[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5832190B2 - Water refrigerant refrigeration system - Google Patents

Water refrigerant refrigeration system Download PDF

Info

Publication number
JP5832190B2
JP5832190B2 JP2011161689A JP2011161689A JP5832190B2 JP 5832190 B2 JP5832190 B2 JP 5832190B2 JP 2011161689 A JP2011161689 A JP 2011161689A JP 2011161689 A JP2011161689 A JP 2011161689A JP 5832190 B2 JP5832190 B2 JP 5832190B2
Authority
JP
Japan
Prior art keywords
refrigerant
pump
evaporator
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161689A
Other languages
Japanese (ja)
Other versions
JP2013024510A (en
Inventor
尚紀 黒田
尚紀 黒田
直也 品田
直也 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2011161689A priority Critical patent/JP5832190B2/en
Publication of JP2013024510A publication Critical patent/JP2013024510A/en
Application granted granted Critical
Publication of JP5832190B2 publication Critical patent/JP5832190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、冷媒として水を用いた水冷媒冷凍システムに係り、詳しくは冷凍機と、冷水系回路及び冷却水系回路との圧力差を利用してエネルギーを回収するようにした水冷媒冷凍システムに関する。   The present invention relates to a water refrigerant refrigeration system using water as a refrigerant, and more particularly, to a water refrigerant refrigeration system that recovers energy using a pressure difference between a refrigerator, a chilled water circuit, and a cooling water circuit. .

従来より、冷媒として水を用いた水冷媒冷凍システムとしては、図3に示されるように、冷媒が蒸発器51、圧縮機52、凝縮器53の順に循環する回路からなる冷凍機54に対し、前記蒸発器51の冷媒が送り配管を通って室内負荷に供給され、戻り配管を通って蒸発器51に戻される冷水系回路55と、前記凝縮器53の冷媒が送り配管を通って冷却塔56で冷却され、戻り配管を通って凝縮器53に戻される冷却水系回路57とが接続された水冷媒冷凍システム50が知られている(例えば下記特許文献1参照。)。   Conventionally, as a water-refrigerant refrigeration system using water as a refrigerant, as shown in FIG. 3, a refrigerator 54 including a circuit in which a refrigerant circulates in the order of an evaporator 51, a compressor 52, and a condenser 53, The refrigerant of the evaporator 51 is supplied to the indoor load through the feed pipe and is returned to the evaporator 51 through the return pipe, and the cooling tower 56 is supplied with the refrigerant of the condenser 53 through the feed pipe. There is known a water-refrigerant refrigeration system 50 connected to a cooling water system circuit 57 that is cooled by a cooling pipe and returned to a condenser 53 through a return pipe (for example, see Patent Document 1 below).

かかるシステム50では、冷凍機54、冷水系回路55及び冷却水系回路57の全ての回路に共通して冷媒として水を用い、蒸発器51及び凝縮器53において直接熱交換を行っているため、各回路間の熱交換の必要がなくなり、熱交換による熱損失がなく熱効率に優れたシステムとなる。   In such a system 50, water is used as a refrigerant common to all the circuits of the refrigerator 54, the cold water system circuit 55, and the cooling water system circuit 57, and heat is directly exchanged in the evaporator 51 and the condenser 53. There is no need for heat exchange between circuits, and there is no heat loss due to heat exchange, resulting in a system with excellent thermal efficiency.

前記冷凍機54においては、蒸発器51内での冷媒の蒸発温度に見合うように図示しない真空ポンプによって蒸発器51内が真空状態に維持されるとともに、その他の凝縮器53や配管系内が真空状態になっている。このため、冷水系回路及び冷却水系回路の一部も真空圧となり、この冷水系回路及び冷却水系回路に設置されたポンプやバルブなどにおいてキャビテーションが生じやすくなっていた。   In the refrigerator 54, the inside of the evaporator 51 is maintained in a vacuum state by a vacuum pump (not shown) so as to match the evaporation temperature of the refrigerant in the evaporator 51, and the other condenser 53 and the piping system are evacuated. It is in a state. For this reason, a part of the chilled water system circuit and the cooling water system circuit also has a vacuum pressure, and cavitation is likely to occur in the pumps and valves installed in the chilled water system circuit and the cooling water system circuit.

特開2006−97989号公報Japanese Patent Application Laid-Open No. 2006-97989

このようなキャビテーションを防止するには、冷水系回路及び冷却水系回路を正圧とし、冷水系回路・冷却水系回路を循環する冷水と冷凍機を循環する冷水との間で熱交換を行う熱交換器を設置する必要があった。   In order to prevent such cavitation, heat exchange is performed between the cold water circulating in the chilled water circuit and the cooling water circuit and the cold water circulating in the refrigerator with positive pressure in the chilled water circuit and the cooling water circuit. It was necessary to install a vessel.

しかしながら、水冷媒冷凍システムにこのような熱交換器を設置すると、本システムの特徴である各回路に共通して水冷媒を使用することによる熱効率の向上という効果が発揮されなくなり、熱交換器での熱損失が生じるため、システムの省エネルギー化が図れないという問題があった。   However, if such a heat exchanger is installed in the water refrigerant refrigeration system, the effect of improving the thermal efficiency by using the water refrigerant in common with each circuit, which is the feature of this system, will not be exhibited. As a result, there was a problem that the system could not save energy.

そこで本発明の主たる課題は、システムの省エネルギー化を図り、キャビテーションを防止した水冷媒冷凍システムを提供することにある。   Therefore, a main problem of the present invention is to provide a water refrigerant refrigeration system that saves energy in the system and prevents cavitation.

上記課題を解決するために請求項1に係る本発明として、冷媒として水を用い、冷媒が蒸発器、圧縮機、凝縮器の順に循環する回路からなる冷凍機に対し、前記蒸発器の冷媒が冷水ポンプによって送り配管を通って室内負荷に供給され、熱交換が行われた後、戻り配管を通って蒸発器に戻される冷水系回路と、前記凝縮器の冷媒が冷却水ポンプによって送り配管を通って冷却塔に供給され、該冷却塔で冷却された後、戻り配管を通って凝縮器に戻される冷却水系回路とが接続された水冷媒冷凍システムであって、
前記冷凍機が前記蒸発器での冷媒の蒸発温度に見合う真空圧力とされる一方で、前記冷水系回路及び冷却水系回路では正圧とされ、
前記冷水系回路において、前記室内負荷から蒸発器に戻される戻り配管の途中に、前記冷凍機と冷水系回路との間を冷媒が流通する際の圧力差を利用した動力回収ポンプが配設されるとともに、前記蒸発器から室内負荷に送られる送り配管の途中であって、前記冷水ポンプより前段に、前記動力回収ポンプによって回収された動力を駆動源の一部又は全部とする補助冷水ポンプが配設され、該補助冷水ポンプは前記冷水系回路に設置された動力回収ポンプで回収した圧力と同じ圧力で送水を行うようにし、
前記冷却水系回路において、前記冷却塔から凝縮器に戻される戻り配管の途中に、前記冷凍機と冷却水系回路との間を冷媒が流通する際の圧力差を利用した動力回収ポンプが配設されるとともに、凝縮器から冷却塔に送られる送り配管の途中であって、前記冷却水ポンプより前段に、前記動力回収ポンプによって回収された動力を駆動源の一部又は全部とする補助冷却水ポンプが配設され、該補助冷却水ポンプは前記冷却水系回路に設置された動力回収ポンプで回収した圧力と同じ圧力で送水を行うようにしたことを特徴とする水冷媒冷凍システムが提供される。
In order to solve the above-mentioned problem, the present invention according to claim 1 is directed to a refrigerator having a circuit in which water is used as a refrigerant and the refrigerant circulates in the order of an evaporator, a compressor, and a condenser. A chilled water pump is supplied to the indoor load through the feed pipe and the heat exchange is performed , and then a chilled water circuit that is returned to the evaporator through the return pipe, and the refrigerant of the condenser is fed to the feed pipe by the cooling water pump A water refrigerant refrigeration system connected to a cooling water system circuit that is supplied to the cooling tower through and cooled by the cooling tower and then returned to the condenser through a return pipe ,
While the refrigerator is set to a vacuum pressure corresponding to the evaporation temperature of the refrigerant in the evaporator, the chilled water system circuit and the cooling water system circuit are set to a positive pressure,
In the chilled water circuit, a power recovery pump that uses a pressure difference when the refrigerant flows between the refrigerator and the chilled water circuit is disposed in the middle of a return pipe that is returned from the indoor load to the evaporator. And an auxiliary chilled water pump having a power source recovered by the power recovery pump as a part or all of the drive source in the middle of the feed pipe sent from the evaporator to the indoor load and before the cold water pump. The auxiliary chilled water pump is configured to feed water at the same pressure as the pressure recovered by the power recovery pump installed in the chilled water system circuit;
In the cooling water system circuit, a power recovery pump using a pressure difference when refrigerant flows between the refrigerator and the cooling water system circuit is disposed in the middle of a return pipe returned from the cooling tower to the condenser. Auxiliary cooling water pump having a power source recovered by the power recovery pump as a part or all of the drive source in the middle of the feed pipe sent from the condenser to the cooling tower and before the cooling water pump Is provided, and the auxiliary cooling water pump supplies water at the same pressure as the pressure recovered by the power recovery pump installed in the cooling water system circuit .

上記請求項1記載の発明では、水冷媒冷凍システムにおいて冷凍機では蒸発器での蒸発温度に見合うように真空圧力を維持する必要がある一方で、冷水系回路及び冷却水系回路ではポンプの圧力により正圧となることから、これらの冷凍機と冷水系回路・冷却水系回路との間を冷媒が流通する際の圧力差を利用して動力を回収する動力回収ポンプを備えている。このため、各動力回収ポンプで回収した動力を給水ポンプの動力源として利用することができ、システムの省エネ運転が可能になるとともに、エネルギーの有効利用が図れるようになる。   In the invention described in claim 1, in the water refrigerant refrigeration system, in the refrigerator, it is necessary to maintain the vacuum pressure to match the evaporation temperature in the evaporator, while in the chilled water system circuit and the cooling water system circuit, the pressure of the pump Since it becomes a positive pressure, a power recovery pump is provided that recovers power by using a pressure difference when refrigerant flows between these refrigerators and the chilled water system circuit / cooling water system circuit. For this reason, the power recovered by each power recovery pump can be used as a power source of the water supply pump, enabling energy-saving operation of the system and effective use of energy.

また、冷水系回路及び冷却水系回路の冷媒を循環させる冷水ポンプ及び冷却水ポンプの前段にそれぞれ補助ポンプを設けるとともに、これらの補助ポンプの駆動源として前記動力回収ポンプで回収した動力を用いた場合には、冷水ポンプ及び冷却水ポンプの吸込側を正圧とすることができ、これらのポンプにおけるキャビテーションを防止することができるようになる。   Also, when an auxiliary pump is provided in front of each of the cold water pump and the cooling water pump for circulating the refrigerant in the cold water system circuit and the cooling water system circuit, and the power recovered by the power recovery pump is used as a drive source of these auxiliary pumps In addition, the suction side of the cold water pump and the cooling water pump can be set to a positive pressure, and cavitation in these pumps can be prevented.

以上詳説のとおり本発明によれば、システムの省エネルギー化を図り、キャビテーションを防止した水冷媒冷凍システムが提供できるようになる。   As described above, according to the present invention, it is possible to provide a water refrigerant refrigeration system that saves energy in the system and prevents cavitation.

本発明に係る水冷媒冷凍システム1のシステム構成図である。1 is a system configuration diagram of a water refrigerant refrigeration system 1 according to the present invention. フリークーリング運転時のシステム構成図である。It is a system configuration diagram at the time of free cooling operation. 従来の水冷媒冷凍システム50のシステム構成図である。FIG. 3 is a system configuration diagram of a conventional water refrigerant refrigeration system 50.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る水冷媒冷凍システム1は、図1に示されるように、冷媒として水を用いたものであって、この冷媒が蒸発器2、圧縮機3、凝縮器4の順に循環する回路からなる冷凍機5に対し、前記蒸発器2の冷媒が冷水ポンプ6によって送り配管を通って室内負荷(図示せず)に供給され、熱交換が行われた後、戻り配管を通って蒸発器2に戻される冷水系回路7と、前記凝縮器4の冷媒が冷却水ポンプ8によって送り配管を通って冷却塔9に供給され、該冷却塔9で冷却された後、戻り配管を通って凝縮器4に戻される冷却水系回路10とが接続された回路構成とされている。   As shown in FIG. 1, the water refrigerant refrigeration system 1 according to the present invention uses water as a refrigerant, and the refrigerant circulates in the order of the evaporator 2, the compressor 3, and the condenser 4. The refrigerant of the evaporator 2 is supplied to the indoor load (not shown) through the feed pipe by the cold water pump 6 to the refrigerator 5 and is subjected to heat exchange, and then the evaporator 2 through the return pipe. The cooling water system circuit 7 and the refrigerant in the condenser 4 are supplied to the cooling tower 9 through the feed pipe by the cooling water pump 8 and cooled by the cooling tower 9, and then the condenser through the return pipe. The circuit configuration is such that the cooling water system circuit 10 returned to 4 is connected.

より詳細には、冷水系回路7において、室内負荷から蒸発器2に戻される流路(戻り配管)の途中に動力回収ポンプ11が配設されるとともに、蒸発器2から室内負荷に送られる流路(送り配管)の途中であって、冷水ポンプ6より前段に、動力回収ポンプ11によって回収された動力を駆動源の一部又は全部とする補助冷水ポンプ13が配設されている。また、冷却水系回路10において、冷却塔9から凝縮器4に戻される流路(戻り配管)の途中に動力回収ポンプ12が配設されるとともに、凝縮器4から冷却塔9に送られる流路(送り配管)の途中であって、冷却水ポンプ8より前段に、動力回収ポンプ12によって回収された動力を駆動源の一部又は全部とする補助冷却水ポンプ14が配設されている。   More specifically, in the chilled water circuit 7, a power recovery pump 11 is disposed in the middle of a flow path (return pipe) returning from the indoor load to the evaporator 2, and a flow sent from the evaporator 2 to the indoor load. An auxiliary chilled water pump 13 that uses the power recovered by the power recovery pump 11 as a part or all of the drive source is disposed in the middle of the path (feed piping) and before the chilled water pump 6. In the cooling water system circuit 10, a power recovery pump 12 is disposed in the middle of a flow path (return pipe) returned from the cooling tower 9 to the condenser 4, and a flow path sent from the condenser 4 to the cooling tower 9. An auxiliary cooling water pump 14 that uses the power recovered by the power recovery pump 12 as a part or all of the drive source is disposed in the middle of the (feed pipe) and before the cooling water pump 8.

本水冷媒冷凍システム1では、冷凍機5が蒸発器2での冷媒の蒸発温度に見合うように真空圧力を維持する必要がある一方で、冷水系回路7及び冷却水系回路10では正圧となることから、これらの冷凍機5と冷水系回路7、冷却水系回路10との間を冷媒が流通する際の圧力差を利用した動力回収ポンプ11、12を備えているため、各動力回収ポンプ11、12で回収した動力を補助冷水ポンプ13又は補助冷却水ポンプ14の動力源等として利用することができ、システムの省エネ運転が可能になるとともに、エネルギーの有効利用が図れるようになる。   In the main water refrigerant refrigeration system 1, it is necessary to maintain the vacuum pressure so that the refrigerator 5 matches the evaporation temperature of the refrigerant in the evaporator 2, while the chilled water system circuit 7 and the cooling water system circuit 10 have a positive pressure. Therefore, since the power recovery pumps 11 and 12 using the pressure difference when the refrigerant flows between the refrigerator 5 and the cold water system circuit 7 and the cooling water system circuit 10 are provided, each power recovery pump 11 is provided. , 12 can be used as a power source of the auxiliary chilled water pump 13 or the auxiliary cooling water pump 14, etc., enabling energy saving operation of the system and effective use of energy.

各構成要素について具体的に説明すると、
前記蒸発器2は、例えば大気圧より低い減圧状態(真空状態)の蒸発器2内で冷媒を蒸発させ、そのときの蒸発潜熱を周囲から吸収することによって、周囲の水冷媒を冷却するものである。この蒸発器2での蒸発温度に見合う真空圧力を維持するため、図示しない真空ポンプによって真空状態に維持されている。蒸発器2には、底部に溜まった冷却された冷媒を室内負荷に送る送り配管が接続されるとともに、室内負荷から蒸発器2に戻り、蒸発器2内に冷媒を散水することにより冷媒を蒸発させる戻り配管が接続されている。
Specifically describing each component,
The evaporator 2 cools surrounding water refrigerant by evaporating the refrigerant in the evaporator 2 in a reduced pressure state (vacuum state) lower than atmospheric pressure, for example, and absorbing latent heat of evaporation at that time from the surroundings. is there. In order to maintain the vacuum pressure corresponding to the evaporation temperature in the evaporator 2, the vacuum state is maintained by a vacuum pump (not shown). The evaporator 2 is connected to a feed pipe that sends the cooled refrigerant accumulated at the bottom to the indoor load. The evaporator 2 returns from the indoor load to the evaporator 2 and sprinkles the refrigerant into the evaporator 2 to evaporate the refrigerant. The return pipe to be connected is connected.

前記凝縮器4は、圧縮機3で圧縮された高温・高圧の冷媒蒸気に対し、冷却水回路10の戻り配管を通って戻された冷媒を散水することにより、冷媒蒸気を冷却して再液化させるものである。凝縮器4には、底部に溜まった再液化された冷媒を冷却塔9に送る送り配管が接続されるとともに、冷却塔9で冷却された冷媒が戻される戻り配管が接続されている。   The condenser 4 cools and reliquefies the refrigerant vapor by spraying the refrigerant returned through the return pipe of the cooling water circuit 10 to the high-temperature and high-pressure refrigerant vapor compressed by the compressor 3. It is something to be made. The condenser 4 is connected to a feed pipe for sending the reliquefied refrigerant accumulated at the bottom to the cooling tower 9 and a return pipe for returning the refrigerant cooled in the cooling tower 9.

前記圧縮機3は、ターボ式、ルーツ式、スクリュー式、軸流式など公知の水蒸気圧縮機を用いることができる。前記圧縮機3は、インバータ制御により、回転数が制御可能とされたものを用いることが望ましい。これにより、冷水系回路7において蒸発器2の送り配管の冷媒の温度と戻り配管の冷媒の温度との温度差に応じて回転数を制御して、冷凍機の冷凍能力の制御を行うことが可能となる。   The compressor 3 may be a known steam compressor such as a turbo type, a roots type, a screw type, or an axial flow type. As the compressor 3, it is desirable to use a compressor whose rotation speed can be controlled by inverter control. As a result, in the chilled water circuit 7, the number of revolutions is controlled in accordance with the temperature difference between the refrigerant temperature in the feed pipe of the evaporator 2 and the refrigerant temperature in the return pipe to control the refrigerating capacity of the refrigerator. It becomes possible.

前記冷却塔9は、密閉式の冷却塔が好ましく、冷媒が通る冷却水管を冷却塔内に配管し、この管外側で冷却用の外気と散布水を散水して冷媒の冷却を行うものである。なお、冷却塔9には開放式のものを使用することもできる。   The cooling tower 9 is preferably a hermetic cooling tower. A cooling water pipe through which a refrigerant passes is piped in the cooling tower, and the cooling air is sprayed on the outside of the pipe to cool the refrigerant. . The cooling tower 9 can be an open type.

次に、動力回収ポンプ11、12について説明する。冷水ポンプ6又は冷却水ポンプ8によって高圧で送られた冷媒は、室内負荷又は冷却塔9などによって圧力が低下するものの蒸発器2や凝縮器4の真空状態に比べれば比較的高圧に保たれているため、そのまま蒸発器2や凝縮器4に排出するにはエネルギーロスが大きい。このため、蒸発器2や凝縮器4に排出する手前の戻り配管にそれぞれ、動力回収ポンプ11、12を設け、比較的高圧の冷媒によって動力回収ポンプ11、12を駆動して、そのエネルギーを回収するようにしている。回収されたエネルギーは、例えば動力回収ポンプ11、12の回転軸を、蒸発器2や凝縮器4の送り配管に設けられた補助ポンプ13、14の駆動用のモータに連結又は直結することにより、補助ポンプ13、14の駆動用に利用され、エネルギーの有効利用が図れるようになる。また、補助冷水ポンプ13を設けることにより、冷水ポンプ6の吸込側の圧力が増加するため、キャビテーションが防止できるようになる。冷却水ポンプ8でも同様の効果がある。   Next, the power recovery pumps 11 and 12 will be described. The refrigerant sent at a high pressure by the cold water pump 6 or the cooling water pump 8 is kept at a relatively high pressure as compared with the vacuum state of the evaporator 2 or the condenser 4 although the pressure is lowered by the indoor load or the cooling tower 9 or the like. Therefore, there is a large energy loss for discharging to the evaporator 2 and the condenser 4 as they are. For this reason, power recovery pumps 11 and 12 are provided in the return pipes before discharging to the evaporator 2 and the condenser 4, respectively, and the power recovery pumps 11 and 12 are driven by a relatively high pressure refrigerant to recover the energy. Like to do. The recovered energy is obtained by, for example, connecting or directly connecting the rotary shafts of the power recovery pumps 11 and 12 to the motors for driving the auxiliary pumps 13 and 14 provided in the feed pipes of the evaporator 2 and the condenser 4. It is used for driving the auxiliary pumps 13 and 14 so that energy can be effectively used. Moreover, since the pressure on the suction side of the cold water pump 6 is increased by providing the auxiliary cold water pump 13, cavitation can be prevented. The cooling water pump 8 has the same effect.

数値を例示してより詳細に説明すると、図1に示されるように、冷水系回路7において、例えば冷水ポンプ6で吸い込み側の圧力100kPaを500kPaに加圧して送水し、冷水系回路(主に室内負荷等)での圧力損失が400kPaとすると、戻り冷水の圧力は100kPaとなる。一方で、蒸発器2内では蒸発温度を20℃とすると圧力は−99kPa(101.3−2.3kPa)であるので、圧力差ΔPは199kPaとなる。また、蒸発器2で冷却された冷水を送水するには−99kPaの蒸発器2から100kPaの送り配管へ送水する必要があり、その圧力差は199kPaである。従って、199kPaの圧力差の動力を動力回収ポンプ11で回収して、補助冷水ポンプ13で199kPaの送水をすればよいので、理論的には補助冷水ポンプ13のモータ動力が不要となる。しかし、実際には機械損失等が生じるため外部からの動力が必要となるが、動力回収ポンプ11によって補助冷水ポンプ13の動力の大部分がまかなわれる。   Referring to FIG. 1, the chilled water circuit 7 supplies the water with the suction side pressure of 100 kPa increased to 500 kPa, for example, as shown in FIG. If the pressure loss at the indoor load or the like is 400 kPa, the pressure of the return chilled water is 100 kPa. On the other hand, if the evaporation temperature is 20 ° C. in the evaporator 2, the pressure is −99 kPa (101.3−2.3 kPa), so the pressure difference ΔP is 199 kPa. Further, in order to supply cold water cooled by the evaporator 2, it is necessary to supply water from the −99 kPa evaporator 2 to the 100 kPa feed pipe, and the pressure difference is 199 kPa. Accordingly, the power of the pressure difference of 199 kPa may be recovered by the power recovery pump 11 and the auxiliary chilled water pump 13 may supply 199 kPa of water, so that the motor power of the auxiliary chilled water pump 13 is theoretically unnecessary. In practice, however, mechanical loss or the like occurs, so that external power is required. However, the power recovery pump 11 covers most of the power of the auxiliary chilled water pump 13.

一方、冷却水系回路10においても同様に、冷却水ポンプ8で吸い込み側の圧力100kPaを300kPaに加圧して送水し、冷却水系回路(主に冷却塔9)の圧力損失が200kPaとすると、戻り冷却水の圧力は100kPaとなる。一方で凝縮器4内では凝縮温度を33℃とすると圧力は−96.3kPa(101.3−5kPa)であるので圧力差ΔPは196.3kPaとなる。この圧力差分の送水をするために動力回収ポンプ12を利用することにより、使用電力が最小となる。   On the other hand, in the cooling water system circuit 10 as well, if the cooling water pump 8 pressurizes the suction side pressure of 100 kPa to 300 kPa and supplies water, and the pressure loss of the cooling water system circuit (mainly the cooling tower 9) is 200 kPa, return cooling The water pressure is 100 kPa. On the other hand, when the condensation temperature is 33 ° C. in the condenser 4, the pressure is −96.3 kPa (101.3−5 kPa), so the pressure difference ΔP is 196.3 kPa. By using the power recovery pump 12 for water supply of this pressure difference, the power consumption is minimized.

ところで、本水冷媒冷凍システム1では、蒸発器2近傍の戻り配管を流通する冷媒の温度が送り配管を流通する冷媒の温度と同等以下のとき、図2に示されるように、圧縮機3を停止して冷凍機5を稼働することなく、冷却塔9によって冷媒を冷却するフリークーリング運転に切り換える制御を行うことができる。   By the way, in this water refrigerant | coolant refrigeration system 1, when the temperature of the refrigerant | coolant which distribute | circulates the return piping of the evaporator 2 vicinity is below or equal to the temperature of the refrigerant | coolant which distribute | circulates a feed piping, as shown in FIG. Without stopping and operating the refrigerator 5, control can be performed to switch to a free cooling operation in which the cooling tower 9 cools the refrigerant.

このような水冷媒冷凍システム1としては、図1及び図2に示されるように、冷水系回路7の戻り配管から分岐して冷却水系回路10の冷却塔9への供給配管に至るバイパス路15を設けるとともに、冷却水系回路10の冷却塔9から凝縮器4に至る管路の途中から分岐して冷水系回路7の送り配管に至るバイパス路16を設け、且つ前記バイパス路15、16にそれぞれバルブ17、18を設けるとともに、前記冷水系回路7の分岐点から蒸発器2に至る途中及び前記冷却水系回路10の分岐点から凝縮器4に至る途中にそれぞれバルブ19、20を設けておき、システムの省エネ化を図るため、外気湿球温度が低いとき、図2に示されるように、圧縮機3を停止して冷凍機5を運転しないとともにバルブ17、18を開、バルブ19、20を閉とし、戻り配管の冷媒がバイパス路15を通って冷却塔9に送られ、冷却塔9の運転のみで所定の冷水温度に冷却された後、バイパス路16を通って送り配管に送られるフリークーリング運転を可能としたものである。   As such a water refrigerant refrigeration system 1, as shown in FIGS. 1 and 2, a bypass 15 that branches from a return pipe of the chilled water circuit 7 and reaches a supply pipe to the cooling tower 9 of the cooling water circuit 10. And a bypass path 16 that branches from the middle of the pipe line from the cooling tower 9 of the cooling water system circuit 10 to the condenser 4 and reaches the feed pipe of the cooling water system circuit 7, and is provided in each of the bypass paths 15 and 16. Valves 17 and 18 are provided, and valves 19 and 20 are provided on the way from the branch point of the cold water system circuit 7 to the evaporator 2 and on the way from the branch point of the cooling water system circuit 10 to the condenser 4, respectively. In order to save energy in the system, when the outside air wet bulb temperature is low, the compressor 3 is stopped and the refrigerator 5 is not operated and the valves 17 and 18 are opened and the valves 19 and 2 are opened as shown in FIG. Is closed, the refrigerant in the return pipe is sent to the cooling tower 9 through the bypass passage 15, cooled to a predetermined cold water temperature only by the operation of the cooling tower 9, and then sent to the feed pipe through the bypass passage 16. Free cooling operation is possible.

1…水冷媒冷凍システム、2…蒸発器、3…圧縮機、4…凝縮器、5…冷凍機、6…冷水ポンプ、7…冷水系回路、8…冷却水ポンプ、9…冷却塔、10…冷却水系回路、11・12…動力回収ポンプ、13…補助冷水ポンプ、14…補助冷却水ポンプ   DESCRIPTION OF SYMBOLS 1 ... Water refrigerant refrigeration system, 2 ... Evaporator, 3 ... Compressor, 4 ... Condenser, 5 ... Refrigerator, 6 ... Cold water pump, 7 ... Cold water system circuit, 8 ... Cooling water pump, 9 ... Cooling tower, 10 ... Cooling water system circuit, 11.12 ... Power recovery pump, 13 ... Auxiliary cooling water pump, 14 ... Auxiliary cooling water pump

Claims (1)

冷媒として水を用い、冷媒が蒸発器、圧縮機、凝縮器の順に循環する回路からなる冷凍機に対し、前記蒸発器の冷媒が冷水ポンプによって送り配管を通って室内負荷に供給され、熱交換が行われた後、戻り配管を通って蒸発器に戻される冷水系回路と、前記凝縮器の冷媒が冷却水ポンプによって送り配管を通って冷却塔に供給され、該冷却塔で冷却された後、戻り配管を通って凝縮器に戻される冷却水系回路とが接続された水冷媒冷凍システムであって、
前記冷凍機が前記蒸発器での冷媒の蒸発温度に見合う真空圧力とされる一方で、前記冷水系回路及び冷却水系回路では正圧とされ、
前記冷水系回路において、前記室内負荷から蒸発器に戻される戻り配管の途中に、前記冷凍機と冷水系回路との間を冷媒が流通する際の圧力差を利用した動力回収ポンプが配設されるとともに、前記蒸発器から室内負荷に送られる送り配管の途中であって、前記冷水ポンプより前段に、前記動力回収ポンプによって回収された動力を駆動源の一部又は全部とする補助冷水ポンプが配設され、該補助冷水ポンプは前記冷水系回路に設置された動力回収ポンプで回収した圧力と同じ圧力で送水を行うようにし、
前記冷却水系回路において、前記冷却塔から凝縮器に戻される戻り配管の途中に、前記冷凍機と冷却水系回路との間を冷媒が流通する際の圧力差を利用した動力回収ポンプが配設されるとともに、凝縮器から冷却塔に送られる送り配管の途中であって、前記冷却水ポンプより前段に、前記動力回収ポンプによって回収された動力を駆動源の一部又は全部とする補助冷却水ポンプが配設され、該補助冷却水ポンプは前記冷却水系回路に設置された動力回収ポンプで回収した圧力と同じ圧力で送水を行うようにしたことを特徴とする水冷媒冷凍システム。
Using water as a refrigerant, the refrigerant evaporator, compressor, to refrigerator comprising a circuit for circulating in the order of the condenser, the refrigerant of the evaporator is supplied to the indoor load through the feed pipe by chilled water pump, heat exchanger after has been performed, and cold water system circuit through the return pipe is returned to the evaporator, the condenser of the refrigerant is supplied to the cooling tower through a feed pipe by the cooling water pump, after being cooled in the cooling tower A water refrigerant refrigeration system connected to a cooling water system circuit returned to the condenser through a return pipe ,
While the refrigerator is set to a vacuum pressure corresponding to the evaporation temperature of the refrigerant in the evaporator, the chilled water system circuit and the cooling water system circuit are set to a positive pressure,
In the chilled water circuit, a power recovery pump that uses a pressure difference when the refrigerant flows between the refrigerator and the chilled water circuit is disposed in the middle of a return pipe that is returned from the indoor load to the evaporator. And an auxiliary chilled water pump having a power source recovered by the power recovery pump as a part or all of the drive source in the middle of the feed pipe sent from the evaporator to the indoor load and before the cold water pump. The auxiliary chilled water pump is configured to feed water at the same pressure as the pressure recovered by the power recovery pump installed in the chilled water system circuit;
In the cooling water system circuit, a power recovery pump using a pressure difference when refrigerant flows between the refrigerator and the cooling water system circuit is disposed in the middle of a return pipe returned from the cooling tower to the condenser. Auxiliary cooling water pump having a power source recovered by the power recovery pump as a part or all of the drive source in the middle of the feed pipe sent from the condenser to the cooling tower and before the cooling water pump Is provided, and the auxiliary cooling water pump feeds water at the same pressure as the pressure recovered by the power recovery pump installed in the cooling water system circuit .
JP2011161689A 2011-07-25 2011-07-25 Water refrigerant refrigeration system Active JP5832190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161689A JP5832190B2 (en) 2011-07-25 2011-07-25 Water refrigerant refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161689A JP5832190B2 (en) 2011-07-25 2011-07-25 Water refrigerant refrigeration system

Publications (2)

Publication Number Publication Date
JP2013024510A JP2013024510A (en) 2013-02-04
JP5832190B2 true JP5832190B2 (en) 2015-12-16

Family

ID=47783070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161689A Active JP5832190B2 (en) 2011-07-25 2011-07-25 Water refrigerant refrigeration system

Country Status (1)

Country Link
JP (1) JP5832190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108981247A (en) * 2017-06-05 2018-12-11 郭祥 Natural cooling type communication machine room water cooled chiller

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681655B1 (en) * 2015-07-14 2016-12-01 유종이 Eco-friendly enery saving mixing cooling system
US11255611B2 (en) * 2016-08-02 2022-02-22 Munters Corporation Active/passive cooling system
KR101824031B1 (en) 2016-08-17 2018-03-15 유종이 Energy saving cooling system equipped with inverter compressor
CN109442776B (en) * 2018-11-30 2023-12-12 中国科学院广州能源研究所 Water refrigerant air conditioning equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264881U (en) * 1985-10-14 1987-04-22
US4965998A (en) * 1989-02-21 1990-10-30 Estigoy Filemon E Mini hydro electric plant
JP4454456B2 (en) * 2004-09-30 2010-04-21 三建設備工業株式会社 Refrigeration system for steam compression refrigerator
JP3995704B1 (en) * 2006-12-19 2007-10-24 株式会社神鋼環境ソリューション Water treatment system for drinking water production and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108981247A (en) * 2017-06-05 2018-12-11 郭祥 Natural cooling type communication machine room water cooled chiller

Also Published As

Publication number Publication date
JP2013024510A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5832190B2 (en) Water refrigerant refrigeration system
WO2017179500A1 (en) Refrigerator and cooling system
US20110173998A1 (en) Process and apparatus for cooling
TW200819692A (en) System and method for reducing windage losses in compressor motors
WO2016058365A1 (en) Air conditioning unit and operation method
US8978410B2 (en) Refrigerating system having two evaporators performing heat exchange
CN212179341U (en) Water circulation type cooling system
CN106839198A (en) A kind of cooling double loop water-cooled heat-pipe air-cooling air conditioner integrated machine of computer room
CN109764591A (en) A kind of indirect type refrigeration system and refrigerating box
JP5752428B2 (en) Water refrigerant refrigeration system
JP2015190662A (en) turbo refrigerator
KR101310884B1 (en) Hybrid cold and hot water generation system and method
JP2014190586A (en) Ejector type refrigeration cycle device
JP2010230267A (en) Steam compression refrigerator system
JP5216557B2 (en) Refrigeration cycle equipment
JP6613404B2 (en) Refrigeration system
JP2012241949A (en) Refrigerator
KR20100128210A (en) Cooling/heating system for generating hot water using heat pump
JP2010164209A (en) Method of operating adsorption refrigerating machine
KR101977884B1 (en) Heat pump system for recovery waste heat and coldness
KR200426794Y1 (en) Heat pump
KR20090095744A (en) Cooling cycle device
GB2474259A (en) Vapour compression refrigeration circuit
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
CN106679211B (en) Indoor cooling and snow making two-in-one system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5832190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250