JP5807899B2 - Gas turbine combustor - Google Patents
Gas turbine combustor Download PDFInfo
- Publication number
- JP5807899B2 JP5807899B2 JP2011117087A JP2011117087A JP5807899B2 JP 5807899 B2 JP5807899 B2 JP 5807899B2 JP 2011117087 A JP2011117087 A JP 2011117087A JP 2011117087 A JP2011117087 A JP 2011117087A JP 5807899 B2 JP5807899 B2 JP 5807899B2
- Authority
- JP
- Japan
- Prior art keywords
- inner diameter
- air
- fuel
- combustion cylinder
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Gas Burners (AREA)
- Spray-Type Burners (AREA)
Description
本発明は、ガスタービン燃焼器に係り、特に予混合管と燃焼筒が連通する開口部に特殊な構造を施すことにより、使用する燃料の輻射熱の大小に対応して燃焼筒内で保持される火炎の位置を容易に設定・変更できるようにし、火炎の熱による燃焼筒の耐久性悪化を防止したガスタービン燃焼器の構造に関するものである。 The present invention relates to a gas turbine combustor, and in particular, a special structure is provided in an opening where a premixing tube and a combustion cylinder communicate with each other, so that it is held in the combustion cylinder corresponding to the magnitude of radiant heat of the fuel used. The present invention relates to a structure of a gas turbine combustor that makes it possible to easily set and change the position of a flame and prevents deterioration of the durability of a combustion cylinder due to the heat of the flame.
下記特許文献1には、燃焼筒2と予混合管3と燃料供給手段5を備えたガスタービン燃焼器1の発明が開示されている。このガスタービン燃焼器1によれば、燃料供給手段において、燃料は接線方向に沿って環状の燃料通路16に供給され、環状のノズル部19から均一に噴射され、ノズル部を取り巻く周状の空気通路22からの空気によって微粒化されて、燃焼器内に軸方向流を作る。一方、予混合管の周壁面の孔25から内部に流入した空気は燃焼器内で軸方向流を取り巻く旋回流を作る。その結果、火炎は燃焼器の頂部から離れた位置に保持され、遮熱プレート6は過熱せず耐久性が向上するものとされている。 Patent Document 1 below discloses an invention of a gas turbine combustor 1 including a combustion cylinder 2, a premixing pipe 3, and a fuel supply means 5. According to the gas turbine combustor 1, in the fuel supply means, the fuel is supplied to the annular fuel passage 16 along the tangential direction, is uniformly injected from the annular nozzle portion 19, and the circumferential air surrounding the nozzle portion Atomized by air from passage 22 creates an axial flow in the combustor. On the other hand, the air that has flowed into the premixed tube from the hole 25 on the peripheral wall surface creates a swirling flow that surrounds the axial flow in the combustor. As a result, the flame is held at a position away from the top of the combustor, and the heat shield plate 6 is not overheated and the durability is improved.
また、下記特許文献2及び3には、燃料を燃焼させるバーナーにおいて、燃焼筒に向かう直進流の空気とスワーラによる旋回流の空気によって燃料と空気を十分に混合させ、燃焼の安定化や低エミッションを実現しようとしたガスタービン燃焼器に関する発明が記載されている。 Further, in Patent Documents 2 and 3 below, in a burner that burns fuel, fuel and air are sufficiently mixed by a straight flow air that goes to the combustion cylinder and a swirl flow air by a swirler to stabilize combustion and reduce low emission. An invention relating to a gas turbine combustor that attempts to achieve the above is described.
しかしながら、上述したような従来のガスタービン燃焼器では、予混合管から供給された混合気が燃焼筒内で火炎となって燃焼する際、その火炎の輻射熱が燃焼筒を損傷しないように、予混合管が連通している燃焼筒の頂部から所定距離だけ離れた位置に火炎を保持するのが普通である。この燃焼筒の頂部から火炎までの距離をリフト距離と称している。 However, in the conventional gas turbine combustor as described above, when the air-fuel mixture supplied from the premixing tube burns as a flame in the combustion cylinder, the preheat is prevented so that the radiant heat of the flame does not damage the combustion cylinder. It is common to hold the flame at a position that is a predetermined distance away from the top of the combustion cylinder with which the mixing tube communicates. The distance from the top of the combustion cylinder to the flame is called the lift distance.
ところで、火炎の輻射熱は燃料の種類により異なるので、従来のガスタービン燃焼器を設計する際には、使用する燃料の種類に対応し、火炎のリフト距離が装置に熱損傷を与えない適当な長さとなるように、予混合管からの旋回空気量と直進空気量が適宜にバランスするように装置の構造を設定していた。 By the way, the radiant heat of the flame varies depending on the type of fuel. Therefore, when designing a conventional gas turbine combustor, the flame lift distance should be set to an appropriate length that will not cause thermal damage to the device. Therefore, the structure of the apparatus has been set so that the amount of swirling air from the premixing tube and the amount of straight-running air are appropriately balanced.
具体的には、使用するスワーラのスワール数や予混合管の形状構造を調整することにより、旋回空気量と直進空気量のバランスを所望の値に設定していたが、このように必要なリフト距離に合わせて各部の構造等を調整する作業は複雑かつ煩雑であり多大な時間・コストを要するものであった。 Specifically, the balance between the swirling air amount and the straight air amount was set to a desired value by adjusting the swirl number of the swirler used and the shape structure of the premixing tube. The operation of adjusting the structure and the like of each part according to the distance is complicated and complicated and requires a lot of time and cost.
さらに、一旦所定種類の燃料に合わせてリフト距離を設定したガスタービン燃焼器であっても、使用上の都合によっては燃焼時の輻射熱が異なる他の燃料を使用しなければならない場合もある。そのような場合には、燃料の変更に対応して異なるリフト距離を設定するため、当該ガスタービン燃焼器の各部の構造を変更し、予混合管からの旋回空気量と直進空気量の調整作業を行なう必要があった。具体的には、リフト距離を短くする場合には、旋回空気量を増大させ、直進空気量を減少させるような改造が必要であり、またリフト距離を長くする場合には、旋回空気量を減少させ、直進空気量を増大させるような改造が必要である。このような改造作業は、新規でガスタービン燃焼器を製造する場合に比しても、さらに複雑かつ煩雑であり、より一層多大な時間・コストを要することとなっていた。 Furthermore, even in a gas turbine combustor in which a lift distance is set in accordance with a predetermined type of fuel, another fuel having different radiant heat during combustion may have to be used depending on the convenience of use. In such a case, in order to set different lift distances corresponding to the change of fuel, the structure of each part of the gas turbine combustor is changed, and the swirling air amount and the straight air amount from the premixing pipe are adjusted. It was necessary to do. Specifically, when the lift distance is shortened, modification is required to increase the amount of swirling air and decrease the amount of straight air travel. When increasing the lift distance, the amount of swirling air is decreased. It is necessary to make modifications to increase the amount of straight air. Such remodeling work is more complicated and complicated than when a new gas turbine combustor is manufactured, and much more time and cost are required.
そこで本発明は、以上の課題を解決するものであり、使用する燃料の輻射熱の大小に対応する等のために、燃焼筒内で保持される火炎のリフト位置を容易に設定し、また変更できるようにすることを目的としている。 Therefore, the present invention solves the above-described problems, and can easily set and change the lift position of the flame held in the combustion cylinder in order to cope with the magnitude of the radiant heat of the fuel used. The purpose is to do so.
請求項1に記載されたガスタービン燃焼器は、
タービンに燃焼ガスを供給するために燃料と空気の混合気を燃焼させる燃焼筒と、
前記燃焼筒に開口して設けられ供給された燃料と空気を混合して前記燃焼筒に供給する予混合管と、
前記予混合管に設けられて前記予混合管に燃料を供給する燃料供給手段と、
前記予混合管が前記燃焼筒に開口する開口端に、他の内径拡大形状の内径拡大部と交換可能に設けられた内径拡大部と、
を備えたことを特徴としている。
A gas turbine combustor according to claim 1 is provided.
A combustion cylinder that burns a mixture of fuel and air to supply combustion gas to the turbine;
A premixing pipe that is provided in the combustion cylinder so as to be provided and supplied to the combustion cylinder by mixing the supplied fuel and air;
Fuel supply means provided in the premixing tube and supplying fuel to the premixing tube;
An inner diameter enlarged portion provided at the opening end where the premixing tube opens in the combustion cylinder, in an exchangeable manner with an inner diameter enlarged portion of another inner diameter enlarged shape ,
It is characterized by having.
請求項2に記載されたガスタービン燃焼器は、請求項1記載のガスタービン燃焼器において、前記内径拡大部が、所定角度の平面加工部を有することを特徴としている。 The gas turbine combustor described in claim 2 is characterized in that, in the gas turbine combustor described in claim 1, the inner diameter enlarged portion has a plane machining portion having a predetermined angle.
請求項2に記載されたガスタービン燃焼器は、請求項1記載のガスタービン燃焼器において、前記内径拡大部が曲面加工部を有することを特徴としている。 A gas turbine combustor according to a second aspect is the gas turbine combustor according to the first aspect, wherein the inner diameter enlarged portion has a curved surface processing portion.
本発明に係るガスタービン燃焼器によれば、予混合管の燃焼筒に対する開口端には内径拡大部が設けられており、この内径拡大部の形状に応じて、燃焼筒内の火炎のリフト距離が定まる。すなわち、内径拡大部は、予混合管から燃焼筒に向けた軸方向に沿って内径が拡大する形状であるため、予混合管の内周面に沿って流れる空気の旋回流は、予混合管の開口において内径拡大部に沿って流れることにより、外方に拡大しながら燃焼筒に流入することとなる。 According to the gas turbine combustor according to the present invention, the opening end of the premixing tube with respect to the combustion cylinder is provided with the inner diameter enlarged portion, and the lift distance of the flame in the combustion cylinder according to the shape of the inner diameter enlarged portion. Is determined. That is, since the inner diameter expanding portion has a shape in which the inner diameter expands along the axial direction from the premixing tube toward the combustion cylinder, the swirling flow of air flowing along the inner peripheral surface of the premixing tube By flowing along the inner diameter enlarged portion at the opening, the gas flows into the combustion cylinder while expanding outward.
従って、内径拡大部における内径拡大の程度が相対的に大きく、より外側に逃げるような形状であるほど、空気の旋回流は燃焼筒内においてより外側に誘導されるので、予混合管の中央を進む空気の直進流の流路断面積は相対的に大きくなる。その結果、燃料と空気の量を一定として考えれば、混合気の速度は相対的に小さくなるので、火炎は予混合管により近い位置に保持されることとなり、リフト距離は相対的に短くなる。 Therefore, as the degree of inner diameter expansion in the inner diameter enlarged portion is relatively large and the shape is such that it escapes to the outside, the swirling flow of air is guided to the outside in the combustion cylinder. The cross-sectional area of the straight flow of the traveling air is relatively large. As a result, assuming that the amounts of fuel and air are constant, the speed of the air-fuel mixture becomes relatively small, so that the flame is held at a position closer to the premixing tube, and the lift distance becomes relatively short.
逆に、内径拡大部における内径拡大の程度が相対的に小さく、外側に逃げる程度が相対的に小さい形状であるほど、空気の旋回流は燃焼筒内において外側に誘導される程度が相対的に小さくなるので、予混合管の中央を進む空気の直進流の流路断面積は相対的に小さくなる。その結果、燃料と空気の量を一定として考えれば、混合気の速度は相対的に大きくなるので、火炎は予混合管により遠い位置に保持されることとなり、リフト距離は相対的に長くなる。 On the contrary, the degree of the inner diameter expansion in the inner diameter enlarged portion is relatively small and the degree of escape to the outside is relatively small, so that the degree of air swirling flow is relatively guided outside in the combustion cylinder. Therefore, the cross-sectional area of the straight flow of the air flowing through the center of the premixing tube is relatively small. As a result, if the amount of fuel and air is assumed to be constant, the speed of the air-fuel mixture becomes relatively large, so that the flame is held at a far position by the premixing tube, and the lift distance becomes relatively long.
従って、燃焼した場合の輻射熱が相対的に大きい燃料を使用する場合は、内径の拡大が相対的に小さい内径拡大部を採用して火炎のリフト距離を相対的に長くし、輻射熱が相対的に小さい燃料を使用する場合は、内径の拡大が相対的に大きい内径拡大部を採用して火炎のリフト距離を相対的に短くすればよい。このように、旋回空気量や直進空気量を変えるという大幅な構造の変更をすることなく、内径拡大部を交換するだけで、使用する燃料の輻射熱に応じて火炎のリフト量を任意に設定することができるので、燃料の種類によらず、火炎の熱による燃焼筒の耐久性悪化を確実に防止することができる。 Therefore, when using a fuel that has a relatively large radiant heat when burned, an inner diameter enlarged portion having a relatively smaller inner diameter is employed to make the flame lift distance relatively long and the radiant heat relatively When using a small fuel, it is only necessary to adopt an inner diameter enlarged portion having a relatively larger inner diameter to shorten the flame lift distance. In this way, the lift amount of the flame can be arbitrarily set according to the radiant heat of the fuel to be used, by simply replacing the enlarged inner diameter portion without changing the structure of the swirling air amount or the straight air amount. Therefore, the deterioration of the durability of the combustion cylinder due to the heat of the flame can be reliably prevented regardless of the type of fuel.
以下本発明の最良の実施の形態につき、添付図面を参照して詳細に説明する。
まず、図1を参照して第1実施形態のガスタービン燃焼器1の全体構成を説明する。
このガスタービン燃焼器1は大略円筒形状の燃焼筒2を有している。燃焼筒2は頂部が閉塞され、下部の開口が図示しないガスタービンの排気側に連通されている。詳細は後述するが、燃焼筒2の頂部には予混合管3が取り付けられ、予混合管3の頂部には燃料供給手段としての圧力噴射装置4が取り付けられている。そして、燃焼筒2と予混合管3は、図示しないターボ圧縮機の圧縮空気取入口に連通した外筒体5に包囲されており、圧力噴射装置4に接続された燃料供給系の一部は外筒体5の頂部を貫通して外部に導かれている。
The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings.
First, the overall configuration of the gas turbine combustor 1 according to the first embodiment will be described with reference to FIG.
The gas turbine combustor 1 has a combustion cylinder 2 having a substantially cylindrical shape. The top of the combustion cylinder 2 is closed, and a lower opening communicates with an exhaust side of a gas turbine (not shown). Although details will be described later, a premixing tube 3 is attached to the top of the combustion cylinder 2, and a pressure injection device 4 as fuel supply means is attached to the top of the premixing tube 3. The combustion cylinder 2 and the premixing pipe 3 are surrounded by an outer cylinder 5 that communicates with a compressed air intake port of a turbo compressor (not shown), and a part of the fuel supply system connected to the pressure injection device 4 is The outer cylinder 5 is guided to the outside through the top.
図1乃至図2に示すように、燃焼筒2の頂部中心位置には予混合管3が同軸で配置されている。予混合管3は、燃焼筒2の頂部の外側に取り付けられた筒状の周壁6と、燃焼筒2の頂部に取り付けられて下方の燃焼筒2内に所定寸法だけ突出するように配置された筒状の突出壁7から構成されている。周壁6は、その外形は直円筒形であるが、その内形は下方の燃焼筒2に向けて内径が徐々に縮小する形状となっている。また周壁6には接線方向に沿って内部に空気を流入させる複数の孔8が形成されている。突出壁7は、周壁6の下端の開口と等しい内径の直円筒体であり、周壁6の下端に連結されている。 As shown in FIGS. 1 and 2, a premixing tube 3 is coaxially arranged at the center of the top of the combustion cylinder 2. The premixing tube 3 is disposed so as to protrude by a predetermined size into the lower combustion cylinder 2 attached to the top of the combustion cylinder 2 and a cylindrical peripheral wall 6 attached to the outside of the top of the combustion cylinder 2. It is composed of a cylindrical projecting wall 7. The outer shape of the peripheral wall 6 is a right cylindrical shape, but the inner shape thereof has a shape in which the inner diameter gradually decreases toward the lower combustion cylinder 2. The peripheral wall 6 is formed with a plurality of holes 8 through which air flows in along the tangential direction. The protruding wall 7 is a right cylindrical body having an inner diameter equal to the opening at the lower end of the peripheral wall 6, and is connected to the lower end of the peripheral wall 6.
図2及び図3に示すように、燃焼筒2内で開口している予混合管3の突出壁7の開口端には内径拡大部10が取り付けられている。内径拡大部10は環状の部材であり、その内周縁には所定角度で斜め下方に向いた平面加工部である面取り部11が形成されている。この実施形態では、面取り部の角度は45度であり、その水平方向及び垂直方向の寸法は8mmであって、JIS記号で示せばC8で表される面取り加工が内周縁に施されていると言える。 As shown in FIGS. 2 and 3, an inner diameter enlarged portion 10 is attached to the opening end of the protruding wall 7 of the premixing tube 3 that opens in the combustion cylinder 2. The inner diameter enlarged portion 10 is an annular member, and a chamfered portion 11 is formed on the inner peripheral edge of the inner peripheral portion, which is a planar processing portion that is inclined downward at a predetermined angle. In this embodiment, the angle of the chamfered portion is 45 degrees, the horizontal and vertical dimensions are 8 mm, and the chamfering process represented by C8 is applied to the inner peripheral edge as shown by the JIS symbol. I can say that.
図2に示すように、予混合管3の周壁6の内部には円筒形の内壁9が所定間隔をおいて同軸で配置されている。内壁9の外周面は、下方の燃焼筒2に向けて外径が徐々に縮小する形状となっており、周壁6と内壁9の間には、半径方向の間隔が一定であるとともに、下方に向けて窄まる筒状の隙間Sが構成されている。この隙間Sは、予混合管3の一端側である上端が閉止されており、下端が突出壁7の上端の近傍で開口している。また、内壁9の内周面は直円筒形状であり、予混合管3の一端側である内壁9の上端は外筒体5内に開口している。 As shown in FIG. 2, a cylindrical inner wall 9 is coaxially arranged at a predetermined interval inside the peripheral wall 6 of the premixing tube 3. The outer peripheral surface of the inner wall 9 has a shape in which the outer diameter gradually decreases toward the lower combustion cylinder 2, and the radial interval between the peripheral wall 6 and the inner wall 9 is constant and A cylindrical gap S that narrows toward the end is formed. The gap S has an upper end that is one end side of the premixing tube 3 closed, and a lower end opened near the upper end of the protruding wall 7. Further, the inner peripheral surface of the inner wall 9 has a right cylindrical shape, and the upper end of the inner wall 9 that is one end side of the premixing tube 3 opens into the outer cylinder 5.
従って、外筒体5内に導かれたターボ圧縮機からの圧縮空気は、予混合管3の周壁6の孔8から内部に流入し、周壁6と内壁9の間の筒状の隙間Sで旋回流となり、さらに突出壁7の内周面に沿って旋回しながら開口端まで進み、内径拡大部10を経て燃焼筒2に送り込まれる。 Therefore, the compressed air from the turbo compressor guided into the outer cylinder 5 flows into the inside through the hole 8 of the peripheral wall 6 of the premixing tube 3 and is formed in the cylindrical gap S between the peripheral wall 6 and the inner wall 9. It turns into a swirl flow, further proceeds to the opening end while swirling along the inner peripheral surface of the projecting wall 7, and sent to the combustion cylinder 2 through the inner diameter enlarged portion 10.
また、圧縮空気は、圧力噴射装置4から供給される燃料とともに、内壁9の上端の開口から内壁9の内側に供給されて混合気となり、前記旋回流の干渉を受けることなく、内壁9の内側の全領域において内壁9の軸線方向に沿った一様な直進流となり、燃焼筒2に送り込まれる。 In addition, the compressed air is supplied to the inside of the inner wall 9 from the opening at the upper end of the inner wall 9 together with the fuel supplied from the pressure injection device 4 to become an air-fuel mixture, and the inner side of the inner wall 9 without being affected by the swirling flow. In the entire region, the straight flow is uniform along the axial direction of the inner wall 9 and is fed into the combustion cylinder 2.
ここで、内径拡大部10は面取り部11が斜め下方に向いており、中心軸に沿い燃焼筒2に向けて進むに従って内径が拡大していく形状であるため、隙間Sから出た空気の旋回流は、予混合管3の突出壁7の開口端において、内径拡大部10の面取り部11に沿って流れることにより、外方に拡大しながら燃焼筒2に流入することとなる。 Here, the inner diameter expanding portion 10 has a shape in which the chamfered portion 11 faces obliquely downward, and the inner diameter increases as it advances toward the combustion cylinder 2 along the central axis. The flow flows along the chamfered portion 11 of the inner diameter enlarged portion 10 at the opening end of the projecting wall 7 of the premixing tube 3 and flows into the combustion cylinder 2 while expanding outward.
従って、内径拡大部10における内径拡大の程度に応じ、空気の旋回流は燃焼筒2内において外側に誘導される効果が生じるので、予混合管3の中央を進む空気の直進流の流路断面積は旋回流が外側に導かれる程度に応じて、次のように影響を受ける。 Therefore, the swirling flow of air has an effect of being guided outside in the combustion cylinder 2 in accordance with the degree of expansion of the inner diameter of the inner diameter expanding portion 10. The area is affected as follows depending on the degree to which the swirl flow is directed outward.
すなわち、空気の旋回流が内径拡大部10によって外方に導かれる程度が大きくなると、空気の直進流の流路断面積が大きくなり、燃料と空気の量を一定として考えれば、混合気の速度は相対的に小さくなる。従って火炎はリフト距離が短くなって燃焼筒2の頂部に近くなる。また、空気の旋回流が内径拡大部10によって外方に導かれる程度が小さくなると、空気の直進流の流路断面積が小さくなり、燃料と空気の量を一定として考えれば、混合気の速度は相対的に大きくなる。従って火炎はリフト距離が長くなって燃焼筒2の頂部から遠くなる。このように、火炎のリフト距離は、内径拡大部10における面取り部11の内径拡大の程度(この場合は面取り加工の大きさ)に応じて決定される。 That is, if the degree to which the swirling flow of air is guided outward by the inner diameter enlarged portion 10 increases, the cross-sectional area of the straight air flow increases, and the amount of fuel and air is considered to be constant. Is relatively small. Therefore, the flame has a shorter lift distance and becomes closer to the top of the combustion cylinder 2. Further, if the degree to which the swirling flow of air is guided outward by the inner diameter enlarged portion 10 is reduced, the cross-sectional area of the straight air flow is reduced, and if the amount of fuel and air is considered constant, the speed of the air-fuel mixture Is relatively large. Accordingly, the flame becomes longer from the top of the combustion cylinder 2 as the lift distance becomes longer. Thus, the lift distance of the flame is determined according to the extent of the inner diameter expansion of the chamfered portion 11 in the inner diameter expanded portion 10 (in this case, the size of the chamfering process).
図2に示すように、前記圧力噴射装置4は、予混合管3の一端側である周壁6の上端の開口の中心部に配置されている。この圧力噴射装置4は、燃料を空洞状の円錐形に噴射することにより液体燃料を高度に微粒化するホロコーンタイプの圧力噴射ノズルである。この圧力噴射装置4は、メイン供給路20とパイロット供給路21の2つの燃料供給路から供給される燃料が同一の噴射ノズル22から流出するようになっており、燃料に旋回運動が与えられることにより、噴射ノズル22から出た燃料は遠心力のために広がって中空円錐膜を形成する。このようなホロコーンタイプの圧力噴射ノズルとしてはシンプレックス噴射弁と称されるものが知られている。 As shown in FIG. 2, the pressure injection device 4 is arranged at the center of the opening at the upper end of the peripheral wall 6 that is one end side of the premixing tube 3. The pressure injection device 4 is a hollow cone type pressure injection nozzle that highly atomizes liquid fuel by injecting the fuel into a hollow conical shape. The pressure injection device 4 is configured such that fuel supplied from two fuel supply passages, that is, a main supply passage 20 and a pilot supply passage 21, flows out from the same injection nozzle 22, and a swirl motion is given to the fuel. As a result, the fuel discharged from the injection nozzle 22 spreads due to the centrifugal force to form a hollow conical membrane. As such a hollow cone type pressure injection nozzle, what is called a simplex injection valve is known.
この圧力噴射装置4の噴射ノズル22の噴射角度は、予混合管3の突出壁7の開口端に設けられた内径拡大部10に、円錐状に噴射された燃料が付着しないような角度に設定されている。また、噴射ノズル22の周囲には、外筒体5内の圧縮空気を導入口24から導いて噴射する流路25が設けられている。従って、噴射ノズル22から円錐形に噴射される燃料の広がりは、流路25からの空気によって抑制されるので、突出壁7又は内径拡大部10への燃料の付着を一層緩和・抑制することができる。 The injection angle of the injection nozzle 22 of the pressure injection device 4 is set such that the fuel injected in a conical shape does not adhere to the inner diameter enlarged portion 10 provided at the opening end of the protruding wall 7 of the premixing tube 3. Has been. Further, around the injection nozzle 22, a flow path 25 that guides and injects the compressed air in the outer cylindrical body 5 from the introduction port 24 is provided. Therefore, since the spread of the fuel injected in a conical shape from the injection nozzle 22 is suppressed by the air from the flow path 25, the adhesion of the fuel to the protruding wall 7 or the inner diameter enlarged portion 10 can be further relaxed / suppressed. it can.
次に、以上のように構成された本実施形態のガスタービン燃焼器1の作用について説明する。
ターボ圧縮機からの圧縮空気は通常例えば300℃程度の温度である。この圧縮空気が外筒体5内に導かれ、予混合管3の周壁6に設けられた孔8から内部に流入し、周壁6と内壁9の間の筒状の隙間Sで旋回流となる。この旋回流は隙間Sから出た後、突出壁7の内周面に沿って流れながら突出壁7の開口端に至り、さらに内径拡大部10の面取り部11に沿って流れることにより、外方に拡大しながら燃焼筒に流入する。
Next, the operation of the gas turbine combustor 1 of the present embodiment configured as described above will be described.
The compressed air from the turbo compressor is usually at a temperature of about 300 ° C., for example. This compressed air is guided into the outer cylindrical body 5 and flows into the inside through a hole 8 provided in the peripheral wall 6 of the premixing tube 3, and turns into a swirl flow in the cylindrical gap S between the peripheral wall 6 and the inner wall 9. . After this swirl flow exits from the gap S, it flows along the inner peripheral surface of the projecting wall 7, reaches the open end of the projecting wall 7, and further flows along the chamfered portion 11 of the inner diameter enlarged portion 10. It flows into the combustion cylinder while expanding.
他方、圧縮空気は、予混合管3の上端の開口から内壁9の内側の空間にも供給され、圧力噴射装置4から噴射された燃料と混合気を形成して直進流となり、突出壁7から燃焼筒2に送り込まれて燃焼し、例えば1000〜2000℃の燃焼ガスを生成する。なお、以上の説明における空気やガスの温度は一例である。 On the other hand, the compressed air is also supplied to the space inside the inner wall 9 from the opening at the upper end of the premixing tube 3, forms a mixture with the fuel injected from the pressure injection device 4, and proceeds straightly from the protruding wall 7. It is sent to the combustion cylinder 2 and combusted, for example, to generate combustion gas of 1000 to 2000 ° C. In addition, the temperature of air and gas in the above description is an example.
このような本実施形態における空気等の流れにおいて、旋回流は内径拡大部10に沿って外方に誘導・拡大されるので、予混合管3の中央における空気の直進流の流路断面積は、前記旋回流が外側に拡大する態様に応じたものとなる。すなわち、燃料と空気の量を一定として考えれば、旋回流が大きく外方に導かれ、空気の直進流の流路断面積が大きくなるほど、混合気の速度は相対的に小さくなり、その結果として火炎のリフト距離は短くなる。また旋回流があまり外方に導かれないため、空気の直進流の流路断面積が拡大しない場合には、混合気の速度は相対的に大きくなり、その結果として火炎のリフト距離は長くなる。 In such a flow of air or the like in the present embodiment, the swirling flow is guided and expanded outward along the inner diameter enlarged portion 10, so that the flow cross-sectional area of the straight air flow at the center of the premixing tube 3 is The swirl flow is in accordance with a mode of expanding outward. In other words, if the amount of fuel and air is assumed to be constant, the swirl flow is largely guided outward, and the flow velocity of the air-fuel mixture becomes relatively smaller as the flow cross-sectional area of the straight air flow increases. Flame lift distance is reduced. In addition, since the swirl flow is not guided to the outside so much, when the cross-sectional area of the straight flow of the air does not expand, the speed of the air-fuel mixture becomes relatively large, and as a result, the flame lift distance becomes long. .
内壁9の内部における圧縮空気及び燃料又はこれらの混合気は、周壁6と内壁9の隙間Sで形成された圧縮空気の旋回流に干渉されることなく、内壁9の内側の全領域において内壁9の軸線方向に沿った一様な直進流となるが、前述したように内径拡大部10における旋回流の外方への拡大に伴って直進流の流路断面積が調整されることにより、この調整された流路断面積に対応する速度に応じたリフト距離で燃焼する。 The compressed air and the fuel or the mixture thereof inside the inner wall 9 are not interfered with the swirling flow of the compressed air formed by the gap S between the peripheral wall 6 and the inner wall 9, and the inner wall 9 in the entire area inside the inner wall 9. As described above, the flow cross-sectional area of the straight flow is adjusted in accordance with the outward expansion of the swirling flow in the inner diameter expanding portion 10 as described above. It burns with the lift distance according to the speed corresponding to the adjusted channel cross-sectional area.
このように、予混合管3内における混合気の直進流は、予混合管3の周壁6の孔8から流入した空気の旋回流に流路断面積を減少させられて流速が過剰に上昇することはなく、安定した一定の流速で突出壁7内に送り込まれた後、内径拡大部10を通過する際乃至その直後に内径拡大部10の形状に応じた速度の調整を受け、図3(a)に示すように燃焼筒2内の所定のリフト距離L1で火炎Fとなり、同図(b)に示すように火炎が安定して保持された状態となる。このため、火炎Fは燃焼筒2内の適切な位置に安定的に保持され、熱による燃焼筒2の耐久性悪化が防止されるとともに、燃焼の安定化や低エミッションが実現される。 As described above, the straight flow of the air-fuel mixture in the premixing tube 3 is reduced in flow passage cross section due to the swirling flow of the air flowing from the hole 8 in the peripheral wall 6 of the premixing tube 3 and the flow velocity is excessively increased. However, after being fed into the protruding wall 7 at a stable and constant flow rate, the speed is adjusted according to the shape of the inner diameter enlarged portion 10 when passing through the inner diameter enlarged portion 10 or immediately after that, as shown in FIG. As shown to a), it becomes the flame F by the predetermined lift distance L1 in the combustion cylinder 2, and will be in the state hold | maintained stably as shown to the same figure (b). For this reason, the flame F is stably held at an appropriate position in the combustion cylinder 2, the deterioration of the durability of the combustion cylinder 2 due to heat is prevented, and stabilization of combustion and low emission are realized.
前述した図3は内径拡大部10の面取り部11がC8の場合であったが、このガスタービン燃焼器1において、燃焼時に発生する輻射熱がより大きい燃料を使用するために、リフト距離Lをもっと長くとりたい場合が生じたとする。例えば、灯油や軽油が燃焼時に発生する輻射熱よりも、芳香族系の燃料による輻射熱の方が大きいので、図3の構造が灯油や軽油の仕様に適していたとしても、この構造で芳香族系の燃料を使用すると、熱によって燃焼筒2等が損傷する可能性がある。本実施形態によれば、予混合管2の開口端に設けた内径拡大部10は、ボルト等の簡易な取り付け手段で取り付けてあるため、他の寸法構造の面取り部11を有する内径拡大部10だけを交換するだけで、燃料の変更に容易に対応することができる。従って、火炎のリフト距離Lを変更・調整するために、ガスタービン燃焼器1の予混合管3の形状構造等を後から変更し、予混合管3からの旋回空気量と直進空気量の微妙な変更・調整を行なう煩雑困難な作業を行なう必要はない。 FIG. 3 described above is a case where the chamfered portion 11 of the inner diameter enlarged portion 10 is C8. In this gas turbine combustor 1, in order to use a fuel having a larger radiant heat generated during combustion, the lift distance L is further increased. Suppose you want to take a long time. For example, the radiant heat generated by aromatic fuel is greater than the radiant heat generated when kerosene or light oil is burned, so even if the structure in FIG. If this fuel is used, the combustion cylinder 2 and the like may be damaged by heat. According to the present embodiment, the inner diameter enlarged portion 10 provided at the opening end of the premixing tube 2 is attached by a simple attachment means such as a bolt, so that the inner diameter enlarged portion 10 having a chamfered portion 11 having another dimensional structure. It is possible to easily cope with the fuel change by simply replacing the fuel cell. Therefore, in order to change / adjust the lift distance L of the flame, the shape and the like of the premixing tube 3 of the gas turbine combustor 1 are changed later so that the amount of swirling air from the premixing tube 3 and the amount of straight air flow are subtle. There is no need to perform complicated and difficult operations for making changes and adjustments.
例えば、図4(a)に示すように、面取り部11の角度が45度であり、その水平方向及び垂直方向の寸法が3mmであって、JIS記号のC3で表される加工が施された内径拡大部10を使用したとする。旋回流は図3の場合ほどには外方に拡大・誘導されないので、図3の場合に比べれば、予混合管3の中央を進む空気の直進流の流路断面積は狭くなり、燃料と空気の量を一定として考えれば、その速度も相対的に大きくなり、その結果として火炎Fのリフト距離L2は図3の場合のL1よりも長くなり、そのより遠い位置において同図(b)に示すように火炎が安定して保持された状態となる。 For example, as shown in FIG. 4A, the angle of the chamfered portion 11 is 45 degrees, its horizontal and vertical dimensions are 3 mm, and a process represented by C3 of the JIS symbol has been performed. It is assumed that the inner diameter enlarged portion 10 is used. Since the swirling flow is not expanded and guided outward as in the case of FIG. 3, the flow cross-sectional area of the straight flow of the air traveling in the center of the premixing tube 3 is narrower than that in the case of FIG. Assuming that the amount of air is constant, the speed becomes relatively large, and as a result, the lift distance L2 of the flame F becomes longer than L1 in the case of FIG. 3, and in the farther position in FIG. As shown, the flame is stably held.
さらに、図5(a)に示すように、面取り部11がなく、断面直角であり、JIS記号で表すとすればC0となる加工が施された内径拡大部10を使用したとする。この場合は、実際には面取り加工はされておらず、内径拡大部10の名称に関わらず、内径は予混合管3の突出壁7の内径と同じで拡大しないことになる。旋回流は図4の場合ほどには外方に拡大・誘導されず、突出壁7の内周面に沿って下降してきたまま、燃焼筒2の内部に供給される。このため、予混合管3の中央を進む空気の直進流は流路断面積に実質的な変化が生じない。従って、燃料と空気の量を一定として考えれば、その速度も大きくは変化せず、図4の場合に比べれば相対的に大きくなり、その結果として火炎Fのリフト距離L3は図4の場合のL2よりもさらに長くなり、その最も遠い位置において同図(b)に示すように火炎が安定して保持された状態となる。 Further, as shown in FIG. 5 (a), it is assumed that the inner diameter enlarged portion 10 which has no chamfered portion 11, is perpendicular to the cross section, and is processed to be C0 if represented by a JIS symbol is used. In this case, the chamfering process is not actually performed, and the inner diameter is the same as the inner diameter of the protruding wall 7 of the premixing tube 3 regardless of the name of the inner diameter enlarged portion 10 and is not enlarged. The swirling flow is not expanded or guided outward as in the case of FIG. 4, but is supplied into the combustion cylinder 2 while descending along the inner peripheral surface of the protruding wall 7. For this reason, the straight flow of air traveling through the center of the premixing tube 3 does not cause a substantial change in the flow path cross-sectional area. Therefore, if the amount of fuel and air is considered to be constant, the speed does not change greatly, and becomes relatively large compared to the case of FIG. 4, and as a result, the lift distance L3 of the flame F is the same as that in FIG. It becomes longer than L2, and the flame is stably held at the farthest position as shown in FIG.
このように、火炎Fのリフト距離が適正か否かは、火炎Fの輻射熱の程度に応じて判断されるべきものであり、火炎Fの温度に対してリフト距離が短すぎれば燃焼筒2等が損傷するし、火炎Fの温度に対してリフト距離が長すぎれば燃焼が不安定化して火炎Fが消えてしまうこともありうる。そこで、本実施形態では、図3〜図5に例示したように、火炎Fの輻射熱の程度に応じて適当な内径拡大形状の内径拡大部10を選択して取り付けることにより、適正な火炎Fのリフト距離Lを容易に得ることができることを示したものである。従って、内径拡大部10の面取り部11の角度、寸法等は、必要な火炎のリフト距離と装置全体の構成に合わせて種々に設定することができる。 As described above, whether or not the lift distance of the flame F is appropriate should be determined according to the degree of radiant heat of the flame F. If the lift distance is too short with respect to the temperature of the flame F, the combustion cylinder 2 and the like. If the lift distance is too long with respect to the temperature of the flame F, the combustion may become unstable and the flame F may disappear. Therefore, in this embodiment, as illustrated in FIGS. 3 to 5, by selecting and attaching the inner diameter enlarged portion 10 having an appropriate inner diameter enlarged shape in accordance with the degree of radiant heat of the flame F, an appropriate flame F can be obtained. This shows that the lift distance L can be easily obtained. Therefore, the angle, dimension, and the like of the chamfered portion 11 of the inner diameter enlarged portion 10 can be variously set in accordance with the required flame lift distance and the configuration of the entire apparatus.
次に、本実施形態のガスタービン燃焼器1において、空気及び燃料又は燃焼ガスの実際の流速について実測した結果を説明する。
図6は、本実施形態のガスタービン燃焼器において、空気及び燃料ガスを着火しない状態で流した非燃焼状態のデータである。予混合管3の出口を原点(X=0)とした予混合管3の中心線上におけるガスの速度分布を、図3〜図5に示すC8、C3、C0の各内径拡大部10ごとに実測し、グラフとして示したものである。横軸の距離Xの単位はmm、縦軸の軸方向速度Uの単位はm/sである。この非燃焼状態では、流速の速さは、予混合管3の出口(X=0)では差は少ないが、距離Xが長くなるにつれて差が生じ、速い方からC0(図5)、C3(図4)、C8(図3)の順となる。
この結果から、前述したように内径の拡大の大きい内径拡大部10ほど、旋回流が外方に逃げるため、直進流は流路断面積が広がって速度が低下する事実が分かる。
Next, in the gas turbine combustor 1 of this embodiment, the results of actual measurement of the actual flow rates of air and fuel or combustion gas will be described.
FIG. 6 shows data in a non-combustion state in which air and fuel gas are flown without ignition in the gas turbine combustor of the present embodiment. The gas velocity distribution on the center line of the premixing tube 3 with the outlet of the premixing tube 3 as the origin (X = 0) is measured for each of the inner diameter enlarged portions 10 of C8, C3, and C0 shown in FIGS. It is shown as a graph. The unit of distance X on the horizontal axis is mm, and the unit of axial velocity U on the vertical axis is m / s. In this non-combustion state, the speed of the flow rate is small at the outlet of the premixing tube 3 (X = 0), but the difference occurs as the distance X becomes longer, and C0 (FIG. 5), C3 ( 4) and C8 (FIG. 3).
From this result, it can be seen that, as described above, the swirling flow escapes outward as the inner diameter expanding portion 10 having a larger inner diameter increases, so that the flow speed of the straight flow decreases because the cross-sectional area of the flow increases.
図7は、本実施形態のガスタービン燃焼器1において、空気及び燃料ガスを流して着火した燃焼状態のデータである。予混合管3の出口を原点(X=0)とする予混合管3の中心線上における燃焼ガスの速度分布を、図3〜図5に示すC8、C3、C0の各内径拡大部10ごとに実測し、グラフとして示したものである。横軸及び縦軸の単位は図6と同一である。この燃焼状態では、流速は、各内径拡大部10について一定ではなく、予混合管3の出口(X=0)から距離Xが大きくなるにつれて低下するが、ある位置を以て上昇に転じ、その後一定の値まで上昇していくといった変化をたどる。この速度が下降から上昇に転ずる位置X、すなわち各グラフの極小値に対応するX値が前記リフト距離Lであり、これは前述したように内径拡大部10の構造によって異なり、図7に示すデータによれば短い方からC8(図3)のL=31、C3(図4)のL=35、C0(図5)のL=39の順となっている。これは、各内径拡大部10の構造により極小値の前まではC8、C3、C0の順で速度が小さくなっているため、このC8、C3、C0の順で火炎が発生するリフト距離Lが短くなるからである。火炎が発生した位置よりも後では、いずれも燃焼ガスの速度が一定の値まで増大していく。
この結果から、前述したように内径の拡大の大きい内径拡大部10ほど、火炎のリフト距離が短くなり、火炎が予混合管3の下端部(又は燃焼筒2の頂部)に近づく事実が分かる。
FIG. 7 is data of a combustion state in which the gas turbine combustor 1 according to this embodiment is ignited by flowing air and fuel gas. The velocity distribution of the combustion gas on the center line of the premixing tube 3 with the exit of the premixing tube 3 as the origin (X = 0) is shown for each inner diameter enlarged portion 10 of C8, C3, and C0 shown in FIGS. It is actually measured and shown as a graph. The units of the horizontal and vertical axes are the same as in FIG. In this combustion state, the flow velocity is not constant for each inner diameter enlarged portion 10 and decreases as the distance X increases from the outlet (X = 0) of the premixing tube 3, but starts to increase at a certain position, and then remains constant. Follow the change of rising to the value. The position X at which the speed changes from descending to ascending, that is, the X value corresponding to the minimum value in each graph is the lift distance L, which differs depending on the structure of the inner diameter enlarged portion 10 as described above, and is shown in FIG. According to FIG. 3, L = 31 in C8 (FIG. 3), L = 35 in C3 (FIG. 4), and L = 39 in C0 (FIG. 5) from the shortest. This is because the speed decreases in the order of C8, C3, C0 until the minimum value due to the structure of each inner diameter enlarged portion 10, and the lift distance L at which the flame is generated in the order of C8, C3, C0 is as follows. This is because it becomes shorter. In any case after the position where the flame is generated, the speed of the combustion gas increases to a certain value.
From this result, as described above, it can be understood that the larger the inner diameter enlarged portion 10 having the larger inner diameter, the shorter the flame lift distance, and the closer the flame approaches the lower end portion of the premixing tube 3 (or the top portion of the combustion cylinder 2).
次に、図8を参照して第2実施形態のガスタービン燃焼器における内径拡大部20の構造例を説明する。
図8に示すように、本実施形態の内径拡大部20の内周縁には、曲面加工部として、所定半径で断面が中心角度が90度の扇形である周面部21が形成されている。図8(a)は半径が30mmの場合、同(b)は半径が20mmの場合、同(c)は半径が20mmの場合であり、いずれも予混合管3の突出壁7の開口端に突出壁7の内周面と連続するように、かつ図示下方の燃焼筒2に向けて内径拡大部20としての内径が広がるように取り付けられている。取り付け方は任意であり、特に図示しないが、第1実施形態のように着脱可能なボルト止めが好ましい。本実施形態によっても、第1実施形態と同様の作用効果を得ることができる。また、曲面加工部としては、本実施形態のような所定半径で断面扇形の周面部21でもよいが、半径は一定ではないが、図示下方の燃焼筒2に向けて内径が広がるような曲面を備えたものでもよい。
Next, with reference to FIG. 8, the structural example of the internal diameter expansion part 20 in the gas turbine combustor of 2nd Embodiment is demonstrated.
As shown in FIG. 8, a circumferential surface portion 21 having a predetermined radius and a section having a central angle of 90 degrees is formed as a curved surface processing portion on the inner peripheral edge of the inner diameter enlarged portion 20 of the present embodiment. 8A shows the case where the radius is 30 mm, FIG. 8B shows the case where the radius is 20 mm, and FIG. 8C shows the case where the radius is 20 mm, both of which are at the open end of the protruding wall 7 of the premixing tube 3. It attaches so that the internal diameter as the internal diameter expansion part 20 may spread toward the combustion cylinder 2 below illustration so that it may continue with the internal peripheral surface of the protrusion wall 7. FIG. The attachment method is arbitrary, and although not particularly illustrated, a detachable bolt stop as in the first embodiment is preferable . Also according to this embodiment, the same effect as that of the first embodiment can be obtained. Further, as the curved surface processing portion, the peripheral surface portion 21 having a predetermined radius and a sectoral cross section as in the present embodiment may be used, but the radius is not constant, but a curved surface whose inner diameter widens toward the combustion cylinder 2 at the lower side of the figure. It may be provided.
1…ガスタービン燃焼器
2…燃焼筒
3…予混合管
4…圧力噴射装置
7…予混合管を構成する突出壁
10,20…内径拡大部
11…面取り加工部としての面取り部
21…曲面加工部としての周面部
F…火炎
L…火炎のリフト距離
DESCRIPTION OF SYMBOLS 1 ... Gas turbine combustor 2 ... Combustion cylinder 3 ... Premixing pipe 4 ... Pressure injection apparatus 7 ... Projection wall which comprises premixing pipe 10,20 ... Inner diameter enlarged part 11 ... Chamfering part as a chamfering part 21 ... Curved surface processing Peripheral surface as part F ... Flame L ... Flame lift distance
Claims (3)
前記燃焼筒に開口して設けられ供給された燃料と空気を混合して前記燃焼筒に供給する予混合管と、
前記予混合管に設けられて前記予混合管に燃料を供給する燃料供給手段と、
前記予混合管が前記燃焼筒に開口する開口端に、他の内径拡大形状の内径拡大部と交換可能に設けられた内径拡大部と、
を備えたことを特徴とするガスタービン燃焼器。 A combustion cylinder that burns a mixture of fuel and air to supply combustion gas to the turbine;
A premixing pipe that is provided in the combustion cylinder so as to be provided and supplied to the combustion cylinder by mixing the supplied fuel and air;
Fuel supply means provided in the premixing tube and supplying fuel to the premixing tube;
An inner diameter enlarged portion provided at the opening end where the premixing tube opens in the combustion cylinder, in an exchangeable manner with an inner diameter enlarged portion of another inner diameter enlarged shape ,
A gas turbine combustor comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011117087A JP5807899B2 (en) | 2011-05-25 | 2011-05-25 | Gas turbine combustor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011117087A JP5807899B2 (en) | 2011-05-25 | 2011-05-25 | Gas turbine combustor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015026708A Division JP5958981B2 (en) | 2015-02-13 | 2015-02-13 | Method for changing flame lift distance in gas turbine combustor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012247084A JP2012247084A (en) | 2012-12-13 |
JP5807899B2 true JP5807899B2 (en) | 2015-11-10 |
Family
ID=47467693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011117087A Expired - Fee Related JP5807899B2 (en) | 2011-05-25 | 2011-05-25 | Gas turbine combustor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5807899B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6185369B2 (en) * | 2013-11-01 | 2017-08-23 | 新潟原動機株式会社 | Gas turbine combustor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20012781A1 (en) * | 2001-12-21 | 2003-06-21 | Nuovo Pignone Spa | IMPROVED ASSEMBLY OF PRE-MIXING CHAMBER AND COMBUSTION CHAMBER, LOW POLLUTING EMISSIONS FOR GAS TURBINES WITH FUEL |
JP4065947B2 (en) * | 2003-08-05 | 2008-03-26 | 独立行政法人 宇宙航空研究開発機構 | Fuel / air premixer for gas turbine combustor |
JP2005283002A (en) * | 2004-03-30 | 2005-10-13 | Osaka Gas Co Ltd | Combustion device and gas turbine engine |
JP4937158B2 (en) * | 2008-02-20 | 2012-05-23 | 新潟原動機株式会社 | Gas turbine combustor |
-
2011
- 2011-05-25 JP JP2011117087A patent/JP5807899B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012247084A (en) | 2012-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2450211C2 (en) | Tubular combustion chamber with impact cooling | |
JP5468812B2 (en) | Combustor assembly and fuel nozzle for gas turbine engine | |
RU2459146C2 (en) | Burner | |
CN104969003A (en) | Nozzle with multi-tube fuel supply passageway for gas turbine engines | |
WO2015141561A1 (en) | Nozzle, burner, combustor, gas turbine, and gas turbine system | |
JP2016099106A (en) | Bundled tube fuel nozzle | |
JP2011021875A (en) | Lean direct injection for premixed pilot application | |
JPH0777316A (en) | Fuel lance for liquid and/or gas fuel and its operation | |
JP2017227431A (en) | Pilot premix nozzle and fuel nozzle assembly | |
JP2009192214A (en) | Fuel nozzle for gas turbine engine and method for fabricating the same | |
JP2017003257A (en) | Prefilming air blast (pab) pilot having annular splitter surrounding pilot fuel injector | |
JP2010065963A (en) | Combustor, method of supplying fuel to the same, and method of modifying the same | |
US20170363294A1 (en) | Pilot premix nozzle and fuel nozzle assembly | |
CN105402770A (en) | Dilution gas or air mixer for a combustor of a gas turbine | |
JP2016099107A (en) | Premix fuel nozzle assembly | |
JP2020159591A (en) | Combustor and gas turbine | |
RU2533609C2 (en) | Burner flame stabilisation | |
TWI802568B (en) | Regenerative combustion equipment | |
JP5958981B2 (en) | Method for changing flame lift distance in gas turbine combustor | |
JP5807899B2 (en) | Gas turbine combustor | |
JP2005188776A (en) | Hot air generating device and control method | |
JP6417620B2 (en) | Combustor, gas turbine | |
US9441543B2 (en) | Gas turbine combustor including a premixing chamber having an inner diameter enlarging portion | |
JP2020046099A (en) | Hydrogen gas combustion apparatus | |
US20160320062A1 (en) | Nozzle for a gas turbine combustor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5807899 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |