, and a hydraulic cylinder 9 (bending cylinder) is mounted at point F.
The relationship between the thinning rate α and the compression force P = P 1 + P 2 applied to the heating part A is well known and has already been theoretically arranged and used on a daily basis, but the desired thinning rate α is set. Since the calculation of the compression force P is performed using complicated numerical calculations and some correction factors, an advanced calculation function is required, and in order to ensure bending accuracy, it is in the micron order (0.001 mm It is necessary to use a hydraulic cylinder or the like having a servo valve having a positioning accuracy of (unit). For this reason, the conventional device has a drawback that the control device and the drive unit are extremely expensive.

前記したように、従来の金属管曲げ加工方法は、駆動部が1箇所、2箇所、何れの方法も広く賞用されており、特に、駆動部が二箇所の圧縮ベンダーは、その適応範囲が広く、操作性が良いため最もよく用いられているが、少品種多量生産には、その構造および操作性の悪さから単位生産性が低く価格が割高となると言った問題があった。
たとえば近年、配管工事の効率化を図るため、市販のエルボの両端に短管部を付けた減肉を抑制した特殊エルボの需要が増加しているが、このような安価な量産品の製造にはコスト的に対応できない問題があった。
生産量を増やすには単純にベンダーの機数を増やして対応する方法もあるが、従来の駆動装置が一箇所の圧縮ベンダーと駆動装置が二箇所の圧縮ベンダーの何れにも以下のような問題点がある。
As described above, the conventional metal tube bending method is widely used for either one or two drive units, and in particular, a compression bender having two drive units has an applicable range. It is widely used because it is wide and easy to operate. However, there is a problem that unit production is low and the price is high due to its structure and poor operability.
For example, in recent years, there has been an increase in demand for special elbows that suppress the thinning by attaching short pipes to both ends of commercial elbows in order to improve the efficiency of piping work. There was a problem that could not cope with the cost.
There is a method to increase the number of vendors by simply increasing the number of vendors, but the conventional drive unit has the following problems in both the compression bender with one drive unit and the compression bender with two drive units. There is a point.

駆動装置が一箇所の圧縮ベンダーの場合
図12に示すように、所望の減肉率を得るのに必要な金属管1に加える軸方向圧縮力をPとするために、圧縮車輪14に張力Pを加える駆動装置9’(曲げシリンダー)を装備するだけで、所望の減肉率を得るのに必要な圧縮力P(図からP−Pであることは明らか)が付与できる。
駆動装置が一箇所で済むことからシンプルであり操作も簡単なので安価な特殊エルボ等の生産に適した圧縮ベンダーと言える。しかし、必要な圧縮力Pを一箇所の駆動装置で発生させる為、駆動装置9’に繋がる伝導部材11、圧縮車輪14等が大径管の曲げでは極めて大形となる欠点があり、このことから駆動装置が一箇所の圧縮ベンダーであってもかなり高価なものとなり、量産のためにベンダーの機数を増やして対応することは経済的に困難な状況である。
In the case where the drive device is a single compression bender, as shown in FIG. 12, the tension P is applied to the compression wheel 14 so that the axial compression force applied to the metal tube 1 necessary to obtain a desired thickness reduction rate is P. A compression force P (which is clearly P-P 1 from the figure) necessary to obtain a desired thickness reduction rate can be applied only by installing a drive device 9 '(bending cylinder) for adding 1 .
It can be said to be a compression bender suitable for the production of inexpensive special elbows because it is simple and easy to operate because it only requires a single drive. However, since the necessary compression force P is generated by one drive device, there is a disadvantage that the conductive member 11 and the compression wheel 14 connected to the drive device 9 'become extremely large when the large-diameter pipe is bent. Therefore, even if the drive device is a single compression vendor, it becomes quite expensive, and it is economically difficult to respond by increasing the number of vendors for mass production.

駆動装置が二箇所の圧縮ベンダーの場合
図13に示すように、所望の減肉率を得るのに必要な金属管1に加える軸方向圧縮力をPとするために、旋回軸6に張力Pを加える駆動装置9(曲げシリンダー)、圧縮車輪14に張力Pを加える駆動装置9’(ブレーキシリンダー)を装備する必要があり、又、所望の減肉率を得るのに必要な前記圧縮力P、張力P、Pを内蔵の演算用ソフトを用いて求めて曲げ加工中にその演算結果に基づいて制御・調整する機能を持った高精度の演算機能付制御装置(図示せず)を必要とする等、高価な機器を装備する必要があった。
このことから駆動装置が二箇所の圧縮ベンダーは大変高価なものとなり、量産のためにベンダーの機数を増やして対応することは経済的に極めて困難な状況にある。
In the case where the drive device is a compression bender at two locations As shown in FIG. 13, in order to set the axial compression force applied to the metal tube 1 necessary for obtaining a desired thickness reduction rate to P, the tension P is applied to the pivot shaft 6. drive 9 adding 1 (bending cylinders), tensioning P 2 to the compression wheel 14 drive 9 'must be equipped with (brake cylinder), also required the compression to obtain the desired thinning rate A control device with a high-precision calculation function (not shown) having a function of obtaining the force P and the tensions P 1 and P 2 using a built-in calculation software and controlling and adjusting based on the calculation result during bending. ), Etc., and expensive equipment was necessary.
For this reason, a compression bender with two drive units is very expensive, and it is extremely difficult to increase the number of vendors for mass production.

以上の観点から両端に短管部(ネック)を有する特殊エルボ(金属管の曲げ加工品)を安価に量産するためには、構造が単純で、生産性が高く、かつ価格が安価な専用の曲げ加工装置の開発が急務であった。  From the above viewpoint, in order to mass-produce special elbows (bending products of metal pipes) with short pipe parts (neck) at both ends at low cost, the structure is simple, the productivity is high, and the price is low. There was an urgent need to develop a bending machine.

特開昭54−8154号公報JP-A-54-8154 特公昭58−927号号公報Japanese Patent Publication No.58-927

本願発明はかかる状況に鑑みてなされたものであって、その目的は、両端にネックを有する特殊エルボの減肉を抑制して安価に量産することを可能にする、構造が単純で、生産性が高く、かつ価格が安価な曲げ加工装置とその曲げ加工方法を提供することである。  The present invention has been made in view of such a situation, and its purpose is to reduce the thickness of a special elbow having necks at both ends and to enable mass production at a low cost, with a simple structure and productivity. It is to provide a bending apparatus and a bending method that are expensive and inexpensive.

本発明者は前記課題に関して鋭意研究を行った結果、下記の知見を得た。
すなわち、減肉率αで金属管を曲げ加工するに際して、曲げ加工すべき金属管に対し曲げ中心から引いた垂線の足を点Aとし、該金属管の先部を点Aより前方の特定位置に於いて、曲げ中心の回りを回転自在の曲げアームに、その有効半径が所定の曲げ半径Rとなるようにクランプし、該曲げアームに、該曲げアームと回転の中心を共有する有効半径がrで、該曲げ半径Rより曲げ外側に、下記(1・1)式より計算される偏差eだけ大きいr=R+eである滑車、鎖車等の圧縮車輪を固定または嵌装する一方、該金属管の後方に位置した基台上のテールクランプ装置に該金属管後部をクランプしてなると共に、チェーン、鋼索等の伝導部材を該圧縮車輪で支持した状態で、該基台上に於いて該金属管の中心から曲げ外側に偏差eだけ離れた位置に設けた緩み調整装置と曲げアームに連結して、該伝導部材を該緩み調整装置を用いて一直線に張架して固定した後、該金属管を適宜の駆動装置を用いて移動すると、該駆動装置に力Pが発生して曲げ加工が始まり、これにより該伝導部材に反力Pが誘発されるので、該金属管には両者の和である圧縮力P=P+Pの力が付与される。
この圧縮力Pを付与しながら基台と曲げ中心との距離を徐徐に縮めると共に点Aに於いて適宜の加熱装置により金属管を狭幅に加熱しながら曲げ加工しても、金属管中心から偏差eの位置の肉厚は伸びが抑えられているので素管肉厚に保持され曲げ加工中も変動しないことを見出した。
As a result of intensive studies on the above problems, the present inventor has obtained the following knowledge.
That is, when bending a metal tube with a thinning rate α, a perpendicular foot drawn from the bending center with respect to the metal tube to be bent is a point A, and the tip of the metal tube is a specific position in front of the point A. In this case, the bending arm that is rotatable around the bending center is clamped so that the effective radius becomes a predetermined bending radius R, and the bending arm has an effective radius that shares the center of rotation with the bending arm. At r, a compression wheel such as a pulley, a chain wheel, or the like having r = R + e larger than the bending radius R by a deviation e calculated by the following equation (1 · 1) is fixed or fitted, and the metal The rear end of the metal pipe is clamped to a tail clamp device on the base located behind the pipe, and a conductive member such as a chain or a steel cable is supported by the compression wheel, and the base on the base. Deviation e away from the center of the metal tube After connecting the slack adjusting device and the bending arm provided in the apparatus, the conductive member is stretched and fixed in a straight line using the slack adjusting device, and then the metal tube is moved using a suitable driving device, Since a force P 2 is generated in the driving device and bending is started, a reaction force P 1 is induced in the conductive member, so that the compression force P = P 1 + P 2 which is the sum of both is applied to the metal pipe. The power of is given.
Even if the metal tube is bent while being narrowly heated by an appropriate heating device at the point A while the compressive force P is applied, the distance between the base and the bending center is gradually reduced. It has been found that the thickness at the position of the deviation e is kept at the blank thickness because the elongation is suppressed and does not change during bending.

因みに、前記緩み調整装置は、伝導部材を連結する節点12を片端とするスタットボルトを、該緩み調整装置に固定した軸受を貫通させてナットで締め付けるスクリュウジャッキ状の構成としたものである。勿論、スクリュウジャッキを油圧ジャッキに置き換えても良い。  Incidentally, the looseness adjusting device has a screw jack-like configuration in which a stat bolt having one end of the node 12 connecting the conductive member is passed through a bearing fixed to the looseness adjusting device and tightened with a nut. Of course, the screw jack may be replaced with a hydraulic jack.

更に、前記緩み調整装置は偏差eを適宜に設定できるように金属管の直角方向に移動できる構成としてある。(図示せず)  Further, the looseness adjusting device is configured to be movable in the direction perpendicular to the metal tube so that the deviation e can be set appropriately. (Not shown)

そして偏差eと減肉率の関係は、図8(a),(b)を利用して求めた式(1・1)により、幾何学的に極めて容易に求められるので、従来方式のように高度の演算や過去のデータに基づいて圧縮力Pを決定する必要もなく精度の高い圧縮曲げが容易に行なえることを見出した。  The relationship between the deviation e and the thinning rate can be obtained very easily geometrically by the formula (1 · 1) obtained using FIGS. 8 (a) and 8 (b). It has been found that it is possible to easily perform highly accurate compression bending without the need to determine the compression force P based on advanced calculations and past data.

また伝導部材に誘発される反力Pは必要な圧縮力Pから駆動装置の力Pを減じたものであるから伝導部材や圧縮車輪に加わる応力を低減でき、曲げ加工装置を小形化、単純化、低価格化できることを見出した。In addition, the reaction force P 1 induced by the conductive member is obtained by subtracting the driving force P 2 from the required compressive force P. Therefore, the stress applied to the conductive member and the compression wheel can be reduced, and the bending apparatus can be downsized. We found that it can be simplified and priced down.

また曲げ加工中にチェーン、鋼索等の伝導部材が伸びると、反力が低減して希望の減肉率が得られなくなるが、曲げ加工中の伝導部材の伸びを見込んで偏差eを多めに設定することで解決できることも見出した。
本発明請求項1の発明は、以上の知見を基になされたものである。
In addition, if a conductive member such as a chain or steel cord is stretched during bending, the reaction force will be reduced and the desired thickness reduction will not be obtained. However, the deviation e is set to be large in consideration of the elongation of the conductive member during bending. I also found out that this could be solved.
The invention of claim 1 of the present invention has been made based on the above knowledge.

前記したように、伝導部材の伸びによる減肉率の低減を防ぐためには、伝導部材の伸びを見込んで偏差eを多めに設定すればよいが、繰返し使用により伝導部材に永久歪が発生した場合、偏差eを正確に設定できなくなる欠点がある。
伝導部材の永久歪による減肉率の低減を防ぐためには、伝導部材にロードセルをセットし、緩み調整装置を用いて曲げ加工中に生じる反力に相当する張力を伝導部材に加えて張架した後、曲げ加工することで解決できることが判明した。そしてロードセルは伝導部材のアームクランプ側、若しくは中間クランプ側の節点近傍に取付ければよいことが判明した。
請求項2の発明は以上の知見に基づいてなされたものである。
As described above, in order to prevent the reduction of the thinning rate due to the elongation of the conductive member, the deviation e may be set in consideration of the elongation of the conductive member, but when the permanent deformation occurs in the conductive member due to repeated use There is a disadvantage that the deviation e cannot be set accurately.
In order to prevent the reduction of the thinning rate due to permanent deformation of the conductive member, a load cell is set on the conductive member, and the tension corresponding to the reaction force generated during bending is applied to the conductive member using a slack adjusting device and stretched. Later, it was found that this could be solved by bending. It has been found that the load cell may be attached to the arm clamp side of the conductive member or in the vicinity of the node on the intermediate clamp side.
The invention of claim 2 has been made based on the above findings.

前記請求項1および請求項2の発明を実施するための金属管の圧縮曲げ装置は下記の構成からなる。
すなわち、曲げ加工すべき金属管の長手方向の狭幅領域を加熱する加熱装置と、該加熱装置を移動する装置と、該金属管に対し曲げ中心から引いた垂線の足点Aより前方の該金属管の特定位置をクランプする回転自在な曲げアームと、該曲げアームと回転の中心を共有する圧縮車輪と、該金属管の後方に位置する基台と、該基台上に配置され該金属管の後部をクランプするテールクランプ装置と、該基台上において該金属管の中心から下記(1・1)式より計算される偏差eだけ離れた位置に設けた緩み調整装置と、該緩み調整装置を起点に該圧縮車輪で支持した状態で該曲げアームに連結した伝導部材と、該基台と曲げ中心との距離を可変する駆動装置を備えてなることを特徴とするものである。
A metal pipe compression bending apparatus for carrying out the inventions of the first and second aspects has the following configuration.
That is, a heating device that heats a narrow region in the longitudinal direction of the metal tube to be bent, a device that moves the heating device, and the forward point A of the perpendicular line drawn from the bending center with respect to the metal tube. A rotatable bending arm that clamps a specific position of the metal tube, a compression wheel that shares the center of rotation with the bending arm, a base located behind the metal tube, and the metal disposed on the base A tail clamp device for clamping the rear portion of the pipe, a slack adjusting device provided on the base at a position separated from the center of the metal pipe by a deviation e calculated by the following equation (1 · 1), and the slack adjustment A conductive member connected to the bending arm in a state of being supported by the compression wheel starting from a device, and a drive device that varies the distance between the base and the bending center.

本発明の基本的な原理を説明する。  The basic principle of the present invention will be described.

本発明装置は、駆動装置が一箇所で、他に反力発生機構を有する構造からなる。
図1は、本発明の基本的原理を説明する図である。
図1は、図2の油圧シリンダー9’を取り外して駆動装置を一箇所にしてなると共に、他に反力発生機構を有する構造である。
The device of the present invention has a structure in which the drive device is provided at one place and the reaction force generating mechanism is provided at the other place.
FIG. 1 is a diagram for explaining the basic principle of the present invention.
FIG. 1 shows a structure in which the hydraulic cylinder 9 ′ shown in FIG.

図1に示すように油圧シリンダー9’を取り外して伝導部材11をD点に固定して曲げ加工した場合について説明する。
図1に示すように、有効半径rが曲げ半径Rより曲げ外側に所望の偏差eだけ大きいr=R+eである圧縮車輪14に伝導部材11を金属管1に平行に一直線に張架して曲げ加工すると伝導部材11に反力(ブレーキ力)P、油圧シリンダー9に引張力(曲げ推力)Pが発生する。
金属管に付与される圧縮力Pは、
P=P+P
この場合のP、Pの値を求める。
As shown in FIG. 1, the case where the hydraulic cylinder 9 ′ is removed and the conductive member 11 is fixed at the point D and bent is described.
As shown in FIG. 1, the conductive member 11 is stretched in a straight line parallel to the metal tube 1 and bent on a compression wheel 14 in which the effective radius r is larger than the bending radius R by a desired deviation e by r = R + e. When processed, a reaction force (braking force) P 1 is generated in the conductive member 11, and a tensile force (bending thrust) P 2 is generated in the hydraulic cylinder 9.
The compressive force P applied to the metal tube is
P = P 1 + P 2
In this case, the values of P 1 and P 2 are obtained.

駆動装置が一箇所の従来発明と駆動装置が一箇所で反力発生機構を有する本願発明の作用効果の比較
以上の検討により明らかなように、駆動装置が一箇所の場合の曲げ推力は式(5)より
=nP=P
一方、本発明の駆動装置が一箇所でも反力発生機構を有する場合の曲げ推力
P=P+Pで、式(1・3)、(1・4)に示すように反力発生機構の反力Pと油圧シリンダーの引張力Pに分配されるので引張力Pは当然小さくなる。
Comparison of the effects of the conventional invention with one drive device and the present invention having the reaction force generation mechanism with one drive device As is clear from the above examination, the bending thrust in the case of one drive device is an expression ( From 5) P 1 = nP 0 = P
On the other hand, the bending thrust P = P 1 + P 2 in the case where the driving device of the present invention has a reaction force generation mechanism even at one location, and the reaction force generation mechanism of the reaction force generation mechanism as shown in equations (1 · 3) and (1 · 4). because it is distributed to the tensile force P 2 of the reaction force P 1 and the hydraulic cylinder tensile force P 2 is naturally small.

以上より、本発明では、駆動装置が一箇所であるにもかかわらず、圧縮負荷を二箇所に分割して、駆動装置にかかる負荷を大幅に軽減でき、駆動装置および駆動装置に繋がる伝導部材、圧縮車輪等を小さくできる著効がある。因みに、駆動装置が一箇所の従来装置の場合と比較して、n=6(減肉率0を実現する)と仮定した場合で、駆動装置にかかる圧縮負荷は、3/8まで軽減できることになる。  As described above, in the present invention, although the drive device is in one place, the compression load is divided into two places, the load applied to the drive device can be greatly reduced, and the conductive member connected to the drive device and the drive device, There is a remarkable effect to reduce the compression wheel. Incidentally, the compression load applied to the driving device can be reduced to 3/8 when n = 6 (realizing a thinning rate of 0) is assumed, compared with the case where the driving device is a single conventional device. Become.

ただし、図1は基本原理を説明するために線図を用い、金属管も単に1本の線で示してある。これは便宜上、金属管の曲げ中立軸が金属管の中心線上にあるとして描画したものだが、実際に圧縮曲げを行うと金属管の曲げの中立軸は圧縮力が増大する程金属管の背面側に移動するので、[数2][数3]に示す一連の計算式を用いて計算した本発明の曲げ推力Pと実測値とは異なってくる。
しかし、曲げの中立軸が金属管の背面側に移動するということは曲げRが拡大したことを示すもので、当然曲げ推力が低下する。これは本発明の有効性を更に高めるものである。
[数2][数3]に示す一連の計算式は基本原理を理解し易く説明するための目安の式であり、油圧シリンダーが一箇所の従来装置の曲げ推力Pと本発明の曲げ推力の比較は曲げ推力Pの実測値を用いて求めなければならない。
However, FIG. 1 uses a diagram for explaining the basic principle, and the metal tube is also shown by a single line. This is drawn for the sake of convenience, assuming that the bending neutral axis of the metal tube is on the center line of the metal tube. However, when the compression bending is actually performed, the neutral axis of the bending of the metal tube increases as the compressive force increases. Therefore, the bending thrust P 2 of the present invention calculated using a series of formulas shown in [Equation 2] and [Equation 3] differs from the actual measurement value.
However, the fact that the neutral axis of the bending moves to the back side of the metal tube indicates that the bending R has expanded, and naturally the bending thrust decreases. This further enhances the effectiveness of the present invention.
A series of formulas shown in [Formula 2] and [Formula 3] are reference formulas for explaining the basic principle in an easy-to-understand manner. The bending thrust P of the conventional apparatus having one hydraulic cylinder and the bending thrust of the present invention are shown in FIG. comparisons must be determined using measured values of the bending thrust P 2.

曲げ推力の設定
従来方法では、減肉率に応じて曲げ推力の設定を予め演算または過去の曲げデータにより設定して行わなければならない。
本発明でも、式(1・4)に従って曲げ推力を予め設定しなければならないように思われるが、偏差eの位置を幾何学的に設定して曲げ加工すれば所望の減肉率が得られ、油圧シリンダーの引張力P(曲げ推力)が必要なだけ自動的に発生するのでその必要はない。
Setting the bending thrust In the conventional method, the bending thrust must be set in advance by calculation or past bending data in accordance with the thinning rate.
Even in the present invention, it seems that the bending thrust must be set in advance according to the formula (1 · 4). However, if the position of the deviation e is set geometrically and bending is performed, a desired thickness reduction rate can be obtained. This is not necessary since the hydraulic cylinder's tensile force P 2 (bending thrust) is automatically generated as much as necessary.

本発明(請求項1)によれば、
曲げ加工中に、金属管の中心から偏差eの位置に発生する金属管の伸びを、チェーン、鋼索等の伝導部材で単に抑えることで、減肉率を容易に調整することが出来る(簡便な手段で減肉率を容易に調整することが出来る)。
駆動装置が一箇所の従来型の曲げ装置に比較して駆動装置に繋がる伝導部材、圧縮車輪等を小さくできるので、装置を軽量化できる。
また駆動装置が二箇所の従来型の曲げ装置に比較して高精度の駆動装置を用いる必要もなく、また、演算機能付制御装置を取付ける必要もないので、装置の構造を単純化、軽量化できるので、軽量で操作性が良く生産性の高い圧縮曲げ加工装置を安価に製造できる。
従って、この装置を使用することでネック付エルボの様なベンド管(金属管曲げ加工品)を安価に量産することが出来る。
また、本発明(請求項2)によれば、曲げ加工中に生じるチェーン、鋼索等の伝導部材の伸びの影響を除外できるので、減肉率の安定したベンド管の生産を実現することができる。
According to the present invention (Claim 1),
The metal thinning rate can be easily adjusted by simply suppressing the elongation of the metal tube that occurs at the position of deviation e from the center of the metal tube during bending with a conductive member such as a chain or steel cable (simple The thinning rate can be easily adjusted by means).
Compared to a conventional bending device with one driving device, the conductive member, compression wheel, etc. connected to the driving device can be made smaller, so that the device can be reduced in weight.
In addition, there is no need to use a high-precision drive device compared to a conventional bending device with two locations, and it is not necessary to install a control device with a calculation function, so the structure of the device is simplified and reduced in weight. Therefore, it is possible to manufacture a compression bending apparatus that is lightweight, easy to operate and high in productivity at low cost.
Therefore, by using this apparatus, it is possible to mass-produce a bend pipe (metal pipe bent product) like an elbow with a neck at a low cost.
In addition, according to the present invention (Claim 2), it is possible to eliminate the influence of the elongation of the conductive member such as the chain and the steel cord generated during the bending process, so that it is possible to realize the production of the bend pipe having a stable thickness reduction rate. .

実施の形態1
図4は、金属管を固定して、アームと加熱装置を移動させて金属管を曲げ加工する金属管圧縮曲げ装置を使用して請求項1の発明を実施する時の説明図である。なお本例は垂直曲げ加工の場合である。
図4の(A)は曲げ加工する直前の状態を説明する図であり、(B)は曲げ加工途中の状態を説明する図である。
Embodiment 1
FIG. 4 is an explanatory view when the invention of claim 1 is carried out using a metal pipe compression bending apparatus that fixes a metal pipe and moves an arm and a heating device to bend the metal pipe. This example is a case of vertical bending.
4A is a diagram for explaining a state immediately before bending, and FIG. 4B is a diagram for explaining a state during bending.

図4(A)において、金属管1を、加熱部を挟んだ両端側に設けたクランプ3、7にクランプする。
クランプ3、7は、伝導部材11と連結されている。
なお伝導部材11はチェーン、鋼索等の力の伝導部材を意味し、本図はチェーンの場合である。
伝導部材11は、クランプ3、7に設けた節点12、13に連結されており、伝導部材11および節点12、13が、金属管1の曲げ半径Rより曲げ外側に偏差eだけ大きい軸線上に位置し、かつ一直線になるように、緩み調整装置18で調節して張架、固定し、かつ、曲げアーム4の旋回軸6と同心の圧縮車輪14で伝導部材11を支持した状態で、基台8に配設した油圧シリンダー9を駆動して移動台15を引き寄せながら、加熱装置19で金属管1を加熱冷却しながら、加熱装置19を相対的に移動させながら金属管1に曲げ推力を加えて曲げ加工すると、シリンダーロット10に張力P、伝導部材11に反力Pが発生し、金属管1の加熱部(曲げ点A)には曲げ推力Pと反力Pの和である圧縮力Pが付与される。
この圧縮力Pの付与によって、金属管1は減肉を高精度に抑制され、高精度の曲管が形成される。
In FIG. 4 (A), the metal tube 1 is clamped to clamps 3 and 7 provided on both ends of the heating unit.
The clamps 3 and 7 are connected to the conductive member 11.
The conductive member 11 means a conductive member of force such as a chain or a steel cable, and this figure is a case of a chain.
The conductive member 11 is connected to the nodes 12 and 13 provided on the clamps 3 and 7, and the conductive member 11 and the nodes 12 and 13 are on an axis larger than the bending radius R of the metal tube 1 by a deviation e on the bending outer side. In the state where the transmission member 11 is supported by the compression wheel 14 concentric with the swivel axis 6 of the bending arm 4 and adjusted by the slack adjustment device 18 so as to be positioned and in a straight line. While driving the hydraulic cylinder 9 disposed on the table 8 and pulling the moving table 15, while heating and cooling the metal tube 1 with the heating device 19, the bending force is applied to the metal tube 1 while moving the heating device 19 relatively. in addition the bending is, the sum of the cylinder tension P 2 in lot 10, conductive member 11 to the reaction force P 1 is generated, the heating unit thrust P 2 in (bend point a) bending and the reaction force P 1 of the metal pipe 1 A compressive force P is applied.
By applying this compressive force P, the metal tube 1 is suppressed from thinning with high accuracy, and a highly accurate curved tube is formed.

偏差eは下記(1・1)式で求めることができる。
The deviation e can be obtained by the following equation (1 · 1).

予め減肉率αを所定の値に設定することで、αに対応するeを求めることが出来る。  By setting the thinning rate α to a predetermined value in advance, e corresponding to α can be obtained.

なお偏差eと減肉率αの関係式は図8より以下のようにして求められる。
図8の(a)は、垂直曲げを行った場合の金属管の断面図、(b)は金属管の横断面図であり、所望の減肉率を確保する曲げ中立軸と金属管中心からの偏差eの関係を示す図である。
EEが肉厚の変動しない中立軸位置である。ハッチング部に引張応力、他の部分に圧縮応力が作用する。
The relational expression between the deviation e and the thickness reduction rate α is obtained as follows from FIG.
FIG. 8A is a cross-sectional view of a metal tube when vertical bending is performed, and FIG. 8B is a cross-sectional view of the metal tube, from a bending neutral axis and a center of the metal tube to ensure a desired thickness reduction rate. It is a figure which shows the relationship of deviation e.
EE is a neutral axis position where the wall thickness does not vary. A tensile stress acts on the hatched portion and a compressive stress acts on other portions.

金属素管の肉厚t、曲げ管のT側の肉厚t、金属管の平均半径をρとした時、減肉率αは下記の式から導くことが出来る。The thickness reduction rate α can be derived from the following equation, where the thickness t 0 of the metal tube, the thickness t t on the T side of the bent tube, and the average radius of the metal tube are ρ.

実施例1
減肉率、偏差の計算例と実際の圧縮曲げ加工の実施例について述べる。
金属管1の平均半径をρ、曲げ半径Rをρのν倍、偏差eをρのχ倍として
R=3ρ、α=0にするには、式(1・5)より
χ=1−α(ν+1)=1
e=ρ
金属管の平均半径ρの位置にeを設定すれば良い。
Example 1
An example of calculating the thinning rate and deviation and an example of actual compression bending will be described.
To set R = 3ρ and α = 0, assuming that the average radius of the metal tube 1 is ρ, the bending radius R is ν times ρ, and the deviation e is χ times ρ, χ = 1−α from equation (1 · 5) (Ν + 1) = 1
e = ρ
What is necessary is just to set e in the position of the average radius (rho) of a metal pipe.

図4の装置を使用して、金属管の平均半径ρの位置にeを設定して、鉄鋼材料のSTPG38、寸法は、外径165.2mm、肉厚9.3mm、曲げ半径Rは234mm、曲げ角度90°、曲げ部の加熱温度は950℃で圧縮曲げ加工したときの金属管背面の肉厚のバラツキは下記の通りであった。
加工後の金属管の肉厚の測定は、曲げ始めの直管と曲管の境界部から10°、45°、80°の3箇所の背面肉厚を超音波肉厚計で測定した。
三箇所の肉厚の測定値は、いずれも9.3mm±2%の範囲内の値であり、この値は、油圧シリンダーが一箇所の従来装置で曲げ加工した時の金属管の肉厚のバラツキ範囲内であった。
Using the apparatus of FIG. 4, e is set at the position of the average radius ρ of the metal tube, and the STPG 38 of the steel material, the dimensions are the outer diameter 165.2 mm, the wall thickness 9.3 mm, the bending radius R is 234 mm, Variations in the thickness of the back surface of the metal tube when the bending angle was 90 ° and the heating temperature of the bent portion was 950 ° C. were as follows.
The thickness of the metal tube after processing was measured with an ultrasonic wall thickness meter at three positions 10 °, 45 °, and 80 ° from the boundary between the straight tube and the bent tube at the beginning of bending.
The measured values of the wall thickness at the three locations are all within the range of 9.3 mm ± 2%, and this value is the thickness of the metal tube when the hydraulic cylinder is bent with one conventional device. It was within the range of variation.

結果
以上の結果より、計算値と実際の曲げ加工データが整合することを確認することが出来た。
なお油圧シリンダーに負荷される曲げ推力を測定したところ、油圧シリンダーが一箇所の従来装置の概ね30%に低減できた。
Results From the above results, it was confirmed that the calculated values were consistent with the actual bending data.
When the bending thrust applied to the hydraulic cylinder was measured, the hydraulic cylinder was reduced to approximately 30% of the conventional device at one location.

更に、図4の装置を使用して、金属管の平均半径ρの位置にeを設定して、鉄鋼材料のSTPG38、寸法は、外径139.8mm、肉厚8.1mm、曲げ半径Rは198mm、曲げ角度90°、曲げ部の加熱温度は950℃で圧縮曲げ加工したときの金属管背面の肉厚のバラツキは下記の通りであった。
加工後の金属管の肉厚の測定は、実施例1と同じ。
肉厚のバラツキは、8.1mm±2%であった。
この値は、油圧シリンダーが一箇所の従来装置で曲げ加工した時の肉厚のバラツキ範囲内であった。
Further, by using the apparatus of FIG. 4, e is set at the position of the average radius ρ of the metal tube, the STPG 38 of the steel material, the dimensions are the outer diameter 139.8 mm, the wall thickness 8.1 mm, and the bending radius R is The thickness variation of the back surface of the metal tube when compression bending was performed at 198 mm, a bending angle of 90 °, and a heating temperature of the bending portion of 950 ° C. was as follows.
The measurement of the thickness of the metal tube after processing is the same as in Example 1.
The thickness variation was 8.1 mm ± 2%.
This value was within the range of variation in wall thickness when the hydraulic cylinder was bent with one conventional device.

結果
以上の結果より、計算値と実際の曲げ加工データが整合することを確認することが出来た。
なお油圧シリンダーに負荷される曲げ推力を測定したところ、計算値と良く整合し、油圧シリンダーが一箇所の従来装置の概ね30%に低減できた。
Results From the above results, it was confirmed that the calculated values were consistent with the actual bending data.
When the bending thrust applied to the hydraulic cylinder was measured, it was in good agreement with the calculated value, and the hydraulic cylinder was reduced to approximately 30% of the conventional device with one location.

実施例2
実施例1と同じ手順で計算した別の圧縮曲げ加工の実施例について述べる。
金属管1の平均半径をρ、曲げ半径Rをρのν倍、偏差eをρのχ倍として
R=3ρ、α=0.05にするには、式(1・5)より
χ=1−α(ν+1)=1−0.05(3+1)=0.8
e=0.8ρ
金属管の平均半径ρの0.8倍の位置にeを設定すれば良い。
Example 2
Another embodiment of compression bending calculated in the same procedure as in Embodiment 1 will be described.
In order to set R = 3ρ and α = 0.05, assuming that the average radius of the metal tube 1 is ρ, the bending radius R is ν times ρ, and the deviation e is χ times ρ, χ = 1 from Equation (1 · 5) −α (ν + 1) = 1−0.05 (3 + 1) = 0.8
e = 0.8ρ
What is necessary is just to set e to the position of 0.8 times the average radius (rho) of a metal pipe.

図4の装置を使用して、金属管の平均半径ρの0.8倍の位置にeを設定して、鉄鋼材料の鋼種STPG38、金属管の外径138.9mm、肉厚8.1mmを使用して、曲げ半径Rは198mm、曲げ角度90°、曲げ部の加熱条件は950℃で圧縮曲げ加工したときの金属管背面の肉厚のバラツキは下記の通りであった。
加工後の金属管の肉厚の測定は、実施例1と同じ。
肉厚のバラツキは、7.7mm±2%であった。
この値は、前記実施例1と同じく、油圧シリンダーが一箇所の従来装置で曲げ加工した時の肉厚のバラツキ範囲内であった。なお油圧シリンダーに負荷される曲げ推力を測定したところ、計算値と良く整合し、油圧シリンダーが一箇所の従来装置の概ね40%に低減できた。
Using the apparatus of FIG. 4, e is set at a position 0.8 times the average radius ρ of the metal tube, and the steel type STPG38 of the steel material, the outer diameter of the metal tube is 138.9 mm, and the wall thickness is 8.1 mm. The bending radius R was 198 mm, the bending angle was 90 °, the heating condition of the bending portion was 950 ° C., and the variation in the thickness of the back surface of the metal tube was as follows.
The measurement of the thickness of the metal tube after processing is the same as in Example 1.
The variation in wall thickness was 7.7 mm ± 2%.
This value was within the range of variation in wall thickness when the hydraulic cylinder was bent with one conventional device, as in Example 1. When the bending thrust applied to the hydraulic cylinder was measured, it was in good agreement with the calculated value, and the hydraulic cylinder was reduced to approximately 40% of the conventional device with one location.

結果
以上の結果より、計算値と実際の曲げ加工データが整合することを確認することが出来た。
Results From the above results, it was confirmed that the calculated values were consistent with the actual bending data.

実施例3
実施例1と同じ手順で計算した別の圧縮曲げ加工の実施例について述べる。
金属管1の平均半径をρ、曲げ半径Rをρのν倍、偏差eをρのχ倍として
R=3ρ、α=0.1にするには、式(1・5)より
χ=1−α(ν+1)=1−0.1(3+1)=0.6
e=0.6ρ
金属管の平均半径ρの0.6倍の位置にeを設定すれば良い。
Example 3
Another embodiment of compression bending calculated in the same procedure as in Embodiment 1 will be described.
To set R = 3ρ and α = 0.1, assuming that the average radius of the metal tube 1 is ρ, the bending radius R is ν times ρ, and the deviation e is χ times ρ, χ = 1 from equation (1 · 5) −α (ν + 1) = 1−0.1 (3 + 1) = 0.6
e = 0.6ρ
What is necessary is just to set e to the position of 0.6 times the average radius (rho) of a metal pipe.

図4の装置を使用して、金属管の平均半径ρの0.6倍の位置にeを設定して、鉄鋼材料の鋼種SGP、金属管の外径114.3mm、肉厚4,5mmを使用して、曲げ半径Rは161mm、曲げ角度90°、曲げ部の加熱条件は950℃で圧縮曲げ加工したときの金属管背面の肉厚のバラツキは下記の通りであった。
加工後の金属管の肉厚の測定は、実施例1と同じ。
肉厚のバラツキは、4.1mm±2%であった。
この値は、前記実施例1と同じく、油圧シリンダーが一箇所の従来装置で曲げ加工した時の肉厚のバラツキ範囲内であった。なお油圧シリンダーに負荷される曲げ推力を測定したところ、計算値と良く整合し、油圧シリンダーが一箇所の従来装置の概ね45%に低減できた。
Using the apparatus of FIG. 4, e is set at a position 0.6 times the average radius ρ of the metal tube, and the steel grade SGP of the steel material, the outer diameter of the metal tube 114.3 mm, and the wall thickness 4,5 mm The bending radius R was 161 mm, the bending angle was 90 °, the heating condition of the bending portion was 950 ° C., and the variation in the thickness of the back surface of the metal tube was as follows.
The measurement of the thickness of the metal tube after processing is the same as in Example 1.
The variation in thickness was 4.1 mm ± 2%.
This value was within the range of variation in wall thickness when the hydraulic cylinder was bent with one conventional device, as in Example 1. When the bending thrust applied to the hydraulic cylinder was measured, it was in good agreement with the calculated value, and the hydraulic cylinder was reduced to approximately 45% of the conventional device with one location.

結果result

以上実施例1〜3の結果より、金属管の鋼種、肉厚、外径、曲げ半径、減肉率の設定値が変わっても、計算値と実際の加工データが高精度で整合することを確認することが出来た。
また油圧シリンダーに負荷される曲げ推力も、計算値と良く整合し、油圧シリンダーが一箇所の従来装置より低減することを確認することが出来た。
From the results of Examples 1 to 3, the calculated values and the actual machining data are matched with high accuracy even if the set values of the steel type, thickness, outer diameter, bending radius, and thickness reduction rate of the metal pipe change. I was able to confirm.
Also, the bending thrust applied to the hydraulic cylinder was in good agreement with the calculated value, and it was confirmed that the hydraulic cylinder was reduced from the conventional device at one location.

本発明において曲げ加工すべき金属材料としては、丸型鋼管、角型鋼管等の管、H型鋼、I型鋼、L型鋼、C型鋼等の各種形材、各種断面の棒材、板材等、熱間曲げ加工可能な任意の条材を対象とすることが出来る。  As metal materials to be bent in the present invention, round steel pipes, square steel pipes and other pipes, H-shaped steels, I-shaped steels, L-shaped steels, C-shaped steels and other various shapes, various cross-section bars, plates, etc. Arbitrary strips that can be subjected to inter-bending can be targeted.

本発明の曲げ加工すべき金属条材の長手方向狭幅領域を急速に加熱する装置として、火炎加熱装置、高周波誘導加熱装置等を適宜用いることが出来るが、高周波誘導加熱装置が最も好適である。
高周波誘導加熱装置の使用周波数は、1〜20KHzが好適である。また金属条材が鉄鋼材料の場合、加熱温度は850〜1100℃の範囲が好適である。
A flame heating device, a high-frequency induction heating device, or the like can be used as appropriate as a device for rapidly heating the longitudinal narrow region of the metal strip to be bent according to the present invention, but the high-frequency induction heating device is most preferable. .
The use frequency of the high-frequency induction heating device is preferably 1 to 20 KHz. When the metal strip is a steel material, the heating temperature is preferably in the range of 850 to 1100 ° C.

本発明において、伝導部材11を緩み調整装置18により一直線に張架して固定することで、従来二本必要であった油圧シリンダーを一本省略することが出来るので、圧縮曲げ加工装置の構造を単純化でき、装置の製造コストを大幅に低減できる。
また更に必要圧縮力を伝導部材11に分担させることで伝導部材11に付与される張力及び油圧シリンダー9の推力を低減できるので、装置の小型化および駆動装置や油圧シリンダーを小型化でき、このことも装置の製造コストの低減に寄与する。なお曲げ加工中に伝導部材11が伸びると、反力Pが低減して希望の減肉率が得られなくなるので、この場合、予め曲げ加工中の伝導部材11の伸びを見込んで偏差eを多めに設定すればよい。
In the present invention, since the conductive member 11 is stretched and fixed in a straight line by the slack adjusting device 18, one hydraulic cylinder which has been conventionally required can be omitted. It can be simplified and the manufacturing cost of the device can be greatly reduced.
Furthermore, since the necessary compression force is shared by the conductive member 11, the tension applied to the conductive member 11 and the thrust of the hydraulic cylinder 9 can be reduced, so that the device can be downsized and the drive device and hydraulic cylinder can be downsized. This also contributes to a reduction in device manufacturing costs. Note bending when the conducting member 11 during processing extending so desired thinning rate by reducing the reaction force P 1 is can not be obtained, in this case, the deviation e in anticipation of growth of the conducting member 11 in advance bent You can set more.

油圧シリンダーを2本必要とする従来発明装置と油圧シリンダー1本の本願発明装置を使用して同じ金属管を曲げ加工したときの比較データを下記表1に示す。
使用した金属管の材質は、鉄鋼材料のSTPG38、寸法は、外径165.2mm、肉厚9.3mm、曲げ角度90°、曲げ部の加熱温度は950℃である。減肉率は0%に設定した。
Table 1 below shows comparison data when the same metal pipe is bent using the conventional invention apparatus requiring two hydraulic cylinders and the present invention apparatus having one hydraulic cylinder.
The material of the metal tube used is steel material STPG38, the dimensions are an outer diameter of 165.2 mm, a wall thickness of 9.3 mm, a bending angle of 90 °, and the heating temperature of the bent portion is 950 ° C. The thinning rate was set to 0%.

表1の結果より、本願発明は、従来装置に比較して、曲げ品質(減肉部肉厚のバラツキ)は同等で、その装置の製造コストを大幅に低減でき、それによって製品の曲げコストを大幅に低減できることを確認できた。  From the results in Table 1, the present invention has the same bending quality (variation in thickness of the thinned portion) compared to the conventional device, and can greatly reduce the manufacturing cost of the device, thereby reducing the bending cost of the product. It was confirmed that it could be greatly reduced.

実施の形態2
前記したように、伝導部材の伸びによる減肉率の低減を防ぐためには、伝導部材の伸びを見込んで偏差eを多めに設定すればよいが、繰返し使用により伝導部材に永久歪が発生した場合、偏差eを正確に設定できなくなる欠点がある。
図5は、伝導部材の永久歪による減肉率の低減を防ぐための手段(請求項2の発明)を実施する時の説明図である。なお本図は垂直曲げ加工の場合である。
図5において、伝導部材11の中間クランプ側にロードセル20をセットして、予め、テスト曲げで伝導部材に掛る反力Pを測定しておき、スタート時に、緩み調整装置で伝導部材に測定した反力Pと同じ荷重を加えて曲げ加工を開始すると、曲げ加工中の伝導部材の伸びによる減肉率の低減を抑えることができる。
Embodiment 2
As described above, in order to prevent the reduction of the thinning rate due to the elongation of the conductive member, the deviation e may be set in consideration of the elongation of the conductive member, but when the permanent deformation occurs in the conductive member due to repeated use There is a disadvantage that the deviation e cannot be set accurately.
FIG. 5 is an explanatory diagram when implementing a means (invention of claim 2) for preventing a reduction in thickness reduction due to permanent distortion of a conductive member. This figure shows the case of vertical bending.
5, by setting the load cell 20 to the intermediate clamping side of the conductive member 11, preliminarily measured reaction force P 1 exerted on conducting member in bend test, at the start, it was measured in the conduction member slack adjuster When starting the bending added the same load and the reaction force P 1, it is possible to suppress the reduction in the thinning rate due to elongation of the conductive member during bending.

実施の形態3
図6は、圧縮車輪を車輪とした場合の説明図である。
鎖車の径(P.C.D=ピッチサークルダイヤメーター)は、鎖車の歯数で決まり任意の値に調整できないので、半径の微調整が必要な場合は車輪を用いる。
Embodiment 3
FIG. 6 is an explanatory diagram when the compression wheel is a wheel.
The diameter of the chain wheel (PCD = Pitch Circle Diameter) is determined by the number of teeth of the chain wheel and cannot be adjusted to an arbitrary value, so wheels are used when fine adjustment of the radius is necessary.

実施の形態4
図7は、本発明請求項1を実施するための別の実施形態の説明図である。
図4、図5は、基台8と金属管1は固定するが、本実施形態では、基台8がレール17の上を移動し、金属管1が移動する方式である。
図面は垂直曲げの場合であり、金属管が移動するので加熱装置19は移動しなくても良い。
Embodiment 4
FIG. 7 is an explanatory view of another embodiment for carrying out claim 1 of the present invention.
4 and 5, the base 8 and the metal tube 1 are fixed, but in this embodiment, the base 8 moves on the rail 17 and the metal tube 1 moves.
The drawing shows a case of vertical bending. Since the metal tube moves, the heating device 19 does not need to move.

実施の形態5
図9は、金属管中心からの偏差eの位置に伝導部材11を設定した曲げ待機中の金属管断面図である。ただし金属管1と伝導部材11の関係を明らかにするためにアームクランプ3、曲げアーム4等を図4(A)の正面図からはずして要部のみ作図したものである。
(a)は、伝導部材11および圧縮車輪14を左右に配設した図。
(b)は、伝導部材11および圧縮車輪14を左方に配設した図。
機械強度および作業性を勘案して何れかを選択すればよい。特に水平曲げの場合、伝導部材11および圧縮車輪14を下に配設すると上部が開放されて作業性がより好適になる。
Embodiment 5
FIG. 9 is a cross-sectional view of the metal pipe during bending standby in which the conductive member 11 is set at the position of the deviation e from the center of the metal pipe. However, in order to clarify the relationship between the metal tube 1 and the conductive member 11, the arm clamp 3, the bending arm 4 and the like are removed from the front view of FIG.
(A) is the figure which has arrange | positioned the conduction member 11 and the compression wheel 14 to right and left.
(B) is the figure which has arrange | positioned the conduction member 11 and the compression wheel 14 to the left.
Any one may be selected in consideration of mechanical strength and workability. In particular, in the case of horizontal bending, if the conductive member 11 and the compression wheel 14 are disposed below, the upper part is opened, and the workability becomes more suitable.

実施の形態6
図10は、本願発明において、所望の減肉率をαとするため偏差eで垂直曲げを行った場合の金属管の断面図と曲げ半径を示す図である。ただし金属管1と伝導部材11の関係を明らかにするためにアームクランプ3、曲げアーム4等を図4(B)の正面図からはずして要部のみ作図したものである。
Embodiment 6
FIG. 10 is a cross-sectional view of a metal tube and a bending radius when vertical bending is performed with a deviation e to set the desired thickness reduction rate to α in the present invention. However, in order to clarify the relationship between the metal tube 1 and the conductive member 11, the arm clamp 3, the bending arm 4 and the like are removed from the front view of FIG.

実施の形態7
図11は、金属管中心から任意の偏差eの位置に伝導部材11を設定するときの圧縮車輪14との関係を示す説明図である。
EEを偏差eに設定した場合と、偏差eに設定した場合を図示したものである。
偏差eに設定した場合よりも偏差eに設定した場合が減肉率は小となる。
ただし金属管1と伝導部材11の関係を明らかにするために不要な部品は図4(A)の正面図から外して要部のみ作画したものである。
Embodiment 7
FIG. 11 is an explanatory diagram showing a relationship with the compression wheel 14 when the conductive member 11 is set at a position of an arbitrary deviation e from the metal tube center.
The case where EE is set to the deviation e 1 and the case where the deviation ee is set to the deviation e 2 are illustrated.
The thickness reduction rate is smaller when the deviation e 2 is set than when the deviation e 1 is set.
However, parts that are unnecessary for clarifying the relationship between the metal tube 1 and the conductive member 11 are removed from the front view of FIG.

図1は、本発明の基本的原理を説明する図である。FIG. 1 is a diagram for explaining the basic principle of the present invention. 図2は、駆動部が2箇所の圧縮ベンダーの従来技術の説明図である。FIG. 2 is an explanatory diagram of the prior art of a compression bender with two drive units. 図3は、駆動部が一箇所の圧縮ベンダーの従来技術の説明図である。FIG. 3 is an explanatory diagram of the prior art of a compression bender with a single drive unit. 請求項1の発明を実施する時の説明図。(A)は曲げ加工する直前の状態を説明する図、(B)は曲げ加工途中の状態を説明する図である。Explanatory drawing when implementing invention of Claim 1. FIG. (A) is a figure explaining the state just before bending, (B) is a figure explaining the state in the middle of bending. 本発明実施の形態2の説明図である。It is explanatory drawing of Embodiment 2 of this invention. 圧縮車輪を車輪とした構造の説明図である。It is explanatory drawing of the structure which used the compression wheel as the wheel. 本発明実施形態1の別の形態例(金属管移動方式)を示すである。It is another example of a form (metal pipe movement system) of Embodiment 1 of the present invention. (a)は垂直曲げを行った場合の金属管断面図、(b)は金属管の横断面図である。(A) is sectional drawing of a metal pipe at the time of performing a vertical bending, (b) is a cross-sectional view of a metal pipe. 金属管中心からの偏差eの位置に伝導部材11を設定した曲げ待機中の金属管断面図である。FIG. 6 is a cross-sectional view of a metal pipe during bending standby in which a conductive member 11 is set at a position of a deviation e from the center of the metal pipe. 所望の減肉率をαとするため偏差eで垂直曲げを行った場合の金属管の断面図と曲げ半径を示す図。The figure which shows the cross-sectional view and bending radius of a metal pipe at the time of carrying out the vertical bending with the deviation e in order to make desired thinning rate into (alpha). 金属管中心から任意の偏差eの位置に伝導部材11を設定するときの圧縮車輪14との関係を示す説明図である。It is explanatory drawing which shows the relationship with the compression wheel 14 when setting the conduction member 11 to the position of the arbitrary deviation e from the metal pipe center. 駆動装置が一箇所の場合の従来装置の説明図である。It is explanatory drawing of the conventional apparatus in case a drive device is one place. 駆動装置が二箇所の場合の従来装置の説明図である。It is explanatory drawing of the conventional apparatus in case a drive device is two places.

1 金属管、 2 金属管の曲げられた部分、 3 アームクランプ、
4 曲げアーム、 5 ブラケット、 6 旋回軸、 7 テールクランプ、
8 基台、 9、9’ 曲げシリンダー、 10、10’ シリンダーロッド、
11 伝導部材(チェーン、鋼索等)、 12、13 節点、 14 圧縮車輪、
15 主軸台、 16 車輪、 17 レール、 18 緩み調整装置、
19 加熱装置、 20 ロードセル、 21 熱源、 22 台車、
23 レール、 24 ねじ
A 曲げ点、 P 軸方向圧縮力、 P 伝動部材に掛る反力、
曲げシリンダー9の発生張力(曲げシリンダー)、 M 曲げモーメント、
θ 曲げ角度、 α 減肉率、 E−E′ 肉厚の変動しない中立軸位置、
N−N′ 金属管中心、 C−C′ 曲げ内側、 T−T′ 曲げ外側、 e 金属管中心からE−E′までの距離、 o 旋回中心、 ρ 金属管の平均半径、 r 圧縮車輪の半径、 θ 中立軸角度、 R 曲げ半径、 t 金属管の素管肉厚、t 金属管のテンション側肉厚、 t 金属管のコンプレッション側肉厚
1 metal tube, 2 bent part of metal tube, 3 arm clamp,
4 bending arm, 5 bracket, 6 pivot axis, 7 tail clamp,
8 base, 9, 9 'bending cylinder, 10, 10' cylinder rod,
11 Conductive members (chains, steel cables, etc.) 12, 13 nodes, 14 compression wheels,
15 headstock, 16 wheels, 17 rails, 18 slack adjuster,
19 heating devices, 20 load cells, 21 heat sources, 22 trolleys,
23 rail, 24 screw A bending point, P axial compression force, reaction force applied to P 1 transmission member,
P 2 Bending developed tension (bending cylinder) of the cylinder 9, M bending moment,
θ Bending angle, α Thinning ratio, EE ′ Neutral axis position without wall thickness fluctuation,
NN ′ metal tube center, CC ′ bending inside, TT ′ bending outside, e distance from metal tube center to EE ′, o turning center, ρ average radius of metal tube, r compression wheel radius, theta e neutral axis angle, R bend radius, base pipe wall thickness of t 0 the metal tube, the tension side wall thickness t t metal pipes, compression side wall thickness of t c metal tube

Claims (4)

減肉率αで金属管を曲げ加工する方法であって、該曲げ加工すべき金属管に対し曲げ中心から引いた垂線の足を点Aとし、該金属管の先部を該点Aより前方の特 定位置に於いて、曲げ中心の回りを回転自在の曲げアーム上に、その有効半径が所定の曲げ半径Rとなるようにクランプし、該曲げアームに、該曲げアームと回 転の中心を共有する有効半径がrで、該曲げ半径Rより曲げ外側に、下記(1・1)式より計算される偏差eだけ大きいr=R+eである圧縮車輪を固定または 嵌装する一方、該金属管の後方に位置する基台上のテールクランプ装置に該金属管後部をクランプしてなると共に、伝導部材を該圧縮車輪で支持した状態で、該 基台上に於いて該金属管の中心から曲げ外側に偏差eだけ離れた位置に設けた緩み調整装置と曲げアームに連結して、該伝導部材を該緩み調整装置を用いて一直 線に張架して固定した後、該金属管を適宜の駆動装置を用いて移動すると共に、該金属管を該点Aの近傍に於いて加熱装置により該金属管の長手方向の狭幅領域 を加熱し、該基台と曲げ中心との距離を徐徐に縮めて、金属管の中心から偏差e点の軸線の伸びを、該伝導部材を用いて抑えることにより、該駆動装置の推力Pと、該伝導部材に生じた反力Pを加えた圧縮力P(=P+P)を付与しながら曲げ加工することを特徴とする金属管の圧縮曲げ加工方法。
A method of bending a metal tube at a thinning rate α, wherein a perpendicular leg drawn from the bending center with respect to the metal tube to be bent is a point A, and the tip of the metal tube is forward of the point A At a specific position of the bending arm, it is clamped on a bending arm that is rotatable around the bending center so that the effective radius is a predetermined bending radius R, and the bending arm and the center of rotation are attached to the bending arm. An effective radius sharing r is r, and a compression wheel with r = R + e larger than the bending radius R by a deviation e calculated by the following equation (1 · 1) is fixed or fitted, while the metal The rear end of the metal tube is clamped to a tail clamp device on the base located behind the tube, and the conductive member is supported by the compression wheel, and the center of the metal tube is supported on the base. Looseness adjustment device and bending provided on the outside of the bend by deviation e The conductive member is stretched and fixed in a straight line using the looseness adjusting device, and then the metal tube is moved using an appropriate driving device, and the metal tube is moved to the point. In the vicinity of A, a heating device is used to heat a narrow region in the longitudinal direction of the metal tube, gradually reducing the distance between the base and the bending center, and extending the axis of deviation e from the center of the metal tube. Is suppressed using the conductive member, and a bending process is performed while applying a compressive force P (= P 1 + P 2 ) obtained by adding a thrust P 2 of the driving device and a reaction force P 1 generated in the conductive member. A method of compressing and bending a metal tube, characterized in that:
前記伝導部材にロードセルをセットし、前記緩み調整装置を用いて曲げ加工中に生じる反力に相当する張力を該伝導部材に予め加えて張架した後、曲げ加工することを特徴とする請求項1に記載の金属管の圧縮曲げ加工方法。  The load cell is set on the conductive member, and a tension corresponding to a reaction force generated during bending is applied to the conductive member in advance using the slack adjusting device, and then the conductive member is stretched and then bent. 2. A method of compressing and bending a metal tube according to 1. 曲げ加工すべき金属管の長手方向の狭幅領域を加熱する加熱装置と、該加熱装置を移動する装置と、該金属管に対し曲げ中心から引いた垂線の足点Aより前方の 該金属管の特定位置をクランプする回転自在な曲げアームと、該曲げアームと回転の中心を共有する圧縮車輪と、該金属管の後方に位置する基台と、該基台上に 配置され該金属管の後部をクランプするテールクランプ装置と、該基台上において該金属管の中心から下記(1・1)式より計算される偏差eだけ離れた位置に 設けた緩み調整装置と、該緩み調整装置を起点に該圧縮車輪で支持した状態で該曲げアームに連結した伝導部材と、該基台と曲げ中心との距離を可変する駆動装 置を備えてなることを特徴とする金属管の圧縮曲げ装置。



A heating device for heating a narrow region in the longitudinal direction of a metal tube to be bent, a device for moving the heating device, and the metal tube in front of a foot point A of a perpendicular drawn from the bending center with respect to the metal tube A rotating bending arm that clamps a specific position of the metal, a compression wheel that shares the center of rotation with the bending arm, a base that is located behind the metal tube, and a base that is disposed on the base A tail clamp device for clamping the rear portion, a slack adjusting device provided on the base at a position separated from the center of the metal tube by a deviation e calculated by the following equation (1 · 1), and the slack adjusting device. A metal tube compression bending apparatus comprising: a conductive member connected to the bending arm in a state of being supported by the compression wheel at a starting point; and a drive device that varies a distance between the base and the bending center. .



前記伝導部材にロードセルを取付けた請求項3に記載の金属管の圧縮曲げ装置。  The metal tube compression bending apparatus according to claim 3, wherein a load cell is attached to the conductive member.
JP2011272726A 2011-11-24 2011-11-24 Method and apparatus for compressing and bending metal tube Expired - Fee Related JP5834309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011272726A JP5834309B2 (en) 2011-11-24 2011-11-24 Method and apparatus for compressing and bending metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011272726A JP5834309B2 (en) 2011-11-24 2011-11-24 Method and apparatus for compressing and bending metal tube

Publications (3)

Publication Number Publication Date
JP2013111651A JP2013111651A (en) 2013-06-10
JP2013111651A5 JP2013111651A5 (en) 2015-01-15
JP5834309B2 true JP5834309B2 (en) 2015-12-16

Family

ID=48707761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011272726A Expired - Fee Related JP5834309B2 (en) 2011-11-24 2011-11-24 Method and apparatus for compressing and bending metal tube

Country Status (1)

Country Link
JP (1) JP5834309B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433339B (en) * 2013-07-16 2015-11-18 南阳二机石油装备(集团)有限公司 Adjustable bending bilge radius formula Simple pipe bender
CN111659752B (en) * 2020-06-12 2024-06-28 江苏新恒基特种装备股份有限公司 Forming method of equal-wall-thickness bent pipe and eccentric pipe
CN118122843B (en) * 2024-05-07 2024-07-02 南通市金凯威金属科技有限公司 Bending device for copper tube of evaporator

Also Published As

Publication number Publication date
JP2013111651A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
US8316683B2 (en) Method of manufacturing a bent product and an apparatus and a continuous line for manufacturing the same
JPS5938048B2 (en) Continuous bending method and device for long materials
CN101229569B (en) Method and equipment for detecting and remedying magnesium alloy shapes torsion
CA2786460C (en) Induction heating coil, and an apparatus and method for manufacturing a worked member
JP5834309B2 (en) Method and apparatus for compressing and bending metal tube
US8776568B2 (en) Bent member and an apparatus and method for its manufacture
JP2007083304A (en) Method for bending metallic material, bending apparatus, bending equipment train and bent product using the same
US8919171B2 (en) Method for three-dimensionally bending workpiece and bent product
PT2368650E (en) Method and device for manufacturing bent product
KR101545603B1 (en) Draw bending apparatus
KR20100045459A (en) Metallic pipe bending apparatus, and method for manufacturing a metallic pipe having a bent portion
JP5804015B2 (en) Bending member manufacturing apparatus having correction function and bending member manufacturing method
JP5517768B2 (en) Metal tube bending apparatus and method
CN105149381B (en) Elbow hinge shaping tool and method
CN101862773A (en) Method for processing mouldless bent arc
JP2001239321A (en) Steel pipe bending equipment and method thereof
KR20040067775A (en) Manufacturing method for metal bent tube and bending device
JP2006326667A (en) Hot bending method for metal tube and device therefor
Engel et al. Advanced model for calculation of the neutral axis shifting and the wall thickness distribution in rotary draw bending processes
JP3802727B2 (en) Shape steel straightening method and apparatus
JP5770430B2 (en) Bending machine
RU2614975C1 (en) Pipe bending method and machine for method performing
US10478880B2 (en) Method for induction bend forming a compression-resistant pipe having a large wall thickness and a large diameter
JP2013111651A5 (en)
CN204148316U (en) Small-bend radius electric pipe bender

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151005

R150 Certificate of patent or registration of utility model

Ref document number: 5834309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees