JP5805810B2 - Building ventilation structure - Google Patents
Building ventilation structure Download PDFInfo
- Publication number
- JP5805810B2 JP5805810B2 JP2014042250A JP2014042250A JP5805810B2 JP 5805810 B2 JP5805810 B2 JP 5805810B2 JP 2014042250 A JP2014042250 A JP 2014042250A JP 2014042250 A JP2014042250 A JP 2014042250A JP 5805810 B2 JP5805810 B2 JP 5805810B2
- Authority
- JP
- Japan
- Prior art keywords
- building
- ventilation
- ventilation structure
- wall
- communication hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009423 ventilation Methods 0.000 title claims description 95
- 238000004891 communication Methods 0.000 claims description 39
- 239000011810 insulating material Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 9
- 239000012774 insulation material Substances 0.000 claims description 3
- 230000005494 condensation Effects 0.000 description 20
- 238000009833 condensation Methods 0.000 description 20
- 238000007664 blowing Methods 0.000 description 7
- 229920006327 polystyrene foam Polymers 0.000 description 6
- 238000012545 processing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Building Environments (AREA)
- Duct Arrangements (AREA)
Description
本発明は建物の換気構造に係り、少ない送風量で建物内の表面結露や特定の壁体内の内部結露を低減できるようにした建物の換気構造に関する。 The present invention relates to a building ventilation structure, and more particularly to a building ventilation structure that can reduce surface condensation in a building and internal condensation in a specific wall body with a small amount of air flow.
建物において、建物の結露を少なくして、室内環境を快適に保持するために、建物の壁体の内部に換気経路を設ける換気構造が提案されている(特許文献1)。この発明は、側壁部の外壁と通気性を有する内壁の間に通気層を構成し、夏季には、通気層内中の空気を強制排気して室内に対して負圧に維持し、また内壁を通じてVOCや湿気を緩やかに排出し、室内温度上昇を抑え、また、冬季には排気口を閉鎖して通気層を断熱層とし、室内温度降下を抑え、等の方法で、年間を通して室内環境を快適に保持する。 In a building, a ventilation structure in which a ventilation path is provided inside a wall of a building has been proposed in order to reduce the condensation of the building and to maintain the indoor environment comfortably (Patent Document 1). In the present invention, a ventilation layer is formed between the outer wall of the side wall portion and the inner wall having air permeability, and in summer, the air in the ventilation layer is forcibly exhausted to maintain a negative pressure with respect to the room. VOCs and moisture are slowly discharged through to suppress the indoor temperature rise, and in winter, the exhaust port is closed and the ventilation layer is used as a heat insulation layer to suppress the indoor temperature drop. Hold comfortably.
冬季に室内で発生した水蒸気によって窓ガラス、アルミサッシ窓枠等に表面結露が生じる。殊に、木造建物では、壁体内に内部結露が生じる。従って、一般に壁体を内壁(内装ボード等の内装材)と外壁(サイディング等の外装材)とで構成し、その間に断熱材等を収容する構造となっている。内壁側に防湿シート等の防湿層が無い場合には、室内で発生した水蒸気が壁体内に侵入し、室外と室内、或いは室内と家具等とに温度差が生じ、内部・外側が露点以下となると、断熱材や木材、家具・カーテンの表面に内部結露が生じる。内部・室内結露によって壁体・カーテン・家具でのカビ発生や躯体(主として、木材・漆喰等)・家具の腐朽の発生など、表面結露以上に木造建物に悪影響を及ぼす。 Water vapor generated indoors in winter causes surface condensation on window glass, aluminum sash window frames, and the like. In particular, in a wooden building, internal condensation occurs in the wall. Therefore, generally, the wall body is constituted by an inner wall (interior material such as an interior board) and an outer wall (exterior material such as siding), and a heat insulating material or the like is accommodated therebetween. If there is no moisture barrier such as a moisture-proof sheet on the inner wall side, water vapor generated indoors will enter the wall, creating a temperature difference between the outdoor and indoor, or indoor and furniture. Then, internal condensation occurs on the surface of the heat insulating material, wood, furniture and curtain. Condensation on the walls, curtains, and furniture due to internal and indoor condensation, and wooden buildings (mainly wood, plaster, etc.) and decay of furniture will adversely affect wooden buildings more than surface condensation.
特許文献1に開示された発明では、内壁が透湿性材料で構成され、冬季に壁体内全体を断熱層として使用するようになっているため、外壁と壁体内部の断熱材との間に内部結露が生じてしまうおそれがある。 In the invention disclosed in Patent Document 1, since the inner wall is made of a moisture-permeable material and the entire wall is used as a heat insulating layer in winter, the inner wall is formed between the outer wall and the heat insulating material inside the wall. Condensation may occur.
この問題を解消できる技術として特許文献2に開示した発明がある。この発明(通気断熱構造を備えた建築物の室内環境制御方法)では、戸外及び室内の水蒸気分圧を測定し、除湿機を制御動作させることで内部結露を低減している。 As a technique that can solve this problem, there is an invention disclosed in Patent Document 2. In the present invention (indoor environment control method for a building having a ventilation and heat insulating structure), the water vapor partial pressure inside and outside the room is measured, and the internal dew condensation is reduced by controlling the dehumidifier.
特許文献1,2に開示された発明では、建物の外周壁に相当する壁体全体に通気層を設けるため、送風量が大きくる問題と、特許文献1では小屋裏の換気扇を大容量のものにする必要がある。また、特許文献2では、室内空気を排気する排気ファンが設置されるが、建物の全周に配置される内部通気層内及び床下の除湿対策のためには除湿機の能力も大きくする必要がある。 In the inventions disclosed in Patent Documents 1 and 2, since the ventilation layer is provided on the entire wall corresponding to the outer peripheral wall of the building, there is a problem that the amount of air flow is large, and in Patent Document 1, the ventilation fan in the shed is of a large capacity It is necessary to. In Patent Document 2, an exhaust fan that exhausts indoor air is installed. However, it is necessary to increase the capacity of the dehumidifier in order to prevent dehumidification in the internal ventilation layer and under the floor arranged around the entire circumference of the building. is there.
本発明の目的は上述した従来の技術が有する問題点を解消し、壁体の配置状態を考慮して、空気通路の構造と、その通路面積値とを特定することで、少ない送風量としつつ、壁体内の温度勾配を小さくし、小型の送風機の採用とともに、好ましくは、特定の壁体内での内部結露を低減することを意図する。そして、望ましくは、建物の壁体は南面側と北面側とでは内部結露の発生状況が異なる。そこで、壁体の配置に応じて異なった送風制御を行うことを意図する。さらに、土台と、胴差し、又は柱とで囲まれた空間を密に埋めるように納められている防湿シートで覆われた断熱材マットの内外面に所定温度の低湿度風を送風し、この断熱材マットの内外面での温度勾配を小さくする構成とし、壁体内で生じる内部結露を大幅に低減することを意図する。 The object of the present invention is to solve the above-mentioned problems of the prior art and specify the structure of the air passage and the passage area value in consideration of the arrangement state of the wall body, while reducing the air flow rate. It is intended to reduce the temperature gradient in the wall, and to reduce internal condensation in the specific wall, preferably with the adoption of a small blower. Desirably, the wall of the building differs in the occurrence of internal condensation on the south side and the north side. Therefore, it is intended to perform different ventilation control according to the arrangement of the wall. Furthermore, a low-humidity air of a predetermined temperature is blown to the inner and outer surfaces of the heat insulating mat covered with a moisture-proof sheet that is enclosed so as to densely fill the space surrounded by the base and the torso or pillar. It is intended to reduce the temperature gradient on the inner and outer surfaces of the heat insulating material mat, and to greatly reduce internal dew condensation that occurs in the wall.
上記目的を達成するために、本発明の建物の換気構造は、建物の躯体の土台、柱、胴差し、必要により、各階の床材に開設した、それぞれの連通孔で、この建物を囲繞するように通気経路を形成し、この通気経路内を、一基、又は数基の送風機で発生する風を空気流として流し、前記躯体の屋根空間内に排気し、当該建物外に排気する建物の換気構造において、
前記土台と、前記胴差し、又は前記柱とで囲まれた空間を密に埋めるように納められている防湿シートで覆われた断熱材マットの内外面に所定温度の低湿度風を送風し、この断熱材マットの内外面での温度勾配を小さくすることを特徴とする。
In order to achieve the above object, the building ventilation structure of the present invention surrounds the building with the base, pillar, trunk, and, if necessary, each floor hole on each floor. The ventilation path is formed as described above, and the wind generated by one or several blowers is caused to flow as an air flow in the ventilation path , exhausted into the roof space of the enclosure, and exhausted outside the building . In the ventilation structure ,
A low-humidity wind of a predetermined temperature is blown to the inner and outer surfaces of the heat insulating material mat covered with a moisture-proof sheet that is packed so as to densely fill the space surrounded by the base and the trunk or the pillar, The temperature gradient on the inner and outer surfaces of the heat insulating material mat is reduced.
前記各通気経路内に断熱材マットが収容され、該断熱材マットの内外表面に沿って前記空気流が各通気経路内を上昇することが好ましい。
Wherein the each vent passage insulation material mat in the housing, it is preferable that the air flow along the inner and outer surfaces of the insulation material mat is increased within each vent passage.
前記各通気経路の何れか一つに、開閉制御(開閉弁、逆止弁)を設けて、空気流の流れを制御することが好ましい。 It is preferable to provide an open / close control (open / close valve, check valve) in any one of the ventilation paths to control the flow of air.
また、前記送風源からの送風は、経路中間で分配され、土台に形成された各送風連通孔に独立した送風経路を介して供給されることが好ましい。 Moreover, it is preferable that the ventilation from the said ventilation source is distributed through the path | route middle, and is supplied via the ventilation path | route which became independent to each ventilation communication hole formed in the base.
さらに、土台または横架材に形成された連通孔は、排気側が漸変拡幅された形状とすることが好ましい。 Furthermore, it is preferable that the communication hole formed in the base or the horizontal member has a shape in which the exhaust side is gradually widened.
本発明によれば、小容量の送風量で建物各部の壁体内の送風量を個別に制御することができ、これにより内部結露の生じやすい壁体を特定して、その壁体内での温度勾配を個別に調節して小さくすることができ、それにより建物内の各部の壁体での内部結露発生を抑制することができるという効果を奏する。 According to the present invention, it is possible to individually control the amount of air blown in the walls of each part of the building with a small amount of air flow, thereby identifying a wall that is susceptible to internal condensation, and the temperature gradient in the wall. Can be adjusted individually to make it smaller, thereby producing the effect of suppressing the occurrence of internal dew condensation in the wall of each part in the building.
以下、本発明の建物の換気構造の一実施形態としての基本構造について、図1〜図3を参照して説明する。図1は、本発明の建物の換気構造10(以下、単に換気構造10と記す。)の一実施形態を組み込んだ木造軸組構造建物1の全体構成を示した軸組図である。図2は、土台と、1階柱3(31)の上部に架設され、2階を支える横架材としての胴差し4と、屋根材5を支える軒桁6とを奥行き方向の関係が分かるように示した斜視図である。図3は、1階部分の壁体8(81)の詳細構成を示した部分断面図である。 Hereinafter, a basic structure as one embodiment of a building ventilation structure of the present invention will be described with reference to FIGS. FIG. 1 is a frame diagram showing the overall configuration of a wooden frame structure building 1 incorporating an embodiment of a building ventilation structure 10 (hereinafter simply referred to as a ventilation structure 10) according to the present invention. FIG. 2 shows the relationship in the depth direction between the base and the girder 4 as the horizontal member that supports the second floor and the eaves girder 6 that supports the roof material 5 that are installed on the upper part of the first floor pillar 3 (31). It is the perspective view shown as follows. FIG. 3 is a partial sectional view showing a detailed configuration of the wall body 8 (81) of the first floor portion.
図1に示したように、本発明の換気構造10は、基礎F上から土台2、胴差し4、軒桁6にわたり連続し、建物1の外周となる各部の壁体8に設置されている。建物1の基礎F上には本発明の換気構造10の送風ユニット20(後述、図4参照)が設置されている。この送風ユニット20から土台2の内面側位置まで複数本の2次送風ホース24が配管されている。この2次送風ホース24は土台2の連通孔2Aの送気口(図示せず)に接続されている。この連通孔2A(第1連通孔)は図2に示したように、隣接する柱3(31)間に所定間隔をあけて複数個が形成される。本実施形態では、柱間に2箇所の連通孔2Aが形成されている。これらの連通孔2Aは、図1、図2に示したように、土台2の内面側と上面とを結ぶような略L字形をなし、直管がつながる隅角部は緩い曲率がつけられ、送風時のロスを軽減するようになっている。本実施形態では連通孔2Aとしてφ18mmの円孔が採用されているが、孔径、個数は設定した送風量に応じて適宜決定することが好ましい。この連通孔2Aと他の各連通孔(後述する)には、図示しないが、開閉弁、逆止弁等の開閉制御装置をセットし、風量調整と、孔の開閉を司り、多様的な空気流れの確保と、結露回避の効率化、また送風量調整と、機材の耐久性確保とかが図れ、かつ客の要望等に対応することも可能である。 As shown in FIG. 1, the ventilation structure 10 according to the present invention extends from the foundation F to the base 2, the torso 4, and the eaves girder 6, and is installed on the wall body 8 of each part that becomes the outer periphery of the building 1. . On the foundation F of the building 1, a blower unit 20 (see FIG. 4 described later) of the ventilation structure 10 of the present invention is installed. A plurality of secondary air blowing hoses 24 are piped from the air blowing unit 20 to the inner surface side position of the base 2. The secondary blower hose 24 is connected to an air supply port (not shown) of the communication hole 2 </ b> A of the base 2. As shown in FIG. 2, a plurality of communication holes 2A (first communication holes) are formed at predetermined intervals between adjacent pillars 3 (31). In the present embodiment, two communication holes 2A are formed between the columns. As shown in FIGS. 1 and 2, these communication holes 2 </ b> A have a substantially L shape that connects the inner surface side and the upper surface of the base 2, and a corner portion to which the straight pipe is connected has a loose curvature, The loss at the time of ventilation is reduced. In the present embodiment, a circular hole of φ18 mm is employed as the communication hole 2A, but it is preferable that the hole diameter and the number are appropriately determined according to the set air flow rate. In this communication hole 2A and each other communication hole (described later), although not shown, an open / close control device such as an open / close valve and a check valve is set to control air volume and open / close the hole. It is possible to secure the flow, increase the efficiency of avoiding dew condensation, adjust the air flow rate and ensure the durability of the equipment, and respond to customer requests.
さらに、1階と2階との間に架設された横架材としての胴差し4にも複数の連通孔4A(第2連通孔)が形成されている。また、2階柱3(32)の上部に架設された横架材としての複数の軒桁6にも連通孔6A(第3連通孔)が形成されている。この連通孔4A(図示しないが、連通孔6Aも同じ)は、図2−1に示すように、胴差し4(軒桁材6)の端部4−4、及び/又は、柱3の近傍に設けて、この胴差し4の強度の低下を回避する。また、図2−2に示すように、環体、空間を備えた補強部材Cを嵌め込むことで、胴差し4の強度の低下を回避する。図1、図2、図3に示したように、連通孔4Aは、1階の壁体8内を上昇してきた内部空気を2階の壁体8(82)内に導く役割を果たす。また、連通孔6Aは、2階の壁体81内を上昇してきた内部空気を小屋裏7に導く役割を果たす。本実施形態では、各連通孔2A、4A、6A(第1連通孔、第2連通孔、第3連通孔)はいずれも同径の円孔で上下方向に連続して配置された柱3(31、32)間において、孔の軸芯が通るように等間隔に配置されている。これらの孔径、隣接する柱3間での配置数は各壁体8での設定送風量に応じて適宜決定できる。たとえば、図1において、図中、左側が南面を、右側が北面を示しているが、北面側に位置する居室R1があまり利用されないことが想定される場合には、冬季に室内温度が低温状態になりがちになる。その場合には、北面の外壁面となる壁体8の外壁と内壁との間の温度勾配を小さくすることが好ましい。そのために連通孔4Aの設置孔数を少なくし、かつ後述する2次送風ホース24の接続本数を少なくして暖気の送風量を調整するか、また、図示しないが、各通気経路に設けた開閉制御(開閉弁、逆止弁)で、空気流の流れを制御するか、あるいは、後述する送風機の2次送風ホース24の開閉制御で、空気流の流れを制御するか、により、対応することができる。 Furthermore, a plurality of communication holes 4A (second communication holes) are also formed in the trunk 4 as a horizontal member laid between the first floor and the second floor. In addition, a plurality of eaves beams 6 as horizontal members erected on the upper part of the second floor pillar 3 (32) are also formed with communication holes 6A (third communication holes). The communication hole 4A (not shown, but the communication hole 6A is the same) is, as shown in FIG. 2A, the end 4-4 of the trunk 4 (eave beam material 6) and / or the vicinity of the pillar 3. Is provided to avoid a decrease in the strength of the barrel 4. Moreover, as shown to FIGS. 2-2, the fall of the intensity | strength of the trunk 4 is avoided by inserting the reinforcement member C provided with the annular body and the space. As shown in FIGS. 1, 2, and 3, the communication hole 4 </ b> A serves to guide the internal air that has risen in the first-floor wall body 8 into the second-floor wall body 8 (82). The communication hole 6 </ b> A plays a role of guiding the internal air that has risen in the second-floor wall body 81 to the cabin 7. In the present embodiment, each of the communication holes 2A, 4A, 6A (first communication hole, second communication hole, third communication hole) is a circular hole having the same diameter, and a column 3 ( 31 and 32) are arranged at equal intervals so that the axial center of the hole passes. These hole diameters and the number of arrangements between the adjacent pillars 3 can be appropriately determined according to the set air volume in each wall body 8. For example, in FIG. 1, the left side shows the south surface and the right side shows the north surface in FIG. 1, but when it is assumed that the room R1 located on the north surface side is not used much, the room temperature is low in winter. Tend to be. In that case, it is preferable to reduce the temperature gradient between the outer wall and the inner wall of the wall 8 that is the outer wall surface of the north surface. For this purpose, the number of holes provided in the communication hole 4A is reduced, and the number of connections of the secondary blower hose 24 to be described later is reduced to adjust the amount of warm air blown. Depending on whether the air flow is controlled by control (open / close valve, check valve) or the air flow is controlled by opening / closing control of the secondary blower hose 24 of the blower described later. Can do.
ここで、本発明の換気構造10における壁体内での通気状態について、図2、図3を参照して説明する。図3は、図1で示した壁体8の詳細構成と壁体8内での通気状態を示した部分断面図である。図2、図3に示したように、この木造軸組構造の壁体構造は、土台2と胴差し4との間の柱間に、その柱幅に納まる厚さの断熱材マット12を納め、マット両面を所定の壁体材料で覆った構造からなる。この断熱材マット12は防水断熱性を有する袋内にグラスウール等の断熱性の高い材料を充填した定尺マットである。各断熱材マット12は、図3に示したように、土台2と胴差し4と柱3とで囲まれた空間を密に埋めるように納められている。さらに室内面側には防湿シート13が断熱材マット12を覆うように張られている。その外面にたとえば木質系ボード等の内装板35が施工されている。一方、外面側には透湿防水シート14が断熱材マット12を覆うように縦胴縁36で押さえられるように張られている。この縦胴縁36の外面にサイディング等の外壁材37が取り付けられている。したがって、外壁材37と透湿防水シート14との間には、胴縁の厚さに相当する外側通気経路9が構成されている。外側通気経路9の下端には土台見切り38、上端には通気見切り39が設けられている。 Here, the ventilation state in the wall in the ventilation structure 10 of this invention is demonstrated with reference to FIG. 2, FIG. FIG. 3 is a partial cross-sectional view illustrating a detailed configuration of the wall body 8 illustrated in FIG. 1 and a ventilation state in the wall body 8. As shown in FIGS. 2 and 3, the wall structure of this wooden frame structure includes a heat insulating mat 12 having a thickness that fits within the column width between the columns between the base 2 and the torso 4. The mat has a structure in which both surfaces of the mat are covered with a predetermined wall material. The heat insulating material mat 12 is a standard mat in which a waterproof and heat insulating bag is filled with a highly heat insulating material such as glass wool. As shown in FIG. 3, each heat insulating material mat 12 is stored so as to densely fill the space surrounded by the base 2, the trunk 4, and the pillar 3. Further, a moisture-proof sheet 13 is stretched on the indoor surface side so as to cover the heat insulating mat 12. On the outer surface, an interior board 35 such as a wooden board is constructed. On the other hand, the moisture permeable waterproof sheet 14 is stretched on the outer surface side so as to be pressed by the vertical trunk edge 36 so as to cover the heat insulating material mat 12. An outer wall material 37 such as siding is attached to the outer surface of the vertical trunk edge 36. Therefore, the outer ventilation path 9 corresponding to the thickness of the trunk edge is formed between the outer wall member 37 and the moisture-permeable waterproof sheet 14. A base parting 38 is provided at the lower end of the outer ventilation path 9, and a ventilation parting 39 is provided at the upper end.
本発明の換気構造10は、図3において、上述した壁体構造の土台2に形成された第1連通孔2Aと、胴差し4に形成された第2連通孔4Aとの間において内部通気経路11(111)を形成する。この例では、内装板35(壁体内側)の防湿シート13と外壁材37(壁体外側)の透湿防水シート14との間に、断熱材マット12が納めること内部通気経路11を形成する。従って、土台2の第1連通孔2Aからの空気は、内部通気経路11を通り、胴差し4まで上昇させることができる。さらに2階においては、図2に示したように、胴差し4から屋根材5の一部を支持する軒桁6に形成された第3連通孔6Aまでの間が内部通気経路11(112)の役割を果たす。そして内部通気経路11を経て小屋裏7まで上昇した空気流は、図示しない屋根の軒下あるいは妻面に形成された見切りや換気口を介して建物1外に排気される。 In FIG. 3, the ventilation structure 10 of the present invention has an internal ventilation path between the first communication hole 2 </ b> A formed in the base 2 of the wall structure described above and the second communication hole 4 </ b> A formed in the trunk 4. 11 (111) is formed. In this example, the internal ventilation path 11 is formed by housing the heat insulating material mat 12 between the moisture-proof sheet 13 on the interior board 35 (inside the wall body) and the moisture-permeable waterproof sheet 14 on the outer wall material 37 (outside the wall body). . Therefore, the air from the first communication hole 2 </ b> A of the base 2 can be raised to the trunk 4 through the internal ventilation path 11. Further, on the second floor, as shown in FIG. 2, the space between the trunk 4 and the third communication hole 6 </ b> A formed in the eaves 6 that supports a part of the roof material 5 is the internal ventilation path 11 (112). To play a role. Then, the air flow that has risen up to the back of the hut 7 through the internal ventilation path 11 is exhausted outside the building 1 through a parting or ventilation opening formed under the eaves of the roof or on the wife surface (not shown).
外部通気経路9の壁体面に張られている透湿防水シート14は、雨水が外部通気経路9内に浸入した場合でも、断熱材マット12が濡れるのを防止することができるが、透湿性があるため、降雨時などに外部の湿気を断熱材マット12が吸収してしまうことは防止できない。湿気を帯びた断熱材マット12の内外面に温度差が生じると、柱3の側面や土台2の上面に内部結露が生じ、木材の腐朽が進行するおそれがある。このような状態を回避するために、断熱材マット12の内外面に所定温度の低湿度風を送風させることで、断熱材マット12の内外面での温度勾配を小さくすることができる。これにより、壁体内で生じる内部結露を大幅に低減することができる。 The moisture-permeable waterproof sheet 14 stretched on the wall surface of the external ventilation path 9 can prevent the heat insulating material mat 12 from getting wet even when rainwater enters the external ventilation path 9, but has moisture permeability. For this reason, it is impossible to prevent the heat insulating material mat 12 from absorbing external moisture during rain. When a temperature difference occurs between the inner and outer surfaces of the heat-insulating mat 12 with moisture, internal condensation may occur on the side surfaces of the pillars 3 and the upper surface of the base 2, and the decay of the wood may proceed. In order to avoid such a state, the temperature gradient on the inner and outer surfaces of the heat insulating mat 12 can be reduced by blowing low-humidity air at a predetermined temperature on the inner and outer surfaces of the heat insulating mat 12. Thereby, the internal dew condensation which arises in a wall body can be reduced significantly.
また、冬季には低湿度で比較的高温の風を壁体内に送風して断熱材マット12を暖めた後、壁体内への送風を停止、遮断することで壁体内に比較的高温の断熱層を形成することもできる。 Further, in winter, a relatively high temperature heat insulation layer is formed in the wall body by blowing a relatively high temperature and low temperature wind into the wall body to warm the insulation mat 12 and then stopping and blocking the air flow into the wall body. Can also be formed.
ここで、換気構造10に用いる送風ユニット20及び送風ユニット20の付属部材について図4を参照して説明する。本発明の換気構造10の実施形態で用いる送風ユニット20は、床下に配置した送風機21と、送風機21からの1次送風を各土台2への2次送風として振り分けを行う分配ボックス22と、1次送風ホース23と2次送風ホース24とから構成されている。尚、図示しないが、送風機21(ブロワ、換気扇、ファン)は、小屋裏7に設置することも可能である。また、床下と小屋裏7との双方に、送風機21を設けることも可能である。 Here, the ventilation unit 20 used for the ventilation structure 10 and the attached member of the ventilation unit 20 are demonstrated with reference to FIG. The blower unit 20 used in the embodiment of the ventilation structure 10 of the present invention includes a blower 21 arranged under the floor, a distribution box 22 that distributes primary blown air from the blower 21 as secondary blown air to each base 2, and 1 The secondary blower hose 23 and the secondary blower hose 24 are configured. In addition, although not shown in figure, the air blower 21 (blower, ventilation fan, fan) can also be installed in the shed 7. Moreover, it is also possible to provide the blower 21 in both the under floor and the shed 7.
本発明では、2次送風までを考慮しても送風総量が小さく、また居住空間の床下に設置するため、既製品のうち小型で低出力の静粛・低振動型ブロアが使用されている。分配ボックス22は、図示したような扁平の鋼製箱状をなし、各側面板22aには2次送風ホース24の直径に等しい開口(円孔)が押し抜き形成可能なパンチングプレス加工された弱め部22bが上下2段に、各面に16個ずつ配列されている。これらの配列された弱め部22bのうち、2次送風ホース24を接続する部位を押し抜いて開口を設け、図示しない樹脂製コネクタを介して2次送風ホース24の端部を接続させればよい。2次送風ホース24は、上述したように、建物1の配置、構造、用途等に応じて各壁体8で必要とされる送風量が確保できる本数が配管される。よって、分配ボックス22を設置する際に、2次送風ホース24の配管位置、方向に合った位置の側面板22aに開口を設ければよい。 In the present invention, the total amount of air blowing is small even considering the secondary air blowing, and since it is installed under the floor of the living space, a small, low-output, quiet and low vibration type blower is used among the existing products. The distribution box 22 is in the shape of a flat steel box as shown in the figure, and each side plate 22a has a punching press processed weakening that can be punched to form openings (circular holes) equal to the diameter of the secondary blower hose 24. 16 portions 22b are arranged on each surface in two upper and lower stages. Of these arranged weakened portions 22b, a portion where the secondary blower hose 24 is connected may be pushed out to provide an opening, and the end of the secondary blower hose 24 may be connected via a resin connector (not shown). . As described above, the secondary blower hose 24 is piped in a number that can secure the amount of blown air necessary for each wall body 8 according to the arrangement, structure, usage, and the like of the building 1. Therefore, when the distribution box 22 is installed, an opening may be provided in the side plate 22a at a position that matches the piping position and direction of the secondary blower hose 24.
なお、送風機21に付属する機器として、送風機21からの1次送風の温度、湿度を調節する温調機、除湿機と、それらの制御部としての温湿調節装置と、温湿調節装置に各壁体部の温度、湿度情報を伝えるセンサ群とを備えることで壁体内の送風状態を、精緻に制御することも可能である。 In addition, as equipment attached to the blower 21, a temperature controller and a dehumidifier for adjusting the temperature and humidity of the primary blower from the blower 21, a temperature and humidity control device as a control unit thereof, and a temperature and humidity control device, respectively. It is also possible to precisely control the air blowing state in the wall body by providing a sensor group that transmits temperature and humidity information of the wall body portion.
図5は、横架材としての胴差し4、軒桁6に形成される通気経路(連通孔)の加工例を示した説明図である。図5(a)は、上下を貫通するように設けられた貫通孔4a(φ18)に対して上面側からリーマー加工により円錐状拡幅孔4bを形成した加工例である。このように通気経路の排気側が漸変拡幅されることで、この横架材の上方に位置する断熱材マット12(図示せず)の内外面の広い範囲に効率よく上昇気流を送ることができる。図5(b)は、側面視して略二等辺三角形のスリット状の扁平なロート形状の拡幅孔4cを形成した加工例である。このような形状とすることにより、効率のよい上昇気流の確保が図られるとともに、横架材の断面欠損を最小限にして、部材強度を確保することができる。 FIG. 5 is an explanatory view showing a processing example of a ventilation path (communication hole) formed in the trunk 4 and the eaves girder 6 as horizontal members. FIG. 5A shows a processing example in which a conical widening hole 4b is formed from the upper surface side by reaming a through hole 4a (φ18) provided so as to penetrate vertically. Thus, by gradually widening the exhaust side of the ventilation path, the updraft can be efficiently sent to a wide range of the inner and outer surfaces of the heat insulating mat 12 (not shown) located above the horizontal member. . FIG. 5B shows a processing example in which a slit-like flat funnel-shaped widening hole 4c having a substantially isosceles triangular shape when viewed from the side is formed. By adopting such a shape, efficient ascending airflow can be secured, and the cross-sectional defect of the horizontal member can be minimized to ensure the member strength.
図6は、他の実施形態として、図4に示した送風機21と分配ボックス22による送風システムに代えて、横架材としての軒桁6あるいは胴差し4に形成された各通気経路4a(6a)の排気側(部材の上面)に小型ファン40を取り付けた例を示した説明図である。同図では比較のために、1つの通気経路の排気側に小型ファン40が設置された状態が示されている。この小型ファン40は吸気ファンとして機能し、ファン40aの回転により横架材4(6)の通気経路4a(6a)を通じて下方空間の空気を吸気することができる。この小型ファン40は使用電力が小さいため、小型の太陽電池パネル41による発電で直流駆動させることができる。この実施形態では、個々の通気経路4a(6a)に小型ファン40を設置するため、ファン本体の交換などのメンテナンスを行うことが予想されるので、たとえば小屋裏に所定のクリアランスを設けて軒桁上に配列された小型ファン40の点検スペースを確保することが好ましい。なお、上述した太陽電池パネル41は住宅の屋根に設置されたものを利用することができる。その場合、小屋裏空間に配線網を設け、軒桁上に設置された複数個の小型ファン40を効率よく駆動させることができる。 FIG. 6 shows, as another embodiment, each ventilation path 4a (6a) formed in the eaves girder 6 or the gut 4 as a horizontal member instead of the blower system by the blower 21 and the distribution box 22 shown in FIG. It is explanatory drawing which showed the example which attached the small fan 40 to the exhaust side (upper surface of a member). For comparison, the figure shows a state where a small fan 40 is installed on the exhaust side of one ventilation path. The small fan 40 functions as an intake fan, and can inhale the air in the lower space through the ventilation path 4a (6a) of the horizontal member 4 (6) by the rotation of the fan 40a. Since this small fan 40 has a small power consumption, it can be DC driven by power generation by a small solar cell panel 41. In this embodiment, since the small fans 40 are installed in the individual ventilation paths 4a (6a), it is expected that maintenance such as replacement of the fan main body is performed. It is preferable to secure an inspection space for the small fans 40 arranged above. In addition, the solar cell panel 41 mentioned above can utilize what was installed in the roof of a house. In that case, a wiring network is provided in the back space of the cabin, and a plurality of small fans 40 installed on the eaves girder can be driven efficiently.
以上の説明では、小型ファンを用いて送風を行う例にあげたが、本発明では内部通気経路に送られる送風量が小容量であるため、代替手段として壁面にヒートシンクをベースとしたペルチェ素子を配列して通電して通気経路内に温度差を生じさせることで、温度差による空気の流れを生じさせることもできる。また、年較差の小さい地中温度を利用して、基礎下の地中に送気管を配管した地中熱交換部を設け、この地中熱交換部で得た温熱(冷熱)を、送気管を介して内部通気経路に供給し、建物の効率的な換気を行うことも可能である。 In the above description, an example is given in which air is blown using a small fan, but in the present invention, since the amount of air sent to the internal ventilation path is small, a Peltier device based on a heat sink is used as an alternative means on the wall surface. By arranging and energizing to generate a temperature difference in the ventilation path, an air flow due to the temperature difference can be generated. In addition, by using the underground temperature with a small yearly difference, an underground heat exchange part with an air supply pipe installed in the ground below the foundation is provided, and the heat (cold heat) obtained in this underground heat exchange part is supplied to the air supply pipe. It is also possible to supply the internal ventilation path via the air and efficiently ventilate the building.
図7〜図9は、断熱材マットの他の実施形態として、ポリスチレンフォーム断熱板50を用いた例を示している。これらの実施形態では、図7を例にとると、土台2と柱3(31)と胴差し4、あるいは胴差し4と柱3(32)と軒桁6とに囲まれた内部通気経路に相当する壁体空間部分を覆うように所定厚さのポリスチレンフォーム断熱板50が嵌め込まれている。このポリスチレンフォーム断熱板50としては、ポリスチレンフォーム本体と合板とを貼り合わせた合成部材が用いられている。これにより壁部分によって耐震性能を向上させることが可能となる。さらに各図に示したように、各断熱板には、各形状の通気管路51(512)が形成されている。この実施例は、例えば、壁体8の強度の向上等を意図する。 7-9 has shown the example using the polystyrene foam heat insulating board 50 as other embodiment of a heat insulating material mat. In these embodiments, taking FIG. 7 as an example, an internal ventilation path surrounded by the base 2 and the pillar 3 (31) and the trunk 4 or between the trunk 4 and the pillar 3 (32) and the eaves 6 is provided. A polystyrene foam heat insulating plate 50 having a predetermined thickness is fitted so as to cover the corresponding wall space portion. As this polystyrene foam heat insulation board 50, the synthetic member which bonded the polystyrene foam main body and the plywood together is used. This makes it possible to improve the earthquake resistance by the wall portion. Further, as shown in each drawing, each heat insulating plate is formed with a vent pipe 51 (512) of each shape. This embodiment is intended to improve the strength of the wall body 8, for example.
1階においては土台2の第1連通孔2Aと、胴差し4の第2連通孔4Aとの間には、通気管路512とを通じて土台2側から送気された空気を胴差し4まで上昇させることができ、かつ2階においては胴差し4の第2連通孔4Aから軒桁6の第3連通孔6Aまでの間が通気管路511が形成される。従って、第1連通孔2A、第2連通孔4A、及び通気管路51と、第2連通孔4A、第3連通孔4A、及び通気管路511とを介して土台2側から小屋裏7まで所定風量の空気流を上昇させることができる。この空気流により断熱板が嵌め込まれた壁部分での内部結露の発生を抑えることができる。さらに通気管路51内を上昇する空気流によって心地よい音が創生される。この音が室内側に伝わることにより、生活空間において安らぎ感を得ることができるという効果も期待できる。 On the first floor, between the first communication hole 2A of the base 2 and the second communication hole 4A of the trunk 4, the air fed from the base 2 side is raised to the trunk 4 through the ventilation pipe 512. On the second floor, a ventilation pipe 511 is formed between the second communication hole 4A of the trunk 4 and the third communication hole 6A of the eaves girder 6. Accordingly, the first communication hole 2A, the second communication holes 4A, and a vent line 51, a second communication hole 4A, the third communication hole 4A, and from the ground 2 side to attic 7 via the vent line 511 An air flow having a predetermined air volume can be increased. The generation of internal dew condensation at the wall portion in which the heat insulating plate is fitted can be suppressed by this air flow. Furthermore, a pleasant sound is created by the air flow rising in the ventilation duct 51. By transmitting this sound to the indoor side, an effect of being able to obtain a feeling of comfort in the living space can be expected.
上述した通気管路51は、2枚のポリスチレンフォーム板の対向面にそれぞれ半円形状断面の半円形溝を形成し、それらを面合わせすることで断熱板内に円管状経路として構成される。図7は2本の通気管路51を筋交い形状に設けた例である。このような形状とすることにより、通気経路の延長を延ばすことができ、土台から軒桁までの内部通気経路としての断熱板内を上昇する空気流によって壁体部分の内外の温度勾配を効果的に小さくすることができる。図中、矢印は、空気流の流れを示す(他の例も同じ)。 The above-described vent pipe 51 is formed as a circular pipe path in the heat insulating plate by forming semicircular grooves with a semicircular cross section on the opposing surfaces of the two polystyrene foam plates, respectively, and matching them. FIG. 7 shows an example in which two vent pipes 51 are provided in a brace shape. By adopting such a shape, the extension of the ventilation path can be extended, and the temperature gradient inside and outside the wall part is effectively caused by the air flow rising inside the heat insulating plate as the internal ventilation path from the foundation to the eaves girder Can be made smaller. In the figure, arrows indicate the flow of airflow (the same applies to other examples).
図8、図9に示した通気管路51は、図7に示した通気管路51に比べて短い経路からなる。これにより断熱板の断面欠損が小さくでき、断熱板の剛性低下を抑えることができる。また、通気管路51の形状を直管形状(図8)と、湾曲管(図9)とすることで空気流によって生じる音の音色、高低に変化をつけることができること、顧客の要望に応え得ること、等の実用性も可能となる。 The ventilation pipe 51 shown in FIGS. 8 and 9 has a shorter path than the ventilation pipe 51 shown in FIG. Thereby, the cross-sectional defect | deletion of a heat insulation board can be made small, and the rigidity fall of a heat insulation board can be suppressed. In addition, the shape of the air duct 51 is a straight pipe shape (FIG. 8) and a curved pipe (FIG. 9), so that it is possible to change the tone and height of the sound generated by the air flow, in response to customer demands. It is also possible to obtain practicality.
本発明は上述した実施形態に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope indicated in each claim. In other words, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
1 建物
2 土台
3 柱
4 胴差し
5 屋根材
6 軒桁
7 小屋裏
8 壁体
9 外部通気経路
10 換気構造
11 内部通気経路
12 断熱材マット
20 送風ユニット
21 送風機
24 2次送風ホース
50 ポリスチレンフォーム断熱板
51 通気管路
DESCRIPTION OF SYMBOLS 1 Building 2 Base 3 Pillar 4 Trunk 5 Roof material 6 Eaves girder 7 Hut back 8 Wall body 9 External ventilation path 10 Ventilation structure 11 Internal ventilation path 12 Thermal insulation mat 20 Blower unit 21 Blower 24 Secondary ventilation hose 50 Polystyrene foam insulation Board 51 Vent line
Claims (5)
前記土台と、前記胴差し、又は前記柱とで囲まれた空間を密に埋めるように納められている防湿シートで覆われた断熱材マットの内外面に所定温度の低湿度風を送風し、この断熱材マットの内外面での温度勾配を小さくする構成とした建物の換気構造。 Form a ventilation path so as to surround this building at each communication hole opened on the floor material of each floor, if necessary, the base of the building's frame , pillars, torches, one inside this ventilation path , Or in the ventilation structure of the building that flows the wind generated by several blowers as an air flow, exhausts it into the roof space of the enclosure, and exhausts it outside the building ,
A low-humidity wind of a predetermined temperature is blown to the inner and outer surfaces of the heat insulating material mat covered with a moisture-proof sheet that is packed so as to densely fill the space surrounded by the base and the trunk or the pillar, Ventilation structure of the building that is configured to reduce the temperature gradient on the inside and outside surfaces of this insulation mat .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014042250A JP5805810B2 (en) | 2014-03-05 | 2014-03-05 | Building ventilation structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014042250A JP5805810B2 (en) | 2014-03-05 | 2014-03-05 | Building ventilation structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015168920A JP2015168920A (en) | 2015-09-28 |
JP5805810B2 true JP5805810B2 (en) | 2015-11-10 |
Family
ID=54201923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014042250A Expired - Fee Related JP5805810B2 (en) | 2014-03-05 | 2014-03-05 | Building ventilation structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5805810B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108489053A (en) * | 2018-05-24 | 2018-09-04 | 桂林航天工业学院 | A kind of air port |
-
2014
- 2014-03-05 JP JP2014042250A patent/JP5805810B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015168920A (en) | 2015-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009002574A (en) | Hybrid air conditioning system | |
JP5805810B2 (en) | Building ventilation structure | |
JP2009084936A (en) | Thermal insulation dwelling house and ventilation system | |
JP3187707B2 (en) | Building cooling / heating / ventilation system | |
JP6403605B2 (en) | building | |
JP5684465B2 (en) | Building ventilation structure | |
JP4026961B2 (en) | Housing ventilation structure | |
JP2008089786A (en) | Ventilation sensing equipment, and coolness comparing and sensing equipment | |
JP6611266B2 (en) | Residential | |
JP6386937B2 (en) | Humidity control system | |
JP4722650B2 (en) | Building | |
JP4927520B2 (en) | Building with equipment installation space | |
JP4701074B2 (en) | building | |
JP3368486B2 (en) | Architectural structures and buildings with them | |
JP6410979B1 (en) | Ventilation system and house | |
JP6511344B2 (en) | Building air conditioning | |
JP3563901B2 (en) | Building heating and cooling system | |
JP6468872B2 (en) | Building | |
JP3752657B2 (en) | building | |
JP5180432B2 (en) | Ventilation outer wall | |
JP2006241773A (en) | Thermally insulated building | |
JP6095136B2 (en) | Air conditioning system | |
JP2007016477A (en) | Thermal-insulation/airtight/ventilation structure employing external thermal insulating construction method, and method for repairing thermal-insulation/airtight/ventilation structure by external thermal insulating construction method for existing building | |
JPH11310967A (en) | Structure of natural ventilation building for detached house, and natural ventilation system | |
JP2008106439A (en) | Ventilating structure of building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5805810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |