[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5823075B1 - Pitting corrosion inhibitor composition and pitting corrosion suppression method - Google Patents

Pitting corrosion inhibitor composition and pitting corrosion suppression method Download PDF

Info

Publication number
JP5823075B1
JP5823075B1 JP2015116448A JP2015116448A JP5823075B1 JP 5823075 B1 JP5823075 B1 JP 5823075B1 JP 2015116448 A JP2015116448 A JP 2015116448A JP 2015116448 A JP2015116448 A JP 2015116448A JP 5823075 B1 JP5823075 B1 JP 5823075B1
Authority
JP
Japan
Prior art keywords
polymer
pitting corrosion
acid polymer
itaconic acid
maleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015116448A
Other languages
Japanese (ja)
Other versions
JP2017002351A (en
Inventor
伊藤 賢一
賢一 伊藤
関戸広太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2015116448A priority Critical patent/JP5823075B1/en
Application granted granted Critical
Publication of JP5823075B1 publication Critical patent/JP5823075B1/en
Publication of JP2017002351A publication Critical patent/JP2017002351A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

【課題】開放循環式冷却水システムの炭素鋼製熱交換器に適用する、低温安定性が優れた孔食抑制剤組成物及び孔食抑制方法を提供する。【解決手段】防食被膜形成成分と分散剤成分を有効成分として含み、防食被膜形成成分が、マレイン酸系重合体、イタコン酸系重合体及び亜鉛イオンを放出する化合物を含有し、分散剤成分がモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を含有し、防食被膜形成成分の配合量に対する分散剤成分の配合量の重量比が0.4〜0.8であることを特徴とする孔食抑制剤組成物及び開放循環式冷却水システムの循環水中における該防食被膜形成成分の添加量に対する該分散剤成分の添加量の重量比が0.4〜0.8になるように防食被膜形成成分と分散剤成分を開放循環式冷却水システムに添加することを特徴とする孔食抑制方法。【選択図】なし[PROBLEMS] To provide a pitting corrosion inhibitor composition and a pitting corrosion suppression method excellent in low-temperature stability, which are applied to a carbon steel heat exchanger of an open circulation type cooling water system. An anticorrosive film forming component and a dispersant component are included as active ingredients, the anticorrosive film forming component contains a maleic acid polymer, an itaconic acid polymer, and a compound that releases zinc ions, and the dispersant component is It contains a copolymer of monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid, and the weight ratio of the blending amount of the dispersant component to the blending amount of the anticorrosive film forming component is 0.4 to 0.8. The weight ratio of the added amount of the dispersant component to the added amount of the anticorrosive film-forming component in the circulating water of the pitting corrosion inhibitor composition and the open circulation type cooling water system is 0.4 to 0.8. A pitting corrosion suppression method comprising adding an anticorrosion film forming component and a dispersant component to an open circulation type cooling water system. [Selection figure] None

Description

本発明は、開放循環式冷却水システムにおいて、水と接触する炭素鋼等の鉄系金属の腐食、特に孔食を抑制する組成物及び孔食を抑制する方法に関する。また、低温安定性に優れた該組成物に関する。   The present invention relates to a composition for suppressing corrosion of iron-based metals such as carbon steel in contact with water, particularly pitting corrosion, and a method for suppressing pitting corrosion in an open circulation type cooling water system. The present invention also relates to the composition having excellent low-temperature stability.

開放循環式冷却水システムにおいて、系内の熱交換器の伝熱管や配管の材質として、一般的に炭素鋼等の鉄系の金属が用いられている。これらの鉄系金属は水と接触すると著しい腐食が発生するため、鉄系金属の腐食を防止するため各種の腐食抑制剤が用いられる。これらの腐食抑制剤は、鉄系金属の表面に薄い防食被膜を形成することによって腐食を防止する。   In an open circulation type cooling water system, iron-based metal such as carbon steel is generally used as a material for heat transfer tubes and piping of heat exchangers in the system. Since these iron-based metals undergo significant corrosion when they come into contact with water, various corrosion inhibitors are used to prevent corrosion of the iron-based metals. These corrosion inhibitors prevent corrosion by forming a thin anticorrosive film on the surface of the ferrous metal.

従来、開放循環式冷却水システムの腐食防止方法として、冷却水にリン酸あるいは縮合リン酸塩を用いることが一般的に知られており、また、縮合リン酸塩やホスホン酸等のリン系化合物と亜鉛化合物を併用する腐食抑制剤も多用されている。   Conventionally, it is generally known that phosphoric acid or condensed phosphate is used for cooling water as a method of preventing corrosion in an open circulation cooling water system, and phosphorus-based compounds such as condensed phosphate and phosphonic acid. Corrosion inhibitors that use zinc and zinc compounds are also frequently used.

しかし、亜鉛化合物等の重金属類やリン酸類は、水生生物への毒性や、湖沼や河川などの富栄養化等への影響が懸念されており、近年ではこれらの物質の排出に対し、厳格な規制が行われるようになった。従って、重金属類やリン酸類の使用量を削減できる腐食抑制剤及び腐食抑制方法が求められている。   However, heavy metals such as zinc compounds and phosphoric acids are concerned about toxicity to aquatic organisms and effects on eutrophication of lakes and rivers. Regulations came into effect. Accordingly, there is a need for a corrosion inhibitor and a corrosion inhibition method that can reduce the amount of heavy metals and phosphoric acids used.

一方、開放循環式冷却水システムにおいて、金属の腐食はアノード面で生じるため、アノード抑制を行うことによって、金属表面全体における腐食速度を低下させることが出来るが、防食被膜の形成が均一になされていない場合、被膜の欠損部であるアノードに流れる腐食電流が過大となり、金属内部に向かって孔状に進行する孔食と呼ばれる局部腐食が発生する。システムの運転中、熱交換器に孔食が生じた場合、プロセス側への冷却水へのリーク、またはプロセス側からのリーク等が生じ、システムの運転に多大な影響を与え、時にはプロセス側プラントの予定外の運転停止に至る場合もある。   On the other hand, in an open-circulation cooling water system, metal corrosion occurs on the anode surface. Therefore, by suppressing the anode, the corrosion rate on the entire metal surface can be reduced, but the formation of the anticorrosion coating is made uniform. If not, the corrosion current flowing through the anode, which is a missing portion of the coating, becomes excessive, and local corrosion called pitting corrosion that progresses in the form of holes toward the inside of the metal occurs. If pitting corrosion occurs in the heat exchanger during system operation, leakage to the cooling water to the process side or leakage from the process side, etc., will have a great impact on the operation of the system, sometimes at the process side plant It may lead to an unexpected shutdown.

熱交換器の伝熱管の寿命は、伝熱管が孔食等により穿孔するか、あるいは最大孔食深さが安全上の許容値に達するまでの期間であるから、孔食の抑制は伝熱管の長寿命化に寄与する。   The life of the heat exchanger tube of the heat exchanger is the period until the heat transfer tube is pierced by pitting corrosion or the maximum pitting corrosion depth reaches a safety tolerance. Contributes to longer life.

多管式熱交換器の炭素鋼鋼管には、一般に継目無鋼管が使用されており、特に外径寸法の精度が求められることから寸法精度の高い冷間仕上げ継目無鋼管が使用されているが、冷間仕上げ継目無鋼管には冷間加工後の熱処理により生成したミルスケールや冷間加工時の潤滑剤の炭化物や下地処理の残渣物等が鋼表面に不均一に付着しており、これらは酸素濃淡電池形成による孔食の原因となりやすい。しかしながら、従来の腐食抑制方法では全体の腐食速度を抑制することはできても孔食速度を十分抑制することはできなかった。   In general, seamless steel pipes are used as carbon steel pipes for multi-tube heat exchangers, and cold-finished seamless steel pipes with high dimensional accuracy are used because the accuracy of the outer diameter is particularly required. In cold-finished seamless steel pipes, mill scale generated by heat treatment after cold working, carbide of lubricant during cold working, residue of ground treatment, etc. adhere unevenly to the steel surface. Tends to cause pitting corrosion due to the formation of oxygen concentration cells. However, even though the conventional corrosion suppression method can suppress the overall corrosion rate, the pitting corrosion rate cannot be sufficiently suppressed.

例えば、特許文献1には「ごく一般的な水質の例では、POとして10mg/L程度或いはそれ以上のリン系化合物を添加すればある程度の腐食抑制効果が得られるものの、確実に孔食を抑制するためには100mg/L程度の高濃度添加が必要となる。」と記載され、特許文献2には、水系における金属の局部腐食の進行を抑止するための「防食剤の大量添加によりスケール障害を引き起こす可能性もある」とも記載され、孔食抑制の困難さを示している。 For example, Patent Document 1 states that “in the case of a very common water quality, if a phosphorus-based compound of about 10 mg / L or more as PO 4 is added, a certain degree of corrosion suppression effect can be obtained, but pitting corrosion is surely achieved. In order to suppress it, it is necessary to add a high concentration of about 100 mg / L. ”Patent Document 2 describes that“ a large amount of anticorrosive is added to prevent the progress of local corrosion of metal in an aqueous system. It may also cause damage ", indicating the difficulty of suppressing pitting corrosion.

特許文献1では、対象水系に供給する水をアニオン交換樹脂と接触させて孔食に関与する腐食性イオンを除去する操作を併用し、リン系化合物の添加量を低く抑える金属の孔食抑制方法を提案している。しかし、この方法ではアニオン交換樹脂を充填した設備を追加する必要があり、また、その設備やアニオン交換樹脂の維持管理等も必要となるため、水系の管理操作が煩雑となり、また、コストも増加する。   In Patent Document 1, a method for suppressing pitting corrosion of a metal that reduces the amount of phosphorus compound added by using an operation of removing corrosive ions involved in pitting corrosion by bringing water supplied to the target aqueous system into contact with an anion exchange resin. Has proposed. However, in this method, it is necessary to add equipment filled with anion exchange resin, and maintenance and management of the equipment and anion exchange resin are also required, so that the management operation of the water system becomes complicated and the cost also increases. To do.

特許文献2では、局部腐食の進行を抑止する方法として、防食剤を内包したマイクロカプセルを水系に添加する方法を提案している。そのマイクロカプセルに内包される防食剤はリン酸、クロム酸、タングステン酸、モリブデン酸の水溶性塩等が挙げられている。また、特許文献3では、モリブデン酸、タングステン酸またはそれらの塩と、炭酸ナトリウムまたは炭酸カリウムとを含有することを特徴とする孔食防止剤が提案されている。しかし、これらの提案においてはマイクロカプセルの調製工程が必要であったり、比較的高価なタングステンやモリブデン等の重金属類を主成分として適用するため、重金属類の使用量を削減できる孔食防止剤及び孔食防止方法の要求に十分対応できず、また、コストも増加することになる。   Patent Document 2 proposes a method of adding microcapsules containing an anticorrosive to an aqueous system as a method of suppressing the progress of local corrosion. Examples of the anticorrosive contained in the microcapsule include phosphoric acid, chromic acid, tungstic acid, water-soluble salts of molybdic acid, and the like. Patent Document 3 proposes a pitting corrosion inhibitor characterized by containing molybdic acid, tungstic acid or a salt thereof and sodium carbonate or potassium carbonate. However, in these proposals, a microcapsule preparation process is required, or a relatively expensive heavy metal such as tungsten or molybdenum is applied as a main component, so that a pitting corrosion inhibitor that can reduce the amount of heavy metal used and The pitting corrosion prevention method cannot be sufficiently met, and the cost increases.

また、エタノールアミンビスホスホノメチル−N−オキサイドやヒドロキシイミノビス(メチルホスホン酸)(特許文献4参照)等のホスホン酸誘導体も局部腐食抑制効果を有することが開示されているが、十分な効果を得るためには高い濃度が必要であるなどの問題がある。   In addition, it has been disclosed that phosphonic acid derivatives such as ethanolamine bisphosphonomethyl-N-oxide and hydroxyiminobis (methylphosphonic acid) (see Patent Document 4) also have a local corrosion inhibiting effect. There is a problem that a high concentration is necessary to obtain it.

一方、特許文献5には、リンを含有せず局部腐食を防止する効果のある水処理剤として、イソプレンスルホン酸/アクリル酸/メタクリル酸−2−ヒドロキシエチル系ターポリマやイソプレンスルホン酸/アクリル酸/アクリルアミド−2−メチルプロパンスルホン酸系ターポリマ等が開示されているが、同一出願人は特許文献6において、これらのポリマの単独使用は、対象水系の条件によっては孔食を引き起こす可能性があることを指摘している。そして、特許文献6では、非リン、非金属系で孔食防止効果の優れた腐食防止剤として、ケイ酸又はその塩とスルホン酸系ポリマを含む腐食防止剤を提案している。しかし、この腐食防止剤は対象水系のシリカ濃度が50〜100mg/Lになるように添加するため、シリカ濃度の増減が大きい水系では薬剤添加量の調節が難しい。   On the other hand, Patent Document 5 discloses isoprenesulfonic acid / acrylic acid / acrylic acid-2-hydroxyethyl terpolymer and isoprenesulfonic acid / acrylic acid / as a water treatment agent that does not contain phosphorus and has an effect of preventing local corrosion. Acrylamide-2-methylpropanesulfonic acid-based terpolymers and the like are disclosed, but the same applicant described in Patent Document 6 that the single use of these polymers may cause pitting corrosion depending on the conditions of the target aqueous system. Point out. Patent Document 6 proposes a corrosion inhibitor containing silicic acid or a salt thereof and a sulfonic acid polymer as a corrosion inhibitor that is non-phosphorus and non-metallic and has an excellent pitting corrosion prevention effect. However, since this corrosion inhibitor is added so that the silica concentration of the target aqueous system is 50 to 100 mg / L, it is difficult to adjust the amount of the chemical added in an aqueous system in which the increase or decrease in the silica concentration is large.

以上のように、亜鉛化合物やリン化合物の使用量を削減でき、かつ、効果の高い、水と接触する鉄系金属の孔食抑制剤及び孔食抑制方法に対する要求は依然として高い。   As described above, there is still a high demand for an iron-based metal pitting corrosion inhibitor and pitting corrosion suppression method that can reduce the amount of zinc compound and phosphorus compound used and that is highly effective.

特開平11−029885号公報Japanese Patent Laid-Open No. 11-029885 特開2004−353025号公報JP 2004-353025 A 特開2007−023370号公報JP 2007-023370 A 特開平10−165987号公報Japanese Patent Laid-Open No. 10-165987 特開平9−248555号公報JP-A-9-248555 特開2008−088475号公報JP 2008-088475 A

本発明者らは、開放循環式冷却水システムにおいて、亜鉛化合物やリン化合物の使用量を削減でき、かつ、鉄系金属、特に炭素鋼における孔食抑制効果の高い、水と接触する炭素鋼製熱交換器材質の孔食抑制剤組成物について研究した結果、炭素鋼の孔食抑制効果の高い組成物であっても組成物としての貯蔵安定性、特に低温安定性が悪く実用的でない場合があることが判った。そこで、本発明は、開放循環式冷却水システムにおいて、亜鉛化合物やリン化合物の使用量を削減でき、かつ、炭素鋼の孔食抑制効果の高い、さらには組成物を低温で貯蔵したときの安定性が優れている、水と接触する炭素鋼製熱交換器材質の孔食抑制剤組成物及び孔食抑制方法を提供することを課題としている。   In the open circulation type cooling water system, the present inventors can reduce the amount of zinc compound and phosphorus compound used, and are made of carbon steel in contact with water, which has a high effect of suppressing pitting corrosion in ferrous metals, particularly carbon steel. As a result of research on the pitting corrosion inhibitor composition of the heat exchanger material, even if it is a composition with a high pitting corrosion suppression effect of carbon steel, the storage stability as a composition, especially the low temperature stability is bad and may not be practical. It turns out that there is. Therefore, the present invention can reduce the amount of zinc compound and phosphorus compound used in an open-circulation cooling water system, has a high effect of suppressing pitting corrosion of carbon steel, and is stable when the composition is stored at a low temperature. It is an object of the present invention to provide a pitting corrosion inhibitor composition and a pitting corrosion suppression method for a carbon steel heat exchanger material that is excellent in properties and in contact with water.

本発明者らは、上記の課題を解決すべく、開放循環式冷却水システムの水と接触する鉄系金属の孔食抑制について鋭意検討の結果、本発明者らは、特定のマレイン酸系重合体、特定のイタコン酸系重合体及び亜鉛イオンを放出する化合物を含む防食被膜形成成分に、モノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を含む分散剤成分を併用することによって、鉄系金属表面の防食被膜の形成が均一になされ、かつ、防食被膜の肥厚によるスケール化を防止し、確実で安定的な優れた孔食抑制効果を達成することができることを見出し、更に、各成分の比率を適正化することにより、低温で貯蔵した場合の安定性が優れている組成物配合を見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on the suppression of pitting corrosion of ferrous metals that come into contact with water in an open circulation cooling water system. Combined with an anticorrosive film-forming component containing a compound, a specific itaconic acid polymer and a compound that releases zinc ions, a dispersant component containing a copolymer of monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid As a result, the formation of the anticorrosion coating on the surface of the iron-based metal is made uniform, and the anticorrosion coating is prevented from being scaled by thickening, and a reliable and stable excellent pitting corrosion suppression effect can be achieved. Furthermore, by optimizing the ratio of each component, a composition blend having excellent stability when stored at a low temperature was found, and the present invention was achieved.

即ち、請求項1に係る発明は、水と接触する炭素鋼製熱交換器材質の孔食を抑制する孔食抑制剤組成物の製造方法であって、
該孔食抑制剤組成物が防食被膜形成成分と分散剤成分を有効成分として含み、防食被膜形成成分が、ホスホノ基及びホスフィノ基を有さないマレイン酸系重合体、ホスホノ基及びホスフィノ基を有さないイタコン酸系重合体及び亜鉛イオンを放出する化合物を含有し、分散剤成分がモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を含有し、防食被膜形成成分の配合量(ここで、マレイン酸重合体とイタコン酸重合体は重合体固形分換算で計算し、亜鉛イオンを放出する化合物は亜鉛換算で計算する)に対する分散剤成分の配合量の重量比が0.4〜0.8であることを特徴とする孔食抑制剤組成物の製造方法であり、
前記マレイン酸系重合体とイタコン酸系重合体の製造方法が、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸重合体の製造を行い、マレイン酸系重合体製造時の1回目の重合開始剤添加終了時からイタコン酸系重合体製造時の2回目の重合開始剤添加開始までの重合開始剤添加間隔が15〜120分間の範囲である2種の重合体の混合物を直接製造する方法であって、
撹拌下に前記防食被膜形成成分である該重合体混合物と亜鉛イオンを放出する化合物と前記分散剤成分であるモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を水に加えて溶解することにより製造する孔食抑制剤組成物の製造方法である。
That is, the invention according to claim 1 is a method for producing a pitting corrosion inhibitor composition for suppressing pitting corrosion of a carbon steel heat exchanger material in contact with water,
The pitting corrosion inhibitor composition contains an anticorrosion film-forming component and a dispersant component as active ingredients, and the anticorrosion film-forming component has a maleic acid polymer having no phosphono group and phosphino group, and has a phosphono group and a phosphino group. An itaconic acid-based polymer and a compound that releases zinc ions, the dispersant component contains a copolymer of a monoethylenically unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid, The weight ratio of the blending amount of the dispersant component to the blending amount (here, the maleic acid polymer and the itaconic acid polymer are calculated in terms of polymer solids, and the compound that releases zinc ions is calculated in terms of zinc) is 0. A method for producing a pitting corrosion inhibitor composition, wherein the pitting corrosion inhibitor composition is 4-0.8.
The method for producing the maleic acid polymer and the itaconic acid polymer comprises producing the itaconic acid polymer with the maleic polymer remaining in the same reaction vessel after the maleic acid polymer is produced. The polymerization initiator addition interval from the end of the first polymerization initiator addition during the production of the maleic acid polymer to the start of the second polymerization initiator addition during the production of the itaconic acid polymer is in the range of 15 to 120 minutes. a method of manufacturing a two polymers mixtures are directly
Under stirring, the polymer mixture as the anticorrosive film forming component, the compound that releases zinc ions, and the copolymer of the monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid as the dispersant component in water. It is a manufacturing method of the pitting corrosion inhibitor composition manufactured by adding and dissolving .

請求項に係る発明は、開放循環式冷却水システムの循環水中におけるホスホノ基及びホスフィノ基を有さないマレイン酸系重合体、ホスホノ基及びホスフィノ基を有さないイタコン酸系重合体及び亜鉛イオンを放出する化合物を含む防食被膜形成成分の添加量(ここで、マレイン酸系重合体とイタコン酸系重合体は重合体固形分換算で計算し、亜鉛イオンを放出する化合物は亜鉛換算で計算する)に対するモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を含む分散剤成分の添加量の重量比が0.4〜0.8になるように防食被膜形成成分と分散剤成分を開放循環式冷却水システムに添加することにより、水と接触する炭素鋼製熱交換器材質の孔食を抑制する孔食抑制方法であって、
前記マレイン酸系重合体と前記イタコン酸系重合体の製造方法が、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸系重合体の製造を行って2種の重合体の混合物を直接製造する方法又はイタコン酸系重合体を製造後、同一反応容器においてイタコン酸系重合体が入ったままの状態でマレイン酸系重合体の製造を行って2種の重合体の混合物を直接製造する方法であって、
該開放循環式冷却水システムの循環水中の亜鉛の添加濃度がZn換算で0.5〜2mg/Lの範囲であることを特徴とする孔食抑制方法である。
The invention according to claim 2 is directed to a maleic acid-based polymer having no phosphono group and phosphino group, an itaconic acid-based polymer having no phosphono group and phosphino group, and zinc ions in the circulating water of an open circulation type cooling water system. Addition amount of anticorrosive film-forming component containing a compound that releases a compound (wherein maleic polymer and itaconic acid polymer are calculated in terms of polymer solids, and compounds that release zinc ions are calculated in terms of zinc And the anti-corrosion film forming component and the dispersion so that the weight ratio of the added amount of the dispersant component containing the copolymer of the monoethylenically unsaturated carboxylic acid and the monoethylenically unsaturated sulfonic acid is 0.4 to 0.8. A pitting corrosion suppression method for suppressing pitting corrosion of a carbon steel heat exchanger material in contact with water by adding an agent component to an open circulation type cooling water system,
The method for producing the maleic acid polymer and the itaconic acid polymer is the production of an itaconic acid polymer with the maleic polymer still contained in the same reaction vessel after the maleic acid polymer is produced. To produce a mixture of two types of polymers directly or to produce an itaconic acid polymer, and then to produce a maleic acid polymer with the itaconic acid polymer still contained in the same reaction vessel. Directly producing a mixture of two polymers,
It is a pitting corrosion suppression method characterized in that the zinc concentration in the circulating water of the open circulation type cooling water system is in the range of 0.5 to 2 mg / L in terms of Zn.

請求項に係る発明は、前記防食被膜形成成分と前記分散剤成分を有効成分として含み、該防食被膜形成成分の配合量(ここで、マレイン酸系重合体とイタコン酸系重合体は重合体固形分換算で計算し、亜鉛イオンを放出する化合物は亜鉛換算で計算する)に対する該分散剤成分の配合量の重量比が0.4〜0.8である孔食抑制剤組成物を開放循環式冷却水システムに添加することを特徴とする請求項記載の孔食抑制方法である。
The invention according to claim 3 includes the anticorrosion film-forming component and the dispersant component as active ingredients, and the compounding amount of the anticorrosion film-forming component (wherein the maleic acid polymer and the itaconic acid polymer are polymers) Open-circulate a pitting corrosion inhibitor composition in which the weight ratio of the amount of the dispersant component to 0.4 to 0.8 is calculated in terms of solid content and the compound that releases zinc ions is calculated in terms of zinc) It adds to a type | formula cooling water system, It is a pitting corrosion suppression method of Claim 2 characterized by the above-mentioned.

本発明の水と接触する炭素鋼製熱交換器材質の孔食抑制剤組成物及び孔食抑制方法を開放循環式冷却水システムに適用することにより、熱交換器材質に生じる孔食によるプロセス側への冷却水へのリーク、またはプロセス側からのリーク等の障害が減少する。これらのリークを原因とするプラントの予定外の運転停止では、リーク部分の補修後にプラントの各機器を加熱して立ち上げ、熱交換器が定常状態に達するまでに相当の期間を要する。従って、プラントの安定運転に寄与する本発明には多大な省資源と省エネルギー効果がある。また、本発明の孔食抑制剤組成物及び孔食抑制方法は、従来の孔食防止剤に比べて開放循環式冷却水システムに添加する亜鉛化合物やリン化合物の濃度を少なくできるため、環境への影響も低減できる。   By applying the pitting corrosion inhibitor composition and pitting corrosion suppression method of a carbon steel heat exchanger material in contact with water according to the present invention to an open circulation cooling water system, the process side due to pitting corrosion occurring in the heat exchanger material Failures such as leakage to the cooling water or leakage from the process side are reduced. In an unscheduled shutdown of a plant caused by these leaks, it takes a considerable period of time to heat up and start up each device of the plant after repairing the leaked part, and the heat exchanger reaches a steady state. Therefore, the present invention that contributes to stable operation of the plant has a great resource saving and energy saving effect. Further, the pitting corrosion inhibitor composition and the pitting corrosion suppression method of the present invention can reduce the concentration of zinc compound and phosphorus compound added to the open circulation type cooling water system as compared with the conventional pitting corrosion inhibitor. Can also reduce the effect.

実施例に使用した試験装置を示す系統図である。It is a systematic diagram which shows the test apparatus used for the Example.

本発明の対象となる開放循環式冷却水システムは、石油精製工場、化学工場、火力発電所、製鉄所、紙パルプ製造業、自動車工場、半導体製造工業等の各種製造業の冷却水システムや、空調用の冷却水システムを含む。   The open circulation type cooling water system that is the subject of the present invention is an oil refining factory, chemical factory, thermal power plant, steel mill, pulp and paper manufacturing industry, automobile factory, semiconductor manufacturing industry, etc. Includes cooling water system for air conditioning.

本発明が適用される熱交換器の種類は特に限定されないが、例えばシェルアンドチューブ式多管式熱交換器、二重管式熱交換器、スパイラル式熱交換器、プレート式熱交換器、渦巻管式熱交換器、渦巻板式熱交換器、コイル式熱交換器、ジャケット式熱交換器等が挙げられる。   The type of heat exchanger to which the present invention is applied is not particularly limited. For example, a shell-and-tube multi-tube heat exchanger, a double-tube heat exchanger, a spiral heat exchanger, a plate heat exchanger, a spiral Examples of the heat exchanger include a tube heat exchanger, a spiral plate heat exchanger, a coil heat exchanger, and a jacket heat exchanger.

本発明における水と接触する熱交換器の鉄系金属表面とは、熱交換器の伝熱表面、管板、仕切室内面、胴内面、邪魔板等の熱交換器部材と配管表面の水側を指すが、特に熱交換器用炭素鋼鋼管が本発明の対象となる。本発明の孔食抑制剤組成物及び孔食抑制方法が適用できる熱交換器用炭素鋼鋼管は、例えばJIS G3461:2012に規定されているボイラ・熱交換器用炭素鋼鋼管のSTB340、STB410、STB510等であり、冷間仕上継目無管や熱間仕上継目無管を含む。本発明の孔食抑制剤組成物及び孔食抑制方法は、熱交換器用炭素鋼鋼管として一般に用いられている冷間仕上げ継目無鋼管の孔食抑制に対して特に有効である。   In the present invention, the ferrous metal surface of the heat exchanger in contact with water refers to the heat transfer surface of the heat exchanger, the tube plate, the inner surface of the partition, the inner surface of the trunk, the baffle plate, and the water side of the piping surface. In particular, a carbon steel pipe for a heat exchanger is an object of the present invention. The carbon steel pipe for heat exchanger to which the pitting corrosion inhibitor composition and the pitting corrosion suppression method of the present invention can be applied is, for example, STB340, STB410, STB510, etc. of carbon steel pipe for boiler / heat exchanger specified in JIS G3461: 2012. Including cold-finished seamless pipes and hot-finished seamless pipes. The pitting corrosion inhibitor composition and the pitting corrosion suppressing method of the present invention are particularly effective for pitting corrosion suppression of cold-finished seamless steel pipes generally used as carbon steel pipes for heat exchangers.

本発明における孔食とは、JIS Z0103:1996「防せい防食用語」に定義されるような、金属の欠陥部分から腐食が進行し、金属内部に向って孔状(ピット状)に進行する局部腐食を意味する。   Pitting corrosion in the present invention is a local part where corrosion progresses from a defective portion of a metal as defined in JIS Z0103: 1996 “Anti-corrosion prevention terminology” and progresses into a hole (pit shape) toward the inside of the metal. Means corrosion.

本発明における防食被膜形成成分とは、水と接触する鉄系金属の金属表面に防食被膜を形成する成分であって、本発明ではマレイン酸系重合体、イタコン酸系重合体及び亜鉛イオンを放出する化合物、更には、リン酸、重合リン酸、有機ホスホン酸、ホスホノカルボン酸、ホスフィノポリカルボン酸ならびのそれらの水溶性塩等のリン系化合物が挙げられる。   The anticorrosion film forming component in the present invention is a component that forms an anticorrosion film on the metal surface of an iron-based metal that comes into contact with water. In the present invention, a maleic acid polymer, an itaconic acid polymer, and zinc ions are released. Further, phosphorus compounds such as phosphoric acid, polymerized phosphoric acid, organic phosphonic acid, phosphonocarboxylic acid, phosphinopolycarboxylic acid and water-soluble salts thereof can be mentioned.

本発明における分散剤成分とは、水と接触する鉄系金属の金属表面に形成される防食被膜の肥厚化・スケール化を防止するため、過剰な防食被膜形成成分を水中に分散安定化させる成分であって、本発明ではモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体が挙げられる。   The dispersant component in the present invention is a component that disperses and stabilizes an excessive anticorrosion film forming component in water in order to prevent thickening and scaling of the anticorrosion film formed on the surface of the iron-based metal in contact with water. And in this invention, the copolymer of a monoethylenically unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid is mentioned.

本発明で用いるマレイン酸系重合体は、マレイン酸を主要な構成単位として含む重合体であり、該重合体はマレイン酸系モノマー、またはマレイン酸系モノマー及びマレイン酸と共重合可能なその他モノマーを重合させて製造する。   The maleic acid polymer used in the present invention is a polymer containing maleic acid as a main constituent unit, and the polymer contains a maleic acid monomer, or a maleic monomer and other monomers copolymerizable with maleic acid. Produced by polymerization.

該重合体におけるマレイン酸の構成比率は70〜100重量%の範囲であるが、好ましくは80〜100重量%の範囲である。本発明のマレイン酸系重合体は、マレイン酸ホモ重合体、あるいはマレイン酸と共重合可能なその他モノマーを30重量%未満の割合で含むマレイン酸共重合体であってもよい。   The constituent ratio of maleic acid in the polymer is in the range of 70 to 100% by weight, but preferably in the range of 80 to 100% by weight. The maleic acid polymer of the present invention may be a maleic acid homopolymer or a maleic acid copolymer containing less than 30% by weight of other monomers copolymerizable with maleic acid.

本発明で用いるイタコン酸系重合体は、イタコン酸を主要な構成単位として含む重合体であり、該重合体はイタコン酸系モノマー、またはイタコン酸系モノマー及びイタコン酸と共重合可能なその他モノマーを重合させて製造する。   The itaconic acid polymer used in the present invention is a polymer containing itaconic acid as a main constituent unit, and the polymer contains an itaconic acid monomer, or an itaconic acid monomer and another monomer copolymerizable with itaconic acid. Produced by polymerization.

該重合体におけるイタコン酸の構成比率は70〜100重量%の範囲であるが、好ましくは80〜100重量%の範囲である。本発明のイタコン酸系重合体は、イタコン酸ホモ重合体、あるいはイタコン酸と共重合可能なその他モノマーを30重量%未満の割合で含むイタコン酸共重合体であってもよい。   The composition ratio of itaconic acid in the polymer is in the range of 70 to 100% by weight, but preferably in the range of 80 to 100% by weight. The itaconic acid polymer of the present invention may be an itaconic acid homopolymer or an itaconic acid copolymer containing less than 30% by weight of other monomers copolymerizable with itaconic acid.

前記のマレイン酸系モノマーとしては、マレイン酸およびその中和塩、無水マレイン酸、マレイン酸エステルおよびこれらの混合物などが挙げられる。上記中和塩としては、例えばアルカリ金属塩(具体的にはカリウム塩、ナトリウム塩など)、およびアンモニウム塩などが挙げられ、これらの1種以上であってもよい。   Examples of the maleic monomers include maleic acid and neutralized salts thereof, maleic anhydride, maleic esters and mixtures thereof. Examples of the neutralized salt include alkali metal salts (specifically, potassium salts, sodium salts, and the like), ammonium salts, and the like, and one or more of these may be used.

前記のマレイン酸と共重合可能なその他のモノマーとしては、例えばアクリル酸、メタクリル酸、クロトン酸などの不飽和カルボン酸類;(メタ)アクリル酸アルキルエステル類;(メタ)アクリル酸ヒドロキシルアルキルエステル類;(メタ)アクリルアミド;N−アルキル置換(メタ)アクリルアミド類;エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ヘキセン、2−エチルヘキセン、ペンテン、イソペンテン、オクテン、イソオクテンなどのオレフィン類;ビニルアルキルメチルエーテル類などが挙げられ、これらの2種以上を用いてもよい。   Examples of other monomers copolymerizable with maleic acid include unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; (meth) acrylic acid alkyl esters; (meth) acrylic acid hydroxyl alkyl esters; (Meth) acrylamide; N-alkyl-substituted (meth) acrylamides; Ethylene, propylene, isopropylene, butylene, isobutylene, hexene, 2-ethylhexene, pentene, isopentene, octene, isooctene and other olefins; vinyl alkyl methyl ethers Two or more of these may be used.

前記のイタコン酸系モノマーとしては、イタコン酸およびその中和塩、無水イタコン酸、イタコン酸エステルおよびこれらの混合物などが挙げられる。中和塩としては、上記マレイン酸系モノマーで例示したものと同じである。前記のイタコン酸と共重合可能なその他のモノマーは、マレイン酸と共重合可能なその他のモノマーと同じものが用いられる。   Examples of the itaconic acid monomer include itaconic acid and neutralized salts thereof, itaconic anhydride, itaconic acid esters, and mixtures thereof. The neutralized salt is the same as that exemplified for the maleic monomer. The other monomer copolymerizable with itaconic acid is the same as the other monomer copolymerizable with maleic acid.

本発明で用いるマレイン酸系重合体の分子量は、通常は300〜5000、好ましくは400〜3000である。分子量がこの範囲を外れると、孔食抑制効果やスケール抑制効果が小さくなり好ましくない。なお、共重合体はブロックまたはランダム共重合体の何れであってもよい。   The molecular weight of the maleic acid polymer used in the present invention is usually 300 to 5000, preferably 400 to 3000. When the molecular weight is out of this range, the pitting corrosion suppressing effect and the scale suppressing effect are reduced, which is not preferable. The copolymer may be either a block or a random copolymer.

本発明で用いるイタコン酸系重合体の分子量は、通常は300〜5000、好ましくは400〜3000である。分子量がこの範囲を外れると、孔食抑制効果やスケール抑制効果が小さくなり好ましくない。なお、共重合体はブロックまたはランダム共重合体の何れであってもよい。   The molecular weight of the itaconic acid polymer used in the present invention is usually 300 to 5000, preferably 400 to 3000. When the molecular weight is out of this range, the pitting corrosion suppressing effect and the scale suppressing effect are reduced, which is not preferable. The copolymer may be either a block or a random copolymer.

また、後述の、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸系重合体の製造を行う、あるいはその逆の順序で2種の重合体を同一反応容器において製造する場合では、マレイン酸系重合体とイタコン酸系重合体の分子量をそれぞれ別個に測定することができないため、これらの混合物の平均分子量として測定される。すなわち、このマレイン酸系重合体とイタコン酸系重合体の混合物の重量平均分子量は、通常は300〜3000、好ましくは400〜2000である。分子量がこの範囲を外れると、孔食抑制効果やスケール抑制効果が小さくなり好ましくない。   In addition, after the production of the maleic acid polymer, which will be described later, the itaconic acid polymer is produced with the maleic acid polymer still contained in the same reaction vessel, or vice versa. In the case where the coalescence is produced in the same reaction vessel, the molecular weights of the maleic acid polymer and the itaconic acid polymer cannot be measured separately, and therefore are measured as the average molecular weight of these mixtures. That is, the weight average molecular weight of the mixture of the maleic acid polymer and the itaconic acid polymer is usually 300 to 3000, preferably 400 to 2000. When the molecular weight is out of this range, the pitting corrosion suppressing effect and the scale suppressing effect are reduced, which is not preferable.

本発明で用いるマレイン酸系重合体及びイタコン酸系重合体は公知の方法により製造できる。すなわち、マレイン酸系モノマーまたはイタコン酸系モノマーを水溶液中、またはキシレン、トルエン、イソプロピルアルコールなどの有機溶媒中で、過酸化水素、過酸化ベンゾイル、過硫酸塩、ジ−t−ブチルパーオキサイドなどの重合開始剤の存在下において、必要に応じて重合調整剤を加えて加熱することにより製造される。マレイン酸系重合体の製造方法は、例えば芳香族系溶媒に対して、2〜10重量%の無水マレイン酸を入れて加熱・溶解し、重合開始剤を無水マレイン酸に対して5〜12重量%添加して、100〜200℃の温度で重合する方法(特許2964154号公報)が開示されている。イタコン酸系重合体の製造方法は、例えば、水溶性塩基で中和したイタコン酸水溶液に開始剤を添加して80〜120℃の温度に維持する方法(特開平5−86129号公報)が開示されている。   The maleic acid polymer and itaconic acid polymer used in the present invention can be produced by known methods. That is, a maleic acid monomer or an itaconic acid monomer in an aqueous solution or an organic solvent such as xylene, toluene, isopropyl alcohol, hydrogen peroxide, benzoyl peroxide, persulfate, di-t-butyl peroxide, etc. In the presence of a polymerization initiator, it is produced by adding a polymerization regulator as necessary and heating. The maleic acid polymer is produced by, for example, adding 2 to 10% by weight of maleic anhydride to an aromatic solvent and heating / dissolving it, and 5 to 12% by weight of the polymerization initiator with respect to maleic anhydride. %, And a method of polymerizing at a temperature of 100 to 200 ° C. (Japanese Patent No. 2964154) is disclosed. As a method for producing an itaconic acid polymer, for example, a method of adding an initiator to an itaconic acid aqueous solution neutralized with a water-soluble base and maintaining the temperature at 80 to 120 ° C. (Japanese Patent Laid-Open No. 5-86129) is disclosed. Has been.

これらの重合体の製造に用いる溶媒がトルエンやキシレンなどの非水系の有機溶媒の場合、マレイン酸の替わりに無水マレイン酸やマレイン酸エステル類、イタコン酸の替わりにイタコン酸エステル類や無水イタコン酸などの有機溶媒に溶解可能なモノマーを使用し、過酸化ベンゾイル、ジ−t−ブチルパーオキサイドなどの有機溶媒に溶解可能な重合開始剤を用いる。無水物やエステルを含む重合体を製造後、有機溶媒をデカンテーションや蒸発により除去して、水を加えて加熱しながらエステルや無水物を加水分解して目的とする水溶性のマレイン酸系重合体やイタコン酸系重合体を得ることができる。しかしながら、非水系溶媒中における重合では有機溶媒の除去工程や加水分解工程が必要であるため、操作が煩雑なだけでなく、これらの工程で使用される加熱用のエネルギーコストや溶媒の費用が大きく、経済的でない。また、有害な有機溶媒が大気中や排水や土壌などに放出された場合の、環境や人体への影響も無視できない。このため、本発明で用いるマレイン酸系重合体とイタコン酸系重合体の製造方法では、有機溶媒を用いない水系重合法で製造することが好ましい。溶媒として主に水を使用した水系重合法の場合、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸などの水に溶解可能なモノマーを使用し、過酸化水素、過硫酸塩、水溶性アゾ系触媒などの水に溶解可能な重合開始剤を用いて製造される。   If the solvent used in the production of these polymers is a non-aqueous organic solvent such as toluene or xylene, maleic anhydride or maleic esters instead of maleic acid, itaconic esters or itaconic anhydride instead of itaconic acid A monomer that is soluble in an organic solvent such as benzoyl peroxide and di-t-butyl peroxide is used, and a polymerization initiator that is soluble in an organic solvent is used. After producing a polymer containing an anhydride or ester, the organic solvent is removed by decantation or evaporation, and the ester or anhydride is hydrolyzed while heating by adding water to heat the desired water-soluble maleic acid-based polymer. A coalescence or itaconic acid polymer can be obtained. However, since polymerization in a non-aqueous solvent requires an organic solvent removal step and hydrolysis step, not only is the operation complicated, but the heating energy cost and solvent cost used in these steps are large. Not economical. In addition, the effects on the environment and human body when harmful organic solvents are released into the atmosphere, waste water, soil, etc. cannot be ignored. For this reason, in the manufacturing method of the maleic acid type polymer and the itaconic acid type polymer used by this invention, it is preferable to manufacture by the aqueous polymerization method which does not use an organic solvent. In the case of water-based polymerization using mainly water as a solvent, monomers that are soluble in water such as maleic acid, maleic anhydride, itaconic acid, itaconic anhydride are used, and hydrogen peroxide, persulfate, water-soluble azo It is produced using a polymerization initiator that is soluble in water, such as a system catalyst.

本発明で用いるマレイン酸系重合体とイタコン酸系重合体の好ましい製造方法は、同一反応容器においてマレイン酸系重合体とイタコン酸系重合体を連続して製造する方法である。即ち、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸系重合体の製造を行って2種の重合体の混合物を直接製造してもよく、イタコン酸系重合体を製造後、同一反応容器においてイタコン酸系重合体が入ったままの状態でマレイン酸系重合体の製造を行って2種の重合体の混合物を直接製造してもよいが、より好ましい製造方法は、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸系重合体の製造を行って2種の重合体の混合物を直接製造する方法である。   A preferred method for producing the maleic acid polymer and the itaconic acid polymer used in the present invention is a method for continuously producing the maleic acid polymer and the itaconic acid polymer in the same reaction vessel. That is, after the maleic acid polymer is produced, itaconic acid polymer is produced in the same reaction vessel with the maleic acid polymer still contained, and the mixture of the two polymers is directly produced. Well, after producing an itaconic acid polymer, it is possible to produce a maleic acid polymer with the itaconic acid polymer still contained in the same reaction vessel to directly produce a mixture of two kinds of polymers. However, a more preferable production method is that after the maleic acid polymer is produced, the itaconic acid polymer is produced with the maleic acid polymer still contained in the same reaction vessel. It is a method for producing the mixture directly.

同一反応容器においてマレイン酸系重合体とイタコン酸系重合体の混合物を製造することにより、加熱に要する蒸気使用量が削減でき、各工程後の洗浄の手間が省け、工程短縮等によりユーティリティコストやマンパワーが削減できるだけでなく、該製造方法によってモノマー反応率を向上させ、孔食抑制効果を向上させることができるといった予想外の効果を得ることができる。   By producing a mixture of maleic acid-based polymer and itaconic acid-based polymer in the same reaction vessel, the amount of steam used for heating can be reduced. Not only can the manpower be reduced, but the production method can improve the monomer reaction rate and improve the pitting corrosion suppression effect.

上記の同一反応容器によるマレイン酸系重合体とイタコン酸系重合体の混合物の好ましい製造方法の具体例は、水にマレイン酸または無水マレイン酸のいずれか又は両方とアルカリ金属水酸化物を加えて溶解するか、あるいは水にマレイン酸のアルカリ金属塩を溶解して調製したマレイン酸のモノマー溶液を所定温度に加熱し、その温度を維持しながら一定時間かけて重合開始剤溶液を添加する1回目の重合開始剤添加を行なってマレイン酸重合体溶液を調製し、次いで、そのマレイン酸重合体溶液にイタコン酸(あるいは無水イタコン酸)を加えて溶解した後、所定温度に加熱し、その温度を維持しながら一定時間かけて重合開始剤溶液を添加する2回目の重合開始剤添加を行なうことにより、マレイン酸重合体とイタコン酸重合体の混合物溶液を調製する方法である。   A specific example of a preferred method for producing a mixture of a maleic acid polymer and an itaconic acid polymer in the same reaction vessel is obtained by adding maleic acid or maleic anhydride or both, and an alkali metal hydroxide to water. First, a monomer solution of maleic acid prepared by dissolving or dissolving an alkali metal salt of maleic acid in water is heated to a predetermined temperature, and the polymerization initiator solution is added over a predetermined time while maintaining the temperature. A maleic acid polymer solution was prepared by adding a polymerization initiator, and then itaconic acid (or itaconic anhydride) was added to the maleic acid polymer solution and dissolved, and then heated to a predetermined temperature. Mixing the maleic acid polymer and the itaconic acid polymer by adding the polymerization initiator solution for the second time, adding the polymerization initiator solution over a certain period of time while maintaining The solution is a method for preparing.

ここで、マレイン酸重合時の1回目の重合開始剤添加終了時からイタコン酸重合時の2回目の重合開始剤添加開始までの重合開始剤添加間隔は、モノマー反応率や該製造方法により製造した重合体混合物を配合した組成物の孔食抑制効果に影響を及ぼし、重合開始剤添加間隔が20〜100分間の範囲のとき、高いモノマー反応率と優れた孔食抑制効果を示し、重合開始剤添加間隔がこの範囲を外れる孔食抑制効果が低下する。この理由は必ずしも明確でないが、重合開始剤添加間隔が20分間未満では、マレイン酸重合体の残存ラジカルにさらにイタコン酸モノマーが重合して、性能上好ましくないイタコン酸とマレイン酸のブロック共重合体が生成する可能性が考えられる。重合開始剤添加間隔が20〜100分間ではマレイン酸重合体の残存ラジカルが消失するため、独立したマレイン酸重合体とイタコン酸重合体が生成すると推察される。重合開始剤添加間隔が100分間を超えると、重合開始剤活性が低下するためモノマー反応率が低下し、同一反応容器で製造する利点が無くなると推察される。イタコン酸の添加方法は、上述の1回目の重合開始剤添加終了時から2回目の重合開始剤添加開始までの重合開始剤添加間隔の時間内に一括して添加するのが好ましい。   Here, the polymerization initiator addition interval from the end of the first polymerization initiator addition at the time of maleic acid polymerization to the start of the second polymerization initiator addition at the time of itaconic acid polymerization was produced according to the monomer reaction rate and the production method. It affects the pitting corrosion inhibitory effect of the composition blended with the polymer mixture. When the polymerization initiator addition interval is in the range of 20 to 100 minutes, it shows a high monomer reaction rate and an excellent pitting corrosion inhibitory effect. The effect of suppressing pitting corrosion when the addition interval is outside this range is reduced. The reason for this is not necessarily clear, but when the addition interval of the polymerization initiator is less than 20 minutes, itaconic acid monomer is further polymerized to the residual radicals of the maleic acid polymer, which is not preferable in terms of performance, and is a block copolymer of itaconic acid and maleic acid. May be generated. Since the residual radical of the maleic acid polymer disappears when the polymerization initiator addition interval is 20 to 100 minutes, it is presumed that independent maleic acid polymer and itaconic acid polymer are formed. When the polymerization initiator addition interval exceeds 100 minutes, it is presumed that the monomer reaction rate is lowered because the polymerization initiator activity is lowered, and the advantage of producing in the same reaction vessel is lost. As for the method of adding itaconic acid, it is preferable to add it all at once within the polymerization initiator addition interval from the end of the first polymerization initiator addition to the start of the second polymerization initiator addition.

同一反応容器によりマレイン酸系重合体とイタコン酸系重合体の混合物を製造する方法において、マレイン酸やイタコン酸以外に、前記のマレイン酸やイタコン酸と共重合可能なその他モノマーを含んでもよいが、その量はマレイン酸やイタコン酸の合計量に対して30重量%未満であることが好ましく、その添加時期は特に制限はないが、通常はマレイン酸あるいはイタコン酸の投入と同時に行う。   In the method for producing a mixture of a maleic acid polymer and an itaconic acid polymer in the same reaction vessel, in addition to maleic acid and itaconic acid, other monomers copolymerizable with the maleic acid and itaconic acid may be included. The amount is preferably less than 30% by weight based on the total amount of maleic acid and itaconic acid, and the timing of addition is not particularly limited, but is usually performed simultaneously with the addition of maleic acid or itaconic acid.

同一反応容器によりマレイン酸系重合体とイタコン酸系重合体の混合物を製造する方法において、水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物の添加量は、マレイン酸とイタコン酸ならびにその他の不飽和カルボン酸の合計モル数に対して0.2〜2のモル比で添加するのが好ましい。ここで、アルカリ金属水酸化物は重合開始前に一括添加するか、あるいは各重合工程時に分割添加してもよいが、好ましくは重合開始前に一括添加する方法である。   In the method for producing a mixture of a maleic acid polymer and an itaconic acid polymer in the same reaction vessel, the amount of alkali metal hydroxide such as sodium hydroxide or potassium hydroxide added is maleic acid, itaconic acid and other It is preferable to add at a molar ratio of 0.2 to 2 with respect to the total number of moles of unsaturated carboxylic acid. Here, the alkali metal hydroxide may be added all at once before the start of polymerization, or may be added separately at each polymerization step, but it is preferably a method of adding all at once before the start of polymerization.

同一反応容器によりマレイン酸系重合体とイタコン酸系重合体の混合物を製造する方法に用いる重合開始剤は、過酸化水素、過硫酸塩などを単独で使用してもよいが、過酸化水素と過硫酸塩を併用するのが好ましく、該重合開始剤の添加量は、マレイン酸とイタコン酸の合計量に対して過酸化水素が0.3〜30重量%、過硫酸塩が0.1〜5重量%の範囲が好ましい。更に、重合開始剤とともにレドックス触媒を添加するのが好ましく、好ましいレドックス触媒は、還元可能なカチオンであり、鉄、亜鉛、コバルト、モリブデン、クロム、ニッケル、バナジウム及びセシウムおよびそれらの組み合わせから得られる金属イオンを含み、より好ましいレドックス触媒は硫酸第一鉄アンモニウム、硫酸第一鉄、塩化第一鉄、コバルト塩(例えば、硫酸コバルト六水和物)、バナジウム塩およびそれらの組み合わせである。レドックス触媒の量は、マレイン酸とイタコン酸の合計量に対して金属換算で0.001〜0.5重量%の範囲が好ましい。   The polymerization initiator used in the method for producing a mixture of maleic acid polymer and itaconic acid polymer in the same reaction vessel may be hydrogen peroxide, persulfate, etc. A persulfate is preferably used in combination, and the polymerization initiator is added in an amount of 0.3 to 30% by weight of hydrogen peroxide and 0.1 to 0.1% of persulfate with respect to the total amount of maleic acid and itaconic acid. A range of 5% by weight is preferred. It is further preferred to add a redox catalyst with the polymerization initiator, the preferred redox catalyst is a reducible cation, a metal obtained from iron, zinc, cobalt, molybdenum, chromium, nickel, vanadium and cesium and combinations thereof. More preferred redox catalysts containing ions are ferrous ammonium sulfate, ferrous sulfate, ferrous chloride, cobalt salts (eg, cobalt sulfate hexahydrate), vanadium salts, and combinations thereof. The amount of the redox catalyst is preferably in the range of 0.001 to 0.5% by weight in terms of metal with respect to the total amount of maleic acid and itaconic acid.

前記のアルカリ金属水酸化物の量、重合開始剤の量、レドックス触媒の量のいずれかが上記の範囲を外れると、モノマー反応率が十分上がらず、かなりの量の未反応のモノマーが残留するため、十分な孔食抑制効果やスケール抑制効果を得ることが難しい。ここで、上記のマレイン酸とイタコン酸の合計量は、無水マレイン酸を使用する場合はマレイン酸に換算し、無水イタコン酸を使用する場合はイタコン酸に換算した量で計算される。   If any of the amount of the alkali metal hydroxide, the amount of the polymerization initiator, or the amount of the redox catalyst is out of the above range, the monomer reaction rate is not sufficiently increased, and a considerable amount of unreacted monomer remains. Therefore, it is difficult to obtain a sufficient pitting corrosion suppression effect and scale suppression effect. Here, the total amount of the above maleic acid and itaconic acid is calculated in terms of maleic acid when maleic anhydride is used, and in terms of itaconic acid when itaconic anhydride is used.

重合方法に係わらず、マレイン酸系重合体やイタコン酸系重合体の分子量の調整は、重合開始剤の量、重合温度、重合時間、モノマー濃度などを適宜変えることにより達成できる。または、重合調整剤を添加して、その濃度を変えることにより分子量を調整することができる。重合調整剤として、イソプロピルアルコール、2−ブチルアルコールなどの2級アルコールや重亜硫酸塩、亜硫酸塩などの公知の化合物が使用できる。   Regardless of the polymerization method, the molecular weight of the maleic acid polymer or itaconic acid polymer can be adjusted by appropriately changing the amount of polymerization initiator, polymerization temperature, polymerization time, monomer concentration, and the like. Alternatively, the molecular weight can be adjusted by adding a polymerization regulator and changing its concentration. As the polymerization regulator, secondary compounds such as isopropyl alcohol and 2-butyl alcohol, and known compounds such as bisulfite and sulfite can be used.

重合反応の温度は、重合方法、重合開始剤の種類、溶媒の種類などにより異なるが、通常は還流温度または還流温度よりも低い温度に制御され、通常、40〜200℃の範囲であるが、好ましい反応温度は60〜140℃の範囲である。反応温度が低すぎると十分な反応率が得られず、逆に、反応温度が高すぎると重合体の脱カルボキシル化反応が起きて孔食抑制効果やスケール抑制効果が低下するため、いずれも好ましくない。   The temperature of the polymerization reaction varies depending on the polymerization method, the type of polymerization initiator, the type of solvent, etc., but is usually controlled to a reflux temperature or a temperature lower than the reflux temperature, and is usually in the range of 40 to 200 ° C. The preferred reaction temperature is in the range of 60-140 ° C. If the reaction temperature is too low, a sufficient reaction rate cannot be obtained, and conversely, if the reaction temperature is too high, a decarboxylation reaction of the polymer occurs and the pitting corrosion suppression effect and the scale suppression effect are reduced. Absent.

イタコン酸の重合工程時において、イタコン酸の比率が高いと発泡が生じ易いため、イタコン酸の投入前に消泡剤を添加するのが好ましい。ここで使用する消泡剤は、ポリオキシエチレンポリオキシプロピレングリコール、高級アルコールエチレンオキシド付加物、高級アルコールエチレンオキシド・プロピレンオキシド付加物などの曇点が20℃以上のポリエチレングリコール型非イオン界面活性剤が、常温において水溶液中での分離を生じないため好ましい。   In the polymerization process of itaconic acid, foaming is likely to occur if the ratio of itaconic acid is high. Therefore, it is preferable to add an antifoaming agent before charging itaconic acid. The antifoaming agent used here is a polyethylene glycol type nonionic surfactant having a cloud point of 20 ° C. or higher, such as polyoxyethylene polyoxypropylene glycol, higher alcohol ethylene oxide adduct, higher alcohol ethylene oxide / propylene oxide adduct, This is preferable because separation in an aqueous solution does not occur at room temperature.

このようにして製造された2種の重合体の混合物は、取扱い上の必要に応じて水で希釈することもできる。   The mixture of the two polymers thus produced can be diluted with water as required for handling.

マレイン酸系重合体とイタコン酸系重合体を別々に重合して混合した場合、マレイン酸やイタコン酸のモノマー反応性が低く、かなりの量の未反応のマレイン酸モノマーやイタコン酸モノマーが残留するため、十分な孔食抑制効果やスケール抑制効果を得ることが難しいが、同一反応容器においてマレイン酸系重合体とイタコン酸系重合体の2種の重合体の混合物を製造する上記の製造方法では高いモノマー反応率を得ることができ、結果として良好な低温安定性と優れた孔食抑制効果を得ることができると推察される。例えば、水性重合におけるマレイン酸の単独重合では、一般に反応率が90%を超えることはないが、同一容器による2種重合体混合製造方法では90%以上のマレイン酸の反応率を得ることができる。   When maleic acid polymer and itaconic acid polymer are separately polymerized and mixed, the monomer reactivity of maleic acid and itaconic acid is low, and a considerable amount of unreacted maleic acid monomer and itaconic acid monomer remains. Therefore, although it is difficult to obtain a sufficient pitting corrosion inhibiting effect and a scale inhibiting effect, in the above production method for producing a mixture of two kinds of polymers, a maleic acid polymer and an itaconic acid polymer, in the same reaction vessel It is presumed that a high monomer reaction rate can be obtained, and as a result, good low temperature stability and an excellent pitting corrosion suppression effect can be obtained. For example, in the homopolymerization of maleic acid in aqueous polymerization, the reaction rate generally does not exceed 90%, but the reaction rate of maleic acid of 90% or more can be obtained by the two-polymer mixed production method using the same container. .

本発明の防食被膜形成成分におけるマレイン酸系重合体とイタコン酸系重合体の含有重量比率は90:10〜10:90の範囲であり、好ましくは70:30〜30:70の範囲である、   The content weight ratio of the maleic acid polymer and the itaconic acid polymer in the anticorrosive film forming component of the present invention is in the range of 90:10 to 10:90, preferably in the range of 70:30 to 30:70.

本発明の防食被膜形成成分として用いられる亜鉛イオンを放出する化合物とは、対象水系の水中で亜鉛イオンを放出する化合物を指し、該化合物には無機亜鉛化合物と有機亜鉛化合物が含まれる。無機亜鉛化合物としては、塩化亜鉛、硫酸亜鉛、硝酸亜鉛等が挙げられ、有機亜鉛化合物としては、酢酸亜鉛、グルコン酸亜鉛等が挙げられるが、有機亜鉛化合物は排水中のCODやBODを増加させるため、無機亜鉛化合物が好ましい。無機亜鉛化合物として硝酸亜鉛を使用すると排水中の窒素濃度を増加させ富栄養化の原因となるため、塩化亜鉛や硫酸亜鉛が好ましい。ここで塩化亜鉛や硫酸亜鉛の替りに、酸化亜鉛を塩酸や硫酸で溶解してもよい。   The compound that releases zinc ions used as the anticorrosive film forming component of the present invention refers to a compound that releases zinc ions in the water of the target water system, and the compound includes inorganic zinc compounds and organic zinc compounds. Examples of the inorganic zinc compound include zinc chloride, zinc sulfate, and zinc nitrate. Examples of the organic zinc compound include zinc acetate and zinc gluconate. The organic zinc compound increases COD and BOD in waste water. Therefore, an inorganic zinc compound is preferable. When zinc nitrate is used as the inorganic zinc compound, the concentration of nitrogen in the waste water is increased and eutrophication is caused. Therefore, zinc chloride and zinc sulfate are preferable. Here, zinc oxide may be dissolved with hydrochloric acid or sulfuric acid instead of zinc chloride or zinc sulfate.

本発明の孔食抑制剤組成物において、更に銅防食剤としてアゾール化合物を配合する場合、塩化亜鉛はアゾール化合物との相溶性が悪いため、該組成物中のアゾール化合物の含有量が0.2%を超える場合は、塩化亜鉛の替りに硫酸亜鉛または酸化亜鉛と硫酸の混合物を用いるのが好ましい。   In the pitting corrosion inhibitor composition of the present invention, when an azole compound is further blended as a copper anticorrosive agent, since zinc chloride is poorly compatible with the azole compound, the content of the azole compound in the composition is 0.2. In the case of exceeding%, it is preferable to use zinc sulfate or a mixture of zinc oxide and sulfuric acid instead of zinc chloride.

本発明の防食被膜形成成分として用いられるリン酸、重合リン酸、有機ホスホン酸、ホスホノカルボン酸、ホスフィノポリカルボン酸並びにそれらの水溶性塩から選択されるリン系化合物のうち、リン酸としては、無機リン酸、オルトリン酸並びにそれらの水溶性塩が挙げられ、重合リン酸としてはピロリン酸、メタリン酸、ヘキサメタリン酸並びにそれらの水溶性塩が挙げられる。水溶性塩としては、ナトリウム塩、カリウム塩、アンモニウム塩等が挙げられる。   Of the phosphoric acid, polymerized phosphoric acid, organic phosphonic acid, phosphonocarboxylic acid, phosphinopolycarboxylic acid and their water-soluble salts selected from the phosphoric acid, polymerized phosphoric acid, organic phosphonic acid, and water-soluble salts thereof used as the anticorrosive film forming component of the present invention Examples include inorganic phosphoric acid, orthophosphoric acid and water-soluble salts thereof, and polymerized phosphoric acid includes pyrophosphoric acid, metaphosphoric acid, hexametaphosphoric acid and water-soluble salts thereof. Examples of the water-soluble salt include sodium salt, potassium salt, ammonium salt and the like.

また、前記の有機ホスホン酸は、分子中に1個以上のホスホノ基を有する有機化合物であり、具体的には1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリメチレンホスホン酸、エチレンジアミンテトラメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸、ヘキサメチレンジアミンテトラメチレンホスホン酸などが挙げられ、好ましくは1−ヒドロキシエチリデン−1,1−ジホスホン酸(略号:HEDP)である。   The organic phosphonic acid is an organic compound having one or more phosphono groups in the molecule, specifically, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotrimethylenephosphonic acid, ethylenediaminetetramethylene. Examples include phosphonic acid, diethylenetriaminepentamethylenephosphonic acid, hexamethylenediaminetetramethylenephosphonic acid, and the like, preferably 1-hydroxyethylidene-1,1-diphosphonic acid (abbreviation: HEDP).

前記のホスホノカルボン酸は、分子中に1個以上のホスホノ基と1個以上のカルボキシル基を有する有機化合物であり、具体的には2−ホスホノブタン−1,2,4−トリカルボン酸、ヒドロキシホスホノ酢酸、ホスホノポリマレイン酸、ホスホンコハク酸などが挙げられ、好ましくは2−ホスホノブタン−1,2,4−トリカルボン酸(略号:PBTC)、ホスホノポリマレイン酸である。ここで、ホスホノカルボン酸はローディア社からBRICORR288の商品名、またBWA社からBELCOR585の商品名で市販されている。ホスホノカルボン酸は、例えば、中性〜アルカリ性の水性溶媒中で亜リン酸とモノエチレン性不飽和カルボン酸とを遊離ラジカル開始剤の存在下で加熱することにより製造することができる(例えば特開平4−334392号公報参照)。また、ホスホノカルボン酸は、次亜リン酸とカルボニル化合物やイミン化合物との反応物を反応開始剤の存在下で不飽和カルボン酸と反応させることにより得ることができる(特許第3284318号公報参照)。   The phosphonocarboxylic acid is an organic compound having one or more phosphono groups and one or more carboxyl groups in the molecule. Specifically, 2-phosphonobutane-1,2,4-tricarboxylic acid, hydroxyphosphonic acid is used. Examples include acetic acid, phosphonopolymaleic acid, phosphonic succinic acid, and the like, preferably 2-phosphonobutane-1,2,4-tricarboxylic acid (abbreviation: PBTC) and phosphonopolymaleic acid. Here, phosphonocarboxylic acid is commercially available from Rhodia under the trade name BRICORRR288 and from BWA under the trade name BELCOR585. The phosphonocarboxylic acid can be produced, for example, by heating phosphorous acid and monoethylenically unsaturated carboxylic acid in a neutral to alkaline aqueous solvent in the presence of a free radical initiator (for example, special (See Kaihei 4-334392). The phosphonocarboxylic acid can be obtained by reacting a reaction product of hypophosphorous acid with a carbonyl compound or an imine compound with an unsaturated carboxylic acid in the presence of a reaction initiator (see Japanese Patent No. 3284318). ).

前記のホスフィノポリカルボン酸は、分子中に1個以上のホスフィノ基と2個以上のカルボキシル基を有する化合物であり、具体的にはアクリル酸と次亜リン酸を反応させて得られるビス−ポリ(2−カルボキシエチル)ホスフィン酸、マレイン酸と次亜リン酸を反応させて得られるビス−ポリ(1,2−ジカルボキシエチル)ホスフィン酸、マレイン酸とアクリル酸と次亜リン酸を反応させて得られるポリ(2−カルボキシエチル)(1,2−ジカルボキシエチル)ホスフィン酸、イタコン酸と次亜リン酸を反応させて得られるビス−ポリ[2−カルボキシ−(2−カルボキシメチル)エチル]ホスフィン酸、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸と次亜リン酸の反応物などが挙げられ、好ましくはアクリル酸とマレイン酸と次亜リン酸の反応物、イタコン酸とマレイン酸と次亜リン酸の反応物である。ホスフィノポリカルボン酸の製造は、通常、水性溶媒中で次亜リン酸とモノエチレン性不飽和カルボン酸とを遊離ラジカル開始剤の存在下で加熱することにより行なわれ、例えば、特公昭54−29316号公報、特公平5−57992号公報、特公平6−47113号公報などに開示されている。また、ホスフィノポリカルボン酸は、バイオ・ラボ社よりBELCLENE500、BELSPERSE164、BELCLENE400などの商品名で市販されている。   The phosphinopolycarboxylic acid is a compound having one or more phosphino groups and two or more carboxyl groups in the molecule. Specifically, it is a bis-- obtained by reacting acrylic acid and hypophosphorous acid. Poly (2-carboxyethyl) phosphinic acid, bis-poly (1,2-dicarboxyethyl) phosphinic acid obtained by reacting maleic acid with hypophosphorous acid, reacting maleic acid with acrylic acid and hypophosphorous acid Bis-poly [2-carboxy- (2-carboxymethyl) obtained by reacting poly (2-carboxyethyl) (1,2-dicarboxyethyl) phosphinic acid, itaconic acid and hypophosphorous acid Ethyl] phosphinic acid, acrylic acid, a reaction product of 2-acrylamido-2-methylpropanesulfonic acid and hypophosphorous acid, etc., preferably acrylic acid The reaction product of maleic acid and hypophosphorous acid is the reaction product of itaconic acid and maleic acid and hypophosphorous acid. The production of phosphinopolycarboxylic acid is usually carried out by heating hypophosphorous acid and monoethylenically unsaturated carboxylic acid in the presence of a free radical initiator in an aqueous solvent. No. 29316, Japanese Patent Publication No. 5-57992 and Japanese Patent Publication No. 6-47113. Further, phosphinopolycarboxylic acids are commercially available from Bio Labs under trade names such as BELCLENE500, BELPERSE164, and BELCLENE400.

本発明の防食被膜形成成分における各成分の含有比率は、マレイン酸系重合体とイタコン酸系重合体の合計量として25〜85重量%、亜鉛イオンを放出する化合物が亜鉛換算で15〜35重量%、リン系化合物が0〜45重量%である。   The content ratio of each component in the anticorrosive film forming component of the present invention is 25 to 85% by weight as the total amount of the maleic acid polymer and the itaconic acid polymer, and the compound that releases zinc ions is 15 to 35% in terms of zinc. %, Phosphorus compound is 0 to 45 wt%.

本発明の分散剤成分として用いられるモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体は、モノエチレン性不飽和スルホン酸とモノエチレン性不飽和カルボン酸の共重合体及びモノエチレン性不飽和スルホン酸とモノエチレン性不飽和カルボン酸と他の共重合可能なモノエチレン性不飽和単量体との共重合体を含む。モノエチレン性不飽和スルホン酸として、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシ−1−プロパンスルホン酸、ブタジエンスルホン酸やイソプレンスルホン酸等の共役ジエンスルホン化物、スチレンスルホン酸、スルホアルキル(メタ)アクリレートエステル、スルホアルキル(メタ)アリルエーテル、スルホフェノ(メタ)アリルエーテル、(メタ)アリルスルホン酸などの1種以上が用いられる。モノエチレン性不飽和カルボン酸として、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸などの1種以上が用いられる。他の共重合可能なモノエチレン性不飽和単量体としては、(メタ)アクリル酸エステル類の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシルアルキルエステル;(メタ)アクリルアミド類の(メタ)アクリルアミド、N−アルキル置換(メタ)アクリルアミド;炭素数2〜8のオレフィンのエチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ヘキセン、2−エチルヘキセン、ペンテン、イソペンテン、オクテン、イソオクテンなど;ビニルアルキルエーテル類のビニルメチルエーテル、ビニルエチルエーテル;マレイン酸アルキルエステルなどがあげられ、その1種または2種以上が用いられる。なかでも好ましい具体的な化合物として、2−アクリルアミド−2−メチルプロパンスルホン酸(略号:AMPS)と(メタ)アクリル酸の共重合体、3−アリロキシ−2−ヒドロキシ−1−プロパンスルホン酸と(メタ)アクリル酸の共重合体、共役ジエンスルホン化物と(メタ)アクリル酸の共重合体が挙げられる。   The copolymer of monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid used as the dispersant component of the present invention is a copolymer of monoethylenically unsaturated sulfonic acid and monoethylenically unsaturated carboxylic acid, and Copolymers of monoethylenically unsaturated sulfonic acids, monoethylenically unsaturated carboxylic acids and other copolymerizable monoethylenically unsaturated monomers are included. Monoethylenically unsaturated sulfonic acids such as 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid, conjugated diene sulfonated products such as butadiene sulfonic acid and isoprene sulfonic acid, styrene sulfone One or more of acid, sulfoalkyl (meth) acrylate ester, sulfoalkyl (meth) allyl ether, sulfopheno (meth) allyl ether, (meth) allylsulfonic acid, and the like are used. As the monoethylenically unsaturated carboxylic acid, one or more of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like are used. Other copolymerizable monoethylenically unsaturated monomers include (meth) acrylic acid esters (meth) acrylic acid alkyl esters, (meth) acrylic acid hydroxyl alkyl esters; (meth) acrylamides (meth) ) Acrylamide, N-alkyl substituted (meth) acrylamide; olefins having 2 to 8 carbon atoms such as ethylene, propylene, isopropylene, butylene, isobutylene, hexene, 2-ethylhexene, pentene, isopentene, octene, isooctene, etc .; vinyl alkyl ether Vinyl methyl ether, vinyl ethyl ether; maleic acid alkyl ester and the like, and one or more of them are used. Among these, preferred specific compounds include a copolymer of 2-acrylamido-2-methylpropanesulfonic acid (abbreviation: AMPS) and (meth) acrylic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid and ( Examples include a copolymer of (meth) acrylic acid, and a copolymer of conjugated diene sulfonated product and (meth) acrylic acid.

前記のモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体の分子量は、重量平均分子量として通常は1,000〜100,000であり、好ましくは4,000〜20,000である。   The molecular weight of the copolymer of monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid is usually 1,000 to 100,000, preferably 4,000 to 20,000 as a weight average molecular weight. It is.

本発明の孔食抑制剤組成物における防食被膜形成成分の配合量に対する分散剤成分の配合量の重量比は0.4〜0.8である。該重量比において、防食被膜形成成分の配合量は、マレイン酸系重合体の重合体固形分量、イタコン酸系重合体の重合体固形分量及び亜鉛イオンを放出する化合物の亜鉛換算量、更に該組成物中にリン系化合物を含む場合はリン系化合物の有効成分量を加えた合計重量として算出し、また、分散剤成分は、モノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体の重合体固形分重量を用い、該重量比を計算する。   The weight ratio of the blending amount of the dispersant component to the blending amount of the anticorrosion film forming component in the pitting corrosion inhibitor composition of the present invention is 0.4 to 0.8. In this weight ratio, the amount of the anticorrosive film forming component is as follows: the polymer solid content of the maleic acid polymer, the polymer solid content of the itaconic acid polymer, and the zinc equivalent amount of the compound releasing zinc ions, and further the composition When the phosphorus compound is contained in the product, it is calculated as the total weight including the amount of the active ingredient of the phosphorus compound, and the dispersant component is a monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid. The weight ratio is calculated using the polymer solids weight of the polymer.

この重量比が0.4より小さい場合は、形成される防食被膜が肥厚化、スケール化しやすくなるため、被膜の欠損が生じやすくなって孔食抑制効果が低下する可能性が高くなる恐れがある。また、この重量比が0.8より大きい場合は、被膜を形成するために必要十分な防食被膜形成成分が鉄系金属の表面に供給されず、防食被膜の形成が不完全になる可能性が高まるため、孔食抑制効果が低下する可能性が高くなる恐れがある。   When this weight ratio is smaller than 0.4, the formed anticorrosion film is likely to be thickened and scaled, so that the film is likely to be lost and the possibility of reducing the pitting corrosion suppression may be increased. . In addition, when this weight ratio is larger than 0.8, there is a possibility that the anticorrosive film forming component necessary and sufficient for forming the film is not supplied to the surface of the iron-based metal, and the formation of the anticorrosion film may be incomplete. Since it increases, there is a possibility that the possibility that the pitting corrosion suppression effect is reduced is increased.

本発明の孔食抑制剤組成物の製造方法は、撹拌下に防食被膜形成各成分と分散剤成分を水に加えて溶解することにより製造でき、各成分の添加順序は特に限定されないが、亜鉛イオンを放出する化合物が硫酸亜鉛の場合は、組成物のpHが1.5〜2.0の範囲になるように硫酸でpHを調整し、塩化亜鉛の場合は、組成物のpHが0以下〜2.0の範囲になるように塩酸でpHを調整するのが好ましい。   The method for producing the pitting corrosion inhibitor composition of the present invention can be produced by adding each component of the anticorrosive film and the dispersant component to water under stirring and dissolving them, and the order of addition of each component is not particularly limited. When the compound that releases ions is zinc sulfate, the pH is adjusted with sulfuric acid so that the pH of the composition is in the range of 1.5 to 2.0. In the case of zinc chloride, the pH of the composition is 0 or less. It is preferable to adjust the pH with hydrochloric acid so as to be in the range of -2.0.

本発明の孔食抑制剤組成物には、前記の防食被膜形成成分と分散剤成分以外に、本発明の効果を阻害せず、また、本発明の孔食抑制剤組成物の製品安定性を損なわない範囲内で、公知の腐食抑制剤、スケール抑制剤、スケール分散剤、微生物障害抑制剤、消泡剤などを配合しても良い。特に、本発明の孔食抑制剤組成物が対象とする水系設備の一部に銅、あるいは銅合金が存在する場合には、アゾール化合物を配合することが好ましい。アゾール化合物の例としてトリルトリアゾール、ベンゾトリアゾール、置換ベンゾトリアゾール、メルカプトベンゾチアゾールなどが挙げられる。尚、本発明の孔食抑制剤組成物にアゾール化合物を配合できない場合は、アゾール化合物を別途併用することが好ましい。   The pitting corrosion inhibitor composition of the present invention does not inhibit the effects of the present invention other than the anticorrosive film forming component and the dispersant component described above, and also provides the product stability of the pitting corrosion inhibitor composition of the present invention. As long as they are not impaired, a known corrosion inhibitor, scale inhibitor, scale dispersant, microbial disorder inhibitor, antifoaming agent, and the like may be blended. In particular, when copper or a copper alloy is present in a part of the aqueous facility targeted by the pitting corrosion inhibitor composition of the present invention, it is preferable to add an azole compound. Examples of the azole compound include tolyltriazole, benzotriazole, substituted benzotriazole, mercaptobenzothiazole and the like. In addition, when an azole compound cannot be mix | blended with the pitting corrosion inhibitor composition of this invention, it is preferable to use an azole compound together separately.

本発明の孔食抑制方法は、開放循環式冷却水システムの循環水中におけるホスホノ基及びホスフィノ基を有さないマレイン酸系重合体、ホスホノ基及びホスフィノ基を有さないイタコン酸系重合体及び亜鉛イオンを放出する化合物を含む防食被膜形成成分の添加量(ここで、マレイン酸系重合体とイタコン酸系重合体は重合体固形分換算で計算し、亜鉛イオンを放出する化合物は亜鉛換算で計算する)に対するモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を含む分散剤成分の添加量の重量比が0.4〜0.8になるように防食被膜形成成分と分散剤成分を開放循環式冷却水システムに添加することにより、水と接触する炭素鋼製熱交換器材質の孔食を抑制する孔食抑制方法であって、
前記マレイン酸系重合体と前記イタコン酸系重合体の製造方法が、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸系重合体の製造を行って2種の重合体の混合物を直接製造する方法又はイタコン酸系重合体を製造後、同一反応容器においてイタコン酸系重合体が入ったままの状態でマレイン酸系重合体の製造を行って2種の重合体の混合物を直接製造する方法であって、
該開放循環式冷却水システムの循環水中の亜鉛の添加濃度がZn換算で0.5〜2mg/Lの範囲であることを特徴とする孔食抑制方法である
The method for inhibiting pitting corrosion according to the present invention includes a maleic acid polymer having no phosphono group and phosphino group, an itaconic acid polymer having no phosphono group and phosphino group, and zinc in the circulating water of an open circulation cooling water system. Addition amount of anticorrosive film-forming component including ion-releasing compound (wherein maleic acid polymer and itaconic acid polymer are calculated in terms of polymer solids, and compounds releasing zinc ions are calculated in terms of zinc) to) monoethylenically unsaturated carboxylic acids and monoethylenically unsaturated sulfonic corrosion protective coating forming component so that the weight ratio of the addition amount is 0.4 to 0.8 of the dispersant component comprising a copolymer of acid to A pitting corrosion suppression method for suppressing pitting corrosion of a carbon steel heat exchanger material in contact with water by adding a dispersant component to an open circulation cooling water system,
The method for producing the maleic acid polymer and the itaconic acid polymer is the production of an itaconic acid polymer with the maleic polymer still contained in the same reaction vessel after the maleic acid polymer is produced. To produce a mixture of two types of polymers directly or to produce an itaconic acid polymer, and then to produce a maleic acid polymer with the itaconic acid polymer still contained in the same reaction vessel. Directly producing a mixture of two polymers,
Is pitting suppression method of the addition concentration of zinc in the circulation water of the open circulating cooling water system, wherein the range der Rukoto of 0.5 to 2 mg / L of Zn terms

本発明の孔食抑制方法において、防食被膜形成成分と分散剤成分を開放循環式冷却水システムに添加する方法としては、前記の本発明の孔食抑制剤組成物を添加する方法、防食被膜形成成分と分散剤成分を別個に添加する方法、更に、防食被膜形成成分と分散剤成分に含まれる各成分を適宜組み合わせて別個に添加する、例えば、マレイン酸系重合体とイタコン酸系重合体を組み合わせた組成物とリン系化合物、亜鉛イオンを放出する化合物及びモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を組み合わせた組成物の2種の組成物を添加するなどの方法がある。いずれの添加方法でも本発明の効果は得られるが、なかでも、本発明の孔食抑制剤組成物を用いる場合は、添加装置が1個で済み、また、該組成物中の防食被膜形成成分と分散剤成分の配合重量比が0.4〜0.8であるので、該組成物を開放循環式冷却水システムの循環水に添加すると該循環水中の防食被膜形成成分の添加量に対する分散剤成分の添加量の重量比が0.4〜0.8になり、好ましい。他の添加方法では添加装置が複数必要であり、本発明の孔食抑制方法を実施するためには各添加装置の添加比率の調整が必要なため、特段の事由が無い限りは本発明の孔食抑制剤組成物を用いる添加方法が推奨される。   In the method for inhibiting pitting corrosion of the present invention, the method for adding the anticorrosive film forming component and the dispersant component to the open circulation type cooling water system includes the method for adding the pitting corrosion inhibitor composition of the present invention, and the formation of the anticorrosive film. A method of adding the component and the dispersant component separately, and further adding each component contained in the anticorrosive film forming component and the dispersant component in an appropriate combination, for example, a maleic acid polymer and an itaconic acid polymer Two types of compositions are added: a combined composition and a phosphorus compound, a compound that releases zinc ions, and a composition that combines a copolymer of a monoethylenically unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid. There is a way. The effect of the present invention can be obtained by any addition method. In particular, when the pitting corrosion inhibitor composition of the present invention is used, only one addition device is required, and the anticorrosive film forming component in the composition is used. When the composition is added to the circulating water of the open circulation type cooling water system, the dispersing agent with respect to the added amount of the anticorrosive film forming component in the circulating water is 0.4 to 0.8. The weight ratio of the component addition amounts is preferably 0.4 to 0.8. In other addition methods, a plurality of addition devices are required, and in order to carry out the pitting corrosion suppression method of the present invention, it is necessary to adjust the addition ratio of each addition device. Therefore, unless there is a special reason, the pores of the present invention. An addition method using a food inhibitor composition is recommended.

本発明の孔食抑制方法における防食被膜形成成分と分散剤成分の添加方法は、対象となる開放循環式冷却水システムに対して薬注ポンプによる連続添加が好ましく、必要な薬品濃度が維持できれば間欠添加も選択できる。   In the pitting corrosion suppression method of the present invention, the anticorrosion film forming component and the dispersant component are preferably added continuously by a chemical injection pump to the target open circulation cooling water system, and intermittent if the required chemical concentration can be maintained. Addition can also be selected.

本発明の孔食抑制方法において、対象となる開放循環式冷却水システムの循環水中の亜鉛の添加濃度は、排水基準に基づきZn換算で2mg/L以下であることが好ましく、より好ましくは0.5〜2.0mg/Lの範囲である。また、循環水中のカルシウム硬度が100mgCaCO/L未満のときリン系化合物の添加濃度はPO換算で1〜3mg/Lの範囲であり、循環水中のカルシウム硬度が100mgCaCO/Lを超え300mgCaCO/L未満のときリン系化合物の添加濃度はPO換算で0〜3mg/Lの範囲であり、循環水中のカルシウム硬度が300mgCaCO/Lを超えるときリン系化合物の添加濃度はPO換算で0〜2mg/Lの範囲である。 In the pitting corrosion suppression method of the present invention, the zinc addition concentration in the circulating water of the target open circulation type cooling water system is preferably 2 mg / L or less in terms of Zn based on the drainage standard, and more preferably 0. It is in the range of 5 to 2.0 mg / L. When the calcium hardness in the circulating water is less than 100 mg CaCO 3 / L, the concentration of the phosphorus compound added is in the range of 1 to 3 mg / L in terms of PO 4 , and the calcium hardness in the circulating water exceeds 100 mg CaCO 3 / L and is 300 mg CaCO 3. When less than / L, the addition concentration of the phosphorus compound is in the range of 0 to 3 mg / L in terms of PO 4 , and when the calcium hardness in the circulating water exceeds 300 mg CaCO 3 / L, the addition concentration of the phosphorus compound is in terms of PO 4 The range is 0 to 2 mg / L.

本発明の孔食抑制方法における本発明の防食被膜形成成分と分散剤成分の添加個所は、本発明の孔食抑制剤組成物を添加する場合であっても、各成分を別個に添加する場合であっても、添加した薬剤が速やかに均一な濃度となる撹拌の良い個所であれば特に制限はなく、対象水系の適当な個所を選択できる。   In the method for inhibiting pitting corrosion of the present invention, the anticorrosive film forming component and the dispersant component of the present invention are added in the case where each component is added separately even when the pitting corrosion inhibitor composition of the present invention is added. Even so, there is no particular limitation as long as the added chemicals are quickly stirred at a uniform concentration and there is no particular limitation, and an appropriate part of the target water system can be selected.

腐食やスケールとともに微生物障害は水系における主要な障害である。本発明の孔食抑制剤組成物に微生物障害抑制剤を配合するか、配合できない場合は併用することが好ましい。微生物障害抑制剤の例として、次亜塩素酸ナトリウム、次亜塩素酸カルシウム、液化塩素、塩化臭素、次亜塩素酸塩と臭化物の反応物、クロロイソシアヌル酸類、クロロジメチルヒダントイン酸類、ブロモジメチルヒダントイン酸類、クロロブロモジメチルヒダントイン酸類等の、水に溶解して次亜塩素酸及び/又は次亜臭素酸を生成する化合物;ヒドラジン;2−メチルイソチアゾリン−3−オン、2−メチル−4−クロロイソチアゾリン−3−オン、2−メチル−5−クロロイソチアゾリン−3−オン、2−メチル−4,5−ジクロロイソチアゾリン−3−オン、1,2−ベンズイソチアゾリン−3−オン、2−n−オクチル−4−イソチアゾリン−3−オン、4,5−ジクロロ−2−n−オクチル−3(2H)イソチアゾリン等のイソチアゾリン化合物;2,2−ジブロモ−2−ニトロエタノール、2−ブロモ−2−ニトロプロパン−1,3−ジオール、2,2−ジブロモ−3−ニトリロプロピオンアミド等の有機ブロム化合物;メチレンビスチオシアネート、ビス−(1,4−ジブロムアセトキシ)−2−ブテン、ベンジルブロムアセテート、ソジウムブロマイド、α−ブロモシンナムアルデヒド、2−ピリジンチオール−1−オキシドナトリウム、ビス(2−ピリジンチオール−1−オキシド)亜鉛、2−(4−チアゾリル)ベンツイミダゾール、ヘキサヒドロ−1,3,5−トリス−(2−ヒドロキシエチル)−S−トリアジン、ビス(トリクロルメチル)スルホン、ジチオカーバメート、3,5−ジメチルテトラヒドロ−1,3,5,2H−チアジアジン−2−チオン、ブロム酢酸エチルチオフェニルエステル、α−クロルベンゾアルドキシムアセテート、2,4,5,6−テトラクロロイソフタロニトリル、1,2−ジブロモ−2,4−ジシアノブタン、3−ヨード−2−プロペニルブチルカルバメート、サリチル酸、サリチル酸ナトリウム、パラオキシ安息香酸エステル及びp−クロル−m−キシレノール等が挙げられる。   Microbial damage as well as corrosion and scale are major obstacles in water systems. It is preferable to add a microbial disorder inhibitor to the pitting corrosion inhibitor composition of the present invention or to use it together when it cannot be added. Examples of microbial disorder inhibitors include sodium hypochlorite, calcium hypochlorite, liquefied chlorine, bromine chloride, reaction products of hypochlorite and bromide, chloroisocyanuric acids, chlorodimethylhydantoic acids, bromodimethylhydantoic acids , Compounds such as chlorobromodimethylhydantoic acid, which dissolve in water to produce hypochlorous acid and / or hypobromite; hydrazine; 2-methylisothiazolin-3-one, 2-methyl-4-chloroisothiazoline- 3-one, 2-methyl-5-chloroisothiazolin-3-one, 2-methyl-4,5-dichloroisothiazolin-3-one, 1,2-benzisothiazolin-3-one, 2-n-octyl-4 -Isothiazoline-3-one, 4,5-dichloro-2-n-octyl-3 (2H) isothiazoline, etc. An azoline compound; an organic bromide compound such as 2,2-dibromo-2-nitroethanol, 2-bromo-2-nitropropane-1,3-diol, 2,2-dibromo-3-nitrilopropionamide; a methylenebisthiocyanate; Bis- (1,4-dibromoacetoxy) -2-butene, benzyl bromacetate, sodium bromide, α-bromocinnamaldehyde, sodium 2-pyridinethiol-1-oxide, bis (2-pyridinethiol-1-oxide) ) Zinc, 2- (4-thiazolyl) benzimidazole, hexahydro-1,3,5-tris- (2-hydroxyethyl) -S-triazine, bis (trichloromethyl) sulfone, dithiocarbamate, 3,5-dimethyltetrahydro -1,3,5,2H-thiadiazin-2-thione , Bromoacetic acid ethylthiophenyl ester, α-chlorobenzoaldoxime acetate, 2,4,5,6-tetrachloroisophthalonitrile, 1,2-dibromo-2,4-dicyanobutane, 3-iodo-2-propenyl Examples include butyl carbamate, salicylic acid, sodium salicylate, paraoxybenzoic acid ester and p-chloro-m-xylenol.

本発明の孔食抑制剤組成物及び孔食抑制方法において、該孔食抑制剤組成物に配合する、もしくは併用するのが好ましい微生物障害抑制剤は、次亜塩素酸及びまたは次亜臭素酸を生成する化合物であるが、その添加量は対象となる開放循環式冷却水システムの循環水中遊離ハロゲン濃度(遊離塩素と遊離臭素の合計)として通常0.05〜2mg/L(Cl換算)である。 In the pitting corrosion inhibitor composition and the pitting corrosion suppression method of the present invention, the microbial disorder inhibitor preferably mixed or used in combination with the pitting corrosion inhibitor composition is hypochlorous acid and / or hypobromite. Although it is a compound to be produced, its addition amount is usually 0.05 to 2 mg / L (in terms of Cl 2 ) as the free halogen concentration (total of free chlorine and free bromine) in the circulating water of the target open circulation cooling water system. is there.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。また、特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to a following example. In addition, various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

(試験装置)
本発明の孔食抑制剤組成物及び孔食抑制方法の孔食抑制効果を評価するために用いた試験装置ならびに試験方法は、ボイラ・熱交換器用炭素鋼鋼管STB340SC(JIS G3461:2012)を熱交換器に設置可能とした以外はJIS G0593−2002『水処理剤の腐食及びスケール防止評価試験方法』のオンサイト試験法に準拠した。試験装置の概略を図1に示す。
熱交換器7のHE−1、HE−4、HE−5、HE−6は、JIS G0593−2002に準拠した二重管式熱交換器であり、内管に外径12.7mm、長さ510mmのステンレス鋼管SUS304(JIS G3459)製の伝熱管を設置し、管内にカートリッジヒーターを挿入して加熱し、管外に冷却水を通水した。
また、HE−2とHE−3は、試験用伝熱管として外径19.0mm、長さ600mmの冷間仕上げ継目無管の熱交換器用炭素鋼鋼管STB340SC(JIS G3461)を設置し、STB340SCの管内に冷却水を通水し、管外を電気ヒーターブロックにより加熱した。
(Test equipment)
The test apparatus and test method used for evaluating the pitting corrosion inhibitory effect of the pitting corrosion inhibitor composition and the pitting corrosion suppression method of the present invention is to heat a carbon steel pipe STB340SC (JIS G3461: 2012) for boiler / heat exchanger. Except that it can be installed in the exchanger, it conforms to the on-site test method of JIS G0593-2002 “Testing method for corrosion and scale prevention of water treatment agent”. An outline of the test apparatus is shown in FIG.
HE-1, HE-4, HE-5, and HE-6 of the heat exchanger 7 are double pipe heat exchangers conforming to JIS G0593-2002, and the outer diameter of the inner pipe is 12.7 mm. A heat transfer tube made of 510 mm stainless steel tube SUS304 (JIS G3459) was installed, a cartridge heater was inserted into the tube and heated, and cooling water was passed outside the tube.
In addition, HE-2 and HE-3 are installed with a cold-finished seamless carbon steel tube STB340SC (JIS G3461) having an outer diameter of 19.0 mm and a length of 600 mm as test heat transfer tubes. Cooling water was passed through the tube, and the outside of the tube was heated by an electric heater block.

水槽2及び配管を含む系全体の水容量は62Lとし、水槽2の水温は35℃になるように水温制御装置9で制御した。試験用伝熱管評価部の線流速0.3m/sに相当する流量210L/hとなるように流量調整バルブ5で制御しながら循環ポンプ3で通水し、熱交換器7の熱流束は40〜70kW/mとした。冷却塔1は冷却能力1.8冷却トンの誘引通風向流接触型のものを使用した。冷却塔入口・出口の循環水の温度差は15℃であった。循環水の電気伝導率を電気伝導率測定セル4で連続的に測定し、電気伝導率の入力信号より電気伝導率制御装置11を用いて所定の濃縮度に相当する電気伝導率になるようにブローダウンポンプ10を制御した。 The water capacity of the entire system including the water tank 2 and the piping was 62 L, and the water temperature of the water tank 2 was controlled by the water temperature control device 9 so as to be 35 ° C. Water was passed through the circulation pump 3 while being controlled by the flow rate adjusting valve 5 so that the flow rate was 210 L / h corresponding to a linear flow rate of 0.3 m / s in the test heat transfer tube evaluation unit, and the heat flux of the heat exchanger 7 was 40. It was set to -70 kW / m < 2 >. The cooling tower 1 used was an induced draft counterflow contact type having a cooling capacity of 1.8 cooling tons. The temperature difference between the circulating water at the inlet and outlet of the cooling tower was 15 ° C. The electrical conductivity of the circulating water is continuously measured by the electrical conductivity measuring cell 4 so that the electrical conductivity corresponding to a predetermined concentration is obtained from the electrical conductivity input signal using the electrical conductivity control device 11. The blowdown pump 10 was controlled.

(製造例1) 同一反応容器によるマレイン酸重合体とイタコン酸重合体の製造例
ガラス還流管、窒素通気管、滴下ロート、攪拌器付きの500mLの4つ口フラスコに無水マレイン酸18.3重量部(マレイン酸換算21.6重量部)、硫酸第一鉄7水和物0.012重量部、水31.0重量部を加え、これに48%水酸化カリウム水溶液を11.9重量部加えた。この液を90℃に加熱して液温を90〜95℃に維持しながら、35%過酸化水素7.3重量部と過硫酸ナトリウム0.25重量部を水1.0重量部に溶解した1回目の重合開始剤溶液を50分間かけて滴下した。滴下終了後、反応液にイタコン酸18.4重量部、硫酸第一鉄7水和物0.012重量部を一括で加えた。イタコン酸の添加により温度が低下したため、反応液を90℃に再加熱して液温を90〜95℃に維持しながら、1回目の重合開始剤溶液添加終了から6分後に35%過酸化水素11.0重量部と過硫酸ナトリウム0.4重量部を水1.5重量部に溶解した2回目の重合開始剤溶液を50分間かけて滴下した。2回目の重合開始剤溶液滴下終了後、硫酸第一鉄7水和物0.012重量部を加え、更に90℃で2時間加熱した後、全体で100重量部になるように水を追加投入して重量平均分子量1100のマレイン酸重合体21.6重量%とイタコン酸重合体18.4重量%を含む水溶液を得た。尚、全反応工程中、撹拌しながら窒素を連続的に通気した。高速液体クロマトグラフ法により反応液の残留モノマーを測定した結果、マレイン酸の反応率は85%、イタコン酸の反応率は98%であった。
(Production Example 1) Production example of maleic acid polymer and itaconic acid polymer in the same reaction vessel 18.3 wt. Of maleic anhydride in a 500 mL four-necked flask equipped with a glass reflux tube, a nitrogen vent tube, a dropping funnel and a stirrer Parts (21.6 parts by weight in terms of maleic acid), 0.012 parts by weight of ferrous sulfate heptahydrate and 31.0 parts by weight of water were added, and 11.9 parts by weight of a 48% aqueous potassium hydroxide solution was added thereto. It was. While this liquid was heated to 90 ° C. and the liquid temperature was maintained at 90 to 95 ° C., 7.3 parts by weight of 35% hydrogen peroxide and 0.25 parts by weight of sodium persulfate were dissolved in 1.0 part by weight of water. The first polymerization initiator solution was added dropwise over 50 minutes. After completion of the dropwise addition, 18.4 parts by weight of itaconic acid and 0.012 parts by weight of ferrous sulfate heptahydrate were added to the reaction solution all at once. Since the temperature decreased due to the addition of itaconic acid, the reaction solution was reheated to 90 ° C. to maintain the solution temperature at 90 to 95 ° C., and 35% hydrogen peroxide 6 minutes after the completion of the first polymerization initiator solution addition. A second polymerization initiator solution in which 11.0 parts by weight and 0.4 parts by weight of sodium persulfate were dissolved in 1.5 parts by weight of water was added dropwise over 50 minutes. After completion of the second addition of the polymerization initiator solution, add 0.012 part by weight of ferrous sulfate heptahydrate, further heat at 90 ° C. for 2 hours, and then add water to make a total of 100 parts by weight. As a result, an aqueous solution containing 21.6% by weight of a maleic acid polymer having a weight average molecular weight of 1100 and 18.4% by weight of an itaconic acid polymer was obtained. In addition, nitrogen was continuously bubbled with stirring during the entire reaction process. As a result of measuring the residual monomer in the reaction solution by high performance liquid chromatography, the reaction rate of maleic acid was 85% and the reaction rate of itaconic acid was 98%.

(製造例2)
1回目の重合開始剤溶液添加終了から15分後に2回目の重合開始剤溶液の添加を行った以外は製造例1と同じ方法によりマレイン酸重合体21.6重量%とイタコン酸重合体18.4重量%を含む水溶液を製造した。マレイン酸の反応率は90%、イタコン酸の反応率は98%であった。
(Production Example 2)
15. In the same manner as in Production Example 1, except that the second polymerization initiator solution was added 15 minutes after the completion of the first polymerization initiator solution addition, 21.6 wt% maleic acid polymer and itaconic acid polymer 18. An aqueous solution containing 4% by weight was prepared. The reaction rate of maleic acid was 90%, and the reaction rate of itaconic acid was 98%.

(製造例3)
1回目の重合開始剤溶液添加終了から50分後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体21.6重量%とイタコン酸重合体18.4重量%を含む水溶液を得た。マレイン酸の反応率は95%、イタコン酸の反応率は99%であった。
(Production Example 3)
In the same manner as in Production Example 1, except that the second polymerization initiator solution addition was performed 50 minutes after the completion of the first polymerization initiator solution addition, 21.6 wt% maleic acid polymer and itaconic acid polymer 18. An aqueous solution containing 4% by weight was obtained. The reaction rate of maleic acid was 95%, and the reaction rate of itaconic acid was 99%.

(製造例4)
1回目の重合開始剤溶液添加終了から70分後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体21.6重量%とイタコン酸重合体18.4重量%を含む水溶液を得た。マレイン酸の反応率は95%、イタコン酸の反応率は98%であった。
(Production Example 4)
In the same manner as in Production Example 1, except that the second polymerization initiator solution addition was performed 70 minutes after the completion of the first polymerization initiator solution addition, 21.6 wt% maleic acid polymer and itaconic acid polymer 18. An aqueous solution containing 4% by weight was obtained. The reaction rate of maleic acid was 95%, and the reaction rate of itaconic acid was 98%.

(製造例5)
1回目の重合開始剤溶液添加終了から120分後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体21.6重量%とイタコン酸重合体18.4重量%を含む水溶液を得た。マレイン酸の反応率は90%、イタコン酸の反応率は94%であった。
(Production Example 5)
In the same manner as in Production Example 1, except that the second polymerization initiator solution was added 120 minutes after the completion of the first polymerization initiator solution addition, 21.6 wt% maleic acid polymer and itaconic acid polymer 18. An aqueous solution containing 4% by weight was obtained. The reaction rate of maleic acid was 90%, and the reaction rate of itaconic acid was 94%.

(製造例6)
1回目の重合開始剤溶液添加終了から22時間後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体21.6重量%とイタコン酸重合体18.4重量%を含む水溶液を得た。マレイン酸の反応率は84%、イタコン酸の反応率は88%であった。
(Production Example 6)
In the same manner as in Production Example 1, except that the second polymerization initiator solution addition was performed 22 hours after the completion of the first polymerization initiator solution addition, 21.6 wt% maleic acid polymer and itaconic acid polymer 18. An aqueous solution containing 4% by weight was obtained. The reaction rate of maleic acid was 84%, and the reaction rate of itaconic acid was 88%.

(製造例7)
製造例1と同じ4つ口フラスコにイタコン酸18.4重量部、硫酸第一鉄7水和物0.012重量部、水22重量部を加え、これに48%水酸化カリウム水溶液を10.9重量部加えた。窒素を連続的に通気ながら、この液を90℃に加熱して液温を90〜95℃に維持しながら、35%過酸化水素9.2重量部と過硫酸ナトリウム0.32重量部を水1.0重量部に溶解した1回目の重合開始剤溶液を50分間かけて滴下した。滴下終了後、無水マレイン酸21.3重量部(マレイン酸換算21.6重量部)、硫酸第一鉄7水和物0.012重量部を一括で加え、液温を90〜95℃に維持しながら、1回目の重合開始剤溶液添加終了から50分後に35%過酸化水素9.2重量部と過硫酸ナトリウム0.32重量部を水1.0重量部に溶解した2回目の重合開始剤溶液を50分間かけて滴下した。2回目の重合開始剤溶液添加終了後、更に90℃で2時間加熱した後、全体で100重量部になるように水を追加投入してマレイン酸重合体21.6重量%とイタコン酸重合体18.4重量%を含む水溶液を得た。マレイン酸の反応率は79%、イタコン酸の反応率は95%であった。
このようにイタコン酸系重合体を製造後、同一反応容器にイタコン酸系重合体が入ったままの状態でマレイン酸系重合体の製造を行った場合、製造例1のマレイン酸系重合体を製造後、同一反応容器にマレイン酸系重合体が入ったままの状態でイタコン酸系重合体の製造する方法と比較して、マレイン酸の反応率が低かった。
(Production Example 7)
To the same four-necked flask as in Production Example 1, 18.4 parts by weight of itaconic acid, 0.012 parts by weight of ferrous sulfate heptahydrate and 22 parts by weight of water were added. 9 parts by weight were added. While continuously ventilating nitrogen, this liquid was heated to 90 ° C. and the liquid temperature was maintained at 90 to 95 ° C., while 9.2 parts by weight of 35% hydrogen peroxide and 0.32 parts by weight of sodium persulfate were added to water. The first polymerization initiator solution dissolved in 1.0 part by weight was added dropwise over 50 minutes. After completion of the dropwise addition, 21.3 parts by weight of maleic anhydride (21.6 parts by weight in terms of maleic acid) and 0.012 parts by weight of ferrous sulfate heptahydrate were added all at once, and the liquid temperature was maintained at 90 to 95 ° C. However, 50 minutes after the completion of the first polymerization initiator solution addition, the second polymerization start in which 9.2 parts by weight of 35% hydrogen peroxide and 0.32 parts by weight of sodium persulfate were dissolved in 1.0 part by weight of water. The agent solution was added dropwise over 50 minutes. After the addition of the second polymerization initiator solution was completed, the mixture was further heated at 90 ° C. for 2 hours, and then water was additionally added so that the total amount was 100 parts by weight. 21.6% by weight of maleic acid polymer and itaconic acid polymer An aqueous solution containing 18.4% by weight was obtained. The reaction rate of maleic acid was 79%, and the reaction rate of itaconic acid was 95%.
Thus, after manufacturing an itaconic acid type polymer, when manufacturing a maleic acid type polymer with the itaconic acid type polymer still contained in the same reaction vessel, the maleic acid type polymer of Production Example 1 is obtained. After the production, the reaction rate of maleic acid was low as compared with the method of producing an itaconic acid polymer with the maleic acid polymer still contained in the same reaction vessel.

(製造例8)
無水マレイン酸5.9重量部(マレイン酸換算7.0重量部)、イタコン酸を33.0重量部を加え、1回目の重合開始剤溶液添加終了から50分後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体7.0重量%とイタコン酸重合体33.0重量%を含む水溶液を得た。マレイン酸の反応率は95%、イタコン酸の反応率は99%であった。
(Production Example 8)
5.9 parts by weight of maleic anhydride (7.0 parts by weight in terms of maleic acid) and 33.0 parts by weight of itaconic acid were added, and the second polymerization initiator solution was added 50 minutes after the completion of the first polymerization initiator solution addition. An aqueous solution containing 7.0% by weight of a maleic acid polymer and 33.0% by weight of an itaconic acid polymer was obtained in the same manner as in Production Example 1 except that addition was performed. The reaction rate of maleic acid was 95%, and the reaction rate of itaconic acid was 99%.

(製造例9)
無水マレイン酸11.4重量部(マレイン酸換算13.5重量部)、イタコン酸を26.5重量部を加え、1回目の重合開始剤溶液添加終了から50分後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体13.5重量%とイタコン酸重合体26.5重量%を含む水溶液を得た。マレイン酸の反応率は95%、イタコン酸の反応率は99%であった。
(Production Example 9)
Maleic anhydride (11.4 parts by weight (maleic acid equivalent: 13.5 parts by weight)) and itaconic acid (26.5 parts by weight) were added, and the second polymerization initiator solution was added 50 minutes after the completion of the first polymerization initiator solution addition. An aqueous solution containing 13.5% by weight of maleic acid polymer and 26.5% by weight of itaconic acid polymer was obtained in the same manner as in Production Example 1 except that addition was performed. The reaction rate of maleic acid was 95%, and the reaction rate of itaconic acid was 99%.

(製造例10)
無水マレイン酸22.4重量部(マレイン酸換算26.5重量部)、イタコン酸を13.5重量部を加え、1回目の重合開始剤溶液添加終了から50分後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体26.5重量%とイタコン酸重合体13.5重量%を含む水溶液を得た。マレイン酸の反応率は92%、イタコン酸の反応率は98%であった。
(Production Example 10)
22.4 parts by weight of maleic anhydride (26.5 parts by weight in terms of maleic acid) and 13.5 parts by weight of itaconic acid were added, and the second polymerization initiator solution was added 50 minutes after the completion of the first polymerization initiator solution addition. An aqueous solution containing 26.5% by weight of maleic acid polymer and 13.5% by weight of itaconic acid polymer was obtained in the same manner as in Production Example 1 except that the addition was performed. The reaction rate of maleic acid was 92%, and the reaction rate of itaconic acid was 98%.

(製造例11)
無水マレイン酸27.9重量部(マレイン酸換算33.0重量部)、イタコン酸を7.0重量部を加え、1回目の重合開始剤溶液添加終了から50分後に2回目の重合開始剤溶液添加を行った以外は製造例1と同じ方法により、マレイン酸重合体33.0重量%とイタコン酸重合体7.0重量%の水溶液を得た。マレイン酸の反応率は90%、イタコン酸の反応率は98%であった。
(Production Example 11)
27.9 parts by weight of maleic anhydride (33.0 parts by weight in terms of maleic acid) and 7.0 parts by weight of itaconic acid were added, and the second polymerization initiator solution was added 50 minutes after the completion of the first addition of the polymerization initiator solution. An aqueous solution of 33.0% by weight of maleic acid polymer and 7.0% by weight of itaconic acid polymer was obtained in the same manner as in Production Example 1 except that addition was performed. The reaction rate of maleic acid was 90%, and the reaction rate of itaconic acid was 98%.

(製造例12) マレイン酸とイタコン酸の共重合体の製造例
製造例1と同じ4つ口フラスコに無水マレイン酸18.3重量部(マレイン酸換算21.6重量部)とイタコン酸18.4 重量部、硫酸第一鉄7水和物0.022重量部、水31.0重量部を加え、これに48%水酸化カリウム水溶液を11.9重量部加えた。窒素を連続的に通気しながら、液を95℃に加熱した後、液温を95℃に維持しながら35%過酸化水素18.3重量部と過硫酸ナトリウム0.65重量部を水2.5重量部に溶解した重合開始剤溶液を100分間かけて滴下後、更に95℃で2時間加熱した。マレイン酸の反応率は62%、イタコン酸の反応率は98%であった。
Production Example 12 Production Example of Maleic Acid and Itaconic Acid Copolymer In the same four-necked flask as in Production Example 1, maleic anhydride 18.3 parts by weight (maleic acid equivalent 21.6 parts by weight) and itaconic acid 18. 4 parts by weight, 0.022 parts by weight of ferrous sulfate heptahydrate and 31.0 parts by weight of water were added, and 11.9 parts by weight of a 48% aqueous potassium hydroxide solution was added thereto. The solution was heated to 95 ° C. while continuously ventilating nitrogen, and then 18.3 parts by weight of 35% hydrogen peroxide and 0.65 parts by weight of sodium persulfate were added to water 2. A polymerization initiator solution dissolved in 5 parts by weight was added dropwise over 100 minutes, followed by further heating at 95 ° C. for 2 hours. The reaction rate of maleic acid was 62%, and the reaction rate of itaconic acid was 98%.

(製造例13) 水系重合法によるマレイン酸重合体の製造例
製造例1と同じ4つ口フラスコに無水マレイン酸40重量部(0.40モル)、硫酸第一鉄7水和物0.02重量部、水40重量部を加え、これに48%水酸化カリウム水溶液を11.9重量部(0.10モル)加えた。窒素を連続的に通気しながら、液を95℃に加熱した後、液温を95℃に維持しながら、35%過酸化水素18.3重量部と過硫酸ナトリウム0.65重量部を水2.5重量部に溶解した重合開始剤溶液を120分間かけて滴下した。滴下終了後、硫酸第一鉄7水和物0.02重量部を一括で加え、更に95℃で2時間加熱して、重量平均分子量1000のマレイン酸重合体の水溶液を得た。マレイン酸の反応率は88%であった。
さらに、反応温度や重合開始剤の量や反応時間を変えてマレイン酸重合体の製造を行ったが、マレイン酸の反応率が90%を超えることはなかった。
(Production Example 13) Production Example of Maleic Acid Polymer by Aqueous Polymerization Method In the same four-necked flask as in Production Example 1, maleic anhydride 40 parts by weight (0.40 mol), ferrous sulfate heptahydrate 0.02 Part by weight and 40 parts by weight of water were added, and 11.9 parts by weight (0.10 mol) of a 48% aqueous potassium hydroxide solution was added thereto. The solution was heated to 95 ° C. while continuously bubbling nitrogen, and then 18.3 parts by weight of 35% hydrogen peroxide and 0.65 parts by weight of sodium persulfate were added to water 2 while maintaining the solution temperature at 95 ° C. A polymerization initiator solution dissolved in 5 parts by weight was added dropwise over 120 minutes. After completion of the dropping, 0.02 part by weight of ferrous sulfate heptahydrate was added all at once, and further heated at 95 ° C. for 2 hours to obtain an aqueous solution of a maleic acid polymer having a weight average molecular weight of 1000. The reaction rate of maleic acid was 88%.
Furthermore, although the maleic acid polymer was produced by changing the reaction temperature, the amount of the polymerization initiator and the reaction time, the reaction rate of maleic acid did not exceed 90%.

(製造例14) 水系重合法によるイタコン酸重合体の製造例
製造例1と同じ4つ口フラスコにイタコン酸40重量部(0.3モル)、硫酸第一鉄7水和物0.02重量部、水40重量部を加え、これに48%水酸化カリウム水溶液を11.9重量部(0.1モル)加えた。窒素を連続的に通気しながら液を90℃に加熱した後、液温を95℃に維持しながら、35%過酸化水素20重量部と過硫酸ナトリウム0.3重量部を水1.2重量部に溶解した重合開始剤溶液を120分間かけて滴下した。滴下終了後、硫酸第一鉄7水和物0.02重量部を一括で加え、更に95℃で2時間加熱して、重量平均分子量1200のイタコン酸重合体の水溶液を得た。イタコン酸の反応率は99%であった。
(Production Example 14) Production Example of Itaconic Acid Polymer by Aqueous Polymerization Method In the same four-necked flask as in Production Example 1, itaconic acid 40 parts by weight (0.3 mol), ferrous sulfate heptahydrate 0.02 weight And 40 parts by weight of water were added, and 11.9 parts by weight (0.1 mol) of a 48% aqueous potassium hydroxide solution was added thereto. The liquid was heated to 90 ° C. while continuously ventilating nitrogen, and then 20 parts by weight of 35% hydrogen peroxide and 0.3 parts by weight of sodium persulfate were added to 1.2 parts by weight of water while maintaining the liquid temperature at 95 ° C. The polymerization initiator solution dissolved in the part was added dropwise over 120 minutes. After completion of dropping, 0.02 part by weight of ferrous sulfate heptahydrate was added all at once, and further heated at 95 ° C. for 2 hours to obtain an aqueous solution of an itaconic acid polymer having a weight average molecular weight of 1200. The reaction rate of itaconic acid was 99%.

1.実施例2〜5、8〜11、参考例1、6、7、12、13及び比較例1〜4
(孔食抑制剤組成物の低温安定性試験)
表1に示す配合の孔食抑制剤組成物No.a1〜a16がそれぞれ入ったガラス瓶を−20℃に設定した冷凍庫に1昼夜放置して凍結させた後、これらのガラス瓶を0℃に設定した恒温器に移して解凍させ、更に−5℃に設定した恒温器に1週間放置した。この操作を3回繰り返して沈殿・分離、結晶析出の有無を調べた。結果を表1に示す。
1. Examples 2-5 , 8-11 , Reference Examples 1, 6, 7, 12 , 13 and Comparative Examples 1-4
(Low temperature stability test of pitting corrosion inhibitor composition)
The pitting corrosion inhibitor composition No. After freezing the glass bottles containing a1 to a16 in a freezer set at −20 ° C. for one day, transfer these glass bottles to a thermostat set at 0 ° C., and set them to −5 ° C. Left in the incubator for 1 week. This operation was repeated three times to examine the presence / absence of precipitation / separation and crystal precipitation. The results are shown in Table 1.

(孔食抑制効果の評価試験)
前記の試験装置を用いて表1に示す配合の孔食抑制剤組成物No.a1〜a16の孔食抑制効果の評価を試験した。図1に示す試験装置の補給水12として四日市市水を使用した。このときの四日市市水の水質はpH:7、電気伝導率:10mS/m、Ca硬度:35mg−CaCO/L、Mg硬 度:7mg−CaCO/L、Mアルカリ度:35mg−CaCO/L、 塩化物イオン:7mg/L、硫酸イオン:7mg/L、シリカ:11mg/Lであった。
初期処理として水槽2に四日市市水を張り、被試験用組成物200mg/Lとヘキサメタリン酸ソーダ(平均縮合度40)を12.5mg/L添加して、常温で48時間循環した。アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体〔共重合比(重量)60:40、平均分子量10,000〕を40mg/L添加後、熱負荷を開始し、熱負荷開始3日後に規定濃縮度に達したので、直ちにブローダウンを開始して濃縮度を約4.3倍、循環水中のCa硬度が150mg−CaCO/Lになるように電気伝導率を自動的に制御した。ブローダウン開始と同時にブローダウン量に対して45mg/Lの被試験用組成物を水処理剤注入装置13により添加した。循環水中の亜鉛の添加濃度はZn換算で1.7mg/L、リン系化合物の添加濃度はPO換算で1.0mg/Lであった。試験期間は1ヶ月間とした。試験終了後、HE−2とHE−3のSTB340SC製試験用伝熱管を取り外して縦割り後、管内の孔食深さをマイクロゲージにより測定し、孔食深さの最大値を求めた。実施例2〜5、8〜11、参考例1、6、7、12、13及び比較例1〜3の被試験用組成物として孔食抑制剤組成物No.a1〜a16を使用した。また、比較例4は被試験用組成物無添加の例である。結果を表1に示す。
(Evaluation test of pitting corrosion suppression effect)
Using the test apparatus, the pitting corrosion inhibitor composition No. 1 having the composition shown in Table 1 was used. The evaluation of the pitting corrosion inhibitory effect of a1 to a16 was tested. Yokkaichi city water was used as makeup water 12 for the test apparatus shown in FIG. The water quality of Yokkaichi city water at this time is pH: 7, electrical conductivity: 10 mS / m, Ca hardness: 35 mg-CaCO 3 / L, Mg hardness: 7 mg-CaCO 3 / L, M alkalinity: 35 mg-CaCO 3 / L, chloride ion: 7 mg / L, sulfate ion: 7 mg / L, silica: 11 mg / L.
As an initial treatment, Yokkaichi City water was sprinkled in the water tank 2, 200 mg / L of the composition to be tested and 12.5 mg / L of sodium hexametaphosphate (average degree of condensation 40) were added and circulated at room temperature for 48 hours. After adding 40 mg / L of a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid [copolymerization ratio (weight) 60:40, average molecular weight 10,000], the heat load is started and the heat load is started. Since the specified concentration reached after 3 days, the blowdown was started immediately and the conductivity was automatically adjusted so that the concentration was about 4.3 times and the Ca hardness in the circulating water was 150 mg-CaCO 3 / L. Controlled. Simultaneously with the start of blowdown, 45 mg / L of the composition to be tested with respect to the blowdown amount was added by the water treatment agent injector 13. The addition concentration of zinc in the circulating water was 1.7 mg / L in terms of Zn, and the addition concentration of the phosphorus compound was 1.0 mg / L in terms of PO 4 . The test period was one month. After completion of the test, the heat transfer tubes made of ST-2340SC made of HE-2 and HE-3 were removed and vertically divided, and the pitting corrosion depth in the tube was measured with a micro gauge to obtain the maximum value of the pitting corrosion depth. As a composition for a test of Examples 2-5 , 8-11 , Reference Examples 1, 6, 7, 12 , 13 and Comparative Examples 1-3, pitting corrosion inhibitor composition No. a1 to a16 were used. Comparative Example 4 is an example in which no composition to be tested was added. The results are shown in Table 1.

表1における用語、記号、略号の定義は次の通りである。
(1)アクリル酸−AMPS共重合体:アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体〔共重合比(重量)60:40、平均分子量10,000〕
(2)成分比:各組成物中に配合された分散剤成分と防食被膜形成成分の重量比であって、(分散剤成分/防食被膜形成成分)比
(3)MAL:マレイン酸系重合体。ただし、組成物No.a14ではマレイン酸を示す。
(4)ITA:イタコン酸系重合体。ただし、組成物No.a14ではイタコン酸を示す。
(5)MAL:ITA重量比:各組成物中に含有されるマレイン酸系重合体対イタコン酸系重合体の重量比を示す。ただし、組成物No.a14では、マレイン酸とイタコン酸の共重合体中のマレイン酸対イタコン酸の重量比を示す。
(6)混合方法:
(6−1)同一容器;同一反応容器においてマレイン酸系重合体とイタコン酸系重合体を連続して製造して2種の重合体の混合物を得た。
(6−2)別個混合;個別に製造したマレイン酸系重合体とイタコン酸系重合体を混合して2種の重合体の混合物を得た。
(6−3)(MAL+ITA共重合体);マレイン酸とイタコン酸の共重合体
(7)重合順序:
(7−1)MAL⇒ITA;同一反応容器において、マレイン酸系重合体を製造後、連続してイタコン酸系重合体を製造した。
(7−2)ITA⇒MAL;同一反応容器において、イタコン酸系重合体を製造後、連続してマレイン酸系重合体を製造した。
(8)重合開始剤添加間隔:1回目の重合開始剤添加終了時から2回目の重合開始剤添加開始までの時間
(9)ポリマレイン酸A:BELCLENE200LA(商品名、BWA社製)
The definitions of terms, symbols and abbreviations in Table 1 are as follows.
(1) Acrylic acid-AMPS copolymer: A copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid [copolymerization ratio (weight) 60:40, average molecular weight 10,000]
(2) Component ratio: The weight ratio of the dispersant component and the anticorrosive film forming component blended in each composition, the (dispersant component / anticorrosive film forming component) ratio (3) MAL: maleic acid polymer . However, composition No. a14 represents maleic acid.
(4) ITA: Itaconic acid polymer. However, composition No. a14 represents itaconic acid.
(5) MAL: ITA weight ratio: Indicates the weight ratio of maleic acid polymer to itaconic acid polymer contained in each composition. However, Composition No. In a14, the weight ratio of maleic acid to itaconic acid in the copolymer of maleic acid and itaconic acid is shown.
(6) Mixing method:
(6-1) Same container: A maleic acid polymer and an itaconic acid polymer were continuously produced in the same reaction container to obtain a mixture of two polymers.
(6-2) Separate mixing: Maleic acid polymer and itaconic acid polymer produced separately were mixed to obtain a mixture of two kinds of polymers.
(6-3) (MAL + ITA copolymer); copolymer of maleic acid and itaconic acid (7) polymerization sequence:
(7-1) MAL⇒ITA; In the same reaction vessel, after the maleic acid polymer was produced, an itaconic acid polymer was continuously produced.
(7-2) ITA =>MAL; In the same reaction vessel, a maleic acid polymer was continuously produced after the itaconic acid polymer was produced.
(8) Polymerization initiator addition interval: Time from the end of the first polymerization initiator addition to the start of the second polymerization initiator addition (9) Polymaleic acid A: BELCLENE200LA (trade name, manufactured by BWA)

Figure 0005823075
Figure 0005823075

実施例2〜5、8〜11、参考例1、6、7は混合方法が同一容器の例であり、参考例12、13は混合方法が別個混合の例である。実施例2〜5、参考例1、6は重合開始剤間隔を変化させた例であり、参考例7は重合順序をITA⇒MALに変えた例であり、実施例8〜11はMAL:ITA重量比を変化させた例である。
また、比較例1はマレイン酸系重合体とイタコン酸系重合体の混合物の替りにマレイン酸とイタコン酸の共重合体を使用した例である。本発明の防食被膜形成成分のマレイン酸系重合体ではマレイン酸の構成比率が70〜100重量%の範囲であり、イタコン酸系重合体ではイタコン酸の構成比率が70〜100重量%の範囲であるが、比較例1に使用されたマレイン酸とイタコン酸の共重合体中のマレイン酸とイタコン酸の構成比率は56重量%と46重量%であり、本発明の防食被膜形成成分のマレイン酸系重合体とイタコン酸系重合体のいずれにも該当せず、比較例1は本発明の実施例ではない。
また、本発明の防食被膜形成成分はマレイン酸系重合体とイタコン酸系重合体の両方を含むが、比較例2、3はマレイン酸系重合体又はイタコン酸系重合体の片方のみを含む例である。
Examples 2 to 5 , 8 to 11 and Reference Examples 1, 6, and 7 are examples in which the mixing method is the same container, and Reference Examples 12 and 13 are examples in which the mixing method is separate mixing. Examples 2 to 5 and Reference Examples 1 and 6 are examples in which the polymerization initiator interval was changed, Reference Example 7 was an example in which the polymerization order was changed from ITA to MAL, and Examples 8 to 11 were MAL: ITA. This is an example in which the weight ratio is changed.
Comparative Example 1 is an example in which a copolymer of maleic acid and itaconic acid was used in place of the mixture of maleic acid polymer and itaconic acid polymer. The maleic acid polymer of the anticorrosive film forming component of the present invention has a maleic acid composition ratio in the range of 70 to 100% by weight, and the itaconic acid polymer in the composition ratio of itaconic acid in the range of 70 to 100% by weight. In the copolymer of maleic acid and itaconic acid used in Comparative Example 1, the constituent ratio of maleic acid and itaconic acid is 56% by weight and 46% by weight. It does not correspond to either a polymer or itaconic acid polymer, and Comparative Example 1 is not an example of the present invention.
Further, the anticorrosive film forming component of the present invention includes both a maleic acid polymer and an itaconic acid polymer, but Comparative Examples 2 and 3 include only one of a maleic acid polymer or an itaconic acid polymer. It is.

表1に示された孔食抑制剤組成物の低温安定性と孔食抑制効果試験の結果により、本発明の孔食抑制剤組成物の優れた低温安定性と本発明の孔食抑制方法の優れた孔食抑制効果が明らかになった。   According to the results of the low temperature stability and pitting corrosion inhibitory effect test of the pitting corrosion inhibitor composition shown in Table 1, the excellent low temperature stability of the pitting corrosion inhibitor composition of the present invention and the pitting corrosion suppression method of the present invention. Excellent anti-pitting effect was revealed.

2.実施例14〜17及び比較例5〜14
表2〜4に示す配合の孔食抑制剤組成物No.b1〜b14について、前記の孔食抑制剤組成物の低温安定性試験と前記の孔食抑制効果の評価試験を行い、その結果を表2〜4に示す。孔食抑制効果の評価試験における循環水中の亜鉛の添加濃度は比較例12以外はZn換算で1.6〜1.8mg/Lであり、比較例12ではZn換算で5.8mg/Lであった。尚、表2における用語、記号、略号の定義は表1と同じである。その他、HEDPは1−ヒドロキシエチリデン−1,1−ジホスホン酸、PBTCは2−ホスホノブタン−1,2,4−トリカルボン酸であり、ホスフィノポリカルボン酸はアクリル酸−マレイン酸−次亜リン酸(モル比2:1:1)共重合体(平均分子量1500)であって、特公平6−47113号公報記載の方法に準じて製造した。
2. Examples 14-17 and Comparative Examples 5-14
Pitting corrosion inhibitor composition Nos. Shown in Tables 2-4. About b1-b14, the low-temperature stability test of the said pitting corrosion inhibitor composition and the evaluation test of the said pitting corrosion inhibitory effect were done, and the result is shown to Tables 2-4. The addition concentration of zinc in the circulating water in the evaluation test of the pitting corrosion inhibitory effect was 1.6 to 1.8 mg / L in terms of Zn except for Comparative Example 12, and was 5.8 mg / L in terms of Zn in Comparative Example 12. It was. The definitions of terms, symbols, and abbreviations in Table 2 are the same as in Table 1. In addition, HEDP is 1-hydroxyethylidene-1,1-diphosphonic acid, PBTC is 2-phosphonobutane-1,2,4-tricarboxylic acid, and phosphinopolycarboxylic acid is acrylic acid-maleic acid-hypophosphorous acid ( Molar ratio 2: 1: 1) copolymer (average molecular weight 1500), which was produced according to the method described in JP-B-6-47113.

Figure 0005823075
Figure 0005823075

Figure 0005823075
Figure 0005823075

Figure 0005823075
Figure 0005823075

実施例14〜17は孔食抑制剤組成物の成分比を0.4〜0.8の範囲内で変化させた例である。比較例5〜8及び10、11は該成分比が0.4〜0.8の範囲外の例である。比較例9は分散剤成分を含有しない例であり、比較例12〜14は防食被膜形成成分のマレイン酸系重合体及びイタコン酸系重合体を含有しない例である。   Examples 14-17 are the examples which changed the component ratio of the pitting corrosion inhibitor composition within the range of 0.4-0.8. Comparative Examples 5-8, 10, and 11 are examples in which the component ratio is outside the range of 0.4 to 0.8. Comparative Example 9 is an example that does not contain a dispersant component, and Comparative Examples 12 to 14 are examples that do not contain a maleic acid-based polymer and an itaconic acid-based polymer that are anticorrosive film forming components.

表2〜4に示された孔食抑制剤組成物の低温安定性と孔食抑制効果試験の結果により、本発明の孔食抑制剤組成物の優れた低温安定性と本発明の孔食抑制方法の優れた孔食抑制効果が明らかになった。   According to the results of the low temperature stability and pitting corrosion inhibitory effect test of the pitting corrosion inhibitor composition shown in Tables 2 to 4, the excellent low temperature stability of the pitting corrosion inhibitor composition of the present invention and the pitting corrosion suppression of the present invention. The excellent anti-pitting effect of the method was revealed.

3.参考例18〜29
表5に示す孔食抑制剤組成物と添加量を用い、循環水中のカルシウム硬度(Ca硬度)をそれぞれ70、150、250、350mg−CaCO/Lとした以外は、前記の孔食抑制効果の評価試験と同様の試験装置と試験方法を用いて試験した。この試験における循環水中の亜鉛の添加濃度はZn換算で1.6〜1.8mg/Lであった。結果を表5に示す。
3. Reference Examples 18-29
The pitting corrosion inhibitory effect described above except that the pitting corrosion inhibitor composition and the addition amount shown in Table 5 were used, and the calcium hardness (Ca hardness) in the circulating water was set to 70, 150, 250, and 350 mg-CaCO 3 / L, respectively. The test was performed using the same test apparatus and test method as in the evaluation test. The addition concentration of zinc in the circulating water in this test was 1.6 to 1.8 mg / L in terms of Zn. The results are shown in Table 5.

表5における用語、記号、略号の定義は次の通りである。
(1)組成物No.:表1、2に示された同じ組成物No.の孔食抑制剤組成物を用いた。
(2)組成物添加量:循環水中の孔食抑制剤組成物の添加濃度
(3)リン系化合物添加濃度:循環水中のリン系化合物の添加濃度
(4)Ca硬度:カルシウム硬度
The definitions of terms, symbols and abbreviations in Table 5 are as follows.
(1) Composition No. : Same composition No. shown in Tables 1 and 2 The pitting corrosion inhibitor composition was used.
(2) Composition addition amount: addition concentration of pitting corrosion inhibitor composition in circulating water (3) Phosphorus compound addition concentration: addition concentration of phosphorus compound in circulating water (4) Ca hardness: calcium hardness

Figure 0005823075
Figure 0005823075

表5の結果より、循環水中のカルシウム硬度とリン系化合物の添加濃度の関係が、該循環水中のカルシウム硬度が100mgCaCO /L未満のときリン系化合物の添加濃度はPO 換算で1〜3mg/Lの範囲であり、該循環水中のカルシウム硬度が100mgCaCO /Lを超え300mgCaCO /L未満のときリン系化合物の添加濃度はPO 換算で0〜3mg/Lの範囲であり、該循環水中のカルシウム硬度が300mgCaCO /Lを超えるときリン系化合物の添加濃度はPO 換算で0〜2mg/Lの範囲である時、優れた孔食抑制効果が得られることが明らかになった。 From the results of Table 5, the relationship between the calcium hardness in the circulating water and the addition concentration of the phosphorus compound is such that when the calcium hardness in the circulation water is less than 100 mg CaCO 3 / L, the addition concentration of the phosphorus compound is 1 to 3 mg in terms of PO 4. / L in the range of the addition concentration of the phosphorus compound when 300mgCaCO less than 3 / L calcium hardness of the circulating water exceeds 100MgCaCO 3 / L is in the range of 0~3Mg / L in PO 4 terms, the circulating It was revealed that when the calcium hardness in water exceeds 300 mg CaCO 3 / L , an excellent pitting corrosion inhibitory effect can be obtained when the concentration of addition of the phosphorus compound is in the range of 0 to 2 mg / L in terms of PO 4 .

本発明の孔食抑制剤組成物及び孔食抑制方法は石油精製工場、化学工場、火力発電所、製鉄所、紙パルプ製造業、自動車工場、半導体製造工業等の各種製造業の冷却水システムや、空調用の冷却水システムに適用できる。   The pitting corrosion inhibitor composition and the pitting corrosion suppression method of the present invention include a cooling water system for various manufacturing industries such as an oil refinery factory, a chemical factory, a thermal power plant, an iron mill, a paper pulp manufacturing industry, an automobile factory, and a semiconductor manufacturing industry. Applicable to cooling water systems for air conditioning.

1 冷却塔
2 水槽
3 循環ポンプ
4 電気伝導率測定セル
5 流量調整バルブ
6 流量計
7 熱交換器
8 試験片保持器
9 水温制御装置
10 ブローダウンポンプ
11 電気伝導率制御装置
12 補給水
13 水処理剤注入装置
14 液面制御装置

DESCRIPTION OF SYMBOLS 1 Cooling tower 2 Water tank 3 Circulation pump 4 Electrical conductivity measurement cell 5 Flow rate adjustment valve 6 Flowmeter 7 Heat exchanger 8 Test piece holder 9 Water temperature control device 10 Blow down pump 11 Electrical conductivity control device 12 Supply water 13 Water treatment Agent Injection Device 14 Liquid Level Control Device

Claims (3)

水と接触する炭素鋼製熱交換器材質の孔食を抑制する孔食抑制剤組成物の製造方法であって、
該孔食抑制剤組成物が防食被膜形成成分と分散剤成分を有効成分として含み、防食被膜形成成分が、ホスホノ基及びホスフィノ基を有さないマレイン酸系重合体、ホスホノ基及びホスフィノ基を有さないイタコン酸系重合体及び亜鉛イオンを放出する化合物を含有し、分散剤成分がモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を含有し、防食被膜形成成分の配合量(ここで、マレイン酸重合体とイタコン酸重合体は重合体固形分換算で計算し、亜鉛イオンを放出する化合物は亜鉛換算で計算する)に対する分散剤成分の配合量の重量比が0.4〜0.8であることを特徴とする孔食抑制剤組成物の製造方法であり、
前記マレイン酸系重合体とイタコン酸系重合体の製造方法が、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸重合体の製造を行い、マレイン酸系重合体製造時の1回目の重合開始剤添加終了時からイタコン酸系重合体製造時の2回目の重合開始剤添加開始までの重合開始剤添加間隔が15〜120分間の範囲である2種の重合体の混合物を直接製造する方法であって、
撹拌下に前記防食被膜形成成分である該重合体混合物と亜鉛イオンを放出する化合物と前記分散剤成分であるモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を水に加えて溶解することにより製造する孔食抑制剤組成物の製造方法
A method for producing a pitting corrosion inhibitor composition for suppressing pitting corrosion of a carbon steel heat exchanger material in contact with water,
The pitting corrosion inhibitor composition contains an anticorrosion film-forming component and a dispersant component as active ingredients, and the anticorrosion film-forming component has a maleic acid polymer having no phosphono group and phosphino group, and has a phosphono group and a phosphino group. An itaconic acid-based polymer and a compound that releases zinc ions, the dispersant component contains a copolymer of a monoethylenically unsaturated carboxylic acid and a monoethylenically unsaturated sulfonic acid, The weight ratio of the blending amount of the dispersant component to the blending amount (here, the maleic acid polymer and the itaconic acid polymer are calculated in terms of polymer solids, and the compound that releases zinc ions is calculated in terms of zinc) is 0. A method for producing a pitting corrosion inhibitor composition, wherein the pitting corrosion inhibitor composition is 4-0.8.
The method for producing the maleic acid polymer and the itaconic acid polymer comprises producing the itaconic acid polymer with the maleic polymer remaining in the same reaction vessel after the maleic acid polymer is produced. The polymerization initiator addition interval from the end of the first polymerization initiator addition during the production of the maleic acid polymer to the start of the second polymerization initiator addition during the production of the itaconic acid polymer is in the range of 15 to 120 minutes. a method of manufacturing a two polymers mixtures are directly
Under stirring, the polymer mixture as the anticorrosive film forming component, the compound that releases zinc ions, and the copolymer of the monoethylenically unsaturated carboxylic acid and monoethylenically unsaturated sulfonic acid as the dispersant component in water. The manufacturing method of the pitting corrosion inhibitor composition manufactured by melt | dissolving in addition .
開放循環式冷却水システムの循環水中におけるホスホノ基及びホスフィノ基を有さないマレイン酸系重合体、ホスホノ基及びホスフィノ基を有さないイタコン酸系重合体及び亜鉛イオンを放出する化合物を含む防食被膜形成成分の添加量(ここで、マレイン酸系重合体とイタコン酸系重合体は重合体固形分換算で計算し、亜鉛イオンを放出する化合物は亜鉛換算で計算する)に対するモノエチレン性不飽和カルボン酸とモノエチレン性不飽和スルホン酸の共重合体を含む分散剤成分の添加量の重量比が0.4〜0.8になるように防食被膜形成成分と分散剤成分を開放循環式冷却水システムに添加することにより、水と接触する炭素鋼製熱交換器材質の孔食を抑制する孔食抑制方法であって、
前記マレイン酸系重合体と前記イタコン酸系重合体の製造方法が、マレイン酸系重合体を製造後、同一反応容器においてマレイン酸系重合体が入ったままの状態でイタコン酸系重合体の製造を行って2種の重合体の混合物を直接製造する方法又はイタコン酸系重合体を製造後、同一反応容器においてイタコン酸系重合体が入ったままの状態でマレイン酸系重合体の製造を行って2種の重合体の混合物を直接製造する方法であって、
該開放循環式冷却水システムの循環水中の亜鉛の添加濃度がZn換算で0.5〜2mg/Lの範囲であることを特徴とする孔食抑制方法。
Anti-corrosion coating comprising maleic acid-based polymer having no phosphono group and phosphino group, itaconic acid-based polymer having no phosphono group and phosphino group, and a compound capable of releasing zinc ions in the circulating water of an open circulation cooling water system Monoethylenically unsaturated carboxylic acid with respect to the amount of forming component added (wherein maleic acid polymer and itaconic acid polymer are calculated in terms of polymer solids, and compounds that release zinc ions are calculated in terms of zinc) The anti-corrosion film forming component and the dispersant component are separated from the open circulation cooling water so that the weight ratio of the added amount of the dispersant component containing the copolymer of the acid and the monoethylenically unsaturated sulfonic acid is 0.4 to 0.8. A pitting corrosion suppression method for suppressing pitting corrosion of a carbon steel heat exchanger material that comes into contact with water by adding to the system,
The method for producing the maleic acid polymer and the itaconic acid polymer is the production of an itaconic acid polymer with the maleic polymer still contained in the same reaction vessel after the maleic acid polymer is produced. To produce a mixture of two types of polymers directly or to produce an itaconic acid polymer, and then to produce a maleic acid polymer with the itaconic acid polymer still contained in the same reaction vessel. Directly producing a mixture of two polymers,
The method for inhibiting pitting corrosion, wherein the addition concentration of zinc in the circulating water of the open circulation cooling water system is in the range of 0.5 to 2 mg / L in terms of Zn.
前記防食被膜形成成分と前記分散剤成分を有効成分として含み、該防食被膜形成成分の配合量(ここで、マレイン酸系重合体とイタコン酸系重合体は重合体固形分換算で計算し、亜鉛イオンを放出する化合物は亜鉛換算で計算する)に対する該分散剤成分の配合量の重量比が0.4〜0.8である孔食抑制剤組成物を開放循環式冷却水システムに添加することを特徴とする請求項記載の孔食抑制方法。
The anticorrosive film-forming component and the dispersant component are contained as active ingredients, and the blending amount of the anticorrosive film-forming component (wherein the maleic acid polymer and the itaconic acid polymer are calculated in terms of polymer solids, Add a pitting corrosion inhibitor composition having a weight ratio of the amount of the dispersant component to 0.4 to 0.8 to the open circulation cooling water system. The pitting corrosion suppression method according to claim 2 .
JP2015116448A 2015-06-09 2015-06-09 Pitting corrosion inhibitor composition and pitting corrosion suppression method Expired - Fee Related JP5823075B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015116448A JP5823075B1 (en) 2015-06-09 2015-06-09 Pitting corrosion inhibitor composition and pitting corrosion suppression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015116448A JP5823075B1 (en) 2015-06-09 2015-06-09 Pitting corrosion inhibitor composition and pitting corrosion suppression method

Publications (2)

Publication Number Publication Date
JP5823075B1 true JP5823075B1 (en) 2015-11-25
JP2017002351A JP2017002351A (en) 2017-01-05

Family

ID=54696280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015116448A Expired - Fee Related JP5823075B1 (en) 2015-06-09 2015-06-09 Pitting corrosion inhibitor composition and pitting corrosion suppression method

Country Status (1)

Country Link
JP (1) JP5823075B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426340A (en) * 2020-09-25 2022-05-03 中国石油化工股份有限公司 Low-temperature scale and corrosion inhibitor and scale and corrosion inhibition method for circulating cooling water
CN114481138A (en) * 2022-01-28 2022-05-13 东北石油大学 Metal corrosion inhibitor for oil field and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248555A (en) * 1995-08-21 1997-09-22 Kurita Water Ind Ltd Water treating agent
JPH1129885A (en) * 1997-07-10 1999-02-02 Kurita Water Ind Ltd Preventing method of pitting corrosion of metal in water system
JP2000080484A (en) * 1998-06-26 2000-03-21 Ebara Corp Water base anticorrosive and corrosion preventing method
JP2004353025A (en) * 2003-05-28 2004-12-16 Kurita Water Ind Ltd Microcapsule for corrosion inhibition, and method for inhibiting corrosion of metal in water system using the same
JP2007023370A (en) * 2005-07-21 2007-02-01 Katayama Chem Works Co Ltd Agent and method for preventing pitting corrosion in water system
JP2008088475A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Corrosion preventive and corrosion prevention method
JP2011045861A (en) * 2009-08-28 2011-03-10 Hakuto Co Ltd Water treatment agent and water treatment method
JP2012041606A (en) * 2010-08-20 2012-03-01 Hakuto Co Ltd Corrosion and scale preventing liquid composition and method for preventing corrosion and scale
JP2014036912A (en) * 2012-08-10 2014-02-27 Hakuto Co Ltd Method for preventing silica scale in water system and scale inhibitor, and water treatment method and water treatment agent for preventing silica scale and corrosion of metals
JP2014122176A (en) * 2012-12-20 2014-07-03 Hakuto Co Ltd Water treatment agent composition
JP2014180649A (en) * 2013-03-21 2014-09-29 Kurita Water Ind Ltd Scale prevention method and scale inhibitor for cooling water system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248555A (en) * 1995-08-21 1997-09-22 Kurita Water Ind Ltd Water treating agent
JPH1129885A (en) * 1997-07-10 1999-02-02 Kurita Water Ind Ltd Preventing method of pitting corrosion of metal in water system
JP2000080484A (en) * 1998-06-26 2000-03-21 Ebara Corp Water base anticorrosive and corrosion preventing method
JP2004353025A (en) * 2003-05-28 2004-12-16 Kurita Water Ind Ltd Microcapsule for corrosion inhibition, and method for inhibiting corrosion of metal in water system using the same
JP2007023370A (en) * 2005-07-21 2007-02-01 Katayama Chem Works Co Ltd Agent and method for preventing pitting corrosion in water system
JP2008088475A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Corrosion preventive and corrosion prevention method
JP2011045861A (en) * 2009-08-28 2011-03-10 Hakuto Co Ltd Water treatment agent and water treatment method
JP2012041606A (en) * 2010-08-20 2012-03-01 Hakuto Co Ltd Corrosion and scale preventing liquid composition and method for preventing corrosion and scale
JP2014036912A (en) * 2012-08-10 2014-02-27 Hakuto Co Ltd Method for preventing silica scale in water system and scale inhibitor, and water treatment method and water treatment agent for preventing silica scale and corrosion of metals
JP2014122176A (en) * 2012-12-20 2014-07-03 Hakuto Co Ltd Water treatment agent composition
JP2014180649A (en) * 2013-03-21 2014-09-29 Kurita Water Ind Ltd Scale prevention method and scale inhibitor for cooling water system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426340A (en) * 2020-09-25 2022-05-03 中国石油化工股份有限公司 Low-temperature scale and corrosion inhibitor and scale and corrosion inhibition method for circulating cooling water
CN114481138A (en) * 2022-01-28 2022-05-13 东北石油大学 Metal corrosion inhibitor for oil field and preparation method thereof
CN114481138B (en) * 2022-01-28 2023-12-01 东北石油大学 Metal corrosion inhibitor for oil field and preparation method thereof

Also Published As

Publication number Publication date
JP2017002351A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5946363B2 (en) Silica scale prevention method and scale inhibitor in water system, and water treatment method and water treatment agent that suppress silica scale and suppress metal corrosion
JP2010202893A (en) Liquid composition for preventing corrosion and scaling, and method for preventing corrosion and scaling
JP5901831B1 (en) Method for producing scale inhibitor and method for preventing scale
JP2012041606A (en) Corrosion and scale preventing liquid composition and method for preventing corrosion and scale
JP5680289B2 (en) Water treatment agent and water treatment method
JP5128839B2 (en) Water treatment method for open circulation type cooling water system and water treatment agent for open circulation type cooling water system
US5716529A (en) Water-treating agent and method for treating water
JP5769369B2 (en) Water treatment agent and water treatment method
EP0590879B1 (en) Method and composition for inhibiting silica and silicate deposition
JP5823075B1 (en) Pitting corrosion inhibitor composition and pitting corrosion suppression method
WO2005116296A1 (en) Method of cooling water treatment and treatment chemical
JPS5944119B2 (en) water treatment agent
US6001264A (en) Water-treating agent and method for treating water
JP5099884B2 (en) Corrosion inhibitor
AU624177B2 (en) Phosphonic acid containing cotelomers, and their use for water treatment
JP4361812B2 (en) Treatment method for open circulating cooling water system
AU2012289049B2 (en) Process for producing maleic acid-isoprenol copolymers
JP5686581B2 (en) Water treatment agent and water treatment method
JP5545621B2 (en) Method for preventing adhesion of silica-based deposits in an open circulating cooling water system
JP5805265B1 (en) Water treatment composition and water treatment method
JP4467046B2 (en) Metal corrosion inhibitor
JP2008036562A (en) Silica-stain adhesion inhibitor and adhesion inhibiting method
GB2218706A (en) New polymers of unsaturated dicarboxylic or polycarboxylic acids
JP6407616B2 (en) Initial treatment method for open circulation cooling water system
JPH0874076A (en) Method for inhibiting metal corrosion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R150 Certificate of patent or registration of utility model

Ref document number: 5823075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees