JP5828425B2 - Continuous carburizing furnace and continuous carburizing method - Google Patents
Continuous carburizing furnace and continuous carburizing method Download PDFInfo
- Publication number
- JP5828425B2 JP5828425B2 JP2012050262A JP2012050262A JP5828425B2 JP 5828425 B2 JP5828425 B2 JP 5828425B2 JP 2012050262 A JP2012050262 A JP 2012050262A JP 2012050262 A JP2012050262 A JP 2012050262A JP 5828425 B2 JP5828425 B2 JP 5828425B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- door
- temperature raising
- gas
- carburizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005255 carburizing Methods 0.000 title claims description 72
- 238000000034 method Methods 0.000 title claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 33
- 238000005192 partition Methods 0.000 claims description 17
- 238000012546 transfer Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 92
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 38
- 239000001301 oxygen Substances 0.000 description 38
- 229910052760 oxygen Inorganic materials 0.000 description 38
- 238000002474 experimental method Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 14
- 238000010926 purge Methods 0.000 description 9
- 230000000630 rising effect Effects 0.000 description 9
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101100111800 Caenorhabditis elegans best-24 gene Proteins 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Tunnel Furnaces (AREA)
- Furnace Details (AREA)
Description
本発明は、浸炭雰囲気ガス中で被処理品を連続的に浸炭処理するための連続浸炭炉及び連続浸炭方法に関する。 The present invention relates to a continuous carburizing furnace and a continuous carburizing method for continuously carburizing a workpiece in a carburizing atmosphere gas.
連続浸炭炉においては、昇温室、浸炭室、拡散室、降温室、焼入室等が水平方向に順次連続して配設される。前記各室間は、開閉自在な仕切り扉で仕切られ、前記昇温室、前記浸炭室、前記拡散室には、浸炭用の雰囲気ガスが供給される。 In a continuous carburizing furnace, a temperature raising chamber, a carburizing chamber, a diffusion chamber, a descending greenhouse, a quenching chamber, and the like are sequentially arranged in the horizontal direction. The chambers are partitioned by an openable / closable partition door, and an atmosphere gas for carburizing is supplied to the temperature raising chamber, the carburizing chamber, and the diffusion chamber.
前記昇温室には、被処理品を搬入するための横向きの搬入口が配設され、この搬入口は搬入扉で開閉される。前記昇温室への被処理品の搬入時、すなわち、前記搬入口の開閉時には、必然的に、前記昇温室内の雰囲気ガスが外部に流出し、それと入れ替わりに外気が流入する。この外気の流入により、前記昇温室内の雰囲気ガスが急激に冷却されて収縮するので、この収縮した体積を補う分量の外気がさらに前記昇温室へと吸い込まれる。その結果、前記昇温室の雰囲気ガスの組成に大きな変化が生じてしまう。このため、被処理品の品質に悪影響が及ぶおそれがある。 The temperature raising chamber is provided with a lateral loading port for loading a product to be processed, and the loading port is opened and closed by a loading door. When the product to be processed is carried into the temperature raising chamber, that is, when the loading / unloading port is opened / closed, the atmospheric gas in the temperature raising chamber inevitably flows to the outside, and the outside air flows instead. Due to the inflow of the outside air, the atmospheric gas in the temperature raising chamber is rapidly cooled and contracted, so that an amount of outside air that supplements the contracted volume is further sucked into the temperature rising chamber. As a result, a large change occurs in the composition of the atmospheric gas in the heating chamber. This may adversely affect the quality of the processed product.
これを防止するためには、変化した雰囲気ガスの組成を適正な範囲に戻すことが必要であるが、これに時間を取られると、後続の浸炭室への被処理品の供給が遅れるので、浸炭処理に長時間を要してしまうことになる。 In order to prevent this, it is necessary to return the composition of the changed atmospheric gas to an appropriate range. However, if time is taken for this, the supply of the article to be processed to the subsequent carburizing chamber is delayed. A long time is required for the carburizing process.
そこで、特許文献1,2に示すように、被処理品を昇温室に搬入する際に生ずる室内雰囲気の乱れを素早く回復させるため、昇温室の前に真空パージ室を設けたものが提案されている。これによれば、被処理品の搬入に要する時間、ひいては浸炭処理のリードタイムが短縮され、効率のよい浸炭処理が可能であるとされている。
Therefore, as shown in
しかしながら、前記従来の構成では、被処理品を真空パージ室に搬入した後、室内の空気を真空排気し、その後、雰囲気ガスや窒素ガス等を真空パージ室に導入する工程があるため、浸炭処理のリードタイムの短縮効果が限定的であり、雰囲気ガスや窒素ガス等のコストもかさむ等の問題がある。 However, in the above-described conventional configuration, there is a step of carrying out the article to be processed into the vacuum purge chamber, evacuating the indoor air, and then introducing atmospheric gas, nitrogen gas or the like into the vacuum purge chamber. However, there is a problem that the effect of shortening the lead time is limited and the cost of atmospheric gas or nitrogen gas is increased.
また、真空パージ室や真空排気の手段が必要になることから、装置全体の小型化や設備コストの低減も困難である。 In addition, since a vacuum purge chamber and a means for evacuation are required, it is difficult to reduce the size of the entire apparatus and reduce equipment costs.
さらに、特許文献1,2のものとは別に、真空パージ室を設けない従来の連続浸炭炉が抱える問題として、昇温室への大量の外気の流入を許すと、流入する外気中の酸素が雰囲気ガスと混合して昇温室内で異常燃焼を起こしてしまう可能性もあった。
Furthermore, apart from those of
本発明は、前記の如き事情に鑑みてなされたものであり、昇温室への被処理品の搬入時における雰囲気ガスの組成変化を大幅に抑制でき、浸炭処理のリードタイムも短縮でき、装置全体の小型化やコスト削減も達成でき、異常燃焼の問題もない、連続浸炭炉と連続浸炭方法とを提供しようとするものである。 The present invention has been made in view of the circumstances as described above, and can greatly reduce the change in composition of the atmospheric gas at the time of carrying the article to be processed into the temperature raising chamber, can shorten the lead time of the carburizing process, and the entire apparatus. Therefore, the present invention intends to provide a continuous carburizing furnace and a continuous carburizing method that can achieve miniaturization and cost reduction, and that do not have the problem of abnormal combustion.
前記課題を解決するため、本発明に係る連続浸炭炉は、昇温室と、該昇温室に隣接する浸炭室と、前記昇温室と前記浸炭室とを仕切る開閉自在な仕切り扉と、前記昇温室の底部に形成される被処理品の搬入口と、該搬入口を開閉する搬入扉と、前記搬入口から前記昇温室内へと被処理品を搬入する昇降機と、前記昇温室内の被処理品を前記浸炭室へと移送する移送手段と、浸炭処理用の雰囲気ガスを前記昇温室内へと供給するガス供給管路と、を備え、前記搬入扉が被処理品の支持手段とされ、前記昇降機の作動により前記搬入扉が昇降され、前記搬入扉の開閉速度を制御する開閉速度制御手段を備え、該開閉速度制御手段からの信号に基づいて前記昇温室内への雰囲気ガスの供給量を調整するガス量調整手段を備える(請求項1)。 In order to solve the above problems, a continuous carburizing furnace according to the present invention includes a temperature raising chamber, a carburizing chamber adjacent to the temperature raising chamber, an openable / closable partition door that partitions the temperature raising chamber and the carburizing chamber, and the temperature raising chamber. An inlet for the article to be processed formed at the bottom of the sheet, a loading door for opening and closing the inlet, an elevator for carrying the article to be processed from the inlet to the temperature raising chamber, and the object to be treated in the temperature raising chamber A transfer means for transferring a product to the carburizing chamber, and a gas supply pipe for supplying an atmospheric gas for carburizing treatment to the temperature raising chamber , wherein the carry-in door is a support means for the product to be processed, The carry-in door is moved up and down by the operation of the elevator, and is provided with an open / close speed control means for controlling the open / close speed of the carry-in door, and the supply amount of the atmospheric gas into the heating chamber based on a signal from the open / close speed control means Ru and a gas quantity adjusting means for adjusting (claim 1).
本発明によれば、前記ガス供給管路を通して前記昇温室へと浸炭処理用の雰囲気ガスを供給する。前記昇温室と前記浸炭室との間の仕切り扉を閉じた状態で前記昇温室の底部の搬入口を開け、前記昇降機を作動させて、前記昇温室内に被処理品を搬入する。そして、前記搬入口を閉じて、前記昇温室で被処理品の昇温処理を行う。その後、前記仕切り扉を開けて後続の浸炭処理のために被処理品を前記浸炭室に移送し、前記仕切り扉を閉じる。これら一連の動作を繰り返し行う。 According to the present invention, the atmospheric gas for the carburizing process is supplied to the temperature raising chamber through the gas supply pipe. With the partition door between the temperature raising chamber and the carburizing chamber closed, the loading port at the bottom of the temperature raising chamber is opened, the elevator is operated, and the article to be processed is carried into the temperature raising chamber. Then, the carry-in port is closed, and the temperature rise process of the product to be processed is performed in the temperature raising chamber. Thereafter, the partition door is opened, and an article to be processed is transferred to the carburizing chamber for subsequent carburizing treatment, and the partition door is closed. These series of operations are repeated.
本発明では、前記搬入口が前記昇温室の底部に形成されるので、前記搬入扉を開けて前記搬入口を開放した場合に、前記昇温室内の雰囲気ガスが外部に流出し難い。これは、前記昇温室内には大気よりも軽い加熱された雰囲気ガスがあり、またその対流があるため、搬入口が横向きの従来例と比較して、下向きの前記搬入口からはガスが流出し難いと考えられるからである。 In the present invention, since the carry-in entrance is formed at the bottom of the temperature raising chamber, when the carry-in door is opened by opening the carry-in door, the atmospheric gas in the temperature rise chamber is difficult to flow out. This is because there is a heated atmospheric gas that is lighter than the atmosphere in the heating chamber, and there is convection, so that the gas flows out from the downward inlet as compared to the conventional example where the inlet is sideways. This is because it is considered difficult.
搬入口開放時に雰囲気ガスの流出が抑制されれば、前記昇温室内への外気の流入も抑えられるので、前記昇温室の雰囲気ガスの組成に大きな変化が生じない。このため、昇温室内の雰囲気ガスの組成を元の適正な範囲に短時間で戻すことができ、後続の浸炭室への被処理品の供給も円滑に行うことができる。よって、浸炭処理のリードタイムも短縮できる。前記従来の技術とは異なり、雰囲気ガスを真空パージ室に導入する工程がないため、雰囲気ガス等のコストも節約され、省コスト的である。また、真空パージ室や真空排気の手段も不要であるから、装置全体の小型化や設備コストの低減も達成できる。 If the outflow of the atmospheric gas is suppressed when the carry-in port is opened, the inflow of outside air into the heating chamber can be suppressed, so that a large change does not occur in the composition of the atmospheric gas in the heating chamber. For this reason, the composition of the atmospheric gas in the temperature raising chamber can be returned to the original appropriate range in a short time, and the product to be processed can be smoothly supplied to the subsequent carburizing chamber. Therefore, the lead time of the carburizing process can be shortened. Unlike the conventional technique, since there is no step of introducing the atmospheric gas into the vacuum purge chamber, the cost of the atmospheric gas or the like is saved and the cost is reduced. Further, since a vacuum purge chamber and a vacuum exhaust means are not required, the entire apparatus can be reduced in size and the equipment cost can be reduced.
さらに、昇温室に流入する外気量が少ないことから、流入する外気に含まれる酸素が昇温室内の雰囲気ガスと混合して異常燃焼を起こす危険も少ない。 Furthermore, since the amount of outside air flowing into the temperature rising chamber is small, there is little risk that oxygen contained in the flowing outside air mixes with the atmospheric gas in the temperature rising chamber to cause abnormal combustion.
前記昇降機の作動により、搬入扉の閉作動と昇温室への被処理品の搬入とが同時に行われるので、作業効率が向上する。また、前記開閉速度制御手段によって、前記搬入扉の開閉速度を昇温室の内外の気体が乱されない適切な速度に制御することで、昇温室への外気の流入をより一層低減することができる。さらに、前記開閉速度制御手段からの信号に基づいて前記昇温室内への雰囲気ガスの供給量をガス量調整手段によって調整することで、前記搬入扉の開閉時において、昇温室内の雰囲気ガスの組成変化を極力抑制することができるので、雰囲気ガスの組成を短時間で元の状態に戻すことができる。このため、昇温工程を短時間で終えることができ、短い時間で次の被処理品Wを前記昇温室へと搬入することができる。 By the operation of the prior Symbol elevator, since the closing operation of the loading door and the loading of the workpieces to temperature raising chamber are simultaneously performed, thereby improving the working efficiency. Further, by controlling the opening / closing speed of the carry-in door to an appropriate speed at which the gas inside and outside the heating chamber is not disturbed by the opening / closing speed control means, the inflow of outside air into the heating chamber can be further reduced. Furthermore, the supply amount of the atmospheric gas into the temperature raising chamber is adjusted by the gas amount adjusting means based on a signal from the opening / closing speed control means, so that the atmosphere gas in the temperature raising chamber is opened and closed when the carry-in door is opened and closed. Since composition change can be suppressed as much as possible, the composition of the atmospheric gas can be returned to the original state in a short time. For this reason, the temperature raising step can be completed in a short time, and the next article to be processed W can be carried into the temperature raising chamber in a short time.
好適な実施の一形態として、前記ガス量調整手段が、前記搬入扉の開作動時に前記昇温室内に供給するガスの量を増大させる態様を例示する(請求項2)。このようにすれば、前記搬入扉の開作動時、すなわち前記搬入口の開口時における前記昇温室への外気の流入量を一層低減させることができる。 As a form of preferred embodiment, the gas amount adjustment means, illustrating the opening operation the state like that Ru increase the amount of gas supplied to the heating chamber during the loading door (claim 2). In this way, it is possible to further reduce the amount of outside air flowing into the temperature raising chamber when the loading door is opened, that is, when the loading port is opened.
好適な実施の一形態として、前記搬入扉の開閉速度が1cm/秒である態様を例示する(請求項3)。このようにすれば、昇温室への外気の流入をさらに抑制することができる。 As a preferred embodiment, a mode in which the opening / closing speed of the carry-in door is 1 cm / second is exemplified (claim 3 ). In this way, the inflow of outside air into the temperature raising chamber can be further suppressed.
一方、本発明に係る連続浸炭方法は、それぞれに浸炭処理用のガスが供給される昇温室と浸炭室との間の仕切り扉を閉じた状態で前記昇温室の底部の搬入口を開けて前記昇温室内に被処理品を搬入し、前記搬入口を閉じて前記昇温室で被処理品の昇温処理を行い、前記仕切り扉を開けて被処理品を前記浸炭室に移送し、前記仕切り扉を閉じる、という一連の過程を繰り返し実行する連続浸炭方法であって、前記搬入口を開閉する搬入扉が被処理品の支持手段とされ、前記搬入扉の開閉速度に応じて前記昇温室内への雰囲気ガスの供給量を調整するものである(請求項4)。 On the other hand, in the continuous carburizing method according to the present invention, the inlet of the bottom of the heating chamber is opened with the partition door between the heating chamber and the carburizing chamber to which the gas for carburizing treatment is supplied, being opened. The product to be processed is carried into the temperature raising chamber, the carry-in port is closed, the temperature rising treatment of the product to be processed is performed in the temperature raising chamber, the partition door is opened, the product to be processed is transferred to the carburizing chamber, and the partition Close the door, a continuous carburizing how to repeatedly perform a series of processes that, loading door for opening and closing the loading opening is a support means of the processed products, the temperature raising chamber in accordance with the opening and closing speed of the loading door The amount of atmospheric gas supplied to the inside is adjusted (claim 4 ).
好適な実施の一形態として、前記搬入扉の開閉速度が1cm/秒である態様を例示する(請求項5)。 As a preferred embodiment, a mode in which the opening / closing speed of the carry-in door is 1 cm / second is exemplified (Claim 5 ).
好適な実施の一形態として、前記搬入扉の開作動時には、該搬入扉が閉じている時よりも前記ガスを多く前記昇温室に供給する態様を例示する(請求項6)。 As a form of preferred embodiment, the at the time of opening operation of the loading door, illustrate embodiments supplied to many the temperature raising chamber the gas than when said loading door is closed (Claim 6).
本発明の方法による作用効果は、本発明による前記連続浸炭炉についての前記作用効果から自明であるので、重複した説明を省略する。 Since the effect by the method of this invention is self-evident from the said effect about the said continuous carburizing furnace by this invention, the overlapping description is abbreviate | omitted.
以下、添付図面を参照して、本発明の実施の一形態に係る連続浸炭炉及び連続浸炭方法について説明する。 Hereinafter, a continuous carburizing furnace and a continuous carburizing method according to an embodiment of the present invention will be described with reference to the accompanying drawings.
図1に示すように、本発明の実施の一形態に係る連続浸炭炉1は、昇温室2、浸炭室3、拡散室4、降温室5、焼入室6を順に備え、隣接する室同士の間には、開閉自在な仕切り扉7,8,9,10が配設されている。
As shown in FIG. 1, a continuous
前記昇温室2の底部には被処理品Wの搬入口11があり、該搬入口11は搬入扉12で開閉される。前記搬入口11から装入された被処理品Wは、プッシャ又はローラハース等の移送手段13によって前記各室を順次移動させられながら所定の熱処理を受ける。前記各仕切り扉7,8,9,10は、各室における熱処理中には仕切り(閉)状態にあり、被処理品Wを或る室から次の室へと移動させる際に開いて被処理品Wの室間移動を許容する。
At the bottom of the
前記各室にはガス供給管路14,15,16,17,18が接続されており、これらのガス供給管路を通じて熱処理に必要な所定のガスが各室に供給される。また、前記各室には排ガス管路19,20,21,22,23が配設されており、これらの排ガス管路を通じて前記各室からガス排出が行われる。
前記焼入室6は、上部のベスチブル24と下部の油槽25とで構成される。この油槽25には焼入油が貯留されている。前記ベスチブル24に搬入された被処理品Wは、図示しない昇降装置で下降させられて前記油槽25の焼入油に浸漬され、焼入処理を受ける。その後、前記被処理品Wは、前記昇降装置で上昇させられて前記ベスチブル24に戻される。
The quenching
前記ベスチブルには、焼入れ済みの被処理品Wを搬出するための搬出口26と、該搬出口26を開閉する搬出扉27と、が配設されている。該搬出扉27を開けて、前記搬出口26を通して、焼入れ済みの被処理品Wが前記焼入室6の前記ベスチブル24から外部へと搬出される。
In the best, a carry-out
前記連続浸炭炉1において、前記ガス供給管路14,15,16,17,18を通して前記各室へと浸炭処理用等の雰囲気ガスを供給する。前記昇温室2と前記浸炭室3との間の仕切り扉7を閉じた状態で前記昇温室2の底部の搬入口11を開け、該搬入口11の下方から前記昇温室2内に被処理品Wを搬入する。そして、前記搬入口11を閉じて、前記昇温室2で被処理品Wの昇温処理を行う。その後、前記仕切り扉7を開けて浸炭処理のために被処理品Wを前記浸炭室3に移送し、前記仕切り扉7を閉じる。空になった前記昇温室2には、前記と同様にして次の被処理品Wが搬入される。前記浸炭室3での処理が終わったら、拡散室4、降温室5、焼入室6へと順次被処理品Wが送られ、各室で被処理品Wに対してそれぞれ必要な処理が施される。これら一連の動作が繰り返して実行される。
In the
本実施の形態の最大の特徴は、前記連続浸炭炉1に対して被処理品Wを搬入するための前記搬入口11が、前記昇温室2の底部に配設される点である(従来の連続浸炭炉の被処理品搬入口は、昇温室の横向きの側面に配設されていた)。そして、被処理品Wは、昇降機28によって前記昇温室2の下方からリフトアップされて、前記搬入口11を通って前記昇温室2へと搬入される。
The greatest feature of the present embodiment is that the carry-in
本発明の発明者等の研究によれば、前記搬入口11を前記昇温室2の底部に形成すると、前記搬入扉12を開けて前記搬入口11を開放した場合に、前記昇温室2内の雰囲気ガスが外部に流出し難い。これは、前記昇温室2内には大気よりも軽くなった加熱された雰囲気ガスがあり、またその対流があるため、搬入口が横向きの従来例と比較して、下向きの前記搬入口11からはガスが流出し難いと考えられるからである。
According to research by the inventors of the present invention, when the carry-in
搬入口11の開放時に雰囲気ガスの流出が抑制されれば、前記昇温室2内への外気の流入も抑えられるので、前記昇温室2の雰囲気ガスの組成に大きな変化が生じない。このため、昇温室2内の雰囲気ガスの組成を元の適正な範囲に短時間で戻すことができ、後続の浸炭室3への被処理品の供給も円滑に行うことができる。よって、浸炭処理のリードタイムも短縮できる。前記従来の技術とは異なり、雰囲気ガスを真空パージ室に導入する工程がないため、雰囲気ガス等のコストも節約され、省コスト的である。また、真空パージ室や真空排気の手段も不要であるから、装置全体の小型化や設備コストの低減も達成できる。
If the outflow of the atmospheric gas is suppressed when the carry-in
さらに、昇温室2に流入する外気量が少ないことから、流入する外気に含まれる酸素が昇温室2内の雰囲気ガスと混合して異常燃焼を起こす危険も少ない。
Further, since the amount of outside air flowing into the
前記搬入扉12と前記昇降機28は別々に設けることとしてもよい。しかし、本実施の形態では、前記搬入扉12が被処理品Wの支持手段を兼ねるものとし、前記昇降機28の作動により前記搬入扉12を昇降させるようになっている。このようにすれば、前記昇降機28の作動により、搬入扉12の閉作動と昇温室2への被処理品Wの搬入とが同時に行われるので、作業効率が向上し、また、別に開閉手段を設ける必要がなくなり設備コストの低減が図れる。
The carry-in
前記昇降機28は、被処理品Wの支持体としての前記搬入扉12を水平状態のままで昇降できるものであれば具体的な構成は任意である。例えば、図1に示すように、前記搬入扉12の上に被処理品載置台29を設け、前記搬入扉12を昇降台30によって支持し、該昇降台30の回りに適数本の案内柱31を配設する。そして、該案内柱31に沿って前記昇降台30を上下動させることによって、前記被処理品載置台29と前記搬入扉12とを同時に昇降させる。
The
前記昇降台30の駆動源32としては、油圧シリンダやモータが挙げられ、駆動源32と前記昇降台30とを駆動上連結させる手段としては、チェーンと歯車の組み合わせや、ワイヤとワイヤ巻取りドラムの組み合わせや、ラックとピニオンの組み合わせ等が挙げられる。ラックとピニオンを用いる場合には、前記昇降台にモータと該モータに連結される駆動ピニオンを設け、上下方向に配設したラックに前記駆動ピニオンを噛合させて昇降させることができる。
Examples of the
前記連続浸炭炉1は、前記搬入扉12の開作動時に前記昇温室2内に供給するガスの量を増大させるガス量調整手段33を備えることが好ましい。このようにすれば、前記搬入扉12の開作動時、すなわち前記搬入口11の開口時における前記昇温室2への外気の流入量を一層低減させることができるからである。
The
さらに、前記搬入扉12の開閉速度を制御する開閉速度制御手段34を有することが好ましい。加えて、前記ガス量調整手段33は、前記搬入扉12の開閉速度に合わせて前記昇温室2内に供給するガスの量を調整するものであることが好ましい。このようにすれば、前記搬入扉12の開閉速度に応じて前記昇温室2へのガス供給量を調整することで、前記昇温室2への外気の流入量を尚一層低減させることができるからである。
Furthermore, it is preferable to have an opening / closing speed control means 34 for controlling the opening / closing speed of the carry-in
具体的には、前記ガス量調整手段33として、前記昇温室2への前記ガス供給管路14上に、流量調整バルブを設ける。該流量調整バルブ33の上流側には、前記昇温室2へのガス供給を制御するための開閉バルブ35がある。
Specifically, a flow rate adjusting valve is provided as the gas amount adjusting means 33 on the gas supply line 14 to the
前記昇降機28には、搬入扉12の開閉速度制御手段34として、前記駆動源の出力を調整するコントローラが配設される。前記駆動源32が油圧シリンダである場合には、前記コントローラ34として、前記油圧シリンダへ供給する作動油の流量を制御する電動モータ付バルブ等の流量調整バルブを用いることができる。また、前記駆動源32がモータである場合には、前記コントローラ34として、インバータやサーボモータ用コントローラ等を用いることができる。前記コントローラ34からの信号に基づいて前記流量調整バルブ33の作動を制御することにより、前記搬入扉12の開閉速度に合わせて前記昇温室2内に供給するガスの量が調整される。
The
本発明の発明者等の研究によれば、前記搬入扉12の開閉速度は低速であるのが好ましい。これは、前記搬入扉12の開閉速度が速くなればなるほど、搬入口11の周辺の気体がより激しくかき乱され、昇温室2内への外気の流入量と昇温室2内の雰囲気ガスの外部への流出量とが多くなってしまうからである。したがって、前記搬入扉12の開閉速度は、前記昇温室2の内外の気体が前記搬入扉12の開閉によってかき乱されない程度の低速(例えば、1cm/秒等)とする。
According to studies by the inventors of the present invention, the opening / closing speed of the carry-in
一方、前記搬入扉12の開閉速度を低速にすると、その分だけ前記搬入口11が開いている時間が長くなる。このため、前記昇温室2内の雰囲気ガスが外部に流出し、外気が昇温室へと流入する機会が増えることにもなる。そこで、本実施の形態では、前記搬入扉12の開閉速度を低速にしても外気流入の機会が増大しないように、前記ガス量調整手段33によって、前記昇温室2内に供給するガスの量を増大させる。例えば、搬入口11が開口している間は、搬入口11が閉じている時のガス供給量の例えば1.5倍等のガスを供給する。これにより、昇温室2へ外気が流入しにくくなり、好適である。
On the other hand, when the opening / closing speed of the carry-in
本実施の形態によれば、前記搬入扉12の開閉時において、昇温室2内の雰囲気ガスの組成変化が極力抑制されるので、雰囲気ガスの組成を短時間で元の状態に戻すことができる。このため、昇温工程を短時間で終えることができ、30分以下、さらには従来の浸炭炉では考えられなかった15分以下等の短い時間で次の被処理品Wを前記昇温室2へと搬入することができる。
According to the present embodiment, the composition change of the atmospheric gas in the
<実施例1>
本発明の発明者等は、本発明による作用効果を実証するために様々な試験を行った。すなわち、図2に示すように、前記昇温室2に相当する実験容器36を用い、雰囲気ガスに相当するガスを導入しながら実験容器36の下向き扉(搬入扉に相当)37を開閉して、実験容器36内の雰囲気の測定等を行った。
<Example 1>
The inventors of the present invention conducted various tests in order to demonstrate the effects of the present invention. That is, as shown in FIG. 2, using the
<実験器具の説明>
図2に示すように、100mm×100mm×150mmの実験容器36の下部(底部)に、26mm×26mmの扉37を設ける。この下向き扉37は、前記実験容器の底部の開口38(搬入口に相当)を開閉する。
<Explanation of laboratory equipment>
As shown in FIG. 2, a
前記実験容器36内には加熱装置39が配設され、この加熱装置39によって前記実験容器36の内部を100〜500℃に加熱することができる。前記実験容器36内には、マスフローコントローラ40を介して、雰囲気ガスとしてN2ガスが供給される。
A
前記実験容器36の内部の二箇所には、室温測定のための熱電対41,42が配設される。一つ(41)は前記扉37の近くの室温測定用であり、もう一つ(42)は前記扉37から離れた奥側の室温測定用である。
また、前記実験容器36内の酸素濃度を測定するためにサンプリング管路43を設け、該サンプリング管路43上に、ポンプ44と流量計45と酸素濃度計46を配設する。該酸素濃度計46を通過したサンプルガスは、戻し管路47を通って前記実験容器36へと戻される。
In addition, a
前記熱電対41,42と前記酸素濃度計46による測定値は、記録装置48で記録される。
The values measured by the
比較例として、前記下向き扉37に代えて横向きの側面に横向き扉を設けた実験容器(他の構成は実施例の実験容器と同じ)を用い、前記と同じ条件で比較実験を行う。
As a comparative example, instead of the
<実験方法>
まず、前記加熱装置39を用いて前記実験容器36の内部を300℃に加熱する。前記実験容器36の中にN2ガスを一定量供給し、実験容器36内の雰囲気をN2ガスで置換する。
<Experiment method>
First, the inside of the
ここで、実験容器の容積が1.5Lだから、例えばN2ガスの供給量を100mL/分とすると、一時間で4回のガス置換を行うことができる。このように、ガス供給量(流量)と容器の容積との比率を、ガス置換回数(一時間当たりのガス置換可能回数)という。 Here, since the volume of the experimental container is 1.5 L, for example, when the supply amount of N 2 gas is 100 mL / min, gas replacement can be performed four times in one hour. Thus, the ratio between the gas supply amount (flow rate) and the volume of the container is referred to as the number of gas replacements (the number of gas replacements per hour).
実験においてはガス置換回数を6回とし、実験容器36内の酸素濃度が所定の値(例えば250ppm以下)になったことを確認し、実験容器36の下向き扉37を外す。扉の開閉速度は1cm/秒とする。
In the experiment, the number of gas replacements is set to 6, and it is confirmed that the oxygen concentration in the
<実験1>
10秒後に実験容器36の下向き扉37を閉め、酸素濃度と雰囲気の温度とを測定した。その結果は図3に示す通りである。また、実施例と比較例による実験容器内の酸素濃度の時間変化を図4に示す。図4より、搬入扉を下向きにすると流入する酸素の量が横向き扉より低下することが分かる。なお、扉を閉めた時点から酸素濃度が増加しているのは、サンプリング及び測定のタイムラグのためである。
<
Ten seconds later, the
図4より、下向き扉における酸素濃度の変化は、酸素濃度の初期値(扉を開ける前)が体積比で189ppmであり、約50秒後に最大値4862ppmとなった。横向き扉では初期値が166ppmであり、約42秒後に最大値82500ppmとなった。すなわち、下向き扉にすることで横向き扉と比べて外気の流入を約1/17に抑制することができる。 As shown in FIG. 4, the change in oxygen concentration at the downward door was 189 ppm in terms of volume ratio of the initial value of oxygen concentration (before opening the door), and reached a maximum value of 4862 ppm after about 50 seconds. For the sideways door, the initial value was 166 ppm, and after about 42 seconds, the maximum value was 82500 ppm. That is, by using the downward door, the inflow of outside air can be suppressed to about 1/17 compared to the lateral door.
<実験2>
10秒後に実験容器の下向き扉を閉じずに下向き扉を開放したままとする以外は実験1と同様に実験容器内の酸素濃度を測定し、その変化を記録した。同じ条件で横向き扉を開放したまま実験容器内の酸素濃度を測定し、その変化を記録した。それらの結果は図5に示す通りである。
<
After 10 seconds, the oxygen concentration in the experimental container was measured in the same manner as in
図5より、下向き扉の場合、扉を長時間開けたままでも酸素濃度が上昇しにくいことが分かる。このことから、下向き扉は横向き扉よりも異常燃焼が起こりにくいと考えられる。 From FIG. 5, it can be seen that in the case of a downward door, the oxygen concentration hardly increases even when the door is left open for a long time. From this, it is considered that the downward door is less likely to cause abnormal combustion than the lateral door.
<実施例2>
前記実験1より、搬入扉を下向きにすると流入する酸素の量が低下することが分かった。
<Example 2>
From
ところで、昇温室に流入した外気中の酸素は、昇温室内において浸炭ガス中のCOと反応してCO2を生成し、室内雰囲気のカーボンポテンシャルを低下させる。このため、昇温室から次の浸炭室へと被処理品を移送するまでの間に、昇温室内の酸素濃度を所定値以下に戻しておくことが浸炭室の雰囲気の変動を抑制するために好ましい。具体的には、被処理品の昇温室での滞留時間を14分とすると、この間に昇温室内雰囲気の酸素濃度を例えば750ppm以下にしておくことが好ましい。そこで、実施例1と同じ実験装置において、下向き扉を閉めてから14分後の酸素濃度を750ppm以下とすることを目標とする。 By the way, oxygen in the outside air that has flowed into the heating chamber reacts with CO in the carburizing gas in the heating chamber to generate CO 2 , thereby reducing the carbon potential of the indoor atmosphere. For this reason, in order to suppress fluctuations in the atmosphere of the carburizing chamber, the oxygen concentration in the heating chamber is returned to a predetermined value or less until the article to be processed is transferred from the heating chamber to the next carburizing chamber. preferable. Specifically, when the residence time of the article to be processed is 14 minutes in the temperature raising chamber, it is preferable to keep the oxygen concentration in the temperature raising chamber during this time, for example, 750 ppm or less. Therefore, in the same experimental apparatus as in Example 1, the target is to set the oxygen concentration 14 minutes after closing the downward door to 750 ppm or less.
<実験3>
実施例1と同様に実験を行い、ガス流量(置換回数)を変えて経過時間と酸素濃度との関係を調査した。その結果は図6に示す通りである。
<
Experiments were conducted in the same manner as in Example 1, and the relationship between elapsed time and oxygen concentration was investigated by changing the gas flow rate (number of substitutions). The result is as shown in FIG.
図6から分かるように、4回置換では14分(840秒)で約1000ppmであり、14分以内に酸素濃度を750ppm以下にはできない。ガス流量を6回置換、12回置換とすることで、14分以内に酸素濃度を750ppm以下にすることができる。但し、ガス流量を増やした分だけガスのコストが4回置換と比べて1.5倍、2倍増大し、コスト増である。
As can be seen from FIG. 6, in the four-time replacement, the oxygen concentration is about 1000 ppm in 14 minutes (840 seconds), and the oxygen concentration cannot be reduced to 750 ppm or less within 14 minutes. By replacing the
ガス流量を4回置換とし、ただし下向き扉の開放時にのみ12回置換として、さらに下向き扉を閉めた後は4回置換とすると、酸素濃度の上昇を抑えることができる。ガスコストは4回置換と比べると増大するが、前記6回置換や12回置換と比べて大幅にコストを下げることができ許容範囲といえ好ましい。 If the gas flow rate is replaced four times, but only when the downward door is opened, the replacement is performed 12 times, and further after the downward door is closed, the replacement is performed four times. Although the gas cost is increased compared to the 4-time replacement, the cost can be significantly reduced as compared with the 6-time replacement and the 12-time replacement, which is preferable within an allowable range.
<実験4>
扉を開放した以外は、実施例1と同様に実験を行い、下向き扉の開放時間と酸素濃度との関係を調査した。その結果は図7に示す通りである。
<Experiment 4>
An experiment was conducted in the same manner as in Example 1 except that the door was opened, and the relationship between the opening time of the downward door and the oxygen concentration was investigated. The result is as shown in FIG.
図7から、下向き扉の開放時間が短ければ短いほど、酸素濃度の増加が少ないことが分かる。扉開放時間を10秒より短くすれば、さらに酸素濃度増加量を減少できると見込まれる。 FIG. 7 shows that the shorter the opening time of the downward door, the smaller the increase in oxygen concentration. If the door opening time is shorter than 10 seconds, it is expected that the amount of increase in oxygen concentration can be further reduced.
<実験5>
図8は、ガス流量一定のもと、扉の開閉速度を1cm/秒で行う場合と、5cm/秒で行う場合の比較データである。例えば、置換回数(昇温室容積の時間当たりの置換率)4回程度をランニングコスト目標値とする。ただし、図8の実験データから、8回以下の置換率では、入口扉の開閉時間の差で、酸素流入量が変化する(扉開閉速度が早いほど、酸素流入量が大きい)ことから、4回置換では、扉開閉速度高低での酸素流入量の差がさらに大きくなることが予想される。下向き扉構造では開時間での酸素流入量が時間に伴い頭打ちする(図5より)ことから、扉の開閉速度が遅い方が、酸素流入量をより減らすことができ、雰囲気安定化につながる。しかし、扉開閉速度を遅くすることは、その他の機能性低下(昇温遅れ、炉内温度低下)などを引き起こす可能性があるため、扉開閉速度を可変する機能を備えることが好ましい。
<
FIG. 8 shows comparison data between the case where the door opening / closing speed is 1 cm / second and the case where the door opening / closing speed is 5 cm / second under a constant gas flow rate. For example, the number of times of replacement (replacement rate per time of the heating chamber volume) about 4 times is set as the running cost target value. However, from the experimental data of FIG. 8, the oxygen inflow rate changes due to the difference in opening / closing time of the entrance door at a replacement rate of 8 times or less (the faster the door opening / closing speed, the larger the oxygen inflow rate). It is expected that the difference in the oxygen inflow amount at the door opening / closing speed will be further increased in the turn replacement. In the downward door structure, the oxygen inflow amount at the opening time reaches a peak with time (from FIG. 5). Therefore, the slower the door opening / closing speed, the more the oxygen inflow amount can be reduced, leading to the stabilization of the atmosphere. However, since slowing down the door opening / closing speed may cause other functional deterioration (temperature increase delay, furnace temperature reduction) and the like, it is preferable to have a function of varying the door opening / closing speed.
<実施例3>
図9は、下向き扉の安全性を評価したデータを示す。炉内温度を90℃、130℃、280℃、310℃、380℃とした以外は実験1と同様に実験を行い、酸素濃度の増加量の最大を評価したものである。酸素濃度の増加量は炉内温度に比例しており、1000℃においても15000ppm以下(1.5%以下)であり、水素の爆発限界以下の酸素濃度である。浸炭温度は通常850〜950℃程度で実施するので安全性も高い。
<Example 3>
FIG. 9 shows data obtained by evaluating the safety of the downward door. The experiment was performed in the same manner as in
横向き扉を有する従来の浸炭炉では、異常燃焼による爆発の恐れがないとはいえない。これは、横向き扉(図4、図5)での酸素流入量が多いことから、爆発臨界点により近くなるからであると推測される。 In a conventional carburizing furnace having a side door, it cannot be said that there is no risk of explosion due to abnormal combustion. This is presumed to be because the oxygen inflow amount at the sideways door (FIGS. 4 and 5) is large, and it is closer to the explosion critical point.
これに対し、本実施の形態に係る下向き扉構造の浸炭炉では、従来炉より酸素流入量を大幅に抑えることが可能となった。図9より、1000℃以下の温度では、爆発臨界点(酸素濃度3.6%)を大きく下回ることから、より高い安全性を求めることができる。また、本実施の形態に係る下向き扉構造の浸炭炉は、1000℃以下の雰囲気炉に広く活用できる。 On the other hand, in the carburizing furnace having the downward door structure according to the present embodiment, the oxygen inflow amount can be significantly suppressed as compared with the conventional furnace. From FIG. 9, at a temperature of 1000 ° C. or lower, the explosion critical point (oxygen concentration 3.6%) is greatly below, so higher safety can be obtained. Moreover, the carburizing furnace having the downward door structure according to the present embodiment can be widely used for an atmospheric furnace of 1000 ° C. or lower.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012050262A JP5828425B2 (en) | 2012-03-07 | 2012-03-07 | Continuous carburizing furnace and continuous carburizing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012050262A JP5828425B2 (en) | 2012-03-07 | 2012-03-07 | Continuous carburizing furnace and continuous carburizing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013185189A JP2013185189A (en) | 2013-09-19 |
JP5828425B2 true JP5828425B2 (en) | 2015-12-09 |
Family
ID=49386896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012050262A Active JP5828425B2 (en) | 2012-03-07 | 2012-03-07 | Continuous carburizing furnace and continuous carburizing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5828425B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105331868B (en) * | 2015-11-10 | 2017-04-26 | 中南大学 | Preparation method of WC-Co hard alloy of gradient structure |
DE102018117355A1 (en) * | 2018-07-18 | 2020-01-23 | Eisenmann Se | airlock |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6027912B2 (en) * | 1980-01-17 | 1985-07-02 | 山崎電機工業株式会社 | Continuous sintering furnace |
JPH0248788U (en) * | 1988-09-26 | 1990-04-04 | ||
JP4054597B2 (en) * | 2002-04-23 | 2008-02-27 | 光洋サーモシステム株式会社 | Hot air circulation oven |
JP4876280B2 (en) * | 2005-03-31 | 2012-02-15 | Dowaサーモテック株式会社 | Heat treatment method and heat treatment apparatus |
JP5167301B2 (en) * | 2010-03-29 | 2013-03-21 | トヨタ自動車株式会社 | Continuous gas carburizing furnace |
-
2012
- 2012-03-07 JP JP2012050262A patent/JP5828425B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013185189A (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5167301B2 (en) | Continuous gas carburizing furnace | |
US9890999B2 (en) | Industrial heat treating furnace that uses a protective gas | |
PL2121993T3 (en) | Device and method for loading and unloading a heat treatment furnace | |
JP5828425B2 (en) | Continuous carburizing furnace and continuous carburizing method | |
JP2009068070A (en) | Heat treatment method and heat treatment apparatus | |
JP2005009702A (en) | Multi-cell type vacuum heat treating apparatus | |
JP5330651B2 (en) | Heat treatment method | |
JP5225634B2 (en) | Heat treatment method and heat treatment equipment | |
JP5613943B2 (en) | Continuous sintering furnace | |
EP2684967A1 (en) | Continuous furnace | |
JP2009091638A (en) | Heat-treatment method and heat-treatment apparatus | |
JP6771082B2 (en) | Heat treatment furnace | |
JP2009091632A (en) | Heat-treatment apparatus and heat-treatment method | |
JP3002060B2 (en) | Heat treatment equipment | |
JP2009243738A (en) | Closed type controlled atmosphere heat treatment furnace | |
JP5291354B2 (en) | Gas nitriding furnace and gas soft nitriding furnace | |
JP4392184B2 (en) | Nitriding processing apparatus, nitriding processing method, and oxynitriding control apparatus | |
KR101577670B1 (en) | One-piece composite furnace | |
JP6031313B2 (en) | Carburizing method | |
JP4876291B2 (en) | Heat treatment method and heat treatment apparatus | |
JP7374385B2 (en) | Production method and conveyance equipment | |
WO2024042744A1 (en) | Method for manufacturing carburized sintered body and apparatus for manufacturing carburized sintered body | |
US7833471B2 (en) | Carburizing apparatus and carburizing method | |
JP5821118B2 (en) | Heat treatment method and heat treatment apparatus | |
JP4605781B2 (en) | Oil quenching method and apparatus for steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150909 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151009 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5828425 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |