[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5808725B2 - Etching method - Google Patents

Etching method Download PDF

Info

Publication number
JP5808725B2
JP5808725B2 JP2012247290A JP2012247290A JP5808725B2 JP 5808725 B2 JP5808725 B2 JP 5808725B2 JP 2012247290 A JP2012247290 A JP 2012247290A JP 2012247290 A JP2012247290 A JP 2012247290A JP 5808725 B2 JP5808725 B2 JP 5808725B2
Authority
JP
Japan
Prior art keywords
substrate
etching
resist film
mask layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012247290A
Other languages
Japanese (ja)
Other versions
JP2013106044A (en
Inventor
敦志 鈴木
敦志 鈴木
宏一 難波江
宏一 難波江
近藤 俊行
俊行 近藤
森 みどり
みどり 森
文晴 寺前
文晴 寺前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EL Seed Corp
Original Assignee
EL Seed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EL Seed Corp filed Critical EL Seed Corp
Priority to JP2012247290A priority Critical patent/JP5808725B2/en
Publication of JP2013106044A publication Critical patent/JP2013106044A/en
Application granted granted Critical
Publication of JP5808725B2 publication Critical patent/JP5808725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Led Devices (AREA)

Description

本発明は、プラズマを用いたエッチング方法、このエッチング方法により加工されたサファイア基板、及び、このサファイア基板を備える発光素子に関する。   The present invention relates to an etching method using plasma, a sapphire substrate processed by the etching method, and a light-emitting element including the sapphire substrate.

被加工材のエッチング方法として、表面にレジスト膜が形成された基板を、レジスト膜をマスクとしてエッチングするものが一般的である(例えば、特許文献1参照)。例えば、特許文献1に記載のエッチング方法では、エッチングガスに炭素系ガスを添加した混合ガスをプラズマ状態に励起してサファイア基板をエッチングすると共に、炭素系ガスの流量を調整することで凸部のテーパ形状を調整している。   As a method for etching a workpiece, a substrate having a resist film formed on the surface is generally etched using the resist film as a mask (see, for example, Patent Document 1). For example, in the etching method described in Patent Document 1, a sapphire substrate is etched by exciting a mixed gas obtained by adding a carbon-based gas to an etching gas into a plasma state, and the flow rate of the carbon-based gas is adjusted by adjusting the flow rate of the carbon-based gas. The taper shape is adjusted.

特開2011−134800号公報JP 2011-134800 A

ところで、従来のエッチング方法では、被加工材とレジストの材質により定まる選択比を考慮して、エッチング加工が行われている。しかしながら、被加工材に微細で深い形状の加工を施す場合、適切な選択比の材料が存在しないと、所望の形状の加工を施すことができない。   By the way, in the conventional etching method, the etching process is performed in consideration of the selection ratio determined by the material of the workpiece and the resist. However, when processing a fine and deep shape on a workpiece, processing of a desired shape cannot be performed unless a material with an appropriate selection ratio exists.

本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、被加工材とレジストのエッチングの選択比を高くすることのできるエッチング方法、このエッチング方法により加工されたサファイア基板、及び、このサファイア基板を備える発光素子を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an etching method capable of increasing the etching selectivity between a workpiece and a resist, and a sapphire substrate processed by this etching method. And it is providing a light emitting element provided with this sapphire substrate.

前記目的を達成するため、本発明では、被加工材上にレジスト膜を形成するレジスト膜形成工程と、前記レジスト膜に所定のパターンを形成するパターン形成工程と、前記パターンが形成された前記レジスト膜を所定の変質用条件にてプラズマに曝し、前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、前記被加工材を前記変質用条件と異なるエッチング用条件にてプラズマに曝し、エッチング選択比が高くなった前記レジスト膜をマスクとして前記被加工材のエッチングを行う被加工材のエッチング工程と、を含むエッチング方法が提供される。   In order to achieve the object, in the present invention, a resist film forming step of forming a resist film on a workpiece, a pattern forming step of forming a predetermined pattern on the resist film, and the resist on which the pattern is formed Exposing the film to plasma under predetermined alteration conditions, altering the resist film to increase the etching selectivity, and exposing the workpiece to plasma under etching conditions different from the alteration conditions And an etching process for the workpiece, which etches the workpiece using the resist film having a high etching selectivity as a mask.

上記エッチング方法において、前記変質用条件は、前記エッチング用条件よりも、バイアス出力が低くともよい。   In the etching method, the condition for alteration may have a lower bias output than the condition for etching.

上記エッチング方法において、前記被加工材は、所定の被加工基板上に形成された基板用マスク層であってもよい。   In the etching method, the workpiece may be a substrate mask layer formed on a predetermined substrate.

上記エッチング方法において、エッチングされた基板用マスク層をマスクとして、前記被加工基板のエッチングを行う基板のエッチング工程を含んでもよい。   The etching method may include a substrate etching step of etching the substrate to be processed using the etched substrate mask layer as a mask.

上記エッチング方法において、前記基板のエッチング工程にて、前記被加工基板に1μm以下の周期の凹凸形状を形成してもよい。   In the etching method, an uneven shape having a period of 1 μm or less may be formed on the substrate to be processed in the substrate etching step.

上記エッチング方法において、前記被加工基板に深さ300nm以上の凹凸形状を形成してもよい。   In the etching method, an uneven shape with a depth of 300 nm or more may be formed on the substrate to be processed.

上記エッチング方法において、前記被加工基板はサファイアであってもよい。   In the etching method, the substrate to be processed may be sapphire.

また、本発明では、上記エッチング方法により、凹凸加工が施されたサファイア基板が提供される。   Moreover, in this invention, the sapphire board | substrate with which the uneven | corrugated process was given by the said etching method is provided.

さらに、本発明では、上記サファイア基板と、前記サファイア基板上に形成された半導体発光層と、を有する発光素子が提供される。   Furthermore, in this invention, the light emitting element which has the said sapphire substrate and the semiconductor light emitting layer formed on the said sapphire substrate is provided.

本発明によれば、被加工材とレジストのエッチングの選択比を高くすることができる。   According to the present invention, it is possible to increase the selection ratio between the workpiece and the resist.

図1は、本発明の一実施形態を示すプラズマエッチング装置の概略説明図である。FIG. 1 is a schematic explanatory view of a plasma etching apparatus showing an embodiment of the present invention. 図2は、エッチング方法を示すフローチャートである。FIG. 2 is a flowchart showing an etching method. 図3Aは被加工基板及びマスク層のエッチング方法の過程を示し、(a)は加工前の被加工基板を示し、(b)は被加工基板上にマスク層を形成した状態を示し、(c)はマスク層上にレジスト膜を形成した状態を示し、(d)はレジスト膜にモールドを接触させた状態を示し、(e)はレジスト膜にパターンが形成された状態を示す。FIG. 3A shows the process of the etching method of the substrate to be processed and the mask layer, (a) shows the substrate to be processed before processing, (b) shows the state in which the mask layer is formed on the substrate to be processed, (c ) Shows a state where a resist film is formed on the mask layer, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film. 図3Bは被加工基板及びマスク層のエッチング方法の過程を示し、(f)はレジスト膜の残膜を除去した状態を示し、(g)はレジスト膜を変質させた状態を示し、(h)はレジスト膜をマスクとしてマスク層をエッチングした状態を示し、(i)はマスク層をマスクとして被加工基板をエッチングした状態を示す。FIG. 3B shows a process of the etching method of the substrate to be processed and the mask layer, (f) shows a state in which the residual film of the resist film is removed, (g) shows a state in which the resist film is altered, and (h) Indicates a state in which the mask layer is etched using the resist film as a mask, and (i) indicates a state in which the substrate to be processed is etched using the mask layer as a mask. 図3Cは被加工基板及びマスク層のエッチング方法の過程を示し、(j)はマスク層をマスクとして被加工基板をさらにエッチングした状態を示し、(k)は被加工基板から残ったマスク層を除去した状態を示し、(l)は被加工基板にウェットエッチングを施した状態を示す。FIG. 3C shows the process of the etching method of the substrate to be processed and the mask layer, (j) shows a state in which the substrate to be processed is further etched using the mask layer as a mask, and (k) shows the mask layer remaining from the substrate to be processed. The removed state is shown, and (l) shows a state in which wet etching is performed on the substrate to be processed. 図4は被加工基板を示し、(a)は模式斜視図を、(b)はA−A断面図をそれぞれ示す。4A and 4B show a substrate to be processed, where FIG. 4A shows a schematic perspective view, and FIG. 4B shows an AA cross-sectional view. 図5は、被加工基板を備えた発光素子の模式断面図を示す。FIG. 5 is a schematic cross-sectional view of a light-emitting element provided with a substrate to be processed.

図1は、本発明の一実施形態を示すプラズマエッチング装置の概略説明図である。
図1に示すように、プラズマエッチング装置1は、誘導結合型(ICP)であり、被加工基板100を保持する平板状の基板保持台2と、基板保持台2を収容する容器3と、容器3の上方に石英板6を介して設けられたコイル4と、基板保持台2に接続された電源5と、を有している。コイル4は立体渦巻形のコイルであり、コイル中央から高周波電力を供給し、コイル外周の末端が接地されている。エッチング対象の被加工基板100は直接或いは搬送用トレーを介して基板保持台2に載置される。基板保持台2には被加工基板100を冷却するための冷却機構が内蔵されており、冷却制御部7によって制御される。容器3は供給ポートを有し、Oガス、Arガス等の各種ガスが供給可能となっている。
FIG. 1 is a schematic explanatory view of a plasma etching apparatus showing an embodiment of the present invention.
As shown in FIG. 1, the plasma etching apparatus 1 is an inductively coupled (ICP) type, a flat substrate holding table 2 that holds a substrate to be processed 100, a container 3 that houses the substrate holding table 2, and a container 3, a coil 4 provided via a quartz plate 6, and a power source 5 connected to the substrate holder 2. The coil 4 is a three-dimensional spiral coil, which supplies high-frequency power from the center of the coil and is grounded at the outer periphery of the coil. The substrate 100 to be etched is placed on the substrate holder 2 directly or via a transfer tray. The substrate holder 2 has a built-in cooling mechanism for cooling the substrate 100 to be processed, and is controlled by the cooling control unit 7. The container 3 has a supply port and can supply various gases such as O 2 gas and Ar gas.

このプラズマエッチング装置1でエッチングを行うにあたっては、基板保持台2に被加工基板100を載置した後、容器3内の空気を排出して減圧状態とする。そして、容器3内に所定の処理ガスを供給し、容器3内のガス圧力を調整する。その後、コイル4及び基板保持台2に高出力の高周波電力を所定時間供給して、反応ガスのプラズマ8を生成させる。このプラズマ8によって被加工基板100のエッチングを行う。   In performing etching with the plasma etching apparatus 1, the substrate 100 to be processed is placed on the substrate holder 2, and then the air in the container 3 is discharged to make a reduced pressure state. Then, a predetermined processing gas is supplied into the container 3 to adjust the gas pressure in the container 3. Thereafter, high-frequency high-frequency power is supplied to the coil 4 and the substrate holder 2 for a predetermined time to generate a reactive gas plasma 8. The substrate 8 to be processed is etched by the plasma 8.

次いで、図2、図3A及び図3Bを参照して、プラズマエッチング装置1を用いたエッチング方法について説明する。
図2は、エッチング方法を示すフローチャートである。図2に示すように、本実施形態のエッチング方法は、マスク層形成工程S1と、レジスト膜形成工程S2と、パターン形成工程S3と、残膜除去工程S4と、レジスト変質工程S5と、マスク層のエッチング工程S6と、被加工基板のエッチング工程S7と、マスク層除去工程S8と、湾曲部形成工程S9と、を含んでいる。
Next, an etching method using the plasma etching apparatus 1 will be described with reference to FIGS. 2, 3A, and 3B.
FIG. 2 is a flowchart showing an etching method. As shown in FIG. 2, the etching method of this embodiment includes a mask layer forming step S1, a resist film forming step S2, a pattern forming step S3, a residual film removing step S4, a resist alteration step S5, and a mask layer. Etching step S6, substrate etching step S7, mask layer removing step S8, and curved portion forming step S9.

図3Aは被加工基板及びマスク層のエッチング方法の過程を示し、(a)は加工前の被加工基板を示し、(b)は被加工基板上にマスク層を形成した状態を示し、(c)はマスク層上にレジスト膜を形成した状態を示し、(d)はレジスト膜にモールドを接触させた状態を示し、(e)はレジスト膜にパターンが形成された状態を示す。
図3Bは被加工基板及びマスク層のエッチング方法の過程を示し、(f)はレジスト膜の残膜を除去した状態を示し、(g)はレジスト膜を変質させた状態を示し、(h)はレジスト膜をマスクとしてマスク層をエッチングした状態を示し、(i)はマスク層をマスクとして被加工基板をエッチングした状態を示す。尚、変質後のレジスト膜は、図中、塗りつぶすことで表現している。
図3Cは被加工基板及びマスク層のエッチング方法の過程を示し、(j)はマスク層をマスクとして被加工基板をさらにエッチングした状態を示し、(k)は被加工基板から残ったマスク層を除去した状態を示し、(l)は被加工基板にウェットエッチングを施した状態を示す。
FIG. 3A shows the process of the etching method of the substrate to be processed and the mask layer, (a) shows the substrate to be processed before processing, (b) shows the state in which the mask layer is formed on the substrate to be processed, (c ) Shows a state where a resist film is formed on the mask layer, (d) shows a state where a mold is brought into contact with the resist film, and (e) shows a state where a pattern is formed on the resist film.
FIG. 3B shows a process of the etching method of the substrate to be processed and the mask layer, (f) shows a state in which the residual film of the resist film is removed, (g) shows a state in which the resist film is altered, and (h) Indicates a state in which the mask layer is etched using the resist film as a mask, and (i) indicates a state in which the substrate to be processed is etched using the mask layer as a mask. Incidentally, the resist film after the alteration is expressed by painting out in the drawing.
FIG. 3C shows the process of the etching method of the substrate to be processed and the mask layer, (j) shows a state in which the substrate to be processed is further etched using the mask layer as a mask, and (k) shows the mask layer remaining from the substrate to be processed. The removed state is shown, and (l) shows a state in which wet etching is performed on the substrate to be processed.

まず、図3A(a)に示すように、加工前の被加工基板100を準備する。エッチングに先立って、被加工基板100を所定の洗浄液で洗浄しておく。本実施形態においては、被加工基板100はサファイア基板である。   First, as shown in FIG. 3A (a), a substrate to be processed 100 before processing is prepared. Prior to etching, the substrate to be processed 100 is cleaned with a predetermined cleaning liquid. In the present embodiment, the substrate to be processed 100 is a sapphire substrate.

次いで、図3A(b)に示すように、被加工基板100にマスク層110を形成する(マスク層形成工程:S1)。本実施形態においては、マスク層110は、被加工基板100上のSiO層111と、SiO層111上のNi層112と、を有している。各層111,112の厚さは任意であるが、例えばSiO層を1nm以上100nm以下、Ni層112を1nm以上100nm以下とすることができる。尚、マスク層110は、単層とすることもできる。マスク層110は、スパッタリング法、真空蒸着法、CVD法等により形成される。 Next, as shown in FIG. 3A (b), a mask layer 110 is formed on the substrate to be processed 100 (mask layer forming step: S1). In the present embodiment, the mask layer 110 has a SiO 2 layer 111 on the substrate to be processed 100 and a Ni layer 112 on the SiO 2 layer 111. The thickness of each of the layers 111 and 112 is arbitrary. For example, the SiO 2 layer can be 1 nm to 100 nm and the Ni layer 112 can be 1 nm to 100 nm. Note that the mask layer 110 may be a single layer. The mask layer 110 is formed by a sputtering method, a vacuum evaporation method, a CVD method, or the like.

次に、図3A(c)に示すように、マスク層110上にレジスト膜120を形成する(レジスト膜形成工程:S2)。本実施形態においては、レジスト膜120として熱可塑性樹脂が用いられ、スピンコート法により均一な厚さに形成される。レジスト膜120は、例えばエポキシ系樹脂からなり、厚さが例えば100nm以上300nm以下である。   Next, as shown in FIG. 3A (c), a resist film 120 is formed on the mask layer 110 (resist film forming step: S2). In this embodiment, a thermoplastic resin is used as the resist film 120 and is formed to have a uniform thickness by a spin coating method. The resist film 120 is made of, for example, an epoxy resin and has a thickness of, for example, 100 nm or more and 300 nm or less.

そして、レジスト膜120を被加工基板100ごと加熱して軟化させ、図3A(d)に示すように、モールド130でレジスト膜120をプレスする。モールド130の接触面には凹凸構造131が形成されており、レジスト膜120が凹凸構造131に沿って変形する。   Then, the resist film 120 is heated and softened together with the substrate to be processed 100, and the resist film 120 is pressed with a mold 130 as shown in FIG. 3A (d). An uneven structure 131 is formed on the contact surface of the mold 130, and the resist film 120 is deformed along the uneven structure 131.

この後、プレス状態を保ったまま、レジスト膜120を被加工基板100ごと冷却して硬化させる。そして、モールド200をレジスト膜120から離隔することにより、図3A(e)に示すように、レジスト膜120に凹凸構造121が転写される(パターン形成工程:S3)。ここで、凹凸構造121の周期は1μm以下となっている。本実施形態においては、凹凸構造121の周期は500nmである。また、本実施形態においては、凹凸構造121の凸部123の幅は100nm以上300nm以下となっている。また、凸部123の高さは100nm以上300nm以下となっている。この状態で、レジスト膜120の凹部には残膜122が形成されている。   Thereafter, the resist film 120 is cooled and cured together with the substrate to be processed 100 while keeping the pressed state. Then, by separating the mold 200 from the resist film 120, the concavo-convex structure 121 is transferred to the resist film 120 as shown in FIG. 3A (e) (pattern forming step: S3). Here, the period of the concavo-convex structure 121 is 1 μm or less. In the present embodiment, the period of the concavo-convex structure 121 is 500 nm. In the present embodiment, the width of the convex portion 123 of the concavo-convex structure 121 is not less than 100 nm and not more than 300 nm. Moreover, the height of the convex part 123 is 100 nm or more and 300 nm or less. In this state, a residual film 122 is formed in the recess of the resist film 120.

以上のようにレジスト膜120が形成された被加工基板100を、プラズマエッチング装置1の基板保持台2に取り付ける。そして、例えばプラズマアッシングにより残膜122を取り除いて、図3B(f)に示すように被加工材であるマスク層110を露出させる(残膜除去工程:S4)。本実施形態においては、プラズマアッシングの処理ガスとしてOガスが用いられる。このとき、レジスト膜120の凸部123もアッシングの影響を受け、凸部123の側面124は、マスク層110の表面に対して垂直でなく、所定の角度だけ傾斜する。 The substrate to be processed 100 on which the resist film 120 is formed as described above is attached to the substrate holder 2 of the plasma etching apparatus 1. Then, the residual film 122 is removed by, for example, plasma ashing to expose the mask layer 110 that is a workpiece as shown in FIG. 3B (f) (residual film removing step: S4). In the present embodiment, O 2 gas is used as a processing gas for plasma ashing. At this time, the convex portion 123 of the resist film 120 is also affected by ashing, and the side surface 124 of the convex portion 123 is not perpendicular to the surface of the mask layer 110 but is inclined by a predetermined angle.

そして、図3B(g)に示すようにレジスト膜120を変質用条件にてプラズマに曝して、レジスト膜120を変質させてエッチング選択比を高くする(レジスト変質工程:S5)。本実施形態においては、レジスト膜120の変質用の処理ガスとして、Arガスが用いられる。また、本実施形態においては、変質用条件は、後述のエッチング用条件よりも電源5のバイアス出力が低く設定される。   Then, as shown in FIG. 3B (g), the resist film 120 is exposed to plasma under the condition for alteration, thereby altering the resist film 120 and increasing the etching selectivity (resist alteration step: S5). In the present embodiment, Ar gas is used as a process gas for altering the resist film 120. In the present embodiment, the alteration condition is set such that the bias output of the power source 5 is lower than the etching condition described later.

この後、エッチング用条件にてプラズマに曝し、エッチング選択比が高くなったレジスト膜120をマスクとして被加工材としてのマスク層110のエッチングを行う(マスク層のエッチング工程:S6)。本実施形態においては、レジスト膜120のエッチング用の処理ガスとして、Arガスが用いられる。これにより、図3B(h)に示すように、マスク層110にパターン113が形成される。   Thereafter, the mask layer 110 as a workpiece is etched using the resist film 120 that has been exposed to plasma under etching conditions and has a high etching selectivity as a mask (mask layer etching step: S6). In the present embodiment, Ar gas is used as a processing gas for etching the resist film 120. As a result, a pattern 113 is formed in the mask layer 110 as shown in FIG.

ここで、変質用条件とエッチング用条件について、処理ガス、アンテナ出力、バイアス出力等を適宜に変更できるが、本実施形態のように同一の処理ガスを用いてバイアス出力を変えることが好ましい。具体的に、変質用条件について、処理ガスをArガスとし、コイル4のアンテナ出力を350W、電源5のバイアス出力50Wとすると、レジスト膜120の硬化が観察された。そして、エッチング用条件について、処理ガスをArガスとし、コイル4のアンテナ出力を350W、電源5のバイアス出力を100Wとすると、マスク層110のエッチングが観察された。尚、エッチング用条件に対してバイアス出力を低くする他、アンテナ出力を低くしたり、ガス流量を少なくしても、レジストの硬化が可能である。   Here, the processing gas, the antenna output, the bias output, and the like can be changed as appropriate for the alteration condition and the etching condition, but it is preferable to change the bias output using the same processing gas as in this embodiment. Specifically, regarding the condition for alteration, when the processing gas is Ar gas, the antenna output of the coil 4 is 350 W, and the bias output of the power supply 5 is 50 W, curing of the resist film 120 was observed. Etching of the mask layer 110 was observed when the etching gas was Ar gas, the antenna output of the coil 4 was 350 W, and the bias output of the power source 5 was 100 W. In addition to lowering the bias output relative to the etching conditions, the resist can be cured even if the antenna output is reduced or the gas flow rate is reduced.

次に、図3B(i)に示すように、マスク層110をマスクとして、被加工基板100のエッチングを行う(被加工基板のエッチング工程:S7)。本実施形態においては、マスク層110上にレジスト膜120が残った状態でエッチングが行われる。また、処理ガスとしてBClガス等の塩素系ガスを用いたプラズマエッチングが行われる。 Next, as shown in FIG. 3B (i), the substrate to be processed 100 is etched using the mask layer 110 as a mask (etching step of the substrate to be processed: S7). In the present embodiment, etching is performed with the resist film 120 remaining on the mask layer 110. Further, plasma etching is performed using a chlorine-based gas such as BCl 3 gas as a processing gas.

そして、図3C(j)に示すように、エッチングが進行していくと、被加工基板100に凹凸構造101が形成される。本実施形態においては、凹凸構造101の高さは、500nmである。尚、凹凸構造101の高さを500nmより大きくすることもできる。ここで、凹凸構造101の高さが、例えば300nmのように比較的浅くするのならば、図3B(i)に示すように、レジスト膜120が残留した状態でエッチングを終了しても差し支えない。   Then, as shown in FIG. 3C (j), as etching progresses, a concavo-convex structure 101 is formed on the substrate 100 to be processed. In the present embodiment, the height of the concavo-convex structure 101 is 500 nm. Note that the height of the concavo-convex structure 101 can be larger than 500 nm. Here, if the height of the concavo-convex structure 101 is relatively shallow, for example, 300 nm, the etching may be finished with the resist film 120 remaining as shown in FIG. 3B (i). .

本実施形態においては、マスク層110のSiO層111により、サイドエッチングが助長されて、凹凸構造101の凸部102の側面103が傾斜している。また、レジスト膜120の側面123の傾斜角によっても、サイドエッチングの状態を制御することができる。尚、マスク層110をNi層112の単層とすれば、凸部102の側面103を主面に対してほぼ垂直にすることができる。 In the present embodiment, side etching is promoted by the SiO 2 layer 111 of the mask layer 110, and the side surface 103 of the convex portion 102 of the concavo-convex structure 101 is inclined. Further, the state of side etching can also be controlled by the inclination angle of the side surface 123 of the resist film 120. If the mask layer 110 is a single layer of the Ni layer 112, the side surface 103 of the convex portion 102 can be made substantially perpendicular to the main surface.

この後、図3B(k)に示すように、所定の剥離液を用いて被加工基板100上に残ったマスク層110を除去する(マスク層除去工程:S8)。本実施形態においては、高温の硝酸を用いることでNi層112を除去した後、フッ化水素酸を用いてSiO層111を除去する。尚、レジスト膜120がマスク層110上に残留していても、高温の硝酸でNi層112とともに除去することができるが、レジスト膜120の残留量が多い場合はOアッシングにより予めレジスト膜120を除去しておくことが好ましい。 Thereafter, as shown in FIG. 3B (k), the mask layer 110 remaining on the substrate to be processed 100 is removed using a predetermined stripping solution (mask layer removing step: S8). In this embodiment, after removing the Ni layer 112 by using high-temperature nitric acid, the SiO 2 layer 111 is removed by using hydrofluoric acid. Note that even if the resist film 120 remains on the mask layer 110, it can be removed together with the Ni layer 112 with high-temperature nitric acid. However, if the residual amount of the resist film 120 is large, the resist film 120 is previously obtained by O 2 ashing. Is preferably removed.

そして、図3B(l)に示すように、ウェットエッチングにより凸部102の角を除去して湾曲部を形成する(湾曲部形成工程:S9)。ここで、エッチング液は任意であるが、例えば170℃程度に加温したリン酸水溶液、いわゆる“熱リン酸”を用いることができる。尚、この湾曲部形成工程は、適宜省略することができる。以上の工程を経て、表面に凹凸構造101を有する被加工基板100が作製される。   Then, as shown in FIG. 3B (l), the corner of the convex portion 102 is removed by wet etching to form a curved portion (curved portion forming step: S9). Here, the etching solution is arbitrary, but for example, a phosphoric acid aqueous solution heated to about 170 ° C., so-called “hot phosphoric acid” can be used. In addition, this bending part formation process can be abbreviate | omitted suitably. Through the above steps, the substrate to be processed 100 having the concavo-convex structure 101 on the surface is manufactured.

この被加工基板100のエッチング方法によれば、レジスト膜120をプラズマに曝して変質させたので、マスク層110とレジスト膜120のエッチングの選択比を高くすることができる。これにより、マスク層110に対して微細で深い形状の加工を施しやすくなり、微細な形状のマスク層110を十分に厚く形成することができる。   According to the etching method of the substrate to be processed 100, the resist film 120 is exposed to plasma and altered, so that the etching selectivity between the mask layer 110 and the resist film 120 can be increased. Thereby, it becomes easy to process the mask layer 110 with a fine and deep shape, and the mask layer 110 with a fine shape can be formed sufficiently thick.

また、プラズマエッチング装置1により、レジスト膜120の変質と、マスク層110のエッチングとを連続的に行うことができ、工数が著しく増大することもない。本実施形態においては、電源5のバイアス出力を変化させることにより、レジスト膜120の変質とマスク層110のエッチングとを行っており、簡単容易にレジスト膜120の選択比を高くすることができる。   Further, the plasma etching apparatus 1 can continuously perform the alteration of the resist film 120 and the etching of the mask layer 110, and the man-hour is not significantly increased. In the present embodiment, the resist film 120 is altered and the mask layer 110 is etched by changing the bias output of the power supply 5, and the selectivity of the resist film 120 can be easily increased.

さらに、十分に厚いマスク層110をマスクとして、被加工基板100のエッチングを行うようにしたので、被加工基板100に対して微細で深い形状の加工を施しやすくなる。特に、サファイア基板において、周期が1μm以下で深さが300nm以上の凹凸構造101を形成することは、マスク層が形成された基板上にレジスト膜を形成し、レジスト膜を利用してマスク層のエッチングを行うエッチング方法では従来は不可能であったが、本実施形態のエッチング方法では可能となる。特に、本実施形態のエッチング方法では、周期が1μm以下で深さが500nm以上の凹凸構造を形成するのに好適である。   Furthermore, since the substrate to be processed 100 is etched using the sufficiently thick mask layer 110 as a mask, it becomes easy to process the substrate 100 to be processed in a fine and deep shape. In particular, in the sapphire substrate, the formation of the concavo-convex structure 101 having a period of 1 μm or less and a depth of 300 nm or more forms a resist film on the substrate on which the mask layer is formed, and uses the resist film to form the mask layer. The etching method that performs etching has been impossible in the past, but is possible with the etching method of the present embodiment. In particular, the etching method of this embodiment is suitable for forming a concavo-convex structure having a period of 1 μm or less and a depth of 500 nm or more.

ナノスケールの周期的な凹凸構造はモスアイと称されるが、このモスアイの加工をサファイアに行う場合、サファイアは難削材であることから、200nm程度の深さまでしか加工ができなかった。しかしながら、200nm程度の段差では、モスアイとして不十分な場合があった。本実施形態のエッチング方法は、サファイア基板にモスアイ加工を施す場合の新規な課題を解決したものといえる。   The nanoscale periodic concavo-convex structure is referred to as moth eye. However, when this moth eye is processed on sapphire, sapphire is a difficult-to-cut material and can only be processed to a depth of about 200 nm. However, a step of about 200 nm may be insufficient as a moth eye. It can be said that the etching method of this embodiment has solved a novel problem in the case of performing moth-eye processing on a sapphire substrate.

尚、ナノインプリント技術を用いてレジストパターンを形成するものを示したが、例えばステンシルマスク等を用いて電子線照射によりレジストパターンを形成するものであってもよい。   In addition, although what formed a resist pattern using a nanoimprint technique was shown, you may form a resist pattern by electron beam irradiation using a stencil mask etc., for example.

また、被加工材として、SiO/Niからなるマスク層110を示したが、マスク層110がNiの単層であったり他の材料であってもよいことは勿論である。要は、レジストを変質させて、マスク層110とレジスト膜120のエッチング選択比を高くすればよいのである。 Further, although the mask layer 110 made of SiO 2 / Ni is shown as a workpiece, it goes without saying that the mask layer 110 may be a single Ni layer or other material. In short, the resist may be altered to increase the etching selectivity between the mask layer 110 and the resist film 120.

さらに、マスク層110を用いて被加工基板100をエッチングするものを示したが、マスク層110を用いることなく被加工基板100をエッチングするようにしてもよい。この場合、被加工基板100が被加工材となり、被加工基板100にレジスト膜120を形成して、レジストを変質させてエッチング選択比を高くすることとなる。   Further, although the substrate to be processed 100 is etched using the mask layer 110, the substrate to be processed 100 may be etched without using the mask layer 110. In this case, the substrate to be processed 100 becomes a material to be processed, and a resist film 120 is formed on the substrate to be processed 100, and the resist is altered to increase the etching selectivity.

また、プラズマエッチング装置1のバイアス出力を変化させて変質用条件とエッチング用条件とするものを示したが、アンテナ出力、ガス流量を変化させる他、例えば処理ガスを変更することで設定してもよい。要は、変質用条件は、レジストがプラズマに曝された際に変質してエッチング選択比が高くなる条件であればよい。   In addition, the change of the bias output of the plasma etching apparatus 1 is shown as the condition for alteration and the condition for etching. However, in addition to changing the antenna output and the gas flow rate, for example, it may be set by changing the processing gas. Good. In short, the condition for alteration may be a condition in which the resist is altered when the resist is exposed to plasma and the etching selectivity is increased.

また、被加工基板100としてサファイアを用い、マスク層110としてNi層110が含まれるものを示したが、他の材料のエッチングであっても本発明を適用可能なことはいうまでもない。例えば、エッチング加工の対象を、SiC、Si、GaAs、GaN、InP、ZnO等を基板とすることもできる。   Further, although sapphire is used as the substrate to be processed 100 and the Ni layer 110 is included as the mask layer 110, it is needless to say that the present invention can be applied to etching of other materials. For example, SiC, Si, GaAs, GaN, InP, ZnO or the like can be used as a substrate for etching.

図4は被加工基板を示し、(a)は模式斜視図を、(b)はA−A断面図をそれぞれ示す。
前述の工程を経て作製される被加工基板100について説明する。本実施形態においては、図4(a)及び(b)に示すように、凹凸構造101は、周期的に形成された複数の凸部102を有し、各凸部102の間が凹部をなしている。本実施形態においては、各凸部102の形状は、円錘の上部を切り落とした円錘台状である。尚、凸部102の形状は、円錐台状の他、多角錘台等の他の錘台状としたり、円錐、多角錘等の錘状とすることができる。尚、凸部102でなく凹部が、錘状、円錘台、錘台状等の形状をなしていてもよい。本実施形態においては、凹凸構造101は、平面視にて、各凸部102の中心が正三角形の頂点の位置となるように、所定の周期で仮想の三角格子の交点に整列して形成される。
4A and 4B show a substrate to be processed, where FIG. 4A shows a schematic perspective view, and FIG. 4B shows an AA cross-sectional view.
The processed substrate 100 manufactured through the above-described steps will be described. In the present embodiment, as shown in FIGS. 4A and 4B, the concavo-convex structure 101 has a plurality of convex portions 102 formed periodically, and a concave portion is formed between the convex portions 102. ing. In this embodiment, the shape of each convex part 102 is a frustum shape which cut off the upper part of the cone. In addition, the shape of the convex part 102 can be made into other frustum shapes, such as a polygonal frustum other than a truncated cone shape, and can also be made into weights, such as a cone and a polygonal frustum. Note that the concave portion instead of the convex portion 102 may have a shape such as a weight, a frustum, or a frustum. In the present embodiment, the concavo-convex structure 101 is formed in alignment with the intersection of the virtual triangular lattice at a predetermined cycle so that the center of each convex portion 102 is the position of the apex of the regular triangle in plan view. The

本実施形態においては、各凸部102の周期は、500nmである。尚、ここでいう周期とは、隣接する凸部102における高さのピーク位置の距離をいう。また、各凸部102は、基端部の直径が200nmであり、高さは600nmとなっている。尚、各凸部102の周期、寸法、形状等は適宜に変更可能である。   In this embodiment, the period of each convex part 102 is 500 nm. Here, the period refers to the distance between the height peak positions of adjacent convex portions 102. In addition, each convex portion 102 has a base end diameter of 200 nm and a height of 600 nm. In addition, the period, dimension, shape, etc. of each convex part 102 can be changed suitably.

そして、この被加工基板100を用いて、例えば図5に示す発光素子200を製造することができる。この発光素子200は、フェイスアップ型のLEDであり、被加工基板100の凹凸構造101を有する面上に、III族窒化物半導体層が形成されたものである。III族窒化物半導体層は、バッファ層210、n型GaN層212、多重量子井戸活性層214、電子ブロック層216、p型GaN層218を被加工基板100側からこの順に有している。p型GaN層218上にはp側電極220が形成されるとともに、n型GaN層212上にはn側電極224が形成されている。また、サファイア基板2の裏面側には、例えばAlからなる反射膜226が形成されている。   And the light emitting element 200 shown, for example in FIG. 5 can be manufactured using this to-be-processed substrate 100. FIG. The light emitting element 200 is a face-up type LED, and a group III nitride semiconductor layer is formed on the surface of the substrate 100 to be processed having the concavo-convex structure 101. The group III nitride semiconductor layer has a buffer layer 210, an n-type GaN layer 212, a multiple quantum well active layer 214, an electron block layer 216, and a p-type GaN layer 218 in this order from the substrate 100 to be processed. A p-side electrode 220 is formed on the p-type GaN layer 218, and an n-side electrode 224 is formed on the n-type GaN layer 212. A reflective film 226 made of, for example, Al is formed on the back surface side of the sapphire substrate 2.

バッファ層210はAlNで、n型GaN層212はn−GaNで、多重量子井戸活性層214はGalnN/GaNで、それぞれ構成される。本実施形態においては、多重量子井戸活性層214の発光のピーク波長は450nmである。また、電子ブロック層216はp―AIGaNで、p型GaN層218はp−GaNで、それぞれ構成される。n型GaN層212からp型GaN層218までは、III族窒化物半導体のエピタキシャル成長により形成され、被加工基板100に凹凸構造101が存在するが、III族窒化物半導体の成長初期に横方向成長による平坦化が図られる。   The buffer layer 210 is made of AlN, the n-type GaN layer 212 is made of n-GaN, and the multiple quantum well active layer 214 is made of GalnN / GaN. In the present embodiment, the peak wavelength of light emission of the multiple quantum well active layer 214 is 450 nm. The electron block layer 216 is composed of p-AIGaN, and the p-type GaN layer 218 is composed of p-GaN. The n-type GaN layer 212 to the p-type GaN layer 218 are formed by epitaxial growth of a group III nitride semiconductor, and the concavo-convex structure 101 exists on the substrate 100 to be processed. Is flattened.

p側電極220は、例えばITO(Indium Tin Oxide)等の透明な材料からなる。また、n側電極224は、p型GaN層218からn型GaN層212をエッチングして、露出したn型GaN層212上に形成される。n側電極224は、例えばTi/Al/Ti/Auから構成される。   The p-side electrode 220 is made of a transparent material such as ITO (Indium Tin Oxide). The n-side electrode 224 is formed on the exposed n-type GaN layer 212 by etching the n-type GaN layer 212 from the p-type GaN layer 218. The n-side electrode 224 is made of, for example, Ti / Al / Ti / Au.

この発光素子200においては、反射膜226の被加工基板100側の面が反射面228をなしており、活性層214から発せられた光が凹凸構造101における界面を回折作用によって透過し、透過した光を反射面228にて反射する。これにより、回折作用により透過した光を当該界面に再入射させて、当該界面にて再び回折作用を利用して透過させることにより、複数のモードで光を素子外部へ取り出すことができる。この回折作用を得るため、各凸部101の周期は、多重量子井戸活性層214から発せられる光の光学波長より大きく、当該光のコヒーレント長より小さくすることが好ましい。   In the light emitting element 200, the surface of the reflective film 226 on the substrate 100 side forms the reflective surface 228, and light emitted from the active layer 214 is transmitted through the interface of the concavo-convex structure 101 by diffraction. Light is reflected by the reflecting surface 228. Thereby, the light transmitted by the diffractive action is re-incident on the interface, and the light is transmitted again using the diffractive action at the interface, whereby the light can be extracted outside the element in a plurality of modes. In order to obtain this diffraction effect, the period of each convex portion 101 is preferably larger than the optical wavelength of the light emitted from the multiple quantum well active layer 214 and smaller than the coherent length of the light.

ここで、光学波長とは、実際の波長を屈折率で除した値を意味する。また、コヒーレント長とは、所定のスペクトル幅のフォトン群の個々の波長の違いによって、波の周期的振動が互いに打ち消され、可干渉性が消失するまでの距離に相当する。コヒーレント長lcは、光の波長をλ、当該光の半値幅をΔλとすると、おおよそlc=(λ/Δλ)の関係にある。ここで、各凸部102の周期は、多重量子井戸活性層214から発せられる光の光学波長の2倍より大きいことが好ましい。また、各凸部102の周期は、多重量子井戸活性層214から発せられる光のコヒーレント長の半分以下であることが好ましい。 Here, the optical wavelength means a value obtained by dividing the actual wavelength by the refractive index. The coherent length corresponds to the distance until the periodic oscillations of the waves cancel each other and the coherence disappears due to differences in individual wavelengths of the photon group having a predetermined spectral width. The coherent length lc is approximately lc = (λ 2 / Δλ), where λ is the wavelength of light and Δλ is the half width of the light. Here, the period of each convex part 102 is preferably larger than twice the optical wavelength of the light emitted from the multiple quantum well active layer 214. Moreover, it is preferable that the period of each convex part 102 is half or less of the coherent length of the light emitted from the multiple quantum well active layer 214.

本実施形態においては、各凸部102の周期は、500nmである。活性層214から発せられる光の波長は450nmであり、III族窒化物半導体層の屈折率が2.4であることから、その光学波長は187.5nmである。また、活性層214から発せられる光の半値幅は63nmであることから、当該光のコヒーレント長は、3214nmである。すなわち、凹凸構造101の周期は、活性層214の光学波長の2倍より大きく、かつ、コヒーレント長の半分以下となっている。   In this embodiment, the period of each convex part 102 is 500 nm. Since the wavelength of light emitted from the active layer 214 is 450 nm and the refractive index of the group III nitride semiconductor layer is 2.4, the optical wavelength thereof is 187.5 nm. Further, since the half width of the light emitted from the active layer 214 is 63 nm, the coherent length of the light is 3214 nm. That is, the period of the concavo-convex structure 101 is greater than twice the optical wavelength of the active layer 214 and less than or equal to half the coherent length.

このように、サファイアからなる被加工基板100を発光素子200に用いたものを例示したが、被加工基板100を他のデバイスに用いることもできるし、その他、具体的な用途等については適宜に変更が可能である。   Thus, although what used the to-be-processed substrate 100 which consists of sapphire for the light emitting element 200 was illustrated, the to-be-processed substrate 100 can also be used for another device, and about other specific uses etc. suitably It can be changed.

1 プラズマエッチング装置
2 基板保持台
3 容器
4 コイル
5 電源
6 石英板
7 冷却制御部
8 プラズマ
100 被加工基板
101 凹凸構造
102 凸部
103 側面
200 発光素子
210 バッファ層
212 n型GaN層
214 多重量子井戸活性層
216 電子ブロック層
218 p型GaN層
220 p側電極
224 n側電極
226 反射膜
228 反射面
DESCRIPTION OF SYMBOLS 1 Plasma etching apparatus 2 Substrate holding stand 3 Container 4 Coil 5 Power supply 6 Quartz plate 7 Cooling control part 8 Plasma 100 Processed substrate 101 Uneven structure 102 Convex part 103 Side surface 200 Light emitting element 210 Buffer layer 212 N-type GaN layer 214 Multiple quantum well Active layer 216 Electron blocking layer 218 p-type GaN layer 220 p-side electrode 224 n-side electrode 226 reflective film 228 reflective surface

Claims (8)

サファイア基板上の基板用マスク層上にレジスト膜を形成するレジスト膜形成工程と、
前記レジスト膜に所定のパターンを形成するパターン形成工程と、
変質用条件のバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導し、前記パターンが形成された前記レジスト膜を変質させてエッチング選択比を高くするレジスト変質工程と、
前記変質用条件より高いバイアス出力を加えて、Arガスのプラズマを前記基板用マスク層へ誘導し、エッチング選択比が高くなった前記レジスト膜をマスクとして前記基板用マスク層のエッチングを行う被加工材のエッチング工程と、
エッチングされた基板用マスク層をマスクとして、前記サファイア基板のエッチングを行って、前記サファイア基板に凹凸形状を形成する基板のエッチング工程と、を含むエッチング方法。
A resist film forming step of forming a resist film on the substrate mask layer on the sapphire substrate;
A pattern forming step of forming a predetermined pattern on the resist film;
A resist alteration step of applying a bias output of alteration conditions, inducing Ar gas plasma to the substrate mask layer, altering the resist film on which the pattern is formed, and increasing an etching selectivity;
Applying a bias output higher than the condition for alteration, guiding Ar plasma to the mask layer for the substrate, and etching the mask layer for the substrate using the resist film having a high etching selectivity as a mask A material etching process;
Etching the substrate using the etched substrate mask layer as a mask to etch the sapphire substrate to form a concavo-convex shape on the sapphire substrate.
前記基板のエッチング工程にて、前記サファイア基板に深さ300nm以上の凹凸形状を形成する請求項1に記載のエッチング方法。   The etching method according to claim 1, wherein an uneven shape having a depth of 300 nm or more is formed on the sapphire substrate in the substrate etching step. 前記パターン形成工程の後、プラズマアッシングにより前記レジスト膜の残膜を取り除く残膜除去工程を含む請求項1または2に記載のエッチング方法。   The etching method according to claim 1, further comprising a residual film removing step of removing the residual film of the resist film by plasma ashing after the pattern forming step. 前記パターン形成工程にて、モールドで前記レジスト膜をプレスした後、プレス状態を保ったまま前記レジスト膜を硬化させ、前記レジスト膜に前記モールドの凹凸構造を転写する請求項1から3のいずれか1項に記載のエッチング方法。   4. The method according to claim 1, wherein after the resist film is pressed with a mold in the pattern forming step, the resist film is cured while the pressed state is maintained, and the uneven structure of the mold is transferred to the resist film. 2. The etching method according to item 1. 前記基板のエッチング工程にて、前記基板用マスク層上に前記レジスト膜が残った状態で、前記サファイア基板のエッチングを行う請求項1から4のいずれか1項に記載のエッチング方法。   5. The etching method according to claim 1, wherein the sapphire substrate is etched in a state in which the resist film remains on the substrate mask layer in the substrate etching step. 6. 前記基板用マスク層は、前記サファイア基板上のSiO層と、前記SiO層上のNi層と、を有し、
前記基板のエッチング工程にて、前記SiO層と、前記Ni層と、前記レジスト膜と、が積層した状態で、前記サファイア基板のエッチングを行う請求項5に記載のエッチング方法。
The substrate mask layer has a SiO 2 layer on the sapphire substrate and a Ni layer on the SiO 2 layer,
The etching method according to claim 5, wherein the sapphire substrate is etched in a state where the SiO 2 layer, the Ni layer, and the resist film are laminated in the substrate etching step.
前記基板のエッチング工程の後、所定の剥離液を用いて前記サファイア基板上に残った前記基板用マスク層を除去するマスク層除去工程を含む請求項5または6に記載のエッチング方法。   The etching method according to claim 5, further comprising a mask layer removing step of removing the substrate mask layer remaining on the sapphire substrate using a predetermined stripping solution after the substrate etching step. 前記マスク層除去工程にて、Oアッシングにより予め前記レジスト膜を除去してから、所定の剥離液を用いて前記サファイア基板上に残った前記基板用マスク層を除去する請求項7に記載のエッチング方法。 8. The substrate mask layer remaining on the sapphire substrate is removed using a predetermined stripping solution after removing the resist film in advance by O 2 ashing in the mask layer removing step. 9. Etching method.
JP2012247290A 2012-11-09 2012-11-09 Etching method Expired - Fee Related JP5808725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247290A JP5808725B2 (en) 2012-11-09 2012-11-09 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247290A JP5808725B2 (en) 2012-11-09 2012-11-09 Etching method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011249370A Division JP5142236B1 (en) 2011-11-15 2011-11-15 Etching method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015175382A Division JP2016027658A (en) 2015-09-07 2015-09-07 Etching method

Publications (2)

Publication Number Publication Date
JP2013106044A JP2013106044A (en) 2013-05-30
JP5808725B2 true JP5808725B2 (en) 2015-11-10

Family

ID=48625330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247290A Expired - Fee Related JP5808725B2 (en) 2012-11-09 2012-11-09 Etching method

Country Status (1)

Country Link
JP (1) JP5808725B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213687A (en) * 1995-11-30 1997-08-15 Fujitsu Ltd Fabrication of semiconductor device
JP2000221698A (en) * 1999-01-29 2000-08-11 Sony Corp Production of electronic device
JP2008110895A (en) * 2006-10-31 2008-05-15 Mitsubishi Cable Ind Ltd Method of manufacturing nitride semiconductor crystal

Also Published As

Publication number Publication date
JP2013106044A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5142236B1 (en) Etching method
JP5728116B2 (en) LED element and manufacturing method thereof
WO2014126016A1 (en) Led element and manufacturing method for same
KR101436077B1 (en) Light emitting element and method for manufacturing same
JP5435523B1 (en) Semiconductor light emitting device and manufacturing method thereof
US20180097144A1 (en) Method for manufacturing light emitting element and light emitting element
JP2009054882A (en) Manufacturing method of light emitting device
JP2011159650A (en) Light-emitting element
JP5808725B2 (en) Etching method
JP2016027658A (en) Etching method
WO2014115830A1 (en) Method for manufacturing semiconductor light-emitting element
JP2016001639A (en) Light emitting diode and light emitting diode manufacturing method
JP2007123446A (en) Method of manufacturing semiconductor light emitting element
JP5866044B1 (en) Light emitting device manufacturing method and light emitting device
JP2019009317A (en) Semiconductor light emitting device and method of manufacturing the same
WO2015194382A1 (en) Method for manufacturing light emitting element and light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150909

R150 Certificate of patent or registration of utility model

Ref document number: 5808725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees