[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5822045B2 - Method for producing double fluoride phosphor - Google Patents

Method for producing double fluoride phosphor Download PDF

Info

Publication number
JP5822045B2
JP5822045B2 JP2015085876A JP2015085876A JP5822045B2 JP 5822045 B2 JP5822045 B2 JP 5822045B2 JP 2015085876 A JP2015085876 A JP 2015085876A JP 2015085876 A JP2015085876 A JP 2015085876A JP 5822045 B2 JP5822045 B2 JP 5822045B2
Authority
JP
Japan
Prior art keywords
fluoride
phosphor
formula
powder
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015085876A
Other languages
Japanese (ja)
Other versions
JP2015163709A (en
Inventor
正実 金吉
正実 金吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2015085876A priority Critical patent/JP5822045B2/en
Publication of JP2015163709A publication Critical patent/JP2015163709A/en
Application granted granted Critical
Publication of JP5822045B2 publication Critical patent/JP5822045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、青色LED用赤色蛍光体として有用な式A2MF6:Mn(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)で表されるMn賦活複フッ化物赤色蛍光体(複フッ化物蛍光体)の製造方法に関する。 The present invention relates to a formula A 2 MF 6 : Mn useful as a red phosphor for a blue LED, wherein M is one or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn. , A is selected from Li, Na, K, Rb and Cs and is at least one or two or more alkali metals containing Na and / or K.) Mn-activated double fluoride red phosphor The present invention relates to a method for producing (double fluoride phosphor).

白色LED(Light Emitting Diode)の演色性向上、あるいは白色LEDを液晶ディスプレイのバックライトとして用いる場合の色再現性の向上の目的で、近紫外から青色のLEDに相当する光で励起されて赤色に発光する蛍光体が必要とされ、研究が進められている。この中で特表2009−528429号公報(特許文献1)には、A2MF6(AはNa,K,Rb等、MはSi,Ge,Ti等)などの式で表される複フッ化物にMnを添加したもの(複フッ化物蛍光体)が有用であることが記載されている。 For the purpose of improving the color rendering of white LEDs (Light Emitting Diodes) or improving the color reproducibility when white LEDs are used as backlights for liquid crystal displays, they are excited by light equivalent to LEDs from near-ultraviolet to blue. Phosphors that emit light are needed and research is ongoing. Among them, JP 2009-528429 A (Patent Document 1) discloses a compound F 2 represented by a formula such as A 2 MF 6 (A is Na, K, Rb, etc., M is Si, Ge, Ti, etc.). It is described that a compound obtained by adding Mn to a compound (double fluoride phosphor) is useful.

上記蛍光体の製造方法については、特許文献1では構成各元素を全て溶解又は分散させたフッ化水素酸溶液を蒸発濃縮させて析出させる方法が開示されている。別の製法として、米国特許第3576756号明細書(特許文献2)には、構成各元素をそれぞれ溶解させたフッ化水素酸溶液を混合後、水溶性有機溶剤であるアセトンを加えて溶解度を低下させることにより析出させる方法が開示されている。更に、特許第4582259号公報(特許文献3)、及び特開2012−224536号公報(特許文献4)には、上記式における元素Mと、元素Aをそれぞれ別々の、フッ化水素酸を含む溶液に溶解し、そのどちらかにMnを添加しておいたものを改めて混合することにより蛍光体を析出させる方法が開示されている。   As for the method for producing the phosphor, Patent Document 1 discloses a method in which a hydrofluoric acid solution in which all constituent elements are dissolved or dispersed is evaporated and concentrated. As another manufacturing method, in US Pat. No. 3,576,756 (Patent Document 2), after mixing a hydrofluoric acid solution in which each constituent element is dissolved, acetone, which is a water-soluble organic solvent, is added to lower the solubility. The method of making it precipitate by making it disclose is disclosed. Furthermore, Japanese Patent No. 4582259 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2012-224536 (Patent Document 4) disclose a solution containing hydrofluoric acid in which the element M and the element A in the above formulas are separate. A method for precipitating phosphors by dissolving them in the solution and mixing them with Mn added to them is disclosed.

以上に述べた既知のMn添加A2MF6(AはNa,K,Rb等、MはSi,Ge,Ti等)で表される複フッ化物蛍光体の製造工程は、既出の文献を含め、蛍光体を形成する工程で、得られる蛍光体の量に対して、かなり多くの量の、高濃度のフッ化水素酸を使用している。フッ化水素酸は腐食性が強いため、反応装置の材質などにも制約があり、大規模な製造をしようとする際に問題となる可能性がある。また、人体に対しても毒性が強いので、取り扱う作業者の安全の問題から言っても、それを使用する化学プロセスの大規模化には障害がある。 The manufacturing process of the double fluoride phosphor represented by the known Mn-added A 2 MF 6 (A is Na, K, Rb, etc., M is Si, Ge, Ti, etc.) described above includes the above-mentioned literature. In the step of forming the phosphor, a high concentration of hydrofluoric acid is used in a considerably large amount with respect to the amount of the phosphor obtained. Since hydrofluoric acid is highly corrosive, there are restrictions on the material of the reaction apparatus and the like, which may be a problem when attempting large-scale production. In addition, since it is highly toxic to the human body, there are obstacles to increasing the scale of the chemical process that uses it, even from the viewpoint of the safety of workers handling it.

一方、これらの複フッ化物蛍光体は、高温、高湿度下で蛍光特性が劣化する可能性が指摘されている。特開2009−280763号公報(特許文献5)では、その指摘と共に、LED作製時にシリコーン樹脂と混合して成形する工程での工夫により耐湿性の問題を緩和できることが記載されている。また、特開2010−45328号公報(特許文献6)では、これら複フッ化物蛍光体をLEDの作製前に樹脂等で覆ってしまうことで耐湿性の問題を緩和することが記載されている。
しかし、更に耐湿性を向上させる有利な方法が望まれる。
なお、本発明に関連する先行技術文献は、上記文献に加えて下記の文献が挙げられる。
On the other hand, it has been pointed out that these double fluoride phosphors may be deteriorated in fluorescence characteristics under high temperature and high humidity. In JP 2009-280763 A (Patent Document 5), along with the indication, it is described that the problem of moisture resistance can be alleviated by contrivance in a process of mixing with a silicone resin at the time of LED fabrication. Japanese Patent Application Laid-Open No. 2010-45328 (Patent Document 6) describes that these double fluoride phosphors are covered with a resin or the like before the LED is manufactured to alleviate the problem of moisture resistance.
However, an advantageous method for further improving moisture resistance is desired.
The prior art documents related to the present invention include the following documents in addition to the above documents.

特表2009−528429号公報Special table 2009-528429 gazette 米国特許第3576756号明細書US Pat. No. 3,576,756 特許第4582259号公報Japanese Patent No. 4582259 特開2012−224536号公報JP 2012-224536 A 特開2009−280763号公報JP 2009-280763 A 特開2010−45328号公報JP 2010-45328 A

H.Bode, H.Jenssen, F.Bandte、Angew. Chem. 65巻 304ページ (1953年)H. Bode, H.M. Jenssen, F.M. Bandte, Angew. Chem. Volume 65 Page 304 (1953) R.Hoppe, W.Liebe, W.Daehne、Z.Anorg, Allg. Chem., 307巻 276ページ (1961年)R. Hoppe, W.H. Liebe, W.M. Daehne, Z .; Anorg, Allg. Chem. 307 pages 276 (1961) B.Cox、A.G.Sharpe、J.Chem.Soc., 1798ページ (1954年)B. Cox, A.M. G. Sharpe, J. et al. Chem. Soc. , 1798 pages (1954) 丸善株式会社発行、日本化学会編、新実験化学講座8「無機化合物の合成III」、1977年発行、1166ページPublished by Maruzen Co., Ltd., Chemical Society of Japan, New Experimental Chemistry Course 8 “Synthesis of Inorganic Compounds III”, published in 1977, page 1166

本発明は、複フッ化物蛍光体を製造する工程のうちの主要な部分をフッ化水素酸を用いない工程で行うことができる複フッ化物蛍光体の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the double fluoride fluorescent substance which can be performed by the process which does not use hydrofluoric acid for the main part among the processes which manufacture a double fluoride fluorescent substance.

本発明者は、上記目的を達成するため鋭意検討を行った結果、Mn賦活複フッ化物である赤色蛍光体を製造するに際し、本質的に湿式によるのではなく、後述する原料粉末を混合し、加熱することにより物質の拡散移動を起こさせて目的の複フッ化物蛍光体を生成する乾式法を採用することが有効であることを見出し、その条件等を検討して本発明をなすに至った。   As a result of diligent studies to achieve the above object, the present inventor, when producing a red phosphor that is a Mn-activated bifluoride, is not essentially wet, but is mixed with the raw material powder described later, It has been found that it is effective to adopt a dry method for producing the desired double fluoride phosphor by causing the diffusion movement of the substance by heating, and the present invention has been made by examining the conditions and the like. .

加えて、この乾式法によって製造されたMn賦活複フッ化物である赤色蛍光体が、湿式法によって製造された複フッ化物赤色蛍光体よりも優れた耐湿性を有すること、更に、既に製造された複フッ化物赤色蛍光体に物質の拡散を促進する添加剤を加えて加熱処理することによって、蛍光体の耐湿性を向上させることができることを見出し、本発明を完成させた。   In addition, the red phosphor, which is a Mn-activated bifluoride produced by this dry method, has better moisture resistance than the double fluoride red phosphor produced by a wet method, and has already been produced. It has been found that the moisture resistance of the phosphor can be improved by adding an additive that promotes the diffusion of the substance to the double fluoride red phosphor and heat-treating it, and the present invention has been completed.

即ち、本発明は、下記の複フッ化物蛍光体の製造方法を提供する。
〔1〕 下記式(1)
2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるMn賦活複フッ化物である赤色蛍光体を製造する方法であって、反応原料として下記式(2)
2MF6 (2)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素である。AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表される複フッ化物の固体と、下記式(3)
2MnF6 (3)
(式中、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるマンガン化合物の固体とを混合し、上記混合物を反応容器中に密閉し、100℃以上500℃以下で加熱することを特徴とするMn賦活複フッ化物蛍光体の製造方法。
〔2〕 反応原料をセラミックス容器、又は反応物と接する部分がフッ素樹脂にて形成された反応容器内で加熱反応させることを特徴とする〔1〕記載のMn賦活複フッ化物蛍光体の製造方法。
〔3〕 反応原料を反応物と接する部分がフッ素樹脂にて形成された反応容器内で、100℃以上270℃以下で加熱反応させることを特徴とする〔1〕記載のMn賦活複フッ化物蛍光体の製造方法。
〔4〕 加熱によって得られた反応混合物を、無機酸溶液又はフッ化塩溶液で洗浄して不要成分を除去したのち、固液分離し、固形分を乾燥することを特徴とする〔1〕〜〔3〕のいずれかに記載のMn賦活複フッ化物蛍光体の製造方法。
〔5〕 更に、上記混合物に、アルカリ金属の硝酸塩、硫酸塩、硫酸水素塩又はフッ化物を、下記式(4)
1F・nHF (4)
(式中、A1はNa、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであり、nは0.7以上4以下の数である。)
で表されるフッ化水素塩と共に固体で混合して加熱することを特徴とする〔1〕〜〔4〕のいずれかに記載のMn賦活複フッ化物蛍光体の製造方法。
更に、本発明は、下記の複フッ化物蛍光体の製造方法及び処理方法が関連する。
〔6〕 更に、上記混合物に下記式(4)
1F・nHF (4)
(式中、A1はNa、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであり、nは0.7以上4以下の数である。)
で表されるフッ化水素塩を固体で混合して加熱することを特徴とする〔1〕〜〔4〕のいずれかに記載のMn賦活複フッ化物蛍光体の製造方法。
〔7〕 下記式(1)
2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるMn賦活複フッ化物である赤色蛍光体に、下記式(4)
1F・nHF (4)
(式中、A1はNa、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであり、nは0.7以上4以下の数である。)
で表されるフッ化水素塩を固体で混合して加熱することを特徴とするMn賦活複フッ化物蛍光体の処理方法。
〔8〕 反応原料をセラミックス容器、又は反応物と接する部分がフッ素樹脂にて形成された反応容器内で加熱反応させることを特徴とする〔7〕記載のMn賦活複フッ化物蛍光体の処理方法。
〔9〕 加熱によって得られた反応混合物を無機酸溶液又はフッ化塩溶液で洗浄して不要成分を除去したのち、固液分離し、固形分を乾燥することを特徴とする〔7〕又は〔8〕記載のMn賦活複フッ化物蛍光体の処理方法。
That is, this invention provides the manufacturing method of the following double fluoride fluorescent substance.
[1] The following formula (1)
A 2 MF 6 : Mn (1)
Wherein M is one or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn, A is selected from Li, Na, K, Rb and Cs, and at least Na and And / or one or more alkali metals containing K.)
Is a method for producing a red phosphor which is a Mn-activated double fluoride represented by the following formula (2)
A 2 MF 6 (2)
(Wherein, M is Si, Ti, Zr, Hf, Ru one or more tetravalent element der selected from Ge and Sn. A is selected Li, Na, K, from Rb and Cs, and One or more alkali metals containing at least Na and / or K.)
A solid of a double fluoride represented by the following formula (3)
A 2 MnF 6 (3)
(In the formula, A is one or more alkali metals selected from Li, Na, K, Rb and Cs and containing at least Na and / or K.)
A method for producing a Mn-activated bifluoride phosphor, comprising mixing a solid of a manganese compound represented by formula ( I), sealing the mixture in a reaction vessel, and heating the mixture at 100 ° C to 500 ° C.
[2] The method for producing a Mn-activated bifluoride phosphor according to [1], wherein the reaction raw material is heated and reacted in a ceramic container or a reaction container in which a part in contact with the reactant is formed of a fluororesin. .
[3] The Mn-activated double fluoride fluorescent material according to [1], wherein the reaction raw material is heated and reacted at 100 ° C. or higher and 270 ° C. or lower in a reaction vessel in which a part in contact with the reactant is formed of a fluororesin. Body manufacturing method.
[4] The reaction mixture obtained by heating is washed with an inorganic acid solution or a fluoride salt solution to remove unnecessary components, followed by solid-liquid separation and drying of the solid content [1] to [3] The method for producing a Mn-activated double fluoride phosphor according to any one of [3].
[5] Further, an alkali metal nitrate, sulfate, hydrogen sulfate or fluoride is added to the above mixture, and the following formula (4):
A 1 F · nHF (4)
(In the formula, A 1 is one or more alkali metals or ammonium selected from Na, K, Rb and NH 4 , and n is a number of 0.7 or more and 4 or less.)
The method for producing a Mn-activated double fluoride phosphor according to any one of [1] to [4], wherein the mixture is heated together with a hydrogen fluoride salt represented by the formula:
Furthermore, the present invention is a manufacturing method and a processing method of the double fluoride phosphors below pertains.
[6] Furthermore, the following formula (4) is added to the above mixture.
A 1 F · nHF (4)
(In the formula, A 1 is one or more alkali metals or ammonium selected from Na, K, Rb and NH 4 , and n is a number of 0.7 or more and 4 or less.)
The method for producing a Mn-activated bifluoride phosphor according to any one of [1] to [4], wherein the hydrogen fluoride salt represented by formula (1) is mixed with a solid and heated.
[7] The following formula (1)
A 2 MF 6 : Mn (1)
Wherein M is one or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn, A is selected from Li, Na, K, Rb and Cs, and at least Na and And / or one or more alkali metals containing K.)
In the red phosphor that is a Mn-activated double fluoride represented by the following formula (4)
A 1 F · nHF (4)
(In the formula, A 1 is one or more alkali metals or ammonium selected from Na, K, Rb and NH 4 , and n is a number of 0.7 or more and 4 or less.)
A method for treating a Mn-activated double fluoride phosphor, comprising mixing and heating a hydrogen fluoride salt represented by the formula:
[8] The method for treating a Mn-activated bifluoride phosphor according to [7], wherein the reaction raw material is heated and reacted in a ceramic container or a reaction container in which a portion in contact with the reactant is formed of a fluororesin. .
[9] The reaction mixture obtained by heating is washed with an inorganic acid solution or a fluoride salt solution to remove unnecessary components, followed by solid-liquid separation and drying of the solid content [7] or [7] 8] The processing method of Mn activation double fluoride fluorescent substance of description.

本発明の製造方法によれば、主工程にフッ化水素酸を用いることなく、発光特性の良いMn賦活複フッ化物蛍光体が得られる。また、本発明の処理方法によれば、耐湿性に優れたMn賦活複フッ化物蛍光体を得ることができる。   According to the production method of the present invention, a Mn-activated bifluoride phosphor having good light emission characteristics can be obtained without using hydrofluoric acid in the main process. Moreover, according to the processing method of the present invention, a Mn-activated double fluoride phosphor excellent in moisture resistance can be obtained.

本発明の実施に用いる反応装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the reaction apparatus used for implementation of this invention. 実施例1で得られた混合粉の粉末X線回折パターンである。2 is a powder X-ray diffraction pattern of the mixed powder obtained in Example 1. FIG. 同実施例1の加熱未洗浄粉の粉末X線回折パターンである。It is a powder X-ray-diffraction pattern of the heating unwashed powder of Example 1. 同実施例1の洗浄乾燥粉の粉末X線回折パターンである。3 is a powder X-ray diffraction pattern of the washed dry powder of Example 1. FIG. 同実施例1の混合粉、加熱未洗浄粉、洗浄乾燥粉の励起光と蛍光のスペクトルである。It is the spectrum of the excitation light and fluorescence of the mixed powder of the same Example 1, unheated powder, and washed dry powder. 本発明の実施に用いる反応装置の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the reaction apparatus used for implementation of this invention. 評価実験3で用いる試験用発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device for a test used in the evaluation experiment 3.

以下に、本発明に係る複フッ化物蛍光体の製造方法の実施形態について説明する。
本発明に係る蛍光体の製造方法は、下記式(1)
2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるMn賦活複フッ化物である赤色蛍光体を製造する方法であって、下記式(2)
2MF6 (2)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素であって実質的にMnは含まない、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表される複フッ化物の固体と、下記式(3)
2MnF6 (3)
(式中、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるマンガン化合物の固体とを混合し、100℃以上500℃以下で加熱することを特徴とするものである。
Below, embodiment of the manufacturing method of the double fluoride fluorescent substance concerning this invention is described.
The phosphor production method according to the present invention comprises the following formula (1):
A 2 MF 6 : Mn (1)
Wherein M is one or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn, A is selected from Li, Na, K, Rb and Cs, and at least Na and And / or one or more alkali metals containing K.)
A red phosphor that is a Mn-activated bifluoride represented by the following formula (2):
A 2 MF 6 (2)
(In the formula, M is one or two or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn, and substantially does not contain Mn, A is Li, Na, K, Rb. And one or more alkali metals selected from Cs and containing at least Na and / or K.)
A solid of a double fluoride represented by the following formula (3)
A 2 MnF 6 (3)
(In the formula, A is one or more alkali metals selected from Li, Na, K, Rb and Cs and containing at least Na and / or K.)
Is mixed with a solid of a manganese compound represented by the formula, and heated at 100 ° C. or more and 500 ° C. or less.

本発明で原料として用いる複フッ化物の一つは、上記式(2)で表される複フッ化物である。これらは市販品を使用することが可能である。また、各元素Mそれぞれについて対応する下記式(5)
2MF6 (5)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素であって実質的にMnは含まない。)
で表される化合物の溶液に、フッ化物、塩化物、硝酸塩、硫酸塩、炭酸塩、炭酸水素塩、水酸化物などの対応するアルカリ金属Aの水溶性塩の溶液又は固体を加えて製造したものを用いることも可能である。
One of the double fluorides used as a raw material in the present invention is a double fluoride represented by the above formula (2). These can use a commercial item. Further, the following formula (5) corresponding to each element M
H 2 MF 6 (5)
(In the formula, M is one or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge, and Sn, and substantially does not contain Mn.)
And a solution of a water-soluble salt of a corresponding alkali metal A such as fluoride, chloride, nitrate, sulfate, carbonate, bicarbonate, hydroxide, or a solid, or a solid. It is also possible to use one.

本発明で用いるマンガンの原料とは、上記式(3)で表されるヘキサフルオロマンガン酸塩である。これは公知の方法、すなわち(A)H.Bode, H.Jenssen, F.Bandte、Angew. Chem. 65巻 304ページ (1953年)(非特許文献1)に記されている、過マンガン酸カリウムをフッ化カリウムの存在下で、過酸化水素により還元する方法、(B)R.Hoppe, W.Liebe, W.Daehne、Z.Anorg, Allg. Chem., 307巻 276ページ (1961年)(非特許文献2)に記されている、マンガンとアルカリ金属の無水塩化物の混合物をフッ素ガス気流中で熱する方法、(C)B.Cox、A.G.Sharpe、J.Chem.Soc., 1798ページ (1954年)(非特許文献3)及び丸善株式会社発行、日本化学会編、新実験化学講座8「無機化合物の合成III」、1977年発行、1166ページ(非特許文献4)に記されている、フッ化マンガンを含む液の電解反応で合成する方法、のいずれかにより作成したものを用いることができる。   The manganese raw material used in the present invention is a hexafluoromanganate represented by the above formula (3). This is a known method, namely (A) H. Bode, H.M. Jenssen, F.M. Bandte, Angew. Chem. 65, 304 (1953) (Non-patent Document 1), a method of reducing potassium permanganate with hydrogen peroxide in the presence of potassium fluoride, (B) Hoppe, W.H. Liebe, W.M. Daehne, Z .; Anorg, Allg. Chem. 307, 276 (1961) (Non-patent Document 2), a method of heating a mixture of manganese and anhydrous alkali metal chloride in a fluorine gas stream, (C) B. Cox, A.M. G. Sharpe, J. et al. Chem. Soc. , 1798 pages (1954) (Non-Patent Document 3) and published by Maruzen Co., Ltd., edited by The Chemical Society of Japan, New Experimental Chemistry Course 8 “Synthesis of Inorganic Compounds III”, published in 1977, Non-Patent Document 4 A method prepared by any of the methods described above for synthesis by electrolytic reaction of a liquid containing manganese fluoride can be used.

4価金属Mの原料とマンガン原料の混合割合は、モル数でMが1モルに対してMnが0.001〜0.3モル、好ましくは0.002〜0.2モル、より好ましくは0.005〜0.15モルである。0.001モル未満では製品蛍光体中の賦活剤Mnが少なすぎて発光特性が十分でなく、0.3モルを超えて増やしても、かえって発光特性は低下する。
これら原料の混合には、両原料をポリエチレンなどの袋に入れて振ったり回転させたりする方法、ポリエチレン等でできた蓋付きの容器に入れて、ロッキングミキサー、タンブラーミキサーなどにかける、乳鉢で一緒にすりまぜるなど任意の方法が用いることができる。
The mixing ratio of the raw material of the tetravalent metal M and the manganese raw material is 0.001 to 0.3 mol, preferably 0.002 to 0.2 mol, and more preferably 0 to 0.001 to 0.3 mol, with respect to 1 mol. 0.005 to 0.15 mole. If the amount is less than 0.001 mol, the amount of the activator Mn in the product phosphor is too small, and the light emission characteristics are not sufficient. Even if the amount exceeds 0.3 mol, the light emission characteristics are deteriorated.
To mix these ingredients, put both ingredients in a polyethylene bag, shake or rotate, put it in a container with a lid made of polyethylene, put it on a rocking mixer, tumbler mixer, etc. Arbitrary methods can be used.

更に、上記の混合物に下記式(4)
1F・nHF (4)
(式中、A1はLi、Na、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであり、nは0.7以上4以下、好ましくは0.9以上2.5以下の数である。)
で表されるフッ化水素塩を固体で混合して加熱することで、反応を促進させることができる。これらフッ化水素塩としては、フッ化水素アンモニウム(NH4HF2)、フッ化水素ナトリウム(NaHF2)、フッ化水素カリウム(KHF2)などの市販品や、KF・2HFなどを用いることができる。
Furthermore, the following formula (4) is added to the above mixture.
A 1 F · nHF (4)
(In the formula, A 1 is one or more alkali metals or ammonium selected from Li, Na, K, Rb and NH 4 , and n is 0.7 or more and 4 or less, preferably 0.9 or more. The number is 2.5 or less.)
The reaction can be promoted by mixing and heating the hydrogen fluoride salt represented by As these hydrogen fluoride salts, commercially available products such as ammonium hydrogen fluoride (NH 4 HF 2 ), sodium hydrogen fluoride (NaHF 2 ), potassium hydrogen fluoride (KHF 2 ), and KF · 2HF may be used. it can.

これらフッ化水素塩の添加量は、上記主成分金属Mの1モルに対し、アルカリ金属などA1が0〜2.5モルであることが好ましい。より好ましくは0.1〜2.0モルである。2.5モルを超えてフッ化水素塩を増やしても、蛍光体の生成に利点はなく、生成物が塊になってほぐれにくくなるおそれがある。
このフッ化水素塩の混合の方法は限定的でないが、混合中に発熱するおそれもあるので、強い力で擦り混ぜるような方法は避け、短時間で混合することが望ましい。
The amount of hydrogen fluoride added is preferably 0 to 2.5 moles of A 1 such as an alkali metal with respect to 1 mole of the main component metal M. More preferably, it is 0.1-2.0 mol. Even if the amount of the hydrogen fluoride salt is increased beyond 2.5 mol, there is no advantage in the production of the phosphor, and there is a possibility that the product becomes a lump and is difficult to be loosened.
Although the method of mixing the hydrogen fluoride salt is not limited, it may generate heat during mixing. Therefore, it is desirable to avoid mixing with strong force and to mix in a short time.

なお、フッ化水素塩の混合は、上記複フッ化物A2MF6とマンガン原料A2MnF6とを混合するときに同時に行っても良いが、上記の点を考慮すれば、予めA2MF6とA2MnF6を混合しておいたものに後からフッ化水素塩を混合することが好ましい。 The hydrogen fluoride salt may be mixed at the same time when the double fluoride A 2 MF 6 and the manganese raw material A 2 MnF 6 are mixed. However, if the above points are taken into consideration, A 2 MF is mixed in advance. It is preferable to mix a hydrogen fluoride salt with a mixture of 6 and A 2 MnF 6 later.

反応促進剤として、フッ化水素塩のほかに、アルカリ金属の硝酸塩、硫酸塩、硫酸水素塩、フッ化物をフッ化水素塩と共に添加することも有効である。この場合の添加量は、モル数でフッ化水素塩を超えない範囲が良い。   As a reaction accelerator, it is also effective to add alkali metal nitrate, sulfate, hydrogen sulfate, and fluoride together with hydrogen fluoride in addition to hydrogen fluoride. The addition amount in this case is preferably in a range not exceeding the hydrogen fluoride salt in terms of moles.

上述したように混合された原料を加熱する。加熱温度は100〜500℃、好ましくは150〜450℃、より好ましくは170〜400℃である。加熱中の雰囲気は大気中、窒素中、アルゴン中などが良いが、水素を含む還元雰囲気はマンガンが還元されることに起因する発光特性の低下のおそれがあるので好ましくない。
混合された原料を密閉容器に入れ、容器ごと乾燥機、オーブンなどに入れる方法が適用できる。密閉容器を用いる場合は、反応物に接する部分がフッ素樹脂でできているものを用いることが好ましい。これに限らずフッ素樹脂製の容器は加熱温度が270℃以下の場合に好適に用いることができる。加熱温度がこれより高い場合、セラミックス製の容器を用いることが好ましい。この場合のセラミックスはアルミナ、マグネシア又はマグネシウムアルミニウムスピネルなどが好適である。
The mixed raw material is heated as described above. The heating temperature is 100 to 500 ° C, preferably 150 to 450 ° C, more preferably 170 to 400 ° C. Atmosphere during heating in air, in nitrogen, but good like argon, a reducing atmosphere containing hydrogen is preferable because there is a possibility of decrease in emission characteristics caused by manganese is reduced.
A method can be applied in which the mixed raw materials are put into a sealed container and the whole container is put into a dryer, oven, or the like. When using an airtight container, it is preferable to use the one in which the part in contact with the reactant is made of a fluororesin. Not only this but the container made from a fluororesin can be used suitably when heating temperature is 270 degrees C or less. When the heating temperature is higher than this, it is preferable to use a ceramic container. The ceramic in this case is preferably alumina, magnesia or magnesium aluminum spinel.

更に詳しくは、反応容器としては、図1に示すステンレススチール製容器本体2の内壁にポリテトラフルオロエチレン製の内層3を形成した二重容器1を用い、この中で粉体混合物10を加熱反応させることが好ましい。なお、蓋体4の材質としては、ステンレススチールを用いることが好ましい。また、図6に示す反応装置を用いることも有効である。この図6の反応装置は、SUS(ステンレススチール)容器5の内壁にセラミックス製の内層6を形成し、その上端開口部を覆ってフッ素樹脂被覆し、中央部にガス流出孔7を形成した蓋体8を取り付け、かつ容器5の外周上端部及び上記ガス流出孔7に突設したガス流出管7aの外周部にステンレススチール製の冷却管9aを設置すると共に、内部に入れた粉体混合物10を加熱したヒーター9bを容器5の外周下部に設置したものである。   More specifically, as a reaction vessel, a double vessel 1 in which an inner layer 3 made of polytetrafluoroethylene is formed on the inner wall of a stainless steel vessel main body 2 shown in FIG. 1 is used. It is preferable to make it. In addition, as a material of the cover body 4, it is preferable to use stainless steel. It is also effective to use the reaction apparatus shown in FIG. The reactor shown in FIG. 6 has a ceramic inner layer 6 formed on the inner wall of a SUS (stainless steel) container 5, covered with a fluorine resin covering the upper end opening, and a gas outlet hole 7 formed in the center. A stainless steel cooling pipe 9a is installed on the outer peripheral upper end of the container 5 and on the outer peripheral part of the gas outflow pipe 7a projecting from the gas outflow hole 7, and the powder mixture 10 placed in the inside is installed. Is a heater 9b that is heated at the bottom of the outer periphery of the container 5.

以上により得られた反応生成物には、目的とする複フッ化物蛍光体のほかに、未反応のヘキサフルオロマンガン酸塩が混じっている可能性があり、またフッ化水素塩を添加した場合、それも残留している。これらは洗浄によって除くことができる。   The reaction product obtained as described above may contain unreacted hexafluoromanganate in addition to the desired double fluoride phosphor, and when hydrogen fluoride is added, It also remains. These can be removed by washing.

洗浄には塩酸、硝酸、フッ化水素酸などの無機酸溶液、又はフッ化アンモニウム、フッ化カリウムなどのフッ化塩溶液を用いることができる。フッ化水素酸又はフッ化アンモニウム溶液がより好ましい。また、蛍光体成分の溶出を抑えるために、エタノール、アセトンなどの水溶性有機溶剤を加えることも可能である。原料のA2MF6を洗浄液に溶解させておくことも有効である。 For washing, an inorganic acid solution such as hydrochloric acid, nitric acid, or hydrofluoric acid, or a fluoride salt solution such as ammonium fluoride or potassium fluoride can be used. A hydrofluoric acid or ammonium fluoride solution is more preferable. In order to suppress the elution of the phosphor component, a water-soluble organic solvent such as ethanol or acetone can be added. It is also effective to dissolve the raw material A 2 MF 6 in a cleaning solution.

なお、本発明の複フッ化物蛍光体の製造方法は、上述したように上記原料粉末の混合物を加熱することにより、複フッ化物蛍光体が得られるもので、ここまでの段階でフッ化水素酸は複フッ化物蛍光体の製造には用いられていない。この場合、得られた複フッ化物蛍光体を含む反応生成物を洗浄して不要成分(目的の複フッ化物蛍光体以外の原料粉末や反応副生物)を除去する洗浄成分としてフッ化水素酸を用いてもよい。このようにフッ化水素酸を用いても、その使用量は、複フッ化物蛍光体を従来の湿式法で製造するときに用いる場合と比較して少ないものである。   In addition, as described above, the method for producing a double fluoride phosphor according to the present invention is to obtain a double fluoride phosphor by heating the mixture of the raw material powders. Is not used in the manufacture of double fluoride phosphors. In this case, hydrofluoric acid is used as a cleaning component for cleaning the obtained reaction product containing the double fluoride phosphor to remove unnecessary components (raw material powder and reaction by-products other than the target double fluoride phosphor). It may be used. Thus, even when hydrofluoric acid is used, the amount used is small compared to the case where it is used when the double fluoride phosphor is produced by a conventional wet method.

上記のように洗浄した後は、常法により固形分を乾燥し、Mn賦活複フッ化物を得る。
得られた複フッ化物は、従来の湿式法によって得られるMn賦活複フッ化物と同等の発光特性に優れたものである。
After washing as described above, the solid content is dried by a conventional method to obtain Mn activated double fluoride.
The obtained double fluoride is excellent in light emission characteristics equivalent to the Mn-activated double fluoride obtained by a conventional wet method.

本発明のもう一つの形態として、既に作成されているMn賦活複フッ化物赤色蛍光体の処理方法について説明する。用いる赤色蛍光体は上記式(1)
2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるMn賦活複フッ化物である赤色蛍光体である。従来公知の湿式法のそれぞれの方法や、本発明で述べた乾式法のいずれかで製造されたものを用いることができる。
As another embodiment of the present invention, a method for treating a previously prepared Mn-activated double fluoride red phosphor will be described. The red phosphor used is the above formula (1)
A 2 MF 6 : Mn (1)
Wherein M is one or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn, A is selected from Li, Na, K, Rb and Cs, and at least Na and And / or one or more alkali metals containing K.)
It is a red fluorescent substance which is Mn activation double fluoride represented by these. Any of the conventionally known wet methods and those produced by any of the dry methods described in the present invention can be used.

これに上記した式(4)
1F・nHF (4)
(式中、A1はLi、Na、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであり、nは0.7以上4以下の数である。)
で表されるフッ化水素塩を固体で混合して加熱する。これらフッ化水素塩としては、フッ化水素アンモニウム(NH4HF2)、フッ化水素ナトリウム(NaHF2)、フッ化水素カリウム(KHF2)などの市販品や、KF・2HFなどを用いることができる。
In addition to the above equation (4)
A 1 F · nHF (4)
(In the formula, A 1 is one or more alkali metals or ammonium selected from Li, Na, K, Rb and NH 4 , and n is a number of 0.7 or more and 4 or less.)
A hydrogen fluoride salt represented by the following formula is mixed with a solid and heated. As these hydrogen fluoride salts, commercially available products such as ammonium hydrogen fluoride (NH 4 HF 2 ), sodium hydrogen fluoride (NaHF 2 ), potassium hydrogen fluoride (KHF 2 ), and KF · 2HF may be used. it can.

これらフッ化水素塩の添加量は、上記主成分金属Mの1モルに対し、アルカリ金属などA1が0.01〜2.0モルであることが好ましい。より好ましくは0.03〜1.5モルである。2.0モルを超えてフッ化水素塩を増やしても、利点はない。
このフッ化水素塩の混合の方法は限定的でないが、混合中に発熱するおそれもあるので、強い力で擦り混ぜるような方法は避け、短時間で混合することが望ましい。
The addition amount of these hydrogen fluoride salts is preferably 0.01 to 2.0 mol of A 1 such as an alkali metal with respect to 1 mol of the main component metal M. More preferably, it is 0.03-1.5 mol. There is no advantage in increasing the amount of hydrogen fluoride beyond 2.0 mol.
Although the method of mixing the hydrogen fluoride salt is not limited, it may generate heat during mixing. Therefore, it is desirable to avoid mixing with strong force and to mix in a short time.

反応促進剤の添加、加熱、加熱後の洗浄・回収などの操作については、上述した蛍光体の製造方法と同様の方法が採用でき、上述した方法に準じて行えばよい。   Operations such as addition of a reaction accelerator, heating, washing / recovery after heating, and the like can be performed in the same manner as the above-described phosphor manufacturing method, and may be performed according to the above-described method.

以下、実施例及び比較例を挙げて、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
ケイフッ化カリウム(森田化学工業(株)製、K2SiF6)粉末26.43gと、ヘキサフルオロマンガン酸カリウム(後述の参考例1記載の方法で作製、K2MnF6)粉末2.46gを同一のポリエチレン製チャック付袋に入れた。手で振ったりゆっくり回転させたりして5分間かけて混合した。混合比率はSi1モルに対し、Mnが0.083モルに相当する。
この混合粉に、更にフッ化水素カリウム(ステラケミファ製酸性フッ化カリウム、KHF2)の粉末14.06gを加え、上記と同様にして混合した。比率はSi 1モルに対し、KHF2は1.5モルに相当する。粉体混合物のうち2.0g(混合粉)を後の評価のためにとっておいた。
粉体混合物を図1に示す二重容器1に入れて密閉した。ここで、図1において、二重容器1はステンレススチール(SUS)製の容器本体2の内壁にポリテトラフルオロエチレン製の内層3を形成してなるもので、この二重容器1内に粉体混合物10を入れ、SUS製の蓋体4で密閉し、オーブンに入れて加熱した。温度は250℃で時間は12時間保持し、自然冷却した。
[Example 1]
26.43 g of potassium silicofluoride (manufactured by Morita Chemical Co., Ltd., K 2 SiF 6 ) powder and 2.46 g of potassium hexafluoromanganate (produced by the method described in Reference Example 1 described later, K 2 MnF 6 ) powder Placed in the same polyethylene zippered bag. The mixture was shaken by hand or slowly rotated for 5 minutes. The mixing ratio corresponds to 0.083 mol of Mn relative to 1 mol of Si.
To this mixed powder, powder 14.06 g of potassium hydrogen fluoride (acidic potassium fluoride manufactured by Stella Chemifa, KHF 2 ) was further added and mixed in the same manner as described above. The ratio corresponds to 1.5 mol of KHF 2 with respect to 1 mol of Si. Of the powder mixture, 2.0 g (mixed powder) was reserved for later evaluation.
The powder mixture was placed in a double container 1 shown in FIG. 1 and sealed. Here, in FIG. 1, a double container 1 is formed by forming an inner layer 3 made of polytetrafluoroethylene on the inner wall of a stainless steel (SUS) container body 2, and the double container 1 contains powder. The mixture 10 was put in, sealed with a lid 4 made of SUS, and heated in an oven. The temperature was 250 ° C. and the time was maintained for 12 hours, followed by natural cooling.

冷却した反応物は一部粉末状だが、多くは塊状になっていたので、粗く砕いて混合し、その一部2.0gを評価用に取り出した。この取り出した分は更に乳鉢でよくすりつぶした(加熱未洗浄粉)。
洗浄液として、4.1gのケイフッ化カリウムを100cm3の50質量%フッ化水素酸(ステラケミファ製SA−X、50質量%HF)に溶解した液を用意しておいた。このうち75cm3に上記の反応物の残りを加え、撹拌をしながら10分間おいた。塊状の部分はほぐれて粉末状になった。
粉末状になった沈殿物をブフナー漏斗でろ別し、先に作成した洗浄液の残りで振りかけ洗浄した。更にアセトンで洗浄して回収後、真空乾燥した。28.2gの粉末製品が得られた(洗浄乾燥粉)。この粉末製品の粒度分布を、気流分散式レーザー回折法粒度分布測定器(HELOS&RODOS、Sympatec社製)によって測定した。その結果、粒径8.6μm以下の粒子が全体積の10%(D10=8.6μm)、粒径21.3μm以下の粒子が全体積の50%(D50=21.3μm)、粒径33.7μm以下の粒子が全体積の90%を占めた(D90=33.7μm)。
Although the cooled reaction product was partly powdery, most of it was agglomerated, so it was roughly crushed and mixed, and a part of 2.0 g was taken out for evaluation. The taken out portion was further ground in a mortar (heated unwashed powder).
As a cleaning solution, a solution in which 4.1 g of potassium silicofluoride was dissolved in 100 cm 3 of 50% by mass hydrofluoric acid (SA-X manufactured by Stella Chemifa, 50% by mass HF) was prepared. Of these, the remainder of the reaction product was added to 75 cm 3 and allowed to stand for 10 minutes with stirring. The massive part was loosened and became powdery.
The powdery precipitate was filtered off with a Buchner funnel and washed with the rest of the previously prepared cleaning solution. Further, it was washed with acetone and collected, and then dried in vacuum. 28.2 g of powder product was obtained (washed dry powder). The particle size distribution of the powder product was measured with an airflow dispersion type laser diffraction particle size distribution analyzer (HELOS & RODOS, manufactured by Sympatec). As a result, particles having a particle size of 8.6 μm or less were 10% of the total volume (D10 = 8.6 μm), particles having a particle size of 21.3 μm or less were 50% of the total volume (D50 = 21.3 μm), and particle size 33 Particles of less than 0.7 μm accounted for 90% of the total volume (D90 = 33.7 μm).

上記の混合粉の粉末X線回折パターンを図2に示す。データベースを参照して同定したピークの帰属を印で示した。K2SiF6のほか、K2MnF6とKHF2がみられる。
次に、加熱未洗浄粉の粉末X線回折パターンを図3に示す。KHF2のピークの比が大きくなっているのに対し、K2MnF6のピークは混合粉の図2に比べて大幅に弱くなっている。他の化合物のピークと重ならない、2θ=34°付近のピークを見るとそれがはっきりわかる。MnはK2SiF6に取り込まれていって、K2MnF6が減っていると推定できる。
The powder X-ray diffraction pattern of the mixed powder is shown in FIG. The assignment of peaks identified with reference to the database is indicated by marks. In addition to K 2 SiF 6 , K 2 MnF 6 and KHF 2 are observed.
Next, the powder X-ray diffraction pattern of the unwashed powder is shown in FIG. While the ratio of the KHF 2 peak is large, the peak of K 2 MnF 6 is significantly weaker than that of the mixed powder in FIG. This can be clearly seen by looking at a peak around 2θ = 34 ° that does not overlap with the peaks of other compounds. It can be estimated that Mn is taken into K 2 SiF 6 and K 2 MnF 6 is reduced.

更に、洗浄乾燥粉の粉末X線回折パターンを図4に示す。ICDD(International Centre for Diffraction Data)粉末X線回折データベースのPDF01−075−0694にあるK2SiF6のパターンに一致しており、不純物は見られない。洗浄によりKHF2が除去されたことがわかる。
これら各段階の粉末試料の発光スペクトルを、量子効率測定装置QE1100(大塚電子(株)製)を用いて、励起波長450nmで測定した。励起光と蛍光のスペクトルを図5に示す。混合粉は発光を示さないが、加熱未洗浄粉は赤色の発光を示している。その発光が洗浄・乾燥により強まっている。
同装置で測定した450nm励起での吸収率と内部量子効率は表1のとおりである。
Furthermore, the powder X-ray diffraction pattern of the washed dry powder is shown in FIG. It matches the pattern of K 2 SiF 6 in PDF01-075-0694 of the ICDD (International Center for Diffraction Data) powder X-ray diffraction database, and no impurities are observed. It can be seen that KHF 2 was removed by washing.
The emission spectra of the powder samples at these stages were measured at an excitation wavelength of 450 nm using a quantum efficiency measurement device QE1100 (manufactured by Otsuka Electronics Co., Ltd.). The excitation light and fluorescence spectra are shown in FIG. The mixed powder does not emit light, but the heated unwashed powder exhibits red light emission. The luminescence is strengthened by washing and drying.
Table 1 shows the absorptance and internal quantum efficiency at 450 nm excitation measured with the same apparatus.

Figure 0005822045
Figure 0005822045

X線回折と発光特性とを合わせ、蛍光体は洗浄前の加熱工程で生成されていると言える。   Combining X-ray diffraction and light emission characteristics, it can be said that the phosphor is generated in the heating step before cleaning.

[参考例1]
[K2MnF6の調製]
非特許文献4に記載されている方法に準拠し、以下の方法で調製した。
塩化ビニル樹脂製の反応槽の中央にフッ素樹脂系イオン交換膜の仕切り(隔膜)を設け、イオン交換膜を挟む2室の各々に、いずれも白金板からなる陽極と陰極を設置した。反応槽の陽極側に、フッ化マンガン(II)を溶解させたフッ化水素酸水溶液、陰極側にフッ化水素酸水溶液を入れた。両極を電源につなぎ、電圧3V、電流0.75Aで電解を行った。電解を終えた後、陽極側の反応液に、フッ化水素酸水溶液に飽和させたフッ化カリウムの溶液を過剰に加えた。生成した黄色の固体生成物をろ別、回収し、K2MnF6を得た。
[Reference Example 1]
[Preparation of K 2 MnF 6 ]
In accordance with the method described in Non-Patent Document 4, it was prepared by the following method.
A fluororesin-based ion exchange membrane partition (diaphragm) was provided at the center of the reaction vessel made of vinyl chloride resin, and an anode and a cathode each made of a platinum plate were installed in each of the two chambers sandwiching the ion exchange membrane. A hydrofluoric acid aqueous solution in which manganese (II) was dissolved was placed on the anode side of the reaction tank, and a hydrofluoric acid aqueous solution was placed on the cathode side. Both electrodes were connected to a power source, and electrolysis was performed at a voltage of 3 V and a current of 0.75 A. After the electrolysis, an excessive solution of potassium fluoride saturated with an aqueous hydrofluoric acid solution was added to the reaction solution on the anode side. The produced yellow solid product was separated by filtration and recovered to obtain K 2 MnF 6 .

[実施例2]
フッ化水素カリウムの14.06gを11.72gに代え、硫酸水素カリウム(和光純薬試薬特級、KHSO4)を4.08g加えることのほかは、実施例1と同様にして、31.0gのK2SiF6:Mnの粉末製品を得た。実施例1と同様にして測定した粒度分布の結果は、D10=8.2μm、D50=22.1μm、D90=35.4μmであった。
[Example 2]
31.0 g of potassium hydrogen fluoride was replaced with 11.72 g in the same manner as in Example 1 except that 4.08 g of potassium hydrogen sulfate (special grade of Wako Pure Chemicals, KHSO 4 ) was added. A powder product of K 2 SiF 6 : Mn was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 8.2 μm, D50 = 22.1 μm, and D90 = 35.4 μm.

[実施例3]
フッ化水素カリウムの14.06gを11.72gに代え、硝酸カリウム(和光純薬試薬特級、KNO3)を3.03g加えることのほかは、実施例1と同様にして、30.4gのK2SiF6:Mnの粉末製品を得た。実施例1と同様にして測定した粒度分布の結果は、D10=6.9μm、D50=20.0μm、D90=31.0μmであった。
[Example 3]
30.4 g of K 2 in the same manner as in Example 1 except that 14.06 g of potassium hydrogen fluoride is replaced with 11.72 g and 3.03 g of potassium nitrate (special grade of Wako Pure Chemicals, KNO 3 ) is added. A powder product of SiF 6 : Mn was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 6.9 μm, D50 = 20.0 μm, and D90 = 31.0 μm.

[実施例4]
2SiF6粉末26.43gと、実施例1と同じK2MnF6粉末1.23gを同一のポリエチレン製チャック付袋に入れた。手で振ったりゆっくり回転させたりして5分間かけて混合した。混合比率はSi1モルに対し、Mnが0.042モルに相当する。
この混合物をマグネシアるつぼに入れ、更にSUSの外容器に入れてから温度制御付管状炉に入れた。炉はドラフトチャンバー中に置き、SUS容器には内部でガスが発生した場合に抜ける口を設け、マグネシアるつぼのふたにも穴をあけておいた。また管状炉の中に入っていないSUS容器の出口部分は、SUSの管を巻いて水を流して冷却できるようにしておいた。この反応装置は図6に示した。この装置を用いて、300℃で8時間加熱し、自然冷却した。反応物を取り出し、すりつぶして回収した。30.2gのK2SiF6:Mnの粉末製品が得られた。実施例1と同様にして測定した粒度分布の結果は、D10=7.3μm、D50=16.7μm、D90=37.5μmであった。
[Example 4]
26.43 g of K 2 SiF 6 powder and 1.23 g of the same K 2 MnF 6 powder as in Example 1 were put in the same bag with polyethylene chuck. The mixture was shaken by hand or slowly rotated for 5 minutes. The mixing ratio corresponds to 0.042 mol of Mn with respect to 1 mol of Si.
This mixture was put into a magnesia crucible, and further put into an outer container of SUS, and then put into a temperature-controlled tube furnace. The furnace was placed in a draft chamber, and a SUS container was provided with a port through which gas was generated, and a hole was also made in the lid of the magnesia crucible. In addition, the outlet portion of the SUS container that was not in the tubular furnace was wound with a SUS tube so that water could flow to cool it. This reactor is shown in FIG. Using this apparatus, it heated at 300 degreeC for 8 hours, and cooled naturally. The reaction was removed and ground to collect. A powder product of 30.2 g of K 2 SiF 6 : Mn was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 7.3 μm, D50 = 16.7 μm, and D90 = 37.5 μm.

[実施例5]
実施例4と同じ仕込み量でK2SiF6とK2MnF6を混合した。これに更に6.85gのフッ化水素アンモニウム(ステラケミファ製酸性フッ化アンモニウム、NH4HF2)を混合した。実施例4と同じ図6の装置にこれを仕込み、350℃で6時間加熱した。冷却後に取り出し、35質量%塩酸(和光純薬製電子工業用、HCl)10cm3とエタノール70cm3の混合液に加えて撹拌した。ブフナー漏斗でろ別し、アセトンで洗浄して回収後、真空乾燥した。32.7gのK2SiF6:Mnの粉末製品が得られた。実施例1と同様にして測定した粒度分布の結果は、D10=9.1μm、D50=18.0μm、D90=32.5μmであった。
[Example 5]
K 2 SiF 6 and K 2 MnF 6 were mixed in the same amount as in Example 4. To this, 6.85 g of ammonium hydrogen fluoride (acidic ammonium fluoride manufactured by Stella Chemifa, NH 4 HF 2 ) was further mixed. This was charged in the same apparatus of FIG. 6 as in Example 4 and heated at 350 ° C. for 6 hours. The removed after cooling 35 wt% hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd. electronic industry, HCl) was added and stirred in a mixture of 10 cm 3 of ethanol 70cm 3. The solution was filtered with a Buchner funnel, washed with acetone, collected, and dried in vacuo. A powder product of 32.7 g of K 2 SiF 6 : Mn was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 9.1 μm, D50 = 18.0 μm, and D90 = 32.5 μm.

[実施例6]
実施例4と同じ仕込み量でK2SiF6とK2MnF6を混合した。これに更に7.03gのKHF2を混合した。実施例5と同様に加熱した。冷却後に取り出し、40質量%フッ化アンモニウム溶液(森田化学工業(株)製半導体用、NH4F)80cm3に加えて撹拌した。ブフナー漏斗でろ別し、アセトンで洗浄して回収後、真空乾燥した。32.3gのK2SiF6:Mnの粉末製品が得られた。実施例1と同様にして測定した粒度分布の結果は、D10=8.9μm、D50=18.6μm、D90=28.1μmであった。
[Example 6]
K 2 SiF 6 and K 2 MnF 6 were mixed in the same amount as in Example 4. This was further mixed with 7.03 g of KHF 2 . Heated as in Example 5. The solution was taken out after cooling, and added to 80 cm 3 of 40% by mass ammonium fluoride solution (for semiconductor, manufactured by Morita Chemical Co., Ltd., NH 4 F) and stirred. The solution was filtered with a Buchner funnel, washed with acetone, collected, and dried in vacuo. A powder product of 32.3 g of K 2 SiF 6 : Mn was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 8.9 μm, D50 = 18.6 μm, and D90 = 28.1 μm.

[実施例7]
ヘキサフルオロチタン酸カリウム(森田化学工業(株)製、K2TiF6)粉末28.8gを用い、実施例1と同じK2MnF6を1.48g用い、KHF2は9.37g用いたことのほかは、実施例1と同じように混合を行い、同条件で加熱した。冷却後に取り出し、50質量%HF10cm3とアセトン70cm3の混合液に加えて10分間撹拌した。粉末状になった沈殿物をブフナー漏斗でろ別し、アセトンで洗浄して回収後、真空乾燥した。32.7gのK2TiF6:Mnの粉末製品が得られた。実施例1と同様にして測定した粒度分布の結果は、D10=9.9μm、D50=38.2μm、D90=72.6μmであった。
[Example 7]
Potassium hexafluorotitanate (Morita Chemical Co., Ltd., K 2 TiF 6 ) powder was used in an amount of 28.8 g, the same K 2 MnF 6 as in Example 1 was used in an amount of 1.48 g, and KHF 2 was used in 9.37 g. Other than the above, mixing was performed in the same manner as in Example 1, and heating was performed under the same conditions. The removed after cooling and stirred for 10 minutes added to a mixture of 50 wt% HF10cm 3 and acetone 70cm 3. The powdered precipitate was filtered off with a Buchner funnel, washed with acetone, collected, and dried in vacuo. A powder product of 32.7 g of K 2 TiF 6 : Mn was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 9.9 μm, D50 = 38.2 μm, and D90 = 72.6 μm.

[実施例8]
ケイフッ化ナトリウム(森田化学工業(株)製、Na2SiF6)粉末22.56gを用い、ヘキサフルオロマンガン酸ナトリウム(後述の参考例2の方法で作製、Na2MnF6)2.14gを用い、フッ化水素カリウムに代えてフッ化水素ナトリウム(ステラケミファ製酸性フッ化ナトリウム、NaHF2)9.36gを用いたことのほかは、実施例1と同じように混合を行い、同条件で加熱した。冷却後反応物を回収し粗く砕いた。
別に2.8gのケイフッ化カリウムを100cm3の50質量%HFに溶解した液を用意しておいた。このうち75cm3に上記の反応物を加え、撹拌をしながら10分間おいた。塊状の部分はほぐれて粉末状になった。粉末状になった沈殿物をブフナー漏斗でろ別し、先に作成した洗浄液の残りで振りかけ洗浄した。更にアセトンで洗浄して回収後、真空乾燥した。25.6gのNa2SiF6:Mnの粉末製品が得られた。実施例1と同様にして測定した粒度分布の結果は、D10=6.2μm、D50=29.7μm、D90=56.1μmであった。
[Example 8]
Sodium hexafluoromanganate (produced by the method of Reference Example 2 described later, Na 2 MnF 6 ) 2.14 g using sodium silicofluoride (Morita Chemical Co., Ltd., Na 2 SiF 6 ) powder , Except that 9.36 g of sodium hydrogen fluoride (Stella Chemifa acid sodium fluoride, NaHF 2 ) was used instead of potassium hydrogen fluoride, mixing was performed in the same manner as in Example 1, and heating was performed under the same conditions. did. After cooling, the reaction product was recovered and crushed roughly.
Separately, a solution prepared by dissolving 2.8 g of potassium silicofluoride in 50% by mass of HF of 100 cm 3 was prepared. Of these, the above reaction product was added to 75 cm 3 and allowed to stand for 10 minutes with stirring. The massive part was loosened and became powdery. The powdery precipitate was filtered off with a Buchner funnel and washed with the rest of the previously prepared cleaning solution. Further, it was washed with acetone and collected, and then dried in vacuum. A powder product of 25.6 g Na 2 SiF 6 : Mn was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 6.2 μm, D50 = 29.7 μm, and D90 = 56.1 μm.

[参考例2]
[Na2MnF6の調製]
参考例1のK2MnF6の調製と同様の電解反応槽を用い、フッ化カリウムの代わりにフッ化ナトリウムを加えることのほかは同様に反応させ、生成した黄色の固体生成物をろ別、回収し、Na2MnF6を得た。
[Reference Example 2]
[Preparation of Na 2 MnF 6 ]
Using the same electrolytic reaction vessel as that for the preparation of K 2 MnF 6 in Reference Example 1, the reaction was performed in the same manner except that sodium fluoride was added instead of potassium fluoride, and the resulting yellow solid product was filtered off. recovered to obtain a Na 2 MnF 6.

[実施例9]
フッ化水素カリウム(KHF2)に代えてKF・2HFで表されるフッ化水素塩(森田化学工業(株)製)11.77gを加えること、及びヘキサフルオロマンガン酸カリウム粉末の添加量を0.99gに代えることのほかは、実施例1と同様にして、29.9gのK2SiF6:Mnの粉末製品を得た。実施例1と同様にして測定した粒度分布の結果は、D10=18.1μm、D50=27.8μm、D90=40.9μmであった。
[Example 9]
In place of potassium hydrogen fluoride (KHF 2 ), 11.77 g of a hydrogen fluoride salt (Morita Chemical Industry Co., Ltd.) represented by KF · 2HF is added, and the amount of potassium hexafluoromanganate powder added is 0 29.9 g of a K 2 SiF 6 : Mn powder product was obtained in the same manner as in Example 1 except that the amount was changed to .99 g. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 18.1 μm, D50 = 27.8 μm, and D90 = 40.9 μm.

[比較例1]
40質量%のケイフッ化水素酸(H2SiF6)水溶液(森田化学工業(株)製)15.6cm3を、まず50質量%HF100cm3と混合した。これに、実施例1と同じK2MnF6粉末を1.19g加えて撹拌して溶解させ、Si、FとMnを含む水溶液(第1溶液)を調製した。また、13.95gのフッ化カリウムを40cm3の50質量%HFに溶解させ、室温まで放冷し、フッ化カリウムを含む水溶液(第2溶液)を調製した。次に、撹拌した第1溶液に、第2溶液を約3分間かけて少しずつ加え、10分間程度撹拌し、淡橙色の固体が生成した。この固体生成物をろ別し、アセトンで洗浄し真空乾燥して、15.64gのK2SiF6:Mnの粉末製品を得た。実施例1と同様にして測定した粒度分布の結果は、D10=15.1μm、D50=36.9μm、D90=60.3μmであった。
[Comparative Example 1]
40 wt% silicate hydrofluoric acid (H 2 SiF 6) solution (manufactured by Morita Chemical Industries (Ltd.)) 15.6cm 3, was first mixed with 50 wt% HF100cm 3. To this, 1.19 g of the same K 2 MnF 6 powder as in Example 1 was added and dissolved by stirring to prepare an aqueous solution (first solution) containing Si, F and Mn. Further, 13.95 g of potassium fluoride was dissolved in 40 cm 3 of 50% by mass HF, allowed to cool to room temperature, and an aqueous solution containing potassium fluoride (second solution) was prepared. Next, the second solution was added little by little to the stirred first solution over about 3 minutes, and stirred for about 10 minutes to produce a pale orange solid. The solid product was filtered off, washed with acetone and dried in vacuo to give 15.64 g of K 2 SiF 6 : Mn powder product. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 15.1 μm, D50 = 36.9 μm, and D90 = 60.3 μm.

[比較例2]
40質量%のチタンフッ化水素酸(H2SiF6)水溶液(森田化学工業(株)製)15.6cm3を、まず50質量%HF100cm3HFと混合した。これに、実施例1と同じK2MnF6粉末を0.74g加えて撹拌して溶解させ、Ti、FとMnを含む水溶液(第1溶液)を調製した。また、23.43gのKHF2を22cm3の50質量%HFと34cm3の純水に溶解させ、フッ化カリウムを含む水溶液(第2溶液)を調製した。次に、撹拌した第1溶液に、第2溶液を約2分間かけて少しずつ加え、10分間程度撹拌し、淡橙色の固体が生成した。この固体生成物をろ別し、アセトンで洗浄し真空乾燥して、13.73gのK2TiF6:Mnの粉末製品を得た。実施例1と同様にして測定した粒度分布の結果は、D10=13.6μm、D50=46.5μm、D90=103.2μmであった。
[Comparative Example 2]
40 mass% titanium hydrofluoric acid (H 2 SiF 6 ) aqueous solution (Morita Chemical Industry Co., Ltd.) 15.6 cm 3 was first mixed with 50 mass% HF 100 cm 3 HF. To this, 0.74 g of the same K 2 MnF 6 powder as in Example 1 was added and dissolved by stirring to prepare an aqueous solution (first solution) containing Ti, F and Mn. Further, 23.43 g of KHF 2 was dissolved in 22 cm 3 of 50% by mass HF and 34 cm 3 of pure water to prepare an aqueous solution containing potassium fluoride (second solution). Next, the second solution was added little by little to the stirred first solution over about 2 minutes, and the mixture was stirred for about 10 minutes to produce a pale orange solid. The solid product was filtered off, washed with acetone and dried in vacuo to give 13.73 g of a K 2 TiF 6 : Mn powder product. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 13.6 μm, D50 = 46.5 μm, and D90 = 103.2 μm.

[実施例10]
40質量%のケイフッ化水素酸(H2SiF6)水溶液(森田化学工業(株)製)234cm3を、まず50質量%フッ化水素酸(HF)(SA−X、ステラケミファ(株)製)2,660cm3と混合した。これに、予め前述の方法で作製したK2MnF6粉末を13.32g加えて攪拌し溶解させた(第1溶液)。
これとは別に、フッ化水素カリウム(KHF2)210.5gを50質量%フッ化水素酸水溶液680cm3、純水1,270cm3と混合し溶解させた(第2溶液)。
第1溶液を攪拌しながら、第2溶液を少しずつ加えていったところ、淡橙色の沈殿が生じた。この沈殿をブフナー漏斗でろ別し、十分脱液した後、アセトンをふりかけて洗浄し、脱液して回収し、更に真空乾燥した。184.9gの粉末製品が得られた。
この粉末のうちの26.43gをとり、これにKF・2HFで表されるフッ化水素塩1.96gを混合し、実施例1と同様の容器に入れて同条件で加熱し、以下も同様の操作を行って26.87gの蛍光体を得た。実施例1と同様にして測定した粒度分布の結果はD10=13.1μm、D50=25.8μm、D90=39.7μmであった。
[Example 10]
First, 50 mass% hydrofluoric acid (HF) (SA-X, manufactured by Stella Chemifa Co., Ltd.) was added to 234 cm 3 of 40 mass% hydrofluoric acid (H 2 SiF 6 ) aqueous solution (Morita Chemical Industry Co., Ltd.). ) Mixed with 2,660 cm 3 . To this, 13.32 g of K 2 MnF 6 powder prepared in advance by the aforementioned method was added and stirred to dissolve (first solution).
Separately, potassium hydrogen fluoride (KHF 2) 210.5g of 50 wt% hydrofluoric acid aqueous solution 680 cm 3, were dissolved and mixed with purified water 1,270cm 3 (second solution).
While the first solution was stirred, the second solution was added little by little, and a pale orange precipitate was formed. This precipitate was filtered off with a Buchner funnel and sufficiently drained, then washed with acetone, drained and recovered, and further vacuum dried. 184.9 g of a powder product was obtained.
Take 26.43 g of this powder, mix it with 1.96 g of hydrogen fluoride salt represented by KF · 2HF, put it in the same container as in Example 1, and heat it under the same conditions. As a result, 26.87 g of a phosphor was obtained. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 13.1 μm, D50 = 25.8 μm, and D90 = 39.7 μm.

[比較例3]
実施例10で、沈殿析出、ろ別、洗浄、真空乾燥のみ行った、熱処理に用いなかった残りをとった。実施例1と同様にして測定した粒度分布の結果はD10=8.4μm、D50=19.2μm、D90=29.3μmであった。
[Comparative Example 3]
In Example 10, only the precipitation, filtration, washing, and vacuum drying were performed, and the remainder not used for the heat treatment was taken. The results of the particle size distribution measured in the same manner as in Example 1 were D10 = 8.4 μm, D50 = 19.2 μm, and D90 = 29.3 μm.

[評価実験1]
実施例及び比較例によって得られた蛍光体の発光特性を実施例1で述べた、量子効率測定装置QE1100(大塚電子(株)製)で測定した。励起波長450nmでの吸収率と量子効率を表2に示す。
[Evaluation Experiment 1]
The emission characteristics of the phosphors obtained in the examples and comparative examples were measured with the quantum efficiency measuring device QE1100 (manufactured by Otsuka Electronics Co., Ltd.) described in Example 1. Table 2 shows the absorptance and quantum efficiency at an excitation wavelength of 450 nm.

Figure 0005822045
Figure 0005822045

[評価実験2]
実施例及び比較例によって得られた蛍光体の耐久性試験を行った。
蛍光体を粉末のまま、蓋のない小皿に入れ、耐久性試験として、温度65℃、相対湿度90%に維持した恒温恒湿器(エスペック(株)製)中で30分間及び7日間静置し、実験例2と同様にして内部量子効率を測定した。その結果を表3に示す。
[Evaluation Experiment 2]
Durability tests were performed on the phosphors obtained in the examples and comparative examples.
Put the phosphor in powder in a small dish without a lid, and leave it for 30 minutes and 7 days in a constant temperature and humidity chamber (manufactured by Espec Corp.) maintained at a temperature of 65 ° C. and a relative humidity of 90% as a durability test. Then, the internal quantum efficiency was measured in the same manner as in Experimental Example 2. The results are shown in Table 3.

Figure 0005822045
Figure 0005822045

[評価実験3]
図7に示す試験用発光装置を作製した。図7中、11は凹部12を有する不透明なベースハウジングで、凹部12の内底面にチップ13が配置されている。チップ13は、InGaN系青色発光ダイオードで、発光ピーク波長450nm、ピーク半価幅20nmのものである。図中、14、15はそれぞれベースハウジング11に埋め込まれた電気接続部で、一方の電気接続部14はチップ13の下側電極と電気的に接しており、他方の電気接続部15はチップ13の上部電極とボンディングワイヤ16を介して接続されている。上記ベースハウジング11の凹部12の壁面17は可視光を反射するようになっており、また凹部12内には、蛍光体18を予め混練した液状の熱硬化性樹脂の硬化物19が充填され、チップ13が封止されている。
実験では、熱硬化性樹脂としてシリコーン樹脂(信越化学工業(株)製LPS−5547)10質量部と、蛍光体として実施例及び比較例で得られた複フッ化物赤色蛍光体4質量部を混合して用いた。これをベースハウジングの凹部に注入したのち、150℃で4時間加熱して硬化させた。
作成したLEDの発光色を大塚電子製全光束測定装置でまず測定した。色はCIE色度座標(x,y)で表される。次に、85℃の恒温器中で、0.2Aの電流を100時間流し続けた後、同様に発光色を測定した。初期と100時間後のxの変化dxとyの変化dyの積dxdyを見た。また、60℃、相対湿度90%でも同様の試験を行った。その結果を表4に示す。
[Evaluation Experiment 3]
The test light emitting device shown in FIG. 7 was produced. In FIG. 7, 11 is an opaque base housing having a recess 12, and a chip 13 is arranged on the inner bottom surface of the recess 12. The chip 13 is an InGaN blue light emitting diode having a light emission peak wavelength of 450 nm and a peak half-value width of 20 nm. In the figure, reference numerals 14 and 15 denote electrical connection portions embedded in the base housing 11. One electrical connection portion 14 is in electrical contact with the lower electrode of the chip 13, and the other electrical connection portion 15 is connected to the chip 13. The upper electrode is connected to the upper electrode via a bonding wire 16. The wall surface 17 of the recess 12 of the base housing 11 reflects visible light, and the recess 12 is filled with a cured product 19 of a liquid thermosetting resin previously kneaded with the phosphor 18. The chip 13 is sealed.
In the experiment, 10 parts by mass of a silicone resin (LPS-5547 manufactured by Shin-Etsu Chemical Co., Ltd.) as a thermosetting resin and 4 parts by mass of a double fluoride red phosphor obtained in Examples and Comparative Examples were mixed as a phosphor. Used. After this was poured into the recess of the base housing, it was cured by heating at 150 ° C. for 4 hours.
The emission color of the prepared LED was first measured with an Otsuka Electronics total luminous flux measuring device. The color is represented by CIE chromaticity coordinates (x, y). Next, in a thermostat at 85 ° C., a current of 0.2 A was continuously supplied for 100 hours, and then the emission color was measured in the same manner. The product dxdy of the change dx of x and the change dy of y after 100 hours was observed. The same test was conducted at 60 ° C. and a relative humidity of 90%. The results are shown in Table 4.

Figure 0005822045
Figure 0005822045

また、既知の方法と本発明とで、蛍光体(K2SiF6:Mnなど)100gに換算した際の50質量%フッ化水素酸の使用量を比較した結果を表5に示す。本発明は、洗浄に用いたフッ化水素酸を計上している。各例とも、蛍光体作成の原料としてのマンガン中間体の作成に用いられる分は含んでいない。比較例1は特許文献4の実施例1でもあり、参考例3は、特許文献2のExample 5、参考例4は特許文献3の実施例1〜9である。 Table 5 shows the results of comparing the amount of 50% by mass hydrofluoric acid used when converted to 100 g of a phosphor (K 2 SiF 6 : Mn, etc.) between the known method and the present invention. The present invention accounts for hydrofluoric acid used for cleaning. Each example does not include the amount used for producing a manganese intermediate as a raw material for producing a phosphor. Comparative Example 1 is also Example 1 of Patent Document 4, Reference Example 3 is Example 5 of Patent Document 2, and Reference Example 4 is Examples 1 to 9 of Patent Document 3.

Figure 0005822045

※実施例6はフッ化水素酸を使用しないが、参考として40質量%フッ化アンモニウム溶液の使用量を記載した。
Figure 0005822045

* Although Example 6 does not use hydrofluoric acid, the amount of 40% by mass ammonium fluoride solution used is described as a reference.

なお、これまで本発明を実施形態をもって説明してきたが、本発明はこの実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれる。   Although the present invention has been described with the embodiment, the present invention is not limited to the embodiment, and other embodiments, additions, changes, deletions, and the like can be conceived by those skilled in the art. As long as the effects of the present invention are exhibited in any aspect, they are included in the scope of the present invention.

1 二重容器
2 容器本体
3 内層
4 蓋体
5 容器
6 内層
7 ガス流出孔
7a ガス流出管
8 蓋体
9a 冷却管
9b ヒーター
10 粉体混合物
11 ベースハウジング
12 凹部
13 チップ
14 電気接続部
15 電気接続部
16 ボンディングワイヤ
17 壁面
18 蛍光体
19 熱硬化性樹脂
DESCRIPTION OF SYMBOLS 1 Double container 2 Container main body 3 Inner layer 4 Lid body 5 Container 6 Inner layer 7 Gas outflow hole 7a Gas outflow pipe 8 Lid 9a Cooling pipe 9b Heater 10 Powder mixture 11 Base housing 12 Recess 13 Chip 14 Electrical connection part 15 Electrical connection Part 16 Bonding wire 17 Wall surface 18 Phosphor 19 Thermosetting resin

Claims (5)

下記式(1)
2MF6:Mn (1)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるMn賦活複フッ化物である赤色蛍光体を製造する方法であって、反応原料として下記式(2)
2MF6 (2)
(式中、MはSi、Ti、Zr、Hf、Ge及びSnから選ばれる1種又は2種以上の4価元素である。AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表される複フッ化物の固体と、下記式(3)
2MnF6 (3)
(式中、AはLi、Na、K、Rb及びCsから選ばれ、かつ少なくともNa及び/又はKを含む1種又は2種以上のアルカリ金属である。)
で表されるマンガン化合物の固体とを混合し、上記混合物を反応容器中に密閉し、100℃以上500℃以下で加熱することを特徴とするMn賦活複フッ化物蛍光体の製造方法。
Following formula (1)
A 2 MF 6 : Mn (1)
Wherein M is one or more tetravalent elements selected from Si, Ti, Zr, Hf, Ge and Sn, A is selected from Li, Na, K, Rb and Cs, and at least Na and And / or one or more alkali metals containing K.)
Is a method for producing a red phosphor which is a Mn-activated double fluoride represented by the following formula (2)
A 2 MF 6 (2)
(Wherein, M is Si, Ti, Zr, Hf, Ru one or more tetravalent element der selected from Ge and Sn. A is selected Li, Na, K, from Rb and Cs, and One or more alkali metals containing at least Na and / or K.)
A solid of a double fluoride represented by the following formula (3)
A 2 MnF 6 (3)
(In the formula, A is one or more alkali metals selected from Li, Na, K, Rb and Cs and containing at least Na and / or K.)
A method for producing a Mn-activated bifluoride phosphor, comprising mixing a solid of a manganese compound represented by formula ( I), sealing the mixture in a reaction vessel, and heating the mixture at 100 ° C to 500 ° C.
反応原料をセラミックス容器、又は反応物と接する部分がフッ素樹脂にて形成された反応容器内で加熱反応させることを特徴とする請求項1記載のMn賦活複フッ化物蛍光体の製造方法。   2. The method for producing a Mn-activated bifluoride phosphor according to claim 1, wherein the reaction raw material is heated and reacted in a ceramic container or a reaction container in which a part in contact with the reactant is formed of a fluororesin. 反応原料を反応物と接する部分がフッ素樹脂にて形成された反応容器内で、100℃以上270℃以下で加熱反応させることを特徴とする請求項1記載のMn賦活複フッ化物蛍光体の製造方法。   2. The production of a Mn-activated double fluoride phosphor according to claim 1, wherein the reaction raw material is heated and reacted at 100 ° C. or higher and 270 ° C. or lower in a reaction vessel in which a part in contact with the reactant is formed of a fluororesin. Method. 加熱によって得られた反応混合物を、無機酸溶液又はフッ化塩溶液で洗浄して不要成分を除去したのち、固液分離し、固形分を乾燥することを特徴とする請求項1〜3のいずれか1項記載のMn賦活複フッ化物蛍光体の製造方法。   The reaction mixture obtained by heating is washed with an inorganic acid solution or a fluoride salt solution to remove unnecessary components, followed by solid-liquid separation and drying of the solid content. A method for producing the Mn-activated double fluoride phosphor according to claim 1. 更に、上記混合物に、アルカリ金属の硝酸塩、硫酸塩、硫酸水素塩又はフッ化物を、下記式(4)
1F・nHF (4)
(式中、A1はNa、K、Rb及びNH4から選ばれる、1種又は2種以上のアルカリ金属又はアンモニウムであり、nは0.7以上4以下の数である。)
で表されるフッ化水素塩と共に固体で混合して加熱することを特徴とする請求項1〜4のいずれか1項記載のMn賦活複フッ化物蛍光体の製造方法。
Furthermore, an alkali metal nitrate, sulfate, hydrogen sulfate or fluoride is added to the above mixture, and the following formula (4):
A 1 F · nHF (4)
(In the formula, A 1 is one or more alkali metals or ammonium selected from Na, K, Rb and NH 4 , and n is a number of 0.7 or more and 4 or less.)
The method for producing a Mn-activated bifluoride phosphor according to any one of claims 1 to 4, wherein the mixture is heated in a solid together with a hydrogen fluoride salt represented by formula (1).
JP2015085876A 2014-01-30 2015-04-20 Method for producing double fluoride phosphor Active JP5822045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085876A JP5822045B2 (en) 2014-01-30 2015-04-20 Method for producing double fluoride phosphor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014015627 2014-01-30
JP2014015627 2014-01-30
JP2015085876A JP5822045B2 (en) 2014-01-30 2015-04-20 Method for producing double fluoride phosphor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014136703A Division JP5804149B2 (en) 2014-01-30 2014-07-02 Manufacturing method and processing method of double fluoride phosphor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015156837A Division JP5828366B2 (en) 2014-01-30 2015-08-07 Method for producing double fluoride phosphor

Publications (2)

Publication Number Publication Date
JP2015163709A JP2015163709A (en) 2015-09-10
JP5822045B2 true JP5822045B2 (en) 2015-11-24

Family

ID=54186745

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015085876A Active JP5822045B2 (en) 2014-01-30 2015-04-20 Method for producing double fluoride phosphor
JP2015156837A Active JP5828366B2 (en) 2014-01-30 2015-08-07 Method for producing double fluoride phosphor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015156837A Active JP5828366B2 (en) 2014-01-30 2015-08-07 Method for producing double fluoride phosphor

Country Status (1)

Country Link
JP (2) JP5822045B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266763B2 (en) * 2015-10-14 2019-04-23 Shin-Etsu Chemical Co., Ltd. Mn-activated complex fluoride phosphor and method of producing thereof
JP6614072B2 (en) * 2015-10-14 2019-12-04 信越化学工業株式会社 Mn-activated bifluoride phosphor and method for producing the same
JP2018062596A (en) * 2016-10-14 2018-04-19 信越化学工業株式会社 Red phosphor and method for producing the same
JP7057918B2 (en) * 2018-03-24 2022-04-21 国立大学法人 新潟大学 Method for producing red fluoride phosphor
JP7026903B2 (en) * 2018-03-24 2022-03-01 国立大学法人 新潟大学 Method for Producing Red Fluoride Fluorescent Substance and its Mother Crystal
JP7577660B2 (en) 2019-07-22 2024-11-05 デンカ株式会社 Method for producing phosphor particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576756A (en) * 1968-06-12 1971-04-27 Mallinckrodt Chemical Works Fluocomplexes of titanium, silicon, tin and germanium, activated by tetravalent manganese
JP5682104B2 (en) * 2008-09-05 2015-03-11 三菱化学株式会社 Phosphor and method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
MY167700A (en) * 2011-04-08 2018-09-21 Shinetsu Chemical Co Preparation of complex fluoride and complex fluoride phosphor
WO2013158929A1 (en) * 2012-04-18 2013-10-24 Nitto Denko Corporation Phosphor ceramics and methods of making the same

Also Published As

Publication number Publication date
JP2015193857A (en) 2015-11-05
JP5828366B2 (en) 2015-12-02
JP2015163709A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP5804149B2 (en) Manufacturing method and processing method of double fluoride phosphor
JP5828366B2 (en) Method for producing double fluoride phosphor
JP6614072B2 (en) Mn-activated bifluoride phosphor and method for producing the same
KR101844608B1 (en) Preparation of complex fluoride and complex fluoride phosphor
KR102693295B1 (en) Mn-ACTIVATED COMPLEX FLUORIDE PHOSPHOR AND METHOD FOR PREPARING THE SAME
JP6394307B2 (en) Bifluoride phosphor and method for producing the same
TW201829739A (en) Red fluorescent substance and method for production thereof
WO2015115193A1 (en) Complex fluoride phosphor and method for producing same
TWI641727B (en) Method for producing complex fluoride phosphor
TWI421326B (en) Oxide emitters
TW201529802A (en) Method for producing fluorescent substance
WO2015115190A1 (en) Method for producing complex fluoride phosphor
JP7348534B2 (en) Method for manufacturing fluoride phosphor
JP2009161680A (en) Method for preparing highly crystalline fluorescent material
JPS59162132A (en) Production of oxysulfate of rare earth element

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5822045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150